summaryrefslogtreecommitdiff
path: root/flocq/Core/Fcore_Raux.v
blob: 748e36e50de9886f4a42278e29c7c27080119784 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
(**
This file is part of the Flocq formalization of floating-point
arithmetic in Coq: http://flocq.gforge.inria.fr/

Copyright (C) 2010-2011 Sylvie Boldo
#<br />#
Copyright (C) 2010-2011 Guillaume Melquiond

This library is free software; you can redistribute it and/or
modify it under the terms of the GNU Lesser General Public
License as published by the Free Software Foundation; either
version 3 of the License, or (at your option) any later version.

This library is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
COPYING file for more details.
*)

(** * Missing definitions/lemmas *)
Require Export Reals.
Require Export ZArith.
Require Export Fcore_Zaux.

Section Rmissing.

(** About R *)
Theorem Rle_0_minus :
  forall x y, (x <= y)%R -> (0 <= y - x)%R.
Proof.
intros.
apply Rge_le.
apply Rge_minus.
now apply Rle_ge.
Qed.

Theorem Rabs_eq_Rabs :
  forall x y : R,
  Rabs x = Rabs y -> x = y \/ x = Ropp y.
Proof.
intros x y H.
unfold Rabs in H.
destruct (Rcase_abs x) as [_|_].
assert (H' := f_equal Ropp H).
rewrite Ropp_involutive in H'.
rewrite H'.
destruct (Rcase_abs y) as [_|_].
left.
apply Ropp_involutive.
now right.
rewrite H.
now destruct (Rcase_abs y) as [_|_] ; [right|left].
Qed.

Theorem Rabs_minus_le:
  forall x y : R,
  (0 <= y)%R -> (y <= 2*x)%R ->
  (Rabs (x-y) <= x)%R.
Proof.
intros x y Hx Hy.
unfold Rabs; case (Rcase_abs (x - y)); intros H.
apply Rplus_le_reg_l with x; ring_simplify; assumption.
apply Rplus_le_reg_l with (-x)%R; ring_simplify.
auto with real.
Qed.

Theorem Rplus_eq_reg_r :
  forall r r1 r2 : R,
  (r1 + r = r2 + r)%R -> (r1 = r2)%R.
Proof.
intros r r1 r2 H.
apply Rplus_eq_reg_l with r.
now rewrite 2!(Rplus_comm r).
Qed.

Theorem Rplus_le_reg_r :
  forall r r1 r2 : R,
  (r1 + r <= r2 + r)%R -> (r1 <= r2)%R.
Proof.
intros.
apply Rplus_le_reg_l with r.
now rewrite 2!(Rplus_comm r).
Qed.

Theorem Rmult_lt_reg_r :
  forall r r1 r2 : R, (0 < r)%R ->
  (r1 * r < r2 * r)%R -> (r1 < r2)%R.
Proof.
intros.
apply Rmult_lt_reg_l with r.
exact H.
now rewrite 2!(Rmult_comm r).
Qed.

Theorem Rmult_le_reg_r :
  forall r r1 r2 : R, (0 < r)%R ->
  (r1 * r <= r2 * r)%R -> (r1 <= r2)%R.
Proof.
intros.
apply Rmult_le_reg_l with r.
exact H.
now rewrite 2!(Rmult_comm r).
Qed.

Theorem Rmult_eq_reg_r :
  forall r r1 r2 : R, (r1 * r)%R = (r2 * r)%R ->
  r <> 0%R -> r1 = r2.
Proof.
intros r r1 r2 H1 H2.
apply Rmult_eq_reg_l with r.
now rewrite 2!(Rmult_comm r).
exact H2.
Qed.

Theorem Rmult_minus_distr_r :
  forall r r1 r2 : R,
  ((r1 - r2) * r = r1 * r - r2 * r)%R.
Proof.
intros r r1 r2.
rewrite <- 3!(Rmult_comm r).
apply Rmult_minus_distr_l.
Qed.

Theorem Rmult_min_distr_r :
  forall r r1 r2 : R,
  (0 <= r)%R ->
  (Rmin r1 r2 * r)%R = Rmin (r1 * r) (r2 * r).
Proof.
intros r r1 r2 [Hr|Hr].
unfold Rmin.
destruct (Rle_dec r1 r2) as [H1|H1] ;
  destruct (Rle_dec (r1 * r) (r2 * r)) as [H2|H2] ;
  try easy.
apply (f_equal (fun x => Rmult x r)).
apply Rle_antisym.
exact H1.
apply Rmult_le_reg_r with (1 := Hr).
apply Rlt_le.
now apply Rnot_le_lt.
apply Rle_antisym.
apply Rmult_le_compat_r.
now apply Rlt_le.
apply Rlt_le.
now apply Rnot_le_lt.
exact H2.
rewrite <- Hr.
rewrite 3!Rmult_0_r.
unfold Rmin.
destruct (Rle_dec 0 0) as [H0|H0].
easy.
elim H0.
apply Rle_refl.
Qed.

Theorem Rmult_min_distr_l :
  forall r r1 r2 : R,
  (0 <= r)%R ->
  (r * Rmin r1 r2)%R = Rmin (r * r1) (r * r2).
Proof.
intros r r1 r2 Hr.
rewrite 3!(Rmult_comm r).
now apply Rmult_min_distr_r.
Qed.

Theorem exp_le :
  forall x y : R,
  (x <= y)%R -> (exp x <= exp y)%R.
Proof.
intros x y [H|H].
apply Rlt_le.
now apply exp_increasing.
rewrite H.
apply Rle_refl.
Qed.

Theorem Rinv_lt :
  forall x y,
  (0 < x)%R -> (x < y)%R -> (/y < /x)%R.
Proof.
intros x y Hx Hxy.
apply Rinv_lt_contravar.
apply Rmult_lt_0_compat.
exact Hx.
now apply Rlt_trans with x.
exact Hxy.
Qed.

Theorem Rinv_le :
  forall x y,
  (0 < x)%R -> (x <= y)%R -> (/y <= /x)%R.
Proof.
intros x y Hx Hxy.
apply Rle_Rinv.
exact Hx.
now apply Rlt_le_trans with x.
exact Hxy.
Qed.

Theorem sqrt_ge_0 :
  forall x : R,
  (0 <= sqrt x)%R.
Proof.
intros x.
unfold sqrt.
destruct (Rcase_abs x) as [_|H].
apply Rle_refl.
apply Rsqrt_positivity.
Qed.

Theorem Rabs_le :
  forall x y,
  (-y <= x <= y)%R -> (Rabs x <= y)%R.
Proof.
intros x y (Hyx,Hxy).
unfold Rabs.
case Rcase_abs ; intros Hx.
apply Ropp_le_cancel.
now rewrite Ropp_involutive.
exact Hxy.
Qed.

Theorem Rabs_le_inv :
  forall x y,
  (Rabs x <= y)%R -> (-y <= x <= y)%R.
Proof.
intros x y Hxy.
split.
apply Rle_trans with (- Rabs x)%R.
now apply Ropp_le_contravar.
apply Ropp_le_cancel.
rewrite Ropp_involutive, <- Rabs_Ropp.
apply RRle_abs.
apply Rle_trans with (2 := Hxy).
apply RRle_abs.
Qed.

