summaryrefslogtreecommitdiff
path: root/flocq/Appli/Fappli_IEEE.v
blob: b44d711c561218ad8fdeab6e9b4c99651be3c7b3 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
(**
This file is part of the Flocq formalization of floating-point
arithmetic in Coq: http://flocq.gforge.inria.fr/

Copyright (C) 2010-2013 Sylvie Boldo
#<br />#
Copyright (C) 2010-2013 Guillaume Melquiond

This library is free software; you can redistribute it and/or
modify it under the terms of the GNU Lesser General Public
License as published by the Free Software Foundation; either
version 3 of the License, or (at your option) any later version.

This library is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
COPYING file for more details.
*)

(** * IEEE-754 arithmetic *)
Require Import Fcore.
Require Import Fcore_digits.
Require Import Fcalc_digits.
Require Import Fcalc_round.
Require Import Fcalc_bracket.
Require Import Fcalc_ops.
Require Import Fcalc_div.
Require Import Fcalc_sqrt.
Require Import Fprop_relative.

Section AnyRadix.

Inductive full_float :=
  | F754_zero : bool -> full_float
  | F754_infinity : bool -> full_float
  | F754_nan : bool -> positive -> full_float
  | F754_finite : bool -> positive -> Z -> full_float.

Definition FF2R beta x :=
  match x with
  | F754_finite s m e => F2R (Float beta (cond_Zopp s (Zpos m)) e)
  | _ => R0
  end.

End AnyRadix.

Section Binary.

(** prec is the number of bits of the mantissa including the implicit one
    emax is the exponent of the infinities
    Typically p=24 and emax = 128 in single precision *)
Variable prec emax : Z.
Context (prec_gt_0_ : Prec_gt_0 prec).
Hypothesis Hmax : (prec < emax)%Z.

Let emin := (3 - emax - prec)%Z.
Let fexp := FLT_exp emin prec.
Instance fexp_correct : Valid_exp fexp := FLT_exp_valid emin prec.
Instance fexp_monotone : Monotone_exp fexp := FLT_exp_monotone emin prec.

Definition canonic_mantissa m e :=
  Zeq_bool (fexp (Z_of_nat (S (digits2_Pnat m)) + e)) e.

Definition bounded m e :=
  andb (canonic_mantissa m e) (Zle_bool e (emax - prec)).

Definition valid_binary x :=
  match x with
  | F754_finite _ m e => bounded m e
  | F754_nan _ pl => (Z_of_nat' (S (digits2_Pnat pl)) <? prec)%Z
  | _ => true
  end.

(** Basic type used for representing binary FP numbers.
    Note that there is exactly one such object per FP datum. *)

Definition nan_pl := {pl | (Z_of_nat' (S (digits2_Pnat pl)) <? prec)%Z  = true}.

Inductive binary_float :=
  | B754_zero : bool -> binary_float
  | B754_infinity : bool -> binary_float
  | B754_nan : bool -> nan_pl -> binary_float
  | B754_finite : bool ->
    forall (m : positive) (e : Z), bounded m e = true -> binary_float.

Definition FF2B x :=
  match x as x return valid_binary x = true -> binary_float with
  | F754_finite s m e => B754_finite s m e
  | F754_infinity s => fun _ => B754_infinity s
  | F754_zero s => fun _ => B754_zero s
  | F754_nan b pl => fun H => B754_nan b (exist _ pl H)
  end.

Definition B2FF x :=
  match x with
  | B754_finite s m e _ => F754_finite s m e
  | B754_infinity s => F754_infinity s
  | B754_zero s => F754_zero s
  | B754_nan b (exist pl _) => F754_nan b pl
  end.

Definition radix2 := Build_radix 2 (refl_equal true).

Definition B2R f :=
  match f with
  | B754_finite s m e _ => F2R (Float radix2 (cond_Zopp s (Zpos m)) e)
  | _ => R0
  end.

Theorem FF2R_B2FF :
  forall x,
  FF2R radix2 (B2FF x) = B2R x.
Proof.
now intros [sx|sx|sx [plx Hplx]|sx mx ex Hx].
Qed.

Theorem B2FF_FF2B :
  forall x Hx,
  B2FF (FF2B x Hx) = x.
Proof.
now intros [sx|sx|sx plx|sx mx ex] Hx.
Qed.

Theorem valid_binary_B2FF :
  forall x,
  valid_binary (B2FF x) = true.
Proof.
now intros [sx|sx|sx [plx Hplx]|sx mx ex Hx].
Qed.

Theorem FF2B_B2FF :
  forall x H,
  FF2B (B2FF x) H = x.
Proof.
intros [sx|sx|sx [plx Hplx]|sx mx ex Hx] H ; try easy.
simpl. apply f_equal, f_equal, eqbool_irrelevance.
apply f_equal, eqbool_irrelevance.
Qed.

Theorem FF2B_B2FF_valid :
  forall x,
  FF2B (B2FF x) (valid_binary_B2FF x) = x.
Proof.
intros x.
apply FF2B_B2FF.
Qed.

Theorem B2R_FF2B :
  forall x Hx,
  B2R (FF2B x Hx) = FF2R radix2 x.
Proof.
now intros [sx|sx|sx plx|sx mx ex] Hx.
Qed.

Theorem match_FF2B :
  forall {T} fz fi fn ff x Hx,
  match FF2B x Hx return T with
  | B754_zero sx => fz sx
  | B754_infinity sx => fi sx
  | B754_nan b (exist p _) => fn b p
  | B754_finite sx mx ex _ => ff sx mx ex
  end =
  match x with
  | F754_zero sx => fz sx
  | F754_infinity sx => fi sx
  | F754_nan b p => fn b p
  | F754_finite sx mx ex => ff sx mx ex
  end.
Proof.
now intros T fz fi fn ff [sx|sx|sx plx|sx mx ex] Hx.
Qed.

Theorem canonic_canonic_mantissa :
  forall (sx : bool) mx ex,
  canonic_mantissa mx ex = true ->
  canonic radix2 fexp (Float radix2 (cond_Zopp sx (Zpos mx)) ex).
Proof.
intros sx mx ex H.
assert (Hx := Zeq_bool_eq _ _ H). clear H.
apply sym_eq.
simpl.
pattern ex at 2 ; rewrite <- Hx.
apply (f_equal fexp).
rewrite ln_beta_F2R_Zdigits.
rewrite <- Zdigits_abs.
rewrite Z_of_nat_S_digits2_Pnat.
now case sx.
now case sx.
Qed.

Theorem generic_format_B2R :
  forall x,
  generic_format radix2 fexp (B2R x).
Proof.
intros [sx|sx|sx plx|sx mx ex Hx] ; try apply generic_format_0.
simpl.
apply generic_format_canonic.
apply canonic_canonic_mantissa.
now destruct (andb_prop _ _ Hx) as (H, _).
Qed.

Theorem FLT_format_B2R :
  forall x,
  FLT_format radix2 emin prec (B2R x).
Proof with auto with typeclass_instances.
intros x.
apply FLT_format_generic...
apply generic_format_B2R.
Qed.

Theorem B2FF_inj :
  forall x y : binary_float,
  B2FF x = B2FF y ->
  x = y.
Proof.
intros [sx|sx|sx [plx Hplx]|sx mx ex Hx] [sy|sy|sy [ply Hply]|sy my ey Hy] ; try easy.
(* *)
intros H.
now inversion H.
(* *)
intros H.
now inversion H.
(* *)
intros H.
inversion H.
clear H.
revert Hplx.
rewrite H2.
intros Hx.
apply f_equal, f_equal, eqbool_irrelevance.
(* *)
intros H.
inversion H.
clear H.
revert Hx.
rewrite H2, H3.
intros Hx.
apply f_equal, eqbool_irrelevance.
Qed.

Definition is_finite_strict f :=
  match f with
  | B754_finite _ _ _ _ => true
  | _ => false
  end.

Theorem B2R_inj:
  forall x y : binary_float,
  is_finite_strict x = true ->
  is_finite_strict y = true ->
  B2R x = B2R y ->
  x = y.
Proof.
intros [sx|sx| |sx mx ex Hx] [sy|sy| |sy my ey Hy] ; try easy.
simpl.
intros _ _ Heq.
assert (Hs: sx = sy).
(* *)
revert Heq. clear.
case sx ; case sy ; try easy ;
  intros Heq ; apply False_ind ; revert Heq.
apply Rlt_not_eq.
apply Rlt_trans with R0.
now apply F2R_lt_0_compat.
now apply F2R_gt_0_compat.
apply Rgt_not_eq.
apply Rgt_trans with R0.
now apply F2R_gt_0_compat.
now apply F2R_lt_0_compat.
assert (mx = my /\ ex = ey).
(* *)
refine (_ (canonic_unicity _ fexp _ _ _ _ Heq)).
rewrite Hs.
now case sy ; intro H ; injection H ; split.
apply canonic_canonic_mantissa.
exact (proj1 (andb_prop _ _ Hx)).
apply canonic_canonic_mantissa.
exact (proj1 (andb_prop _ _ Hy)).
(* *)
revert Hx.
rewrite Hs, (proj1 H), (proj2 H).
intros Hx.
apply f_equal.
apply eqbool_irrelevance.
Qed.

Definition Bsign x :=
  match x with
  | B754_nan s _ => s
  | B754_zero s => s
  | B754_infinity s => s
  | B754_finite s _ _ _ => s
  end.

Definition sign_FF x :=
  match x with
  | F754_nan s _ => s
  | F754_zero s => s
  | F754_infinity s => s
  | F754_finite s _ _ => s
  end.

Theorem Bsign_FF2B :
  forall x H,
  Bsign (FF2B x H) = sign_FF x.
Proof.
now intros [sx|sx|sx plx|sx mx ex] H.
Qed.

Definition is_finite f :=
  match f with
  | B754_finite _ _ _ _ => true
  | B754_zero _ => true
  | _ => false
  end.

Definition is_finite_FF f :=
  match f with
  | F754_finite _ _ _ => true
  | F754_zero _ => true
  | _ => false
  end.

Theorem is_finite_FF2B :
  forall x Hx,
  is_finite (FF2B x Hx) = is_finite_FF x.
Proof.
now intros [| | |].
Qed.

Theorem is_finite_FF_B2FF :
  forall x,
  is_finite_FF (B2FF x) = is_finite x.
Proof.
now intros [| |? []|].
Qed.

Theorem B2R_Bsign_inj:
  forall x y : binary_float,
    is_finite x = true ->
    is_finite y = true ->
    B2R x = B2R y ->
    Bsign x = Bsign y ->
    x = y.
Proof.
intros. destruct x, y; try (apply B2R_inj; now eauto).
- simpl in H2. congruence.
- symmetry in H1. apply Rmult_integral in H1.
  destruct H1. apply eq_Z2R with (n:=0%Z) in H1. destruct b0; discriminate H1.
  simpl in H1. pose proof (bpow_gt_0 radix2 e).
  rewrite H1 in H3. apply Rlt_irrefl in H3. destruct H3.
- apply Rmult_integral in H1.
  destruct H1. apply eq_Z2R with (n:=0%Z) in H1. destruct b; discriminate H1.
  simpl in H1. pose proof (bpow_gt_0 radix2 e).
  rewrite H1 in H3. apply Rlt_irrefl in H3. destruct H3.
Qed.

Definition is_nan f :=
  match f with
  | B754_nan _ _ => true
  | _ => false
  end.

Definition is_nan_FF f :=
  match f with
  | F754_nan _ _ => true
  | _ => false
  end.

Theorem is_nan_FF2B :
  forall x Hx,
  is_nan (FF2B x Hx) = is_nan_FF x.
Proof.
now intros [| | |].
Qed.

Theorem is_nan_FF_B2FF :
  forall x,
  is_nan_FF (B2FF x) = is_nan x.
Proof.
now intros [| |? []|].
Qed.

Definition Bopp opp_nan x :=
  match x with
  | B754_nan sx plx =>
    let '(sres, plres) := opp_nan sx plx in B754_nan sres plres
  | B754_infinity sx => B754_infinity (negb sx)
  | B754_finite sx mx ex Hx => B754_finite (negb sx) mx ex Hx
  | B754_zero sx => B754_zero (negb sx)
  end.

Theorem Bopp_involutive :
  forall opp_nan x,
  is_nan x = false ->
  Bopp opp_nan (Bopp opp_nan x) = x.
Proof.
now intros opp_nan [sx|sx|sx plx|sx mx ex Hx] ; simpl ; try rewrite Bool.negb_involutive.
Qed.

Theorem B2R_Bopp :
  forall opp_nan x,
  B2R (Bopp opp_nan x) = (- B2R x)%R.
Proof.
intros opp_nan [sx|sx|sx plx|sx mx ex Hx]; apply sym_eq ; try apply Ropp_0.
simpl. destruct opp_nan. apply Ropp_0.
simpl.
rewrite <- F2R_opp.
now case sx.
Qed.

Theorem is_finite_Bopp :
  forall opp_nan x,
  is_finite (Bopp opp_nan x) = is_finite x.
Proof.
intros opp_nan [| | |] ; try easy.
intros s pl.
simpl.
now case opp_nan.
Qed.

Theorem bounded_lt_emax :
  forall mx ex,
  bounded mx ex = true ->
  (F2R (Float radix2 (Zpos mx) ex) < bpow radix2 emax)%R.
Proof.
intros mx ex Hx.
destruct (andb_prop _ _ Hx) as (H1,H2).
generalize (Zeq_bool_eq _ _ H1). clear H1. intro H1.
generalize (Zle_bool_imp_le _ _ H2). clear H2. intro H2.
generalize (ln_beta_F2R_Zdigits radix2 (Zpos mx) ex).
destruct (ln_beta radix2 (F2R (Float radix2 (Zpos mx) ex))) as (e',Ex).
unfold ln_beta_val.
intros H.
apply Rlt_le_trans with (bpow radix2 e').
change (Zpos mx) with (Zabs (Zpos mx)).
rewrite F2R_Zabs.
apply Ex.
apply Rgt_not_eq.
now apply F2R_gt_0_compat.
apply bpow_le.
rewrite H. 2: discriminate.
revert H1. clear -H2.
rewrite Z_of_nat_S_digits2_Pnat.
change Fcalc_digits.radix2 with radix2.
unfold fexp, FLT_exp.
generalize (Zdigits radix2 (Zpos mx)).
intros ; zify ; subst.
clear -H H2. clearbody emin.
omega.
Qed.

Theorem abs_B2R_lt_emax :
  forall x,
  (Rabs (B2R x) < bpow radix2 emax)%R.
Proof.
intros [sx|sx|sx plx|sx mx ex Hx] ; simpl ; try ( rewrite Rabs_R0 ; apply bpow_gt_0 ).
rewrite <- F2R_Zabs, abs_cond_Zopp.
now apply bounded_lt_emax.
Qed.

Theorem bounded_canonic_lt_emax :
  forall mx ex,
  canonic radix2 fexp (Float radix2 (Zpos mx) ex) ->
  (F2R (Float radix2 (Zpos mx) ex) < bpow radix2 emax)%R ->
  bounded mx ex = true.
Proof.
intros mx ex Cx Bx.
apply andb_true_intro.
split.
unfold canonic_mantissa.
unfold canonic, Fexp in Cx.
rewrite Cx at 2.
rewrite Z_of_nat_S_digits2_Pnat.
change Fcalc_digits.radix2 with radix2.
unfold canonic_exp.
rewrite ln_beta_F2R_Zdigits. 2: discriminate.
now apply -> Zeq_is_eq_bool.
apply Zle_bool_true.
unfold canonic, Fexp in Cx.
rewrite Cx.
unfold canonic_exp, fexp, FLT_exp.
destruct (ln_beta radix2 (F2R (Float radix2 (Zpos mx) ex))) as (e',Ex). simpl.
apply Zmax_lub.
cut (e' - 1 < emax)%Z. clear ; omega.
apply lt_bpow with radix2.
apply Rle_lt_trans with (2 := Bx).
change (Zpos mx) with (Zabs (Zpos mx)).
rewrite F2R_Zabs.
apply Ex.
apply Rgt_not_eq.
now apply F2R_gt_0_compat.
unfold emin.
generalize (prec_gt_0 prec).
clear -Hmax ; omega.
Qed.

(** mantissa, round and sticky bits *)
Record shr_record := { shr_m : Z ; shr_r : bool ; shr_s : bool }.

Definition shr_1 mrs :=
  let '(Build_shr_record m r s) := mrs in
  let s := orb r s in
  match m with
  | Z0 => Build_shr_record Z0 false s
  | Zpos xH => Build_shr_record Z0 true s
  | Zpos (xO p) => Build_shr_record (Zpos p) false s
  | Zpos (xI p) => Build_shr_record (Zpos p) true s
  | Zneg xH => Build_shr_record Z0 true s
  | Zneg (xO p) => Build_shr_record (Zneg p) false s
  | Zneg (xI p) => Build_shr_record (Zneg p) true s
  end.

Definition loc_of_shr_record mrs :=
  match mrs with
  | Build_shr_record _ false false => loc_Exact
  | Build_shr_record _ false true => loc_Inexact Lt
  | Build_shr_record _ true false => loc_Inexact Eq
  | Build_shr_record _ true true => loc_Inexact Gt
  end.

Definition shr_record_of_loc m l :=
  match l with
  | loc_Exact => Build_shr_record m false false
  | loc_Inexact Lt => Build_shr_record m false true
  | loc_Inexact Eq => Build_shr_record m true false
  | loc_Inexact Gt => Build_shr_record m true true
  end.

Theorem shr_m_shr_record_of_loc :
  forall m l,
  shr_m (shr_record_of_loc m l) = m.
Proof.
now intros m [|[| |]].
Qed.

Theorem loc_of_shr_record_of_loc :
  forall m l,
  loc_of_shr_record (shr_record_of_loc m l) = l.
Proof.
now intros m [|[| |]].
Qed.

Definition shr mrs e n :=
  match n with
  | Zpos p => (iter_pos p _ shr_1 mrs, (e + n)%Z)
  | _ => (mrs, e)
  end.

Lemma inbetween_shr_1 :
  forall x mrs e,
  (0 <= shr_m mrs)%Z ->
  inbetween_float radix2 (shr_m mrs) e x (loc_of_shr_record mrs) ->
  inbetween_float radix2 (shr_m (shr_1 mrs)) (e + 1) x (loc_of_shr_record (shr_1 mrs)).
Proof.
intros x mrs e Hm Hl.
refine (_ (new_location_even_correct (F2R (Float radix2 (shr_m (shr_1 mrs)) (e + 1))) (bpow radix2 e) 2 _ _ _ x (if shr_r (shr_1 mrs) then 1 else 0) (loc_of_shr_record mrs) _ _)) ; try easy.
2: apply bpow_gt_0.
2: now case (shr_r (shr_1 mrs)) ; split.
change (Z2R 2) with (bpow radix2 1).
rewrite <- bpow_plus.
rewrite (Zplus_comm 1), <- (F2R_bpow radix2 (e + 1)).
unfold inbetween_float, F2R. simpl.
rewrite Z2R_plus, Rmult_plus_distr_r.
replace (new_location_even 2 (if shr_r (shr_1 mrs) then 1%Z else 0%Z) (loc_of_shr_record mrs)) with (loc_of_shr_record (shr_1 mrs)).
easy.
clear -Hm.
destruct mrs as (m, r, s).
now destruct m as [|[m|m|]|m] ; try (now elim Hm) ; destruct r as [|] ; destruct s as [|].
rewrite (F2R_change_exp radix2 e).
2: apply Zle_succ.
unfold F2R. simpl.
rewrite <- 2!Rmult_plus_distr_r, <- 2!Z2R_plus.
rewrite Zplus_assoc.
replace (shr_m (shr_1 mrs) * 2 ^ (e + 1 - e) + (if shr_r (shr_1 mrs) then 1%Z else 0%Z))%Z with (shr_m mrs).
exact Hl.
ring_simplify (e + 1 - e)%Z.
change (2^1)%Z with 2%Z.
rewrite Zmult_comm.
clear -Hm.
destruct mrs as (m, r, s).
now destruct m as [|[m|m|]|m] ; try (now elim Hm) ; destruct r as [|] ; destruct s as [|].
Qed.

Theorem inbetween_shr :
  forall x m e l n,
  (0 <= m)%Z ->
  inbetween_float radix2 m e x l ->
  let '(mrs, e') := shr (shr_record_of_loc m l) e n in
  inbetween_float radix2 (shr_m mrs) e' x (loc_of_shr_record mrs).
Proof.
intros x m e l n Hm Hl.
destruct n as [|n|n].
now destruct l as [|[| |]].
2: now destruct l as [|[| |]].
unfold shr.
rewrite iter_nat_of_P.
rewrite Zpos_eq_Z_of_nat_o_nat_of_P.
induction (nat_of_P n).
simpl.
rewrite Zplus_0_r.
now destruct l as [|[| |]].
simpl iter_nat.
rewrite inj_S.
unfold Zsucc.
rewrite  Zplus_assoc.
revert IHn0.
apply inbetween_shr_1.
clear -Hm.
induction n0.
now destruct l as [|[| |]].
simpl.
revert IHn0.
generalize (iter_nat n0 shr_record shr_1 (shr_record_of_loc m l)).
clear.
intros (m, r, s) Hm.
now destruct m as [|[m|m|]|m] ; try (now elim Hm) ; destruct r as [|] ; destruct s as [|].
Qed.

Definition Zdigits2 m :=
  match m with Z0 => m | Zpos p => Z_of_nat (S (digits2_Pnat p)) | Zneg p => Z_of_nat (S (digits2_Pnat p)) end.

Theorem Zdigits2_Zdigits :
  forall m,
  Zdigits2 m = Zdigits radix2 m.
Proof.
unfold Zdigits2.
intros [|m|m] ; try apply Z_of_nat_S_digits2_Pnat.
easy.
Qed.

Definition shr_fexp m e l :=
  shr (shr_record_of_loc m l) e (fexp (Zdigits2 m + e) - e).

Theorem shr_truncate :
  forall m e l,
  (0 <= m)%Z ->
  shr_fexp m e l =
  let '(m', e', l') := truncate radix2 fexp (m, e, l) in (shr_record_of_loc m' l', e').
Proof.
intros m e l Hm.
case_eq (truncate radix2 fexp (m, e, l)).
intros (m', e') l'.
unfold shr_fexp.
rewrite Zdigits2_Zdigits.
case_eq (fexp (Zdigits radix2 m + e) - e)%Z.
(* *)
intros He.
unfold truncate.
rewrite He.
simpl.
intros H.
now inversion H.
(* *)
intros p Hp.
assert (He: (e <= fexp (Zdigits radix2 m + e))%Z).
clear -Hp ; zify ; omega.
destruct (inbetween_float_ex radix2 m e l) as (x, Hx).
generalize (inbetween_shr x m e l (fexp (Zdigits radix2 m + e) - e) Hm Hx).
assert (Hx0 : (0 <= x)%R).
apply Rle_trans with (F2R (Float radix2 m e)).
now apply F2R_ge_0_compat.
exact (proj1 (inbetween_float_bounds _ _ _ _ _ Hx)).
case_eq (shr (shr_record_of_loc m l) e (fexp (Zdigits radix2 m + e) - e)).
intros mrs e'' H3 H4 H1.
generalize (truncate_correct radix2 _ x m e l Hx0 Hx (or_introl _ He)).
rewrite H1.
intros (H2,_).
rewrite <- Hp, H3.
assert (e'' = e').
change (snd (mrs, e'') = snd (fst (m',e',l'))).
rewrite <- H1, <- H3.
unfold truncate.
now rewrite Hp.
rewrite H in H4 |- *.
apply (f_equal (fun v => (v, _))).
destruct (inbetween_float_unique _ _ _ _ _ _ _ H2 H4) as (H5, H6).
rewrite H5, H6.
case mrs.
now intros m0 [|] [|].
(* *)
intros p Hp.
unfold truncate.
rewrite Hp.
simpl.
intros H.
now inversion H.
Qed.

Inductive mode := mode_NE | mode_ZR | mode_DN | mode_UP | mode_NA.

Definition round_mode m :=
  match m with
  | mode_NE => ZnearestE
  | mode_ZR => Ztrunc
  | mode_DN => Zfloor
  | mode_UP => Zceil
  | mode_NA => ZnearestA
  end.

Definition choice_mode m sx mx lx :=
  match m with
  | mode_NE => cond_incr (round_N (negb (Zeven mx)) lx) mx
  | mode_ZR => mx
  | mode_DN => cond_incr (round_sign_DN sx lx) mx
  | mode_UP => cond_incr (round_sign_UP sx lx) mx
  | mode_NA => cond_incr (round_N true lx) mx
  end.

Global Instance valid_rnd_round_mode : forall m, Valid_rnd (round_mode m).
Proof.
destruct m ; unfold round_mode ; auto with typeclass_instances.
Qed.

Definition overflow_to_inf m s :=
  match m with
  | mode_NE => true
  | mode_NA => true
  | mode_ZR => false
  | mode_UP => negb s
  | mode_DN => s
  end.

Definition binary_overflow m s :=
  if overflow_to_inf m s then F754_infinity s
  else F754_finite s (match (Zpower 2 prec - 1)%Z with Zpos p => p | _ => xH end) (emax - prec).

Definition binary_round_aux mode sx mx ex lx :=
  let '(mrs', e') := shr_fexp (Zpos mx) ex lx in
  let '(mrs'', e'') := shr_fexp (choice_mode mode sx (shr_m mrs') (loc_of_shr_record mrs')) e' loc_Exact in
  match shr_m mrs'' with
  | Z0 => F754_zero sx
  | Zpos m => if Zle_bool e'' (emax - prec) then F754_finite sx m e'' else binary_overflow mode sx
  | _ => F754_nan false xH (* dummy *)
  end.

Theorem binary_round_aux_correct :
  forall mode x mx ex lx,
  inbetween_float radix2 (Zpos mx) ex (Rabs x) lx ->
  (ex <= fexp (Zdigits radix2 (Zpos mx) + ex))%Z ->
  let z := binary_round_aux mode (Rlt_bool x 0) mx ex lx in
  valid_binary z = true /\
  if Rlt_bool (Rabs (round radix2 fexp (round_mode mode) x)) (bpow radix2 emax) then
    FF2R radix2 z = round radix2 fexp (round_mode mode) x /\
    is_finite_FF z = true /\ sign_FF z = Rlt_bool x 0
  else
    z = binary_overflow mode (Rlt_bool x 0).
Proof with auto with typeclass_instances.
intros m x mx ex lx Bx Ex z.
unfold binary_round_aux in z.
revert z.
rewrite shr_truncate. 2: easy.
refine (_ (round_trunc_sign_any_correct _ _ (round_mode m) (choice_mode m) _ x (Zpos mx) ex lx Bx (or_introl _ Ex))).
refine (_ (truncate_correct_partial _ _ _ _ _ _ _ Bx Ex)).
destruct (truncate radix2 fexp (Zpos mx, ex, lx)) as ((m1, e1), l1).
rewrite loc_of_shr_record_of_loc, shr_m_shr_record_of_loc.
set (m1' := choice_mode m (Rlt_bool x 0) m1 l1).
intros (H1a,H1b) H1c.
rewrite H1c.
assert (Hm: (m1 <= m1')%Z).
(* . *)
unfold m1', choice_mode, cond_incr.
case m ;
  try apply Zle_refl ;
  match goal with |- (m1 <= if ?b then _ else _)%Z =>
    case b ; [ apply Zle_succ | apply Zle_refl ] end.
assert (Hr: Rabs (round radix2 fexp (round_mode m) x) = F2R (Float radix2 m1' e1)).
(* . *)
rewrite <- (Zabs_eq m1').
replace (Zabs m1') with (Zabs (cond_Zopp (Rlt_bool x 0) m1')).
rewrite F2R_Zabs.
now apply f_equal.
apply abs_cond_Zopp.
apply Zle_trans with (2 := Hm).
apply Zlt_succ_le.
apply F2R_gt_0_reg with radix2 e1.
apply Rle_lt_trans with (1 := Rabs_pos x).
exact (proj2 (inbetween_float_bounds _ _ _ _ _ H1a)).
(* . *)
assert (Br: inbetween_float radix2 m1' e1 (Rabs (round radix2 fexp (round_mode m) x)) loc_Exact).
now apply inbetween_Exact.
destruct m1' as [|m1'|m1'].
(* . m1' = 0 *)
rewrite shr_truncate. 2: apply Zle_refl.
generalize (truncate_0 radix2 fexp e1 loc_Exact).
destruct (truncate radix2 fexp (Z0, e1, loc_Exact)) as ((m2, e2), l2).
rewrite shr_m_shr_record_of_loc.
intros Hm2.
rewrite Hm2.
intros z.
repeat split.
rewrite Rlt_bool_true.
repeat split.
apply sym_eq.
case Rlt_bool ; apply F2R_0.
rewrite <- F2R_Zabs, abs_cond_Zopp, F2R_0.
apply bpow_gt_0.
(* . 0 < m1' *)
assert (He: (e1 <= fexp (Zdigits radix2 (Zpos m1') + e1))%Z).
rewrite <- ln_beta_F2R_Zdigits, <- Hr, ln_beta_abs.
2: discriminate.
rewrite H1b.
rewrite canonic_exp_abs.
fold (canonic_exp radix2 fexp (round radix2 fexp (round_mode m) x)).
apply canonic_exp_round_ge...
rewrite H1c.
case (Rlt_bool x 0).
apply Rlt_not_eq.
now apply F2R_lt_0_compat.
apply Rgt_not_eq.
now apply F2R_gt_0_compat.
refine (_ (truncate_correct_partial _ _ _ _ _ _ _ Br He)).
2: now rewrite Hr ; apply F2R_gt_0_compat.
refine (_ (truncate_correct_format radix2 fexp (Zpos m1') e1 _ _ He)).
2: discriminate.
rewrite shr_truncate. 2: easy.
destruct (truncate radix2 fexp (Zpos m1', e1, loc_Exact)) as ((m2, e2), l2).
rewrite shr_m_shr_record_of_loc.
intros (H3,H4) (H2,_).
destruct m2 as [|m2|m2].
elim Rgt_not_eq with (2 := H3).
rewrite F2R_0.
now apply F2R_gt_0_compat.
rewrite F2R_cond_Zopp, H3, abs_cond_Ropp, <- F2R_abs.
simpl Zabs.
case_eq (Zle_bool e2 (emax - prec)) ; intros He2.
assert (bounded m2 e2 = true).
apply andb_true_intro.
split.
unfold canonic_mantissa.
apply Zeq_bool_true.
rewrite Z_of_nat_S_digits2_Pnat.
rewrite <- ln_beta_F2R_Zdigits.
apply sym_eq.
now rewrite H3 in H4.
discriminate.
exact He2.
apply (conj H).
rewrite Rlt_bool_true.
repeat split.
apply F2R_cond_Zopp.
now apply bounded_lt_emax.
rewrite (Rlt_bool_false _ (bpow radix2 emax)).
refine (conj _ (refl_equal _)).
unfold binary_overflow.
case overflow_to_inf.
apply refl_equal.
unfold valid_binary, bounded.
rewrite Zle_bool_refl.
rewrite Bool.andb_true_r.
apply Zeq_bool_true.
rewrite Z_of_nat_S_digits2_Pnat.
change Fcalc_digits.radix2 with radix2.
replace (Zdigits radix2 (Zpos (match (Zpower 2 prec - 1)%Z with Zpos p => p | _ => xH end))) with prec.
unfold fexp, FLT_exp, emin.
generalize (prec_gt_0 prec).
clear -Hmax ; zify ; omega.
change 2%Z with (radix_val radix2).
case_eq (Zpower radix2 prec - 1)%Z.
simpl Zdigits.
generalize (Zpower_gt_1 radix2 prec (prec_gt_0 prec)).
clear ; omega.
intros p Hp.
apply Zle_antisym.
cut (prec - 1 < Zdigits radix2 (Zpos p))%Z. clear ; omega.
apply Zdigits_gt_Zpower.
simpl Zabs. rewrite <- Hp.
cut (Zpower radix2 (prec - 1) < Zpower radix2 prec)%Z. clear ; omega.
apply lt_Z2R.
rewrite 2!Z2R_Zpower. 2: now apply Zlt_le_weak.
apply bpow_lt.
apply Zlt_pred.
now apply Zlt_0_le_0_pred.
apply Zdigits_le_Zpower.
simpl Zabs. rewrite <- Hp.
apply Zlt_pred.
intros p Hp.
generalize (Zpower_gt_1 radix2 _ (prec_gt_0 prec)).
clear -Hp ; zify ; omega.
apply Rnot_lt_le.
intros Hx.
generalize (refl_equal (bounded m2 e2)).
unfold bounded at 2.
rewrite He2.
rewrite Bool.andb_false_r.
rewrite bounded_canonic_lt_emax with (2 := Hx).
discriminate.
unfold canonic.
now rewrite <- H3.
elim Rgt_not_eq with (2 := H3).
apply Rlt_trans with R0.
now apply F2R_lt_0_compat.
now apply F2R_gt_0_compat.
rewrite <- Hr.
apply generic_format_abs...
apply generic_format_round...
(* . not m1' < 0 *)
elim Rgt_not_eq with (2 := Hr).
apply Rlt_le_trans with R0.
now apply F2R_lt_0_compat.
apply Rabs_pos.
(* *)
apply Rlt_le_trans with (2 := proj1 (inbetween_float_bounds _ _ _ _ _ Bx)).
now apply F2R_gt_0_compat.
(* all the modes are valid *)
clear. case m.
exact inbetween_int_NE_sign.
exact inbetween_int_ZR_sign.
exact inbetween_int_DN_sign.
exact inbetween_int_UP_sign.
exact inbetween_int_NA_sign.
Qed.

(** Multiplication *)

Lemma Bmult_correct_aux :
  forall m sx mx ex (Hx : bounded mx ex = true) sy my ey (Hy : bounded my ey = true),
  let x := F2R (Float radix2 (cond_Zopp sx (Zpos mx)) ex) in
  let y := F2R (Float radix2 (cond_Zopp sy (Zpos my)) ey) in
  let z := binary_round_aux m (xorb sx sy) (mx * my) (ex + ey) loc_Exact in
  valid_binary z = true /\
  if Rlt_bool (Rabs (round radix2 fexp (round_mode m) (x * y))) (bpow radix2 emax) then
    FF2R radix2 z = round radix2 fexp (round_mode m) (x * y) /\
    is_finite_FF z = true /\ sign_FF z = xorb sx sy
  else
    z = binary_overflow m (xorb sx sy).
Proof.
intros m sx mx ex Hx sy my ey Hy x y.
unfold x, y.
rewrite <- F2R_mult.
simpl.
replace (xorb sx sy) with (Rlt_bool (F2R (Float radix2 (cond_Zopp sx (Zpos mx) * cond_Zopp sy (Zpos my)) (ex + ey))) 0).
apply binary_round_aux_correct.
constructor.
rewrite <- F2R_abs.
apply F2R_eq_compat.
rewrite Zabs_Zmult.
now rewrite 2!abs_cond_Zopp.
(* *)
change (Zpos (mx * my)) with (Zpos mx * Zpos my)%Z.
assert (forall m e, bounded m e = true -> fexp (Zdigits radix2 (Zpos m) + e) = e)%Z.
clear. intros m e Hb.
destruct (andb_prop _ _ Hb) as (H,_).
apply Zeq_bool_eq.
now rewrite <- Z_of_nat_S_digits2_Pnat.
generalize (H _ _ Hx) (H _ _ Hy).
clear x y sx sy Hx Hy H.
unfold fexp, FLT_exp.
refine (_ (Zdigits_mult_ge radix2 (Zpos mx) (Zpos my) _ _)) ; try discriminate.
refine (_ (Zdigits_gt_0 radix2 (Zpos mx) _) (Zdigits_gt_0 radix2 (Zpos my) _)) ; try discriminate.
generalize (Zdigits radix2 (Zpos mx)) (Zdigits radix2 (Zpos my)) (Zdigits radix2 (Zpos mx * Zpos my)).
clear -Hmax.
unfold emin.
intros dx dy dxy Hx Hy Hxy.
zify ; intros ; subst.
omega.
(* *)
case sx ; case sy.
apply Rlt_bool_false.
now apply F2R_ge_0_compat.
apply Rlt_bool_true.
now apply F2R_lt_0_compat.
apply Rlt_bool_true.
now apply F2R_lt_0_compat.
apply Rlt_bool_false.
now apply F2R_ge_0_compat.
Qed.

Definition Bmult mult_nan m x y :=
  let f pl := B754_nan (fst pl) (snd pl) in
  match x, y with
  | B754_nan _ _, _ | _, B754_nan _ _ => f (mult_nan x y)
  | B754_infinity sx, B754_infinity sy => B754_infinity (xorb sx sy)
  | B754_infinity sx, B754_finite sy _ _ _ => B754_infinity (xorb sx sy)
  | B754_finite sx _ _ _, B754_infinity sy => B754_infinity (xorb sx sy)
  | B754_infinity _, B754_zero _ => f (mult_nan x y)
  | B754_zero _, B754_infinity _ => f (mult_nan x y)
  | B754_finite sx _ _ _, B754_zero sy => B754_zero (xorb sx sy)
  | B754_zero sx, B754_finite sy _ _ _ => B754_zero (xorb sx sy)
  | B754_zero sx, B754_zero sy => B754_zero (xorb sx sy)
  | B754_finite sx mx ex Hx, B754_finite sy my ey Hy =>
    FF2B _ (proj1 (Bmult_correct_aux m sx mx ex Hx sy my ey Hy))
  end.

Theorem Bmult_correct :
  forall mult_nan m x y,
  if Rlt_bool (Rabs (round radix2 fexp (round_mode m) (B2R x * B2R y))) (bpow radix2 emax) then
    B2R (Bmult mult_nan m x y) = round radix2 fexp (round_mode m) (B2R x * B2R y) /\
    is_finite (Bmult mult_nan m x y) = andb (is_finite x) (is_finite y) /\
    (is_nan (Bmult mult_nan m x y) = false ->
      Bsign (Bmult mult_nan m x y) = xorb (Bsign x) (Bsign y))
  else
    B2FF (Bmult mult_nan m x y) = binary_overflow m (xorb (Bsign x) (Bsign y)).
Proof.
intros mult_nan m [sx|sx|sx plx|sx mx ex Hx] [sy|sy|sy ply|sy my ey Hy] ;
  try ( rewrite ?Rmult_0_r, ?Rmult_0_l, round_0, Rabs_R0, Rlt_bool_true ; [ now repeat constructor | apply bpow_gt_0 | now auto with typeclass_instances ] ).
simpl.
case Bmult_correct_aux.
intros H1.
case Rlt_bool.
intros (H2, (H3, H4)).
split.
now rewrite B2R_FF2B.
split.
now rewrite is_finite_FF2B.
rewrite Bsign_FF2B. auto.
intros H2.
now rewrite B2FF_FF2B.
Qed.

Definition Bmult_FF mult_nan m x y :=
  let f pl := F754_nan (fst pl) (snd pl) in
  match x, y with
  | F754_nan _ _, _ | _, F754_nan _ _ => f (mult_nan x y)
  | F754_infinity sx, F754_infinity sy => F754_infinity (xorb sx sy)
  | F754_infinity sx, F754_finite sy _ _ => F754_infinity (xorb sx sy)
  | F754_finite sx _ _, F754_infinity sy => F754_infinity (xorb sx sy)
  | F754_infinity _, F754_zero _ => f (mult_nan x y)
  | F754_zero _, F754_infinity _ => f (mult_nan x y)
  | F754_finite sx _ _, F754_zero sy => F754_zero (xorb sx sy)
  | F754_zero sx, F754_finite sy _ _ => F754_zero (xorb sx sy)
  | F754_zero sx, F754_zero sy => F754_zero (xorb sx sy)
  | F754_finite sx mx ex, F754_finite sy my ey =>
    binary_round_aux m (xorb sx sy) (mx * my) (ex + ey) loc_Exact
  end.

Theorem B2FF_Bmult :
  forall mult_nan mult_nan_ff,
  forall m x y,
  mult_nan_ff (B2FF x) (B2FF y) = (let '(sr, exist plr _) := mult_nan x y in (sr, plr)) ->
  B2FF (Bmult mult_nan m x y) = Bmult_FF mult_nan_ff m (B2FF x) (B2FF y).
Proof.
intros mult_nan mult_nan_ff m x y Hmult_nan.
unfold Bmult_FF. rewrite Hmult_nan.
destruct x as [sx|sx|sx [plx Hplx]|sx mx ex Hx], y as [sy|sy|sy [ply Hply]|sy my ey Hy] ;
  simpl; try match goal with |- context [mult_nan ?x ?y] =>
               destruct (mult_nan x y) as [? []] end;
  try easy.
apply B2FF_FF2B.
Qed.

Definition shl_align mx ex ex' :=
  match (ex' - ex)%Z with
  | Zneg d => (shift_pos d mx, ex')
  | _ => (mx, ex)
  end.

Theorem shl_align_correct :
  forall mx ex ex',
  let (mx', ex'') := shl_align mx ex ex' in
  F2R (Float radix2 (Zpos mx) ex) = F2R (Float radix2 (Zpos mx') ex'') /\
  (ex'' <= ex')%Z.
Proof.
intros mx ex ex'.
unfold shl_align.
case_eq (ex' - ex)%Z.
(* d = 0 *)
intros H.
repeat split.
rewrite Zminus_eq with (1 := H).
apply Zle_refl.
(* d > 0 *)
intros d Hd.
repeat split.
replace ex' with (ex' - ex + ex)%Z by ring.
rewrite Hd.
pattern ex at 1 ; rewrite <- Zplus_0_l.
now apply Zplus_le_compat_r.
(* d < 0 *)
intros d Hd.
rewrite shift_pos_correct, Zmult_comm.
change (Zpower_pos 2 d) with (Zpower radix2 (Zpos d)).
change (Zpos d) with (Zopp (Zneg d)).
rewrite <- Hd.
split.
replace (- (ex' - ex))%Z with (ex - ex')%Z by ring.
apply F2R_change_exp.
apply Zle_0_minus_le.
replace (ex - ex')%Z with (- (ex' - ex))%Z by ring.
now rewrite Hd.
apply Zle_refl.
Qed.

Theorem snd_shl_align :
  forall mx ex ex',
  (ex' <= ex)%Z ->
  snd (shl_align mx ex ex') = ex'.
Proof.
intros mx ex ex' He.
unfold shl_align.
case_eq (ex' - ex)%Z ; simpl.
intros H.
now rewrite Zminus_eq with (1 := H).
intros p.
clear -He ; zify ; omega.
intros.
apply refl_equal.
Qed.

Definition shl_align_fexp mx ex :=
  shl_align mx ex (fexp (Z_of_nat (S (digits2_Pnat mx)) + ex)).

Theorem shl_align_fexp_correct :
  forall mx ex,
  let (mx', ex') := shl_align_fexp mx ex in
  F2R (Float radix2 (Zpos mx) ex) = F2R (Float radix2 (Zpos mx') ex') /\
  (ex' <= fexp (Zdigits radix2 (Zpos mx') + ex'))%Z.
Proof.
intros mx ex.
unfold shl_align_fexp.
generalize (shl_align_correct mx ex (fexp (Z_of_nat (S (digits2_Pnat mx)) + ex))).
rewrite Z_of_nat_S_digits2_Pnat.
case shl_align.
intros mx' ex' (H1, H2).
split.
exact H1.
rewrite <- ln_beta_F2R_Zdigits. 2: easy.
rewrite <- H1.
now rewrite ln_beta_F2R_Zdigits.
Qed.

Definition binary_round m sx mx ex :=
  let '(mz, ez) := shl_align_fexp mx ex in binary_round_aux m sx mz ez loc_Exact.

Theorem binary_round_correct :
  forall m sx mx ex,
  let z := binary_round m sx mx ex in
  valid_binary z = true /\
  let x := F2R (Float radix2 (cond_Zopp sx (Zpos mx)) ex) in
  if Rlt_bool (Rabs (round radix2 fexp (round_mode m) x)) (bpow radix2 emax) then
    FF2R radix2 z = round radix2 fexp (round_mode m) x /\
    is_finite_FF z = true /\
    sign_FF z = sx
  else
    z = binary_overflow m sx.
Proof.
intros m sx mx ex.
unfold binary_round.
generalize (shl_align_fexp_correct mx ex).
destruct (shl_align_fexp mx ex) as (mz, ez).
intros (H1, H2).
set (x := F2R (Float radix2 (cond_Zopp sx (Zpos mx)) ex)).
replace sx with (Rlt_bool x 0).
apply binary_round_aux_correct.
constructor.
unfold x.
now rewrite <- F2R_Zabs, abs_cond_Zopp.
exact H2.
unfold x.
case sx.
apply Rlt_bool_true.
now apply F2R_lt_0_compat.
apply Rlt_bool_false.
now apply F2R_ge_0_compat.
Qed.

Definition binary_normalize mode m e szero :=
  match m with
  | Z0 => B754_zero szero
  | Zpos m => FF2B _ (proj1 (binary_round_correct mode false m e))
  | Zneg m => FF2B _ (proj1 (binary_round_correct mode true m e))
  end.

Theorem binary_normalize_correct :
  forall m mx ex szero,
  if Rlt_bool (Rabs (round radix2 fexp (round_mode m) (F2R (Float radix2 mx ex)))) (bpow radix2 emax) then
    B2R (binary_normalize m mx ex szero) = round radix2 fexp (round_mode m) (F2R (Float radix2 mx ex)) /\
    is_finite (binary_normalize m mx ex szero) = true /\
    Bsign (binary_normalize m mx ex szero) =
      match Rcompare (F2R (Float radix2 mx ex)) 0 with
        | Eq => szero
        | Lt => true
        | Gt => false
      end
  else
    B2FF (binary_normalize m mx ex szero) = binary_overflow m (Rlt_bool (F2R (Float radix2 mx ex)) 0).
Proof with auto with typeclass_instances.
intros m mx ez szero.
destruct mx as [|mz|mz] ; simpl.
rewrite F2R_0, round_0, Rabs_R0, Rlt_bool_true...
split... split...
rewrite Rcompare_Eq...
apply bpow_gt_0.
(* . mz > 0 *)
generalize (binary_round_correct m false mz ez).
simpl.
case Rlt_bool_spec.
intros _ (Vz, (Rz, (Rz', Rz''))).
split.
now rewrite B2R_FF2B.
split.
now rewrite is_finite_FF2B.
rewrite Bsign_FF2B, Rz''.
rewrite Rcompare_Gt...
apply F2R_gt_0_compat.
simpl. zify; omega.
intros Hz' (Vz, Rz).
rewrite B2FF_FF2B, Rz.
apply f_equal.
apply sym_eq.
apply Rlt_bool_false.
now apply F2R_ge_0_compat.
(* . mz < 0 *)
generalize (binary_round_correct m true mz ez).
simpl.
case Rlt_bool_spec.
intros _ (Vz, (Rz, (Rz', Rz''))).
split.
now rewrite B2R_FF2B.
split.
now rewrite is_finite_FF2B.
rewrite Bsign_FF2B, Rz''.
rewrite Rcompare_Lt...
apply F2R_lt_0_compat.
simpl. zify; omega.
intros Hz' (Vz, Rz).
rewrite B2FF_FF2B, Rz.
apply f_equal.
apply sym_eq.
apply Rlt_bool_true.
now apply F2R_lt_0_compat.
Qed.

(** Addition *)
Definition Bplus plus_nan m x y :=
  let f pl := B754_nan (fst pl) (snd pl) in
  match x, y with
  | B754_nan _ _, _ | _, B754_nan _ _ => f (plus_nan x y)
  | B754_infinity sx, B754_infinity sy =>
    if Bool.eqb sx sy then x else f (plus_nan x y)
  | B754_infinity _, _ => x
  | _, B754_infinity _ => y
  | B754_zero sx, B754_zero sy =>
    if Bool.eqb sx sy then x else
    match m with mode_DN => B754_zero true | _ => B754_zero false end
  | B754_zero _, _ => y
  | _, B754_zero _ => x
  | B754_finite sx mx ex Hx, B754_finite sy my ey Hy =>
    let ez := Zmin ex ey in
    binary_normalize m (Zplus (cond_Zopp sx (Zpos (fst (shl_align mx ex ez)))) (cond_Zopp sy (Zpos (fst (shl_align my ey ez)))))
      ez (match m with mode_DN => true | _ => false end)
  end.

Theorem Bplus_correct :
  forall plus_nan m x y,
  is_finite x = true ->
  is_finite y = true ->
  if Rlt_bool (Rabs (round radix2 fexp (round_mode m) (B2R x + B2R y))) (bpow radix2 emax) then
    B2R (Bplus plus_nan m x y) = round radix2 fexp (round_mode m) (B2R x + B2R y) /\
    is_finite (Bplus plus_nan m x y) = true /\
    Bsign (Bplus plus_nan m x y) =
      match Rcompare (B2R x + B2R y) 0 with
        | Eq => match m with mode_DN => orb (Bsign x) (Bsign y)
                                 | _ => andb (Bsign x) (Bsign y) end
        | Lt => true
        | Gt => false
      end
  else
    (B2FF (Bplus plus_nan m x y) = binary_overflow m (Bsign x) /\ Bsign x = Bsign y).
Proof with auto with typeclass_instances.
intros plus_nan m [sx|sx| |sx mx ex Hx] [sy|sy| |sy my ey Hy] Fx Fy ; try easy.
(* *)
rewrite Rplus_0_r, round_0, Rabs_R0, Rlt_bool_true...
simpl.
rewrite Rcompare_Eq by auto.
destruct sx, sy; try easy; now case m.
apply bpow_gt_0.
(* *)
rewrite Rplus_0_l, round_generic, Rlt_bool_true...
split... split...
simpl. unfold F2R.
erewrite <- Rmult_0_l, Rcompare_mult_r.
rewrite Rcompare_Z2R with (y:=0%Z).
destruct sy...
apply bpow_gt_0.
apply abs_B2R_lt_emax.
apply generic_format_B2R.
(* *)
rewrite Rplus_0_r, round_generic, Rlt_bool_true...
split... split...
simpl. unfold F2R.
erewrite <- Rmult_0_l, Rcompare_mult_r.
rewrite Rcompare_Z2R with (y:=0%Z).
destruct sx...
apply bpow_gt_0.
apply abs_B2R_lt_emax.
apply generic_format_B2R.
(* *)
clear Fx Fy.
simpl.
set (szero := match m with mode_DN => true | _ => false end).
set (ez := Zmin ex ey).
set (mz := (cond_Zopp sx (Zpos (fst (shl_align mx ex ez))) + cond_Zopp sy (Zpos (fst (shl_align my ey ez))))%Z).
assert (Hp: (F2R (Float radix2 (cond_Zopp sx (Zpos mx)) ex) +
  F2R (Float radix2 (cond_Zopp sy (Zpos my)) ey))%R = F2R (Float radix2 mz ez)).
rewrite 2!F2R_cond_Zopp.