summaryrefslogtreecommitdiff
path: root/flocq/Appli/Fappli_IEEE_bits.v
blob: 937e8d430b00464fc406b6c2e573f31f8a764a9e (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
(**
This file is part of the Flocq formalization of floating-point
arithmetic in Coq: http://flocq.gforge.inria.fr/

Copyright (C) 2011-2013 Sylvie Boldo
#<br />#
Copyright (C) 2011-2013 Guillaume Melquiond

This library is free software; you can redistribute it and/or
modify it under the terms of the GNU Lesser General Public
License as published by the Free Software Foundation; either
version 3 of the License, or (at your option) any later version.

This library is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
COPYING file for more details.
*)

(** * IEEE-754 encoding of binary floating-point data *)
Require Import Fcore.
Require Import Fcore_digits.
Require Import Fcalc_digits.
Require Import Fappli_IEEE.

Section Binary_Bits.

(** Number of bits for the fraction and exponent *)
Variable mw ew : Z.
Hypothesis Hmw : (0 < mw)%Z.
Hypothesis Hew : (0 < ew)%Z.

Let emax := Zpower 2 (ew - 1).
Let prec := (mw + 1)%Z.
Let emin := (3 - emax - prec)%Z.
Let binary_float := binary_float prec emax.

Let Hprec : (0 < prec)%Z.
unfold prec.
apply Zle_lt_succ.
now apply Zlt_le_weak.
Qed.

Let Hm_gt_0 : (0 < 2^mw)%Z.
apply (Zpower_gt_0 radix2).
now apply Zlt_le_weak.
Qed.

Let He_gt_0 : (0 < 2^ew)%Z.
apply (Zpower_gt_0 radix2).
now apply Zlt_le_weak.
Qed.

Hypothesis Hmax : (prec < emax)%Z.

Definition join_bits (s : bool) m e :=
  (((if s then Zpower 2 ew else 0) + e) * Zpower 2 mw + m)%Z.

Definition split_bits x :=
  let mm := Zpower 2 mw in
  let em := Zpower 2 ew in
  (Zle_bool (mm * em) x, Zmod x mm, Zmod (Zdiv x mm) em)%Z.

Theorem split_join_bits :
  forall s m e,
  (0 <= m < Zpower 2 mw)%Z ->
  (0 <= e < Zpower 2 ew)%Z ->
  split_bits (join_bits s m e) = (s, m, e).
Proof.
intros s m e Hm He.
unfold split_bits, join_bits.
apply f_equal2.
apply f_equal2.
(* *)
case s.
apply Zle_bool_true.
apply Zle_0_minus_le.
ring_simplify.
apply Zplus_le_0_compat.
apply Zmult_le_0_compat.
apply He.
now apply Zlt_le_weak.
apply Hm.
apply Zle_bool_false.
apply Zplus_lt_reg_l with (2^mw * (-e))%Z.
replace (2 ^ mw * - e + ((0 + e) * 2 ^ mw + m))%Z with (m * 1)%Z by ring.
rewrite <- Zmult_plus_distr_r.
apply Zlt_le_trans with (2^mw * 1)%Z.
now apply Zmult_lt_compat_r.
apply Zmult_le_compat_l.
clear -He. omega.
now apply Zlt_le_weak.
(* *)
rewrite Zplus_comm.
rewrite Z_mod_plus_full.
now apply Zmod_small.
(* *)
rewrite Z_div_plus_full_l.
rewrite Zdiv_small with (1 := Hm).
rewrite Zplus_0_r.
case s.
replace (2^ew + e)%Z with (e + 1 * 2^ew)%Z by ring.
rewrite Z_mod_plus_full.
now apply Zmod_small.
now apply Zmod_small.
now apply Zgt_not_eq.
Qed.