Theorem Rabs_ge :
  forall x y,
  (y <= -x \/ x <= y)%R -> (x <= Rabs y)%R.
Proof.
intros x y [Hyx|Hxy].
apply Rle_trans with (-y)%R.
apply Ropp_le_cancel.
now rewrite Ropp_involutive.
rewrite <- Rabs_Ropp.
apply RRle_abs.
apply Rle_trans with (1 := Hxy).
apply RRle_abs.
Qed.

Theorem Rabs_ge_inv :
  forall x y,
  (x <= Rabs y)%R -> (y <= -x \/ x <= y)%R.
Proof.
intros x y.
unfold Rabs.
case Rcase_abs ; intros Hy Hxy.
left.
apply Ropp_le_cancel.
now rewrite Ropp_involutive.
now right.
Qed.

Theorem Rabs_lt :
  forall x y,
  (-y < x < y)%R -> (Rabs x < y)%R.
Proof.
intros x y (Hyx,Hxy).
now apply Rabs_def1.
Qed.

Theorem Rabs_lt_inv :
  forall x y,
  (Rabs x < y)%R -> (-y < x < y)%R.
Proof.
intros x y H.
now split ; eapply Rabs_def2.
Qed.

Theorem Rabs_gt :
  forall x y,
  (y < -x \/ x < y)%R -> (x < Rabs y)%R.
Proof.
intros x y [Hyx|Hxy].
rewrite <- Rabs_Ropp.
apply Rlt_le_trans with (Ropp y).
apply Ropp_lt_cancel.
now rewrite Ropp_involutive.
apply RRle_abs.
apply Rlt_le_trans with (1 := Hxy).
apply RRle_abs.
Qed.

Theorem Rabs_gt_inv :
  forall x y,
  (x < Rabs y)%R -> (y < -x \/ x < y)%R.
Proof.
intros x y.
unfold Rabs.
case Rcase_abs ; intros Hy Hxy.
left.
apply Ropp_lt_cancel.
now rewrite Ropp_involutive.
now right.
Qed.

End Rmissing.

Section Z2R.

(** Z2R function (Z -> R) *)
Fixpoint P2R (p : positive) :=
  match p with
  | xH => 1%R
  | xO xH => 2%R
  | xO t => (2 * P2R t)%R
  | xI xH => 3%R
  | xI t => (1 + 2 * P2R t)%R
  end.

Definition Z2R n :=
  match n with
  | Zpos p => P2R p
  | Zneg p => Ropp (P2R p)
  | Z0 => R0
  end.

Theorem P2R_INR :
  forall n, P2R n = INR (nat_of_P n).
Proof.
induction n ; simpl ; try (
  rewrite IHn ;
  rewrite <- (mult_INR 2) ;
  rewrite <- (nat_of_P_mult_morphism 2) ;
  change (2 * n)%positive with (xO n)).
(* xI *)
rewrite (Rplus_comm 1).
change (nat_of_P (xO n)) with (Pmult_nat n 2).
case n ; intros ; simpl ; try apply refl_equal.
case (Pmult_nat p 4) ; intros ; try apply refl_equal.
rewrite Rplus_0_l.
apply refl_equal.
apply Rplus_comm.
(* xO *)
case n ; intros ; apply refl_equal.
(* xH *)
apply refl_equal.
Qed.

Theorem Z2R_IZR :
  forall n, Z2R n = IZR n.
Proof.
intro.
case n ; intros ; simpl.
apply refl_equal.
apply P2R_INR.
apply Ropp_eq_compat.
apply P2R_INR.
Qed.

Theorem Z2R_opp :
  forall n, Z2R (-n) = (- Z2R n)%R.
Proof.
intros.
repeat rewrite Z2R_IZR.
apply Ropp_Ropp_IZR.
Qed.

Theorem Z2R_plus :
  forall m n, (Z2R (m + n) = Z2R m + Z2R n)%R.
Proof.
intros.
repeat rewrite Z2R_IZR.
apply plus_IZR.
Qed.

Theorem minus_IZR :
  forall n m : Z,
  IZR (n - m) = (IZR n - IZR m)%R.
Proof.
intros.
unfold Zminus.
rewrite plus_IZR.
rewrite Ropp_Ropp_IZR.
apply refl_equal.
Qed.

Theorem Z2R_minus :
  forall m n, (Z2R (m - n) = Z2R m - Z2R n)%R.
Proof.
intros.
repeat rewrite Z2R_IZR.
apply minus_IZR.
Qed.

Theorem Z2R_mult :
  forall m n, (Z2R (m * n) = Z2R m * Z2R n)%R.
Proof.
intros.
repeat rewrite Z2R_IZR.
apply mult_IZR.
Qed.

Theorem le_Z2R :
  forall m n, (Z2R m <= Z2R n)%R -> (m <= n)%Z.
Proof.
intros m n.
repeat rewrite Z2R_IZR.
apply le_IZR.
Qed.

Theorem Z2R_le :
  forall m n, (m <= n)%Z -> (Z2R m <= Z2R n)%R.
Proof.
intros m n.
repeat rewrite Z2R_IZR.
apply IZR_le.
Qed.

Theorem lt_Z2R :
  forall m n, (Z2R m < Z2R n)%R -> (m < n)%Z.
Proof.
intros m n.
repeat rewrite Z2R_IZR.
apply lt_IZR.
Qed.

Theorem Z2R_lt :
  forall m n, (m < n)%Z -> (Z2R m < Z2R n)%R.
Proof.
intros m n.
repeat rewrite Z2R_IZR.
apply IZR_lt.
Qed.

Theorem Z2R_le_lt :
  forall m n p, (m <= n < p)%Z -> (Z2R m <= Z2R n < Z2R p)%R.
Proof.
intros m n p (H1, H2).
split.
now apply Z2R_le.
now apply Z2R_lt.
Qed.

Theorem le_lt_Z2R :
  forall m n p, (Z2R m <= Z2R n < Z2R p)%R -> (m <= n < p)%Z.
Proof.
intros m n p (H1, H2).
split.
now apply le_Z2R.
now apply lt_Z2R.
Qed.

Theorem eq_Z2R :
  forall m n, (Z2R m = Z2R n)%R -> (m = n)%Z.
Proof.
intros m n H.
apply eq_IZR.
now rewrite <- 2!Z2R_IZR.
Qed.

Theorem neq_Z2R :
  forall m n, (Z2R m <> Z2R n)%R -> (m <> n)%Z.
Proof.
intros m n H H'.
apply H.
now apply f_equal.
Qed.

Theorem Z2R_neq :
  forall m n, (m <> n)%Z -> (Z2R m <> Z2R n)%R.
Proof.
intros m n.
repeat rewrite Z2R_IZR.
apply IZR_neq.
Qed.

Theorem Z2R_abs :
  forall z, Z2R (Zabs z) = Rabs (Z2R z).
Proof.
intros.
repeat rewrite Z2R_IZR.
now rewrite Rabs_Zabs.
Qed.

End Z2R.

(** Decidable comparison on reals *)
Section Rcompare.

Definition Rcompare x y :=
  match total_order_T x y with
  | inleft (left _) => Lt
  | inleft (right _) => Eq
  | inright _ => Gt
  end.

Inductive Rcompare_prop (x y : R) : comparison -> Prop :=
  | Rcompare_Lt_ : (x < y)%R -> Rcompare_prop x y Lt
  | Rcompare_Eq_ : x = y -> Rcompare_prop x y Eq
  | Rcompare_Gt_ : (y < x)%R -> Rcompare_prop x y Gt.

Theorem Rcompare_spec :
  forall x y, Rcompare_prop x y (Rcompare x y).
Proof.
intros x y.
unfold Rcompare.
now destruct (total_order_T x y) as [[H|H]|H] ; constructor.
Qed.

Global Opaque Rcompare.

Theorem Rcompare_Lt :
  forall x y,
  (x < y)%R -> Rcompare x y = Lt.
Proof.
intros x y H.
case Rcompare_spec ; intro H'.
easy.
rewrite H' in H.
elim (Rlt_irrefl _ H).
elim (Rlt_irrefl x).
now apply Rlt_trans with y.
Qed.

Theorem Rcompare_Lt_inv :
  forall x y,
  Rcompare x y = Lt -> (x < y)%R.
Proof.
intros x y.
now case Rcompare_spec.
Qed.

Theorem Rcompare_not_Lt :
  forall x y,
  (y <= x)%R -> Rcompare x y <> Lt.
Proof.
intros x y H1 H2.
apply Rle_not_lt with (1 := H1).
now apply Rcompare_Lt_inv.
Qed.

Theorem Rcompare_not_Lt_inv :
  forall x y,
  Rcompare x y <> Lt -> (y <= x)%R.
Proof.
intros x y H.
apply Rnot_lt_le.
contradict H.
now apply Rcompare_Lt.
Qed.

Theorem Rcompare_Eq :
  forall x y,
  x = y -> Rcompare x y = Eq.
Proof.
intros x y H.
rewrite H.
now case Rcompare_spec ; intro H' ; try elim (Rlt_irrefl _ H').
Qed.

Theorem Rcompare_Eq_inv :
  forall x y,
  Rcompare x y = Eq -> x = y.
Proof.
intros x y.
now case Rcompare_spec.
Qed.

Theorem Rcompare_Gt :
  forall x y,
  (y < x)%R -> Rcompare x y = Gt.
Proof.
intros x y H.
case Rcompare_spec ; intro H'.
elim (Rlt_irrefl x).
now apply Rlt_trans with y.
rewrite H' in H.
elim (Rlt_irrefl _ H).
easy.
Qed.

Theorem Rcompare_Gt_inv :
  forall x y,
  Rcompare x y = Gt -> (y < x)%R.
Proof.
intros x y.
now case Rcompare_spec.
Qed.

Theorem Rcompare_not_Gt :
  forall x y,
  (x <= y)%R -> Rcompare x y <> Gt.
Proof.
intros x y H1 H2.
apply Rle_not_lt with (1 := H1).
now apply Rcompare_Gt_inv.
Qed.

Theorem Rcompare_not_Gt_inv :
  forall x y,
  Rcompare x y <> Gt -> (x <= y)%R.
Proof.
intros x y H.
apply Rnot_lt_le.
contradict H.
now apply Rcompare_Gt.
Qed.

Theorem Rcompare_Z2R :
  forall x y, Rcompare (Z2R x) (Z2R y) = Zcompare x y.
Proof.
intros x y.
case Rcompare_spec ; intros H ; apply sym_eq.
apply Zcompare_Lt.
now apply lt_Z2R.
apply Zcompare_Eq.
now apply eq_Z2R.
apply Zcompare_Gt.
now apply lt_Z2R.
Qed.

Theorem Rcompare_sym :
  forall x y,
  Rcompare x y = CompOpp (Rcompare y x).
Proof.
intros x y.
destruct (Rcompare_spec y x) as [H|H|H].
now apply Rcompare_Gt.
now apply Rcompare_Eq.
now apply Rcompare_Lt.
Qed.

Theorem Rcompare_plus_r :
  forall z x y,
  Rcompare (x + z) (y + z) = Rcompare x y.
Proof.
intros z x y.
destruct (Rcompare_spec x y) as [H|H|H].
apply Rcompare_Lt.
now apply Rplus_lt_compat_r.
apply Rcompare_Eq.
now rewrite H.
apply Rcompare_Gt.
now apply Rplus_lt_compat_r.
Qed.

Theorem Rcompare_plus_l :
  forall z x y,
  Rcompare (z + x) (z + y) = Rcompare x y.
Proof.
intros z x y.
rewrite 2!(Rplus_comm z).
apply Rcompare_plus_r.
Qed.

Theorem Rcompare_mult_r :
  forall z x y,
  (0 < z)%R ->
  Rcompare (x * z) (y * z) = Rcompare x y.
Proof.
intros z x y Hz.
destruct (Rcompare_spec x y) as [H|H|H].
apply Rcompare_Lt.
now apply Rmult_lt_compat_r.
apply Rcompare_Eq.
now rewrite H.
apply Rcompare_Gt.
now apply Rmult_lt_compat_r.
Qed.

Theorem Rcompare_mult_l :
  forall z x y,
  (0 < z)%R ->
  Rcompare (z * x) (z * y) = Rcompare x y.
Proof.
intros z x y.
rewrite 2!(Rmult_comm z).
apply Rcompare_mult_r.
Qed.

Theorem Rcompare_middle :
  forall x d u,
  Rcompare (x - d) (u - x) = Rcompare x ((d + u) / 2).
Proof.
intros x d u.
rewrite <- (Rcompare_plus_r (- x / 2 - d / 2) x).
rewrite <- (Rcompare_mult_r (/2) (x - d)).
field_simplify (x + (- x / 2 - d / 2))%R.
now field_simplify ((d + u) / 2 + (- x / 2 - d / 2))%R.
apply Rinv_0_lt_compat.
now apply (Z2R_lt 0 2).
Qed.

Theorem Rcompare_half_l :
  forall x y, Rcompare (x / 2) y = Rcompare x (2 * y).
Proof.
intros x y.
rewrite <- (Rcompare_mult_r 2%R).
unfold Rdiv.
rewrite Rmult_assoc, Rinv_l, Rmult_1_r.
now rewrite Rmult_comm.
now apply (Z2R_neq 2 0).
now apply (Z2R_lt 0 2).
Qed.

Theorem Rcompare_half_r :
  forall x y, Rcompare x (y / 2) = Rcompare (2 * x) y.
Proof.
intros x y.
rewrite <- (Rcompare_mult_r 2%R).
unfold Rdiv.
rewrite Rmult_assoc, Rinv_l, Rmult_1_r.
now rewrite Rmult_comm.
now apply (Z2R_neq 2 0).
now apply (Z2R_lt 0 2).
Qed.

Theorem Rcompare_sqr :
  forall x y,
  (0 <= x)%R -> (0 <= y)%R ->
  Rcompare (x * x) (y * y) = Rcompare x y.
Proof.
intros x y Hx Hy.
destruct (Rcompare_spec x y) as [H|H|H].
apply Rcompare_Lt.
now apply Rsqr_incrst_1.
rewrite H.
now apply Rcompare_Eq.
apply Rcompare_Gt.
now apply Rsqr_incrst_1.
Qed.

Theorem Rmin_compare :
  forall x y,
  Rmin x y = match Rcompare x y with Lt => x | Eq => x | Gt => y end.
Proof.
intros x y.
unfold Rmin.
destruct (Rle_dec x y) as [[Hx|Hx]|Hx].
now rewrite Rcompare_Lt.
now rewrite Rcompare_Eq.
rewrite Rcompare_Gt.
easy.
now apply Rnot_le_lt.
Qed.

End Rcompare.

Section Rle_bool.

Definition Rle_bool x y :=
  match Rcompare x y with
  | Gt => false
  | _ => true
  end.

Inductive Rle_bool_prop (x y : R) : bool -> Prop :=
  | Rle_bool_true_ : (x <= y)%R -> Rle_bool_prop x y true
  | Rle_bool_false_ : (y < x)%R -> Rle_bool_prop x y false.

Theorem Rle_bool_spec :
  forall x y, Rle_bool_prop x y (Rle_bool x y).
Proof.
intros x y.
unfold Rle_bool.
case Rcompare_spec ; constructor.
now apply Rlt_le.
rewrite H.
apply Rle_refl.
exact H.
Qed.

Theorem Rle_bool_true :
  forall x y,
  (x <= y)%R -> Rle_bool x y = true.
Proof.
intros x y Hxy.
case Rle_bool_spec ; intros H.
apply refl_equal.
elim (Rlt_irrefl x).
now apply Rle_lt_trans with y.
Qed.

Theorem Rle_bool_false :
  forall x y,
  (y < x)%R -> Rle_bool x y = false.
Proof.
intros x y Hxy.
case Rle_bool_spec ; intros H.
elim (Rlt_irrefl x).
now apply Rle_lt_trans with y.
apply refl_equal.
Qed.

End Rle_bool.

Section Rlt_bool.

Definition Rlt_bool x y :=
  match Rcompare x y with
  | Lt => true
  | _ => false
  end.

Inductive Rlt_bool_prop (x y : R) : bool -> Prop :=
  | Rlt_bool_true_ : (x < y)%R -> Rlt_bool_prop x y true
  | Rlt_bool_false_ : (y <= x)%R -> Rlt_bool_prop x y false.

Theorem Rlt_bool_spec :
  forall x y, Rlt_bool_prop x y (Rlt_bool x y).
Proof.
intros x y.
unfold Rlt_bool.
case Rcompare_spec ; constructor.
exact H.
rewrite H.
apply Rle_refl.
now apply Rlt_le.
Qed.

Theorem negb_Rlt_bool :
  forall x y,
  negb (Rle_bool x y) = Rlt_bool y x.
Proof.
intros x y.
unfold Rlt_bool, Rle_bool.
rewrite Rcompare_sym.
now case Rcompare.
Qed.

Theorem negb_Rle_bool :
  forall x y,
  negb (Rlt_bool x y) = Rle_bool y x.
Proof.
intros x y.
unfold Rlt_bool, Rle_bool.
rewrite Rcompare_sym.
now case Rcompare.
Qed.

Theorem Rlt_bool_true :
  forall x y,
  (x < y)%R -> Rlt_bool x y = true.
Proof.
intros x y Hxy.
rewrite <- negb_Rlt_bool.
now rewrite Rle_bool_false.
Qed.

Theorem Rlt_bool_false :
  forall x y,
  (y <= x)%R -> Rlt_bool x y = false.
Proof.
intros x y Hxy.
rewrite <- negb_Rlt_bool.
now rewrite Rle_bool_true.
Qed.

End Rlt_bool.

Section Req_bool.

Definition Req_bool x y :=
  match Rcompare x y with
  | Eq => true
  | _ => false
  end.

Inductive Req_bool_prop (x y : R) : bool -> Prop :=
  | Req_bool_true_ : (x = y)%R -> Req_bool_prop x y true
  | Req_bool_false_ : (x <> y)%R -> Req_bool_prop x y false.

Theorem Req_bool_spec :
  forall x y, Req_bool_prop x y (Req_bool x y).
Proof.
intros x y.
unfold Req_bool.
case Rcompare_spec ; constructor.
now apply Rlt_not_eq.
easy.
now apply Rgt_not_eq.
Qed.

Theorem Req_bool_true :
  forall x y,
  (x = y)%R -> Req_bool x y = true.
Proof.
intros x y Hxy.
case Req_bool_spec ; intros H.
apply refl_equal.
contradict H.
exact Hxy.
Qed.

Theorem Req_bool_false :
  forall x y,
  (x <> y)%R -> Req_bool x y = false.
Proof.
intros x y Hxy.
case Req_bool_spec ; intros H.
contradict Hxy.
exact H.
apply refl_equal.
Qed.

End Req_bool.

Section Floor_Ceil.

(** Zfloor and Zceil *)
Definition Zfloor (x : R) := (up x - 1)%Z.

Theorem Zfloor_lb :
  forall x : R,
  (Z2R (Zfloor x) <= x)%R.
Proof.
intros x.
unfold Zfloor.
rewrite Z2R_minus.
simpl.
rewrite Z2R_IZR.
apply Rplus_le_reg_r with (1 - x)%R.
ring_simplify.
exact (proj2 (archimed x)).
Qed.

Theorem Zfloor_ub :
  forall x : R,
  (x < Z2R (Zfloor x) + 1)%R.
Proof.
intros x.
unfold Zfloor.
rewrite Z2R_minus.
unfold Rminus.
rewrite Rplus_assoc.
rewrite Rplus_opp_l, Rplus_0_r.
rewrite Z2R_IZR.
exact (proj1 (archimed x)).
Qed.

Theorem Zfloor_lub :
  forall n x,
  (Z2R n <= x)%R ->
  (n <= Zfloor x)%Z.
Proof.
intros n x Hnx.
apply Zlt_succ_le.
apply lt_Z2R.
apply Rle_lt_trans with (1 := Hnx).
unfold Zsucc.
rewrite Z2R_plus.
apply Zfloor_ub.
Qed.

Theorem Zfloor_imp :
  forall n x,
  (Z2R n <= x < Z2R (n + 1))%R ->
  Zfloor x = n.
Proof.
intros n x Hnx.
apply Zle_antisym.
apply Zlt_succ_le.
apply lt_Z2R.
apply Rle_lt_trans with (2 := proj2 Hnx).
apply Zfloor_lb.
now apply Zfloor_lub.
Qed.

Theorem Zfloor_Z2R :
  forall n,
  Zfloor (Z2R n) = n.
Proof.
intros n.
apply Zfloor_imp.
split.
apply Rle_refl.
apply Z2R_lt.
apply Zlt_succ.
Qed.

Theorem Zfloor_le :
  forall x y, (x <= y)%R ->
  (Zfloor x <= Zfloor y)%Z.
Proof.
intros x y Hxy.
apply Zfloor_lub.
apply Rle_trans with (2 := Hxy).
apply Zfloor_lb.
Qed.

Definition Zceil (x : R) := (- Zfloor (- x))%Z.

Theorem Zceil_ub :
  forall x : R,
  (x <= Z2R (Zceil x))%R.
Proof.
intros x.
unfold Zceil.
rewrite Z2R_opp.
apply Ropp_le_cancel.
rewrite Ropp_involutive.
apply Zfloor_lb.
Qed.

Theorem Zceil_glb :
  forall n x,
  (x <= Z2R n)%R ->
  (Zceil x <= n)%Z.
Proof.
intros n x Hnx.
unfold Zceil.
apply Zopp_le_cancel.
rewrite Zopp_involutive.
apply Zfloor_lub.
rewrite Z2R_opp.
now apply Ropp_le_contravar.
Qed.

Theorem Zceil_imp :
  forall n x,
  (Z2R (n - 1) < x <= Z2R n)%R ->
  Zceil x = n.
Proof.
intros n x Hnx.
unfold Zceil.
rewrite <- (Zopp_involutive n).
apply f_equal.
apply Zfloor_imp.
split.
rewrite Z2R_opp.
now apply Ropp_le_contravar.
rewrite <- (Zopp_involutive 1).
rewrite <- Zopp_plus_distr.
rewrite Z2R_opp.
now apply Ropp_lt_contravar.
Qed.

Theorem Zceil_Z2R :
  forall n,
  Zceil (Z2R n) = n.
Proof.
intros n.
unfold Zceil.
rewrite <- Z2R_opp, Zfloor_Z2R.
apply Zopp_involutive.
Qed.

Theorem Zceil_le :
  forall x y, (x <= y)%R ->
  (Zceil x <= Zceil y)%Z.
Proof.
intros x y Hxy.
apply Zceil_glb.
apply Rle_trans with (1 := Hxy).
apply Zceil_ub.
Qed.

Theorem Zceil_floor_neq :
  forall x : R,
  (Z2R (Zfloor x) <> x)%R ->
  (Zceil x = Zfloor x + 1)%Z.
Proof.
intros x Hx.
apply Zceil_imp.
split.
ring_simplify (Zfloor x + 1 - 1)%Z.
apply Rnot_le_lt.
intros H.
apply Hx.
apply Rle_antisym.
apply Zfloor_lb.
exact H.
apply Rlt_le.
rewrite Z2R_plus.
apply Zfloor_ub.
Qed.

Definition Ztrunc x := if Rlt_bool x 0 then Zceil x else Zfloor x.

Theorem Ztrunc_Z2R :
  forall n,
  Ztrunc (Z2R n) = n.
Proof.
intros n.
unfold Ztrunc.
case Rlt_bool_spec ; intro H.
apply Zceil_Z2R.
apply Zfloor_Z2R.
Qed.

Theorem Ztrunc_floor :
  forall x,
  (0 <= x)%R ->
  Ztrunc x = Zfloor x.
Proof.
intros x Hx.
unfold Ztrunc.
case Rlt_bool_spec ; intro H.
elim Rlt_irrefl with x.
now apply Rlt_le_trans with R0.
apply refl_equal.
Qed.

Theorem Ztrunc_ceil :
  forall x,
  (x <= 0)%R ->
  Ztrunc x = Zceil x.
Proof.
intros x Hx.
unfold Ztrunc.
case Rlt_bool_spec ; intro H.
apply refl_equal.
rewrite (Rle_antisym _ _ Hx H).
fold (Z2R 0).
rewrite Zceil_Z2R.
apply Zfloor_Z2R.
Qed.

Theorem Ztrunc_le :
  forall x y, (x <= y)%R ->
  (Ztrunc x <= Ztrunc y)%Z.
Proof.
intros x y Hxy.
unfold Ztrunc at 1.
case Rlt_bool_spec ; intro Hx.
unfold Ztrunc.
case Rlt_bool_spec ; intro Hy.
now apply Zceil_le.
apply Zle_trans with 0%Z.
apply Zceil_glb.
now apply Rlt_le.
now apply Zfloor_lub.
rewrite Ztrunc_floor.
now apply Zfloor_le.
now apply Rle_trans with x.
Qed.

Theorem Ztrunc_opp :
  forall x,
  Ztrunc (- x) = Zopp (Ztrunc x).
Proof.
intros x.
unfold Ztrunc at 2.
case Rlt_bool_spec ; intros Hx.
rewrite Ztrunc_floor.
apply sym_eq.
apply Zopp_involutive.
rewrite <- Ropp_0.
apply Ropp_le_contravar.
now apply Rlt_le.
rewrite Ztrunc_ceil.
unfold Zceil.
now rewrite Ropp_involutive.
rewrite <- Ropp_0.
now apply Ropp_le_contravar.
Qed.

Theorem Ztrunc_abs :
  forall x,
  Ztrunc (Rabs x) = Zabs (Ztrunc x).
Proof.
intros x.
rewrite Ztrunc_floor. 2: apply Rabs_pos.
unfold Ztrunc.
case Rlt_bool_spec ; intro H.
rewrite Rabs_left with (1 := H).
rewrite Zabs_non_eq.
apply sym_eq.
apply Zopp_involutive.
apply Zceil_glb.
now apply Rlt_le.
rewrite Rabs_pos_eq with (1 := H).
apply sym_eq.
apply Zabs_eq.
now apply Zfloor_lub.
Qed.

Theorem Ztrunc_lub :
  forall n x,
  (Z2R n <= Rabs x)%R ->
  (n <= Zabs (Ztrunc x))%Z.
Proof.
intros n x H.
rewrite <- Ztrunc_abs.
rewrite Ztrunc_floor. 2: apply Rabs_pos.
now apply Zfloor_lub.
Qed.

Definition Zaway x := if Rlt_bool x 0 then Zfloor x else Zceil x.

Theorem Zaway_Z2R :
  forall n,
  Zaway (Z2R n) = n.
Proof.
intros n.
unfold Zaway.
case Rlt_bool_spec ; intro H.
apply Zfloor_Z2R.
apply Zceil_Z2R.
Qed.

Theorem Zaway_ceil :
  forall x,
  (0 <= x)%R ->
  Zaway x = Zceil x.
Proof.
intros x Hx.
unfold Zaway.
case Rlt_bool_spec ; intro H.
elim Rlt_irrefl with x.
now apply Rlt_le_trans with R0.
apply refl_equal.
Qed.

Theorem Zaway_floor :
  forall x,
  (x <= 0)%R ->
  Zaway x = Zfloor x.
Proof.
intros x Hx.
unfold Zaway.
case Rlt_bool_spec ; intro H.
apply refl_equal.
rewrite (Rle_antisym _ _ Hx H).
fold (Z2R 0).
rewrite Zfloor_Z2R.
apply Zceil_Z2R.
Qed.

Theorem Zaway_le :
  forall x y, (x <= y)%R ->
  (Zaway x <= Zaway y)%Z.
Proof.
intros x y Hxy.
unfold Zaway at 1.
case Rlt_bool_spec ; intro Hx.
unfold Zaway.
case Rlt_bool_spec ; intro Hy.
now apply Zfloor_le.
apply le_Z2R.
apply Rle_trans with 0%R.
apply Rlt_le.
apply Rle_lt_trans with (2 := Hx).
apply Zfloor_lb.
apply Rle_trans with (1 := Hy).
apply Zceil_ub.
rewrite Zaway_ceil.
now apply Zceil_le.
now apply Rle_trans with x.
Qed.

Theorem Zaway_opp :
  forall x,
  Zaway (- x) = Zopp (Zaway x).
Proof.
intros x.
unfold Zaway at 2.
case Rlt_bool_spec ; intro H.
rewrite Zaway_ceil.
unfold Zceil.
now rewrite Ropp_involutive.
apply Rlt_le.
now apply Ropp_0_gt_lt_contravar.
rewrite Zaway_floor.
apply sym_eq.
apply Zopp_involutive.
rewrite <- Ropp_0.
now apply Ropp_le_contravar.
Qed.

Theorem Zaway_abs :
  forall x,
  Zaway (Rabs x) = Zabs (Zaway x).
Proof.
intros x.
rewrite Zaway_ceil. 2: apply Rabs_pos.
unfold Zaway.
case Rlt_bool_spec ; intro H.
rewrite Rabs_left with (1 := H).
rewrite Zabs_non_eq.
apply (f_equal (fun v => - Zfloor v)%Z).
apply Ropp_involutive.
apply le_Z2R.
apply Rlt_le.
apply Rle_lt_trans with (2 := H).
apply Zfloor_lb.
rewrite Rabs_pos_eq with (1 := H).
apply sym_eq.
apply Zabs_eq.
apply le_Z2R.
apply Rle_trans with (1 := H).
apply Zceil_ub.
Qed.

End Floor_Ceil.

Section Zdiv_Rdiv.

Theorem Zfloor_div :
  forall x y,
  y <> Z0 ->
  Zfloor (Z2R x / Z2R y) = (x / y)%Z.
Proof.
intros x y Zy.
generalize (Z_div_mod_eq_full x y Zy).
intros Hx.
rewrite Hx at 1.
assert (Zy': Z2R y <> R0).
contradict Zy.
now apply eq_Z2R.
unfold Rdiv.
rewrite Z2R_plus, Rmult_plus_distr_r, Z2R_mult.
replace (Z2R y * Z2R (x / y) * / Z2R y)%R with (Z2R (x / y)) by now field.
apply Zfloor_imp.
rewrite Z2R_plus.
assert (0 <= Z2R (x mod y) * / Z2R y < 1)%R.
(* *)
assert (forall x' y', (0 < y')%Z -> 0 <= Z2R (x' mod y') * / Z2R y' < 1)%R.
(* . *)
clear.
intros x y Hy.
split.
apply Rmult_le_pos.
apply (Z2R_le 0).
refine (proj1 (Z_mod_lt _ _ _)).
now apply Zlt_gt.
apply Rlt_le.
apply Rinv_0_lt_compat.
now apply (Z2R_lt 0).
apply Rmult_lt_reg_r with (Z2R y).
now apply (Z2R_lt 0).
rewrite Rmult_1_l, Rmult_assoc, Rinv_l, Rmult_1_r.
apply Z2R_lt.
eapply Z_mod_lt.
now apply Zlt_gt.
apply Rgt_not_eq.
now apply (Z2R_lt 0).
(* . *)
destruct (Z_lt_le_dec y 0) as [Hy|Hy].
rewrite <- Rmult_opp_opp.
rewrite Ropp_inv_permute with (1 := Zy').
rewrite <- 2!Z2R_opp.
rewrite <- Zmod_opp_opp.
apply H.
clear -Hy. omega.
apply H.
clear -Zy Hy. omega.
(* *)
split.
pattern (Z2R (x / y)) at 1 ; rewrite <- Rplus_0_r.
apply Rplus_le_compat_l.
apply H.
apply Rplus_lt_compat_l.
apply H.
Qed.

End Zdiv_Rdiv.

Section pow.

Variable r : radix.

Theorem radix_pos : (0 < Z2R r)%R.
Proof.
destruct r as (v, Hr). simpl.
apply (Z2R_lt 0).
apply Zlt_le_trans with 2%Z.
easy.
now apply Zle_bool_imp_le.
Qed.

(** Well-used function called bpow for computing the power function #&beta;#^e *)
Definition bpow e :=
  match e with
  | Zpos p => Z2R (Zpower_pos r p)
  | Zneg p => Rinv (Z2R (Zpower_pos r p))
  | Z0 => R1
  end.

Theorem Z2R_Zpower_pos :
  forall n m,
  Z2R (Zpower_pos n m) = powerRZ (Z2R n) (Zpos m).
Proof.
intros.
rewrite Zpower_pos_nat.
simpl.
induction (nat_of_P m).
apply refl_equal.
unfold Zpower_nat.
simpl.
rewrite Z2R_mult.
apply Rmult_eq_compat_l.
exact IHn0.
Qed.

Theorem bpow_powerRZ :
  forall e,
  bpow e = powerRZ (Z2R r) e.
Proof.
destruct e ; unfold bpow.
reflexivity.
now rewrite Z2R_Zpower_pos.
now rewrite Z2R_Zpower_pos.
Qed.

Theorem  bpow_ge_0 :
  forall e : Z, (0 <= bpow e)%R.
Proof.
intros.
rewrite bpow_powerRZ.
apply powerRZ_le.
apply radix_pos.
Qed.

Theorem bpow_gt_0 :
  forall e : Z, (0 < bpow e)%R.
Proof.
intros.
rewrite bpow_powerRZ.
apply powerRZ_lt.
apply radix_pos.
Qed.

Theorem bpow_plus :
  forall e1 e2 : Z, (bpow (e1 + e2) = bpow e1 * bpow e2)%R.
Proof.
intros.
repeat rewrite bpow_powerRZ.
apply powerRZ_add.
apply Rgt_not_eq.
apply radix_pos.
Qed.

Theorem bpow_1 :
  bpow 1 = Z2R r.
Proof.
unfold bpow, Zpower_pos. simpl.
now rewrite Zmult_1_r.
Qed.

Theorem bpow_plus1 :
  forall e : Z, (bpow (e + 1) = Z2R r * bpow e)%R.
Proof.
intros.
rewrite <- bpow_1.
rewrite <- bpow_plus.
now rewrite Zplus_comm.
Qed.

Theorem bpow_opp :
  forall e : Z, (bpow (-e) = /bpow e)%R.
Proof.
intros e; destruct e.
simpl; now rewrite Rinv_1.
now replace (-Zpos p)%Z with (Zneg p) by reflexivity.
replace (-Zneg p)%Z with (Zpos p) by reflexivity.
simpl; rewrite Rinv_involutive; trivial.
generalize (bpow_gt_0 (Zpos p)).
simpl; auto with real.
Qed.

Theorem Z2R_Zpower_nat :
  forall e : nat,
  Z2R (Zpower_nat r e) = bpow (Z_of_nat e).
Proof.
intros [|e].
split.
rewrite <- nat_of_P_o_P_of_succ_nat_eq_succ.
rewrite <- Zpower_pos_nat.
now rewrite <- Zpos_eq_Z_of_nat_o_nat_of_P.
Qed.

Theorem Z2R_Zpower :
  forall e : Z,
  (0 <= e)%Z ->
  Z2R (Zpower r e) = bpow e.
Proof.
intros [|e|e] H.
split.
split.
now elim H.
Qed.

Theorem bpow_lt :
  forall e1 e2 : Z,
  (e1 < e2)%Z -> (bpow e1 < bpow e2)%R.
Proof.
intros e1 e2 H.
replace e2 with (e1 + (e2 - e1))%Z by ring.
rewrite <- (Rmult_1_r (bpow e1)).
rewrite bpow_plus.
apply Rmult_lt_compat_l.
apply bpow_gt_0.
assert (0 < e2 - e1)%Z by omega.
destruct (e2 - e1)%Z ; try discriminate H0.
clear.
rewrite <- Z2R_Zpower by easy.
apply (Z2R_lt 1).
now apply Zpower_gt_1.
Qed.

Theorem lt_bpow :
  forall e1 e2 : Z,
  (bpow e1 < bpow e2)%R -> (e1 < e2)%Z.
Proof.
intros e1 e2 H.
apply Zgt_lt.
apply Znot_le_gt.
intros H'.
apply Rlt_not_le with (1 := H).
destruct (Zle_lt_or_eq _ _ H').
apply Rlt_le.
now apply bpow_lt.
rewrite H0.
apply Rle_refl.
Qed.

Theorem bpow_le :
  forall e1 e2 : Z,
  (e1 <= e2)%Z -> (bpow e1 <= bpow e2)%R.
Proof.
intros e1 e2 H.
apply Rnot_lt_le.
intros H'.
apply Zle_not_gt with (1 := H).
apply Zlt_gt.
now apply lt_bpow.
Qed.

Theorem le_bpow :
  forall e1 e2 : Z,
  (bpow e1 <= bpow e2)%R -> (e1 <= e2)%Z.
Proof.
intros e1 e2 H.
apply Znot_gt_le.
intros H'.
apply Rle_not_lt with (1 := H).
apply bpow_lt.
now apply Zgt_lt.
Qed.

Theorem bpow_inj :
  forall e1 e2 : Z,
  bpow e1 = bpow e2 -> e1 = e2.
Proof.
intros.
apply Zle_antisym.
apply le_bpow.
now apply Req_le.
apply le_bpow.
now apply Req_le.
Qed.

Theorem bpow_exp :
  forall e : Z,
  bpow e = exp (Z2R e * ln (Z2R r)).
Proof.
(* positive case *)
assert (forall e, bpow (Zpos e) = exp (Z2R (Zpos e) * ln (Z2R r))).
intros e.
unfold bpow.
rewrite Zpower_pos_nat.
unfold Z2R at 2.
rewrite P2R_INR.
induction (nat_of_P e).
rewrite Rmult_0_l.
now rewrite exp_0.
rewrite Zpower_nat_S.
rewrite S_INR.
rewrite Rmult_plus_distr_r.
rewrite exp_plus.
rewrite Rmult_1_l.
rewrite exp_ln.
rewrite <- IHn.
rewrite <- Z2R_mult.
now rewrite Zmult_comm.
apply radix_pos.
(* general case *)
intros [|e|e].
rewrite Rmult_0_l.
now rewrite exp_0.
apply H.
unfold bpow.
change (Z2R (Zpower_pos r e)) with (bpow (Zpos e)).
rewrite H.
rewrite <- exp_Ropp.
rewrite <- Ropp_mult_distr_l_reverse.
now rewrite <- Z2R_opp.
Qed.

(** Another well-used function for having the logarithm of a real number x to the base #&beta;# *)
Record ln_beta_prop x := {
  ln_beta_val :> Z ;
   _ : (x <> 0)%R -> (bpow (ln_beta_val - 1)%Z <= Rabs x < bpow ln_beta_val)%R
}.

Definition ln_beta :
  forall x : R, ln_beta_prop x.
Proof.
intros x.
set (fact := ln (Z2R r)).
(* . *)
assert (0 < fact)%R.
apply exp_lt_inv.
rewrite exp_0.
unfold fact.
rewrite exp_ln.
apply (Z2R_lt 1).
apply radix_gt_1.
apply radix_pos.
(* . *)
exists (Zfloor (ln (Rabs x) / fact) + 1)%Z.
intros Hx'.
generalize (Rabs_pos_lt _ Hx'). clear Hx'.
generalize (Rabs x). clear x.
intros x Hx.
rewrite 2!bpow_exp.
fold fact.
pattern x at 2 3 ; replace x with (exp (ln x * / fact * fact)).
split.
rewrite Z2R_minus.
apply exp_le.
apply Rmult_le_compat_r.
now apply Rlt_le.
unfold Rminus.
rewrite Z2R_plus.
rewrite Rplus_assoc.
rewrite Rplus_opp_r, Rplus_0_r.
apply Zfloor_lb.
apply exp_increasing.
apply Rmult_lt_compat_r.
exact H.
rewrite Z2R_plus.
apply Zfloor_ub.
rewrite Rmult_assoc.
rewrite Rinv_l.
rewrite Rmult_1_r.
now apply exp_ln.
now apply Rgt_not_eq.
Qed.

Theorem bpow_lt_bpow :
  forall e1 e2,
  (bpow (e1 - 1) < bpow e2)%R ->
  (e1 <= e2)%Z.
Proof.
intros e1 e2 He.
rewrite (Zsucc_pred e1).
apply Zlt_le_succ.
now apply lt_bpow.
Qed.

Theorem bpow_unique :
  forall x e1 e2,
  (bpow (e1 - 1) <= x < bpow e1)%R ->
  (bpow (e2 - 1) <= x < bpow e2)%R ->
  e1 = e2.
Proof.
intros x e1 e2 (H1a,H1b) (H2a,H2b).
apply Zle_antisym ;
  apply bpow_lt_bpow ;
  apply Rle_lt_trans with x ;
  assumption.
Qed.

Theorem ln_beta_unique :
  forall (x : R) (e : Z),
  (bpow (e - 1) <= Rabs x < bpow e)%R ->
  ln_beta x = e :> Z.
Proof.
intros x e1 He.
destruct (Req_dec x 0) as [Hx|Hx].
elim Rle_not_lt with (1 := proj1 He).
rewrite Hx, Rabs_R0.
apply bpow_gt_0.
destruct (ln_beta x) as (e2, Hx2).
simpl.
apply bpow_unique with (2 := He).
now apply Hx2.
Qed.

Theorem ln_beta_opp :
  forall x,
  ln_beta (-x) = ln_beta x :> Z.
Proof.
intros x.
destruct (Req_dec x 0) as [Hx|Hx].
now rewrite Hx, Ropp_0.
destruct (ln_beta x) as (e, He).
simpl.
specialize (He Hx).
apply ln_beta_unique.
now rewrite Rabs_Ropp.
Qed.

Theorem ln_beta_abs :
  forall x,
  ln_beta (Rabs x) = ln_beta x :> Z.
Proof.
intros x.
unfold Rabs.
case Rcase_abs ; intros _.
apply ln_beta_opp.
apply refl_equal.
Qed.

Theorem ln_beta_unique_pos :
  forall (x : R) (e : Z),
  (bpow (e - 1) <= x < bpow e)%R ->
  ln_beta x = e :> Z.
Proof.
intros x e1 He1.
rewrite <- ln_beta_abs.
apply ln_beta_unique.
rewrite 2!Rabs_pos_eq.
exact He1.
apply Rle_trans with (2 := proj1 He1).
apply bpow_ge_0.
apply Rabs_pos.
Qed.

Theorem ln_beta_le_abs :
  forall x y,
  (x <> 0)%R -> (Rabs x <= Rabs y)%R ->
  (ln_beta x <= ln_beta y)%Z.
Proof.
intros x y H0x Hxy.
destruct (ln_beta x) as (ex, Hx).
destruct (ln_beta y) as (ey, Hy).
simpl.
apply bpow_lt_bpow.
specialize (Hx H0x).
apply Rle_lt_trans with (1 := proj1 Hx).
apply Rle_lt_trans with (1 := Hxy).
apply Hy.
intros Hy'.
apply Rlt_not_le with (1 := Rabs_pos_lt _ H0x).
apply Rle_trans with (1 := Hxy).
rewrite Hy', Rabs_R0.
apply Rle_refl.
Qed.

Theorem ln_beta_le :
  forall x y,
  (0 < x)%R -> (x <= y)%R ->
  (ln_beta x <= ln_beta y)%Z.
Proof.
intros x y H0x Hxy.
apply ln_beta_le_abs.
now apply Rgt_not_eq.
rewrite 2!Rabs_pos_eq.
exact Hxy.
apply Rle_trans with (2 := Hxy).
now apply Rlt_le.
now apply Rlt_le.
Qed.

Theorem ln_beta_bpow :
  forall e, (ln_beta (bpow e) = e + 1 :> Z)%Z.
Proof.
intros e.
apply ln_beta_unique.
rewrite Rabs_right.
replace (e + 1 - 1)%Z with e by ring.
split.
apply Rle_refl.
apply bpow_lt.
apply Zlt_succ.
apply Rle_ge.
apply bpow_ge_0.
Qed.

Theorem ln_beta_mult_bpow :
  forall x e, x <> R0 ->
  (ln_beta (x * bpow e) = ln_beta x + e :>Z)%Z.
Proof.
intros x e Zx.
destruct (ln_beta x) as (ex, Ex) ; simpl.
specialize (Ex Zx).
apply ln_beta_unique.
rewrite Rabs_mult.
rewrite (Rabs_pos_eq (bpow e)) by apply bpow_ge_0.
split.
replace (ex + e - 1)%Z with (ex - 1 + e)%Z by ring.
rewrite bpow_plus.
apply Rmult_le_compat_r.
apply bpow_ge_0.
apply Ex.
rewrite bpow_plus.
apply Rmult_lt_compat_r.
apply bpow_gt_0.
apply Ex.
Qed.

Theorem ln_beta_le_bpow :
  forall x e,
  x <> R0 ->
  (Rabs x < bpow e)%R ->
  (ln_beta x <= e)%Z.
Proof.
intros x e Zx Hx.
destruct (ln_beta x) as (ex, Ex) ; simpl.
specialize (Ex Zx).
apply bpow_lt_bpow.
now apply Rle_lt_trans with (Rabs x).
Qed.

Theorem ln_beta_gt_bpow :
  forall x e,
  (bpow e <= Rabs x)%R ->
  (e < ln_beta x)%Z.
Proof.
intros x e Hx.
destruct (ln_beta x) as (ex, Ex) ; simpl.
apply lt_bpow.
apply Rle_lt_trans with (1 := Hx).
apply Ex.
intros Zx.
apply Rle_not_lt with (1 := Hx).
rewrite Zx, Rabs_R0.
apply bpow_gt_0.
Qed.

Theorem bpow_ln_beta_gt :
  forall x,
  (Rabs x < bpow (ln_beta x))%R.
Proof.
intros x.
destruct (Req_dec x 0) as [Zx|Zx].
rewrite Zx, Rabs_R0.
apply bpow_gt_0.
destruct (ln_beta x) as (ex, Ex) ; simpl.
now apply Ex.
Qed.

Theorem ln_beta_le_Zpower :
  forall m e,
  m <> Z0 ->
  (Zabs m < Zpower r e)%Z->
  (ln_beta (Z2R m) <= e)%Z.
Proof.
intros m e Zm Hm.
apply ln_beta_le_bpow.
exact (Z2R_neq m 0 Zm).
destruct (Zle_or_lt 0 e).
rewrite <- Z2R_abs, <- Z2R_Zpower with (1 := H).
now apply Z2R_lt.
elim Zm.
cut (Zabs m < 0)%Z.
now case m.
clear -Hm H.
now destruct e.
Qed.

Theorem ln_beta_gt_Zpower :
  forall m e,
  m <> Z0 ->
  (Zpower r e <= Zabs m)%Z ->
  (e < ln_beta (Z2R m))%Z.
Proof.
intros m e Zm Hm.
apply ln_beta_gt_bpow.
rewrite <- Z2R_abs.
destruct (Zle_or_lt 0 e).
rewrite <- Z2R_Zpower with (1 := H).
now apply Z2R_le.
apply Rle_trans with (bpow 0).
apply bpow_le.
now apply Zlt_le_weak.
apply (Z2R_le 1).
clear -Zm.
zify ; omega.
Qed.

End pow.

Section Bool.

Theorem eqb_sym :
  forall x y, Bool.eqb x y = Bool.eqb y x.
Proof.
now intros [|] [|].
Qed.

Theorem eqb_false :
  forall x y, x = negb y -> Bool.eqb x y = false.
Proof.
now intros [|] [|].
Qed.

Theorem eqb_true :
  forall x y, x = y -> Bool.eqb x y = true.
Proof.
now intros [|] [|].
Qed.

End Bool.

Section cond_Ropp.

Definition cond_Ropp (b : bool) m := if b then Ropp m else m.

Theorem Z2R_cond_Zopp :
  forall b m,
  Z2R (cond_Zopp b m) = cond_Ropp b (Z2R m).
Proof.
intros [|] m.
apply Z2R_opp.
apply refl_equal.
Qed.

Theorem abs_cond_Ropp :
  forall b m,
  Rabs (cond_Ropp b m) = Rabs m.
Proof.
intros [|] m.
apply Rabs_Ropp.
apply refl_equal.
Qed.

Theorem cond_Ropp_Rlt_bool :
  forall m,
  cond_Ropp (Rlt_bool m 0) m = Rabs m.
Proof.
intros m.
apply sym_eq.
case Rlt_bool_spec ; intros Hm.
now apply Rabs_left.
now apply Rabs_pos_eq.
Qed.

Theorem cond_Ropp_involutive :
  forall b x,
  cond_Ropp b (cond_Ropp b x) = x.
Proof.
intros [|] x.
apply Ropp_involutive.
apply refl_equal.
Qed.

Theorem cond_Ropp_even_function :
  forall {A : Type} (f : R -> A),
  (forall x, f (Ropp x) = f x) ->
  forall b x, f (cond_Ropp b x) = f x.
Proof.
now intros A f Hf [|] x ; simpl.
Qed.

Theorem cond_Ropp_odd_function :
  forall (f : R -> R),
  (forall x, f (Ropp x) = Ropp (f x)) ->
  forall b x, f (cond_Ropp b x) = cond_Ropp b (f x).
Proof.
now intros f Hf [|] x ; simpl.
Qed.

Theorem cond_Ropp_inj :
  forall b x y,
  cond_Ropp b x = cond_Ropp b y -> x = y.
Proof.
intros b x y H.
rewrite <- (cond_Ropp_involutive b x), H.
apply cond_Ropp_involutive.
Qed.

Theorem cond_Ropp_mult_l :
  forall b x y,
  cond_Ropp b (x * y) = (cond_Ropp b x * y)%R.
Proof.
intros [|] x y.
apply sym_eq.
apply Ropp_mult_distr_l_reverse.
apply refl_equal.
Qed.

Theorem cond_Ropp_mult_r :
  forall b x y,
  cond_Ropp b (x * y) = (x * cond_Ropp b y)%R.
Proof.
intros [|] x y.
apply sym_eq.
apply Ropp_mult_distr_r_reverse.
apply refl_equal.
Qed.

Theorem cond_Ropp_plus :
  forall b x y,
  cond_Ropp b (x + y) = (cond_Ropp b x + cond_Ropp b y)%R.
Proof.
intros [|] x y.
apply Ropp_plus_distr.
apply refl_equal.
Qed.

End cond_Ropp.