Theorem join_split_bits :
  forall x,
  (0 <= x < Zpower 2 (mw + ew + 1))%Z ->
  let '(s, m, e) := split_bits x in
  join_bits s m e = x.
Proof.
intros x Hx.
unfold split_bits, join_bits.
pattern x at 4 ; rewrite Z_div_mod_eq_full with x (2^mw)%Z.
apply (f_equal (fun v => (v + _)%Z)).
rewrite Zmult_comm.
apply f_equal.
pattern (x / (2^mw))%Z at 2 ; rewrite Z_div_mod_eq_full with (x / (2^mw))%Z (2^ew)%Z.
apply (f_equal (fun v => (v + _)%Z)).
replace (x / 2 ^ mw / 2 ^ ew)%Z with (if Zle_bool (2 ^ mw * 2 ^ ew) x then 1 else 0)%Z.
case Zle_bool.
now rewrite Zmult_1_r.
now rewrite Zmult_0_r.
rewrite Zdiv_Zdiv.
apply sym_eq.
case Zle_bool_spec ; intros Hs.
apply Zle_antisym.
cut (x / (2^mw * 2^ew) < 2)%Z. clear ; omega.
apply Zdiv_lt_upper_bound.
try apply Hx. (* 8.2/8.3 compatibility *)
now apply Zmult_lt_0_compat.
rewrite <- Zpower_exp ; try ( apply Zle_ge ; apply Zlt_le_weak ; assumption ).
change 2%Z at 1 with (Zpower 2 1).
rewrite <- Zpower_exp.
now rewrite Zplus_comm.
discriminate.
apply Zle_ge.
now apply Zplus_le_0_compat ; apply Zlt_le_weak.
apply Zdiv_le_lower_bound.
try apply Hx. (* 8.2/8.3 compatibility *)
now apply Zmult_lt_0_compat.
now rewrite Zmult_1_l.
apply Zdiv_small.
now split.
now apply Zlt_le_weak.
now apply Zlt_le_weak.
now apply Zgt_not_eq.
now apply Zgt_not_eq.
Qed.

Theorem split_bits_inj :
  forall x y,
  (0 <= x < Zpower 2 (mw + ew + 1))%Z ->
  (0 <= y < Zpower 2 (mw + ew + 1))%Z ->
  split_bits x = split_bits y ->
  x = y.
Proof.
intros x y Hx Hy.
generalize (join_split_bits x Hx) (join_split_bits y Hy).
destruct (split_bits x) as ((sx, mx), ex).
destruct (split_bits y) as ((sy, my), ey).
intros Jx Jy H. revert Jx Jy.
inversion_clear H.
intros Jx Jy.
now rewrite <- Jx.
Qed.

Definition bits_of_binary_float (x : binary_float) :=
  match x with
  | B754_zero sx => join_bits sx 0 0
  | B754_infinity sx => join_bits sx 0 (Zpower 2 ew - 1)
  | B754_nan sx (exist plx _) => join_bits sx (Zpos plx) (Zpower 2 ew - 1)
  | B754_finite sx mx ex _ =>
    if Zle_bool (Zpower 2 mw) (Zpos mx) then
      join_bits sx (Zpos mx - Zpower 2 mw) (ex - emin + 1)
    else
      join_bits sx (Zpos mx) 0
  end.

Definition split_bits_of_binary_float (x : binary_float) :=
  match x with
  | B754_zero sx => (sx, 0, 0)%Z
  | B754_infinity sx => (sx, 0, Zpower 2 ew - 1)%Z
  | B754_nan sx (exist plx _) => (sx, Zpos plx, Zpower 2 ew - 1)%Z
  | B754_finite sx mx ex _ =>
    if Zle_bool (Zpower 2 mw) (Zpos mx) then
      (sx, Zpos mx - Zpower 2 mw, ex - emin + 1)%Z
    else
      (sx, Zpos mx, 0)%Z
  end.

Theorem split_bits_of_binary_float_correct :
  forall x,
  split_bits (bits_of_binary_float x) = split_bits_of_binary_float x.
Proof.
intros [sx|sx|sx [plx Hplx]|sx mx ex Hx] ;
  try ( simpl ; apply split_join_bits ; split ; try apply Zle_refl ; try apply Zlt_pred ; trivial ; omega ).
simpl. apply split_join_bits; split; try (zify; omega).
destruct (digits2_Pnat_correct plx).
rewrite Zpower_nat_Z in H0.
eapply Zlt_le_trans. apply H0.
change 2%Z with (radix_val radix2). apply Zpower_le.
rewrite Z.ltb_lt in Hplx.
unfold prec in *. zify; omega.
(* *)
unfold bits_of_binary_float, split_bits_of_binary_float.
assert (Hf: (emin <= ex /\ Zdigits radix2 (Zpos mx) <= prec)%Z).
destruct (andb_prop _ _ Hx) as (Hx', _).
unfold canonic_mantissa in Hx'.
rewrite Z_of_nat_S_digits2_Pnat in Hx'.
generalize (Zeq_bool_eq _ _ Hx').
unfold FLT_exp.
change (Fcalc_digits.radix2) with radix2.
unfold emin.
clear ; zify ; omega.
destruct (Zle_bool_spec (2^mw) (Zpos mx)) as [H|H] ;
  apply split_join_bits ; try now split.
(* *)
split.
clear -He_gt_0 H ; omega.
cut (Zpos mx < 2 * 2^mw)%Z. clear ; omega.
replace (2 * 2^mw)%Z with (2^prec)%Z.
apply (Zpower_gt_Zdigits radix2 _ (Zpos mx)).
apply Hf.
unfold prec.
rewrite Zplus_comm.
apply Zpower_exp ; apply Zle_ge.
discriminate.
now apply Zlt_le_weak.
(* *)
split.
generalize (proj1 Hf).
clear ; omega.
destruct (andb_prop _ _ Hx) as (_, Hx').
unfold emin.
replace (2^ew)%Z with (2 * emax)%Z.
generalize (Zle_bool_imp_le _ _ Hx').
clear ; omega.
apply sym_eq.
rewrite (Zsucc_pred ew).
unfold Zsucc.
rewrite Zplus_comm.
apply Zpower_exp ; apply Zle_ge.
discriminate.
now apply Zlt_0_le_0_pred.
Qed.

Theorem bits_of_binary_float_range:
  forall x, (0 <= bits_of_binary_float x < 2^(mw+ew+1))%Z.
Proof.
  intros. 
Local Open Scope Z_scope.
  assert (J: forall s m e,
          0 <= m < 2^mw -> 0 <= e < 2^ew ->
          0 <= join_bits s m e < 2^(mw+ew+1)).
  {
    intros. unfold join_bits. 
    set (se := (if s then 2 ^ ew else 0) + e).
    assert (0 <= se < 2^(ew+1)).
    { rewrite (Zpower_plus radix2) by omega. change (radix2^1) with 2. simpl.
      unfold se. destruct s; omega. }
    assert (0 <= se * 2^mw <= (2^(ew+1) - 1) * 2^mw).
    { split. apply Zmult_gt_0_le_0_compat; omega.
      apply Zmult_le_compat_r; omega. }
    rewrite Z.mul_sub_distr_r in H2.
    replace (mw + ew + 1) with ((ew + 1) + mw) by omega. 
    rewrite (Zpower_plus radix2) by omega. simpl. omega.
  }
  assert (D: forall p n, Z.of_nat (S (digits2_Pnat p)) <= n ->
             0 <= Z.pos p < 2^n).
  {
    intros.  
    generalize (digits2_Pnat_correct p). simpl. rewrite ! Zpower_nat_Z. intros [A B].
    split. zify; omega. eapply Zlt_le_trans. eassumption. 
    apply (Zpower_le radix2); auto.
  } 
  destruct x; unfold bits_of_binary_float.
- apply J; omega.
- apply J; omega. 
- destruct n as [pl pl_range]. apply Z.ltb_lt in pl_range.
  apply J. apply D. unfold prec, Z_of_nat' in pl_range; omega. omega.
- unfold bounded in e0. apply Bool.andb_true_iff in e0; destruct e0 as [A B].
  apply Z.leb_le in B.
  unfold canonic_mantissa, FLT_exp in A. apply Zeq_bool_eq in A. 
  assert (G: Z.of_nat (S (digits2_Pnat m)) <= prec) by (zify; omega).
  assert (M: emin <= e) by (unfold emin; zify; omega). 
  generalize (Zle_bool_spec (2^mw) (Z.pos m)); intro SPEC; inversion SPEC.
  + apply J. 
    * split. omega. generalize (D _ _ G). unfold prec. 
      rewrite (Zpower_plus radix2) by omega.
      change (radix2^1) with 2. simpl radix_val. omega.
    * split. omega. unfold emin. replace (2^ew) with (2 * emax). omega.
      symmetry. replace ew with (1 + (ew - 1)) by omega. 
      apply (Zpower_plus radix2); omega.
  + apply J. zify; omega. omega. 
Local Close Scope Z_scope.
Qed.

Definition binary_float_of_bits_aux x :=
  let '(sx, mx, ex) := split_bits x in
  if Zeq_bool ex 0 then
    match mx with
    | Z0 => F754_zero sx
    | Zpos px => F754_finite sx px emin
    | Zneg _ => F754_nan false xH (* dummy *)
    end
  else if Zeq_bool ex (Zpower 2 ew - 1) then
    match mx with
      | Z0 => F754_infinity sx
      | Zpos plx => F754_nan sx plx
      | Zneg _ => F754_nan false xH (* dummy *)
    end
  else
    match (mx + Zpower 2 mw)%Z with
    | Zpos px => F754_finite sx px (ex + emin - 1)
    | _ => F754_nan false xH (* dummy *)
    end.

Lemma binary_float_of_bits_aux_correct :
  forall x,
  valid_binary prec emax (binary_float_of_bits_aux x) = true.
Proof.
intros x.
unfold binary_float_of_bits_aux, split_bits.
case Zeq_bool_spec ; intros He1.
case_eq (x mod 2^mw)%Z ; try easy.
(* subnormal *)
intros px Hm.
assert (Zdigits radix2 (Zpos px) <= mw)%Z.
apply Zdigits_le_Zpower.
simpl.
rewrite <- Hm.
eapply Z_mod_lt.
now apply Zlt_gt.
apply bounded_canonic_lt_emax ; try assumption.
unfold canonic, canonic_exp.
fold emin.
rewrite ln_beta_F2R_Zdigits. 2: discriminate.
unfold Fexp, FLT_exp.
apply sym_eq.
apply Zmax_right.
clear -H Hprec.
unfold prec ; omega.
apply Rnot_le_lt.
intros H0.
refine (_ (ln_beta_le radix2 _ _ _ H0)).
rewrite ln_beta_bpow.
rewrite ln_beta_F2R_Zdigits. 2: discriminate.
unfold emin, prec.
apply Zlt_not_le.
cut (0 < emax)%Z. clear -H Hew ; omega.
apply (Zpower_gt_0 radix2).
clear -Hew ; omega.
apply bpow_gt_0.
simpl. intros. rewrite Z.ltb_lt. unfold prec. zify; omega.
case Zeq_bool_spec ; intros He2.
case_eq (x mod 2 ^ mw)%Z; try easy.
(* nan *)
intros plx Eqplx. apply Z.ltb_lt.
rewrite Z_of_nat_S_digits2_Pnat.
assert (forall a b, a <= b -> a < b+1)%Z by (intros; omega). apply H. clear H.
apply Zdigits_le_Zpower. simpl.
rewrite <- Eqplx. edestruct Z_mod_lt; eauto.
change 2%Z with (radix_val radix2).
apply Z.lt_gt, Zpower_gt_0. omega.
simpl. intros. rewrite Z.ltb_lt. unfold prec. zify; omega.
case_eq (x mod 2^mw + 2^mw)%Z ; try easy.
simpl. intros. rewrite Z.ltb_lt. unfold prec. zify; omega.
(* normal *)
intros px Hm.
assert (prec = Zdigits radix2 (Zpos px)).
(* . *)
rewrite Zdigits_ln_beta. 2: discriminate.
apply sym_eq.
apply ln_beta_unique.
rewrite <- Z2R_abs.
unfold Zabs.
replace (prec - 1)%Z with mw by ( unfold prec ; ring ).
rewrite <- Z2R_Zpower with (1 := Zlt_le_weak _ _ Hmw).
rewrite <- Z2R_Zpower. 2: now apply Zlt_le_weak.
rewrite <- Hm.
split.
apply Z2R_le.
change (radix2^mw)%Z with (0 + 2^mw)%Z.
apply Zplus_le_compat_r.
eapply Z_mod_lt.
now apply Zlt_gt.
apply Z2R_lt.
unfold prec.
rewrite Zpower_exp. 2: now apply Zle_ge ; apply Zlt_le_weak. 2: discriminate.
rewrite <- Zplus_diag_eq_mult_2.
apply Zplus_lt_compat_r.
eapply Z_mod_lt.
now apply Zlt_gt.
(* . *)
apply bounded_canonic_lt_emax ; try assumption.
unfold canonic, canonic_exp.
rewrite ln_beta_F2R_Zdigits. 2: discriminate.
unfold Fexp, FLT_exp.
rewrite <- H.
set (ex := ((x / 2^mw) mod 2^ew)%Z).
replace (prec + (ex + emin - 1) - prec)%Z with (ex + emin - 1)%Z by ring.
apply sym_eq.
apply Zmax_left.
revert He1.
fold ex.
cut (0 <= ex)%Z.
unfold emin.
clear ; intros H1 H2 ; omega.
eapply Z_mod_lt.
apply Zlt_gt.
apply (Zpower_gt_0 radix2).
now apply Zlt_le_weak.
apply Rnot_le_lt.
intros H0.
refine (_ (ln_beta_le radix2 _ _ _ H0)).
rewrite ln_beta_bpow.
rewrite ln_beta_F2R_Zdigits. 2: discriminate.
rewrite <- H.
apply Zlt_not_le.
unfold emin.
apply Zplus_lt_reg_r with (emax - 1)%Z.
ring_simplify.
revert He2.
set (ex := ((x / 2^mw) mod 2^ew)%Z).
cut (ex < 2^ew)%Z.
replace (2^ew)%Z with (2 * emax)%Z.
clear ; intros H1 H2 ; omega.
replace ew with (1 + (ew - 1))%Z by ring.
rewrite Zpower_exp.
apply refl_equal.
discriminate.
clear -Hew ; omega.
eapply Z_mod_lt.
apply Zlt_gt.
apply (Zpower_gt_0 radix2).
now apply Zlt_le_weak.
apply bpow_gt_0.
simpl. intros. rewrite Z.ltb_lt. unfold prec. zify; omega.
Qed.

Definition binary_float_of_bits x :=
  FF2B prec emax _ (binary_float_of_bits_aux_correct x).

Theorem binary_float_of_bits_of_binary_float :
  forall x,
  binary_float_of_bits (bits_of_binary_float x) = x.
Proof.
intros x.
apply B2FF_inj.
unfold binary_float_of_bits.
rewrite B2FF_FF2B.
unfold binary_float_of_bits_aux.
rewrite split_bits_of_binary_float_correct.
destruct x as [sx|sx|sx [plx Hplx]|sx mx ex Bx].
apply refl_equal.
(* *)
simpl.
rewrite Zeq_bool_false.
now rewrite Zeq_bool_true.
cut (1 < 2^ew)%Z. clear ; omega.
now apply (Zpower_gt_1 radix2).
(* *)
simpl.
rewrite Zeq_bool_false.
rewrite Zeq_bool_true; auto.
cut (1 < 2^ew)%Z. clear ; omega.
now apply (Zpower_gt_1 radix2).
(* *)
unfold split_bits_of_binary_float.
case Zle_bool_spec ; intros Hm.
(* . *)
rewrite Zeq_bool_false.
rewrite Zeq_bool_false.
now ring_simplify (Zpos mx - 2 ^ mw + 2 ^ mw)%Z (ex - emin + 1 + emin - 1)%Z.
destruct (andb_prop _ _ Bx) as (_, H1).
generalize (Zle_bool_imp_le _ _ H1).
unfold emin.
replace (2^ew)%Z with (2 * emax)%Z.
clear ; omega.
replace ew with (1 + (ew - 1))%Z by ring.
rewrite Zpower_exp.
apply refl_equal.
discriminate.
clear -Hew ; omega.
destruct (andb_prop _ _ Bx) as (H1, _).
generalize (Zeq_bool_eq _ _ H1).
rewrite Z_of_nat_S_digits2_Pnat.
unfold FLT_exp, emin.
change Fcalc_digits.radix2 with radix2.
generalize (Zdigits radix2 (Zpos mx)).
clear.
intros ; zify ; omega.
(* . *)
rewrite Zeq_bool_true. 2: apply refl_equal.
simpl.
apply f_equal.
destruct (andb_prop _ _ Bx) as (H1, _).
generalize (Zeq_bool_eq _ _ H1).
rewrite Z_of_nat_S_digits2_Pnat.
unfold FLT_exp, emin, prec.
change Fcalc_digits.radix2 with radix2.
generalize (Zdigits_le_Zpower radix2 _ (Zpos mx) Hm).
generalize (Zdigits radix2 (Zpos mx)).
clear.
intros ; zify ; omega.
Qed.

Theorem bits_of_binary_float_of_bits :
  forall x,
  (0 <= x < 2^(mw+ew+1))%Z ->
  bits_of_binary_float (binary_float_of_bits x) = x.
Proof.
intros x Hx.
unfold binary_float_of_bits, bits_of_binary_float.
set (Cx := binary_float_of_bits_aux_correct x).
clearbody Cx.
rewrite match_FF2B.
revert Cx.
generalize (join_split_bits x Hx).
unfold binary_float_of_bits_aux.
case_eq (split_bits x).
intros (sx, mx) ex Sx.
assert (Bm: (0 <= mx < 2^mw)%Z).
inversion_clear Sx.
apply Z_mod_lt.
now apply Zlt_gt.
case Zeq_bool_spec ; intros He1.
(* subnormal *)
case_eq mx.
intros Hm Jx _.
now rewrite He1 in Jx.
intros px Hm Jx _.
rewrite Zle_bool_false.
now rewrite <- He1.
now rewrite <- Hm.
intros px Hm _ _.
apply False_ind.
apply Zle_not_lt with (1 := proj1 Bm).
now rewrite Hm.
case Zeq_bool_spec ; intros He2.
(* infinity/nan *)
case_eq mx; intros Hm.
now rewrite He2.
now rewrite He2.
intros. zify; omega.
(* normal *)
case_eq (mx + 2 ^ mw)%Z.
intros Hm.
apply False_ind.
clear -Bm Hm ; omega.
intros p Hm Jx Cx.
rewrite <- Hm.
rewrite Zle_bool_true.
now ring_simplify (mx + 2^mw - 2^mw)%Z (ex + emin - 1 - emin + 1)%Z.
now apply (Zplus_le_compat_r 0).
intros p Hm.
apply False_ind.
clear -Bm Hm ; zify ; omega.
Qed.

End Binary_Bits.

(** Specialization for IEEE single precision operations *)
Section B32_Bits.

Definition binary32 := binary_float 24 128.

Let Hprec : (0 < 24)%Z.
apply refl_equal.
Qed.

Let Hprec_emax : (24 < 128)%Z.
apply refl_equal.
Qed.

Definition b32_opp := Bopp 24 128.
Definition b32_plus := Bplus _ _ Hprec Hprec_emax.
Definition b32_minus := Bminus _ _ Hprec Hprec_emax.
Definition b32_mult := Bmult _ _ Hprec Hprec_emax.
Definition b32_div := Bdiv _ _ Hprec Hprec_emax.
Definition b32_sqrt := Bsqrt _ _ Hprec Hprec_emax.

Definition b32_of_bits : Z -> binary32 := binary_float_of_bits 23 8 (refl_equal _) (refl_equal _) (refl_equal _).
Definition bits_of_b32 : binary32 -> Z := bits_of_binary_float 23 8.

End B32_Bits.

(** Specialization for IEEE double precision operations *)
Section B64_Bits.

Definition binary64 := binary_float 53 1024.

Let Hprec : (0 < 53)%Z.
apply refl_equal.
Qed.

Let Hprec_emax : (53 < 1024)%Z.
apply refl_equal.
Qed.

Definition b64_opp := Bopp 53 1024.
Definition b64_plus := Bplus _ _ Hprec Hprec_emax.
Definition b64_minus := Bminus _ _ Hprec Hprec_emax.
Definition b64_mult := Bmult _ _ Hprec Hprec_emax.
Definition b64_div := Bdiv _ _ Hprec Hprec_emax.
Definition b64_sqrt := Bsqrt _ _ Hprec Hprec_emax.

Definition b64_of_bits : Z -> binary64 := binary_float_of_bits 52 11 (refl_equal _) (refl_equal _) (refl_equal _).
Definition bits_of_b64 : binary64 -> Z := bits_of_binary_float 52 11.

End B64_Bits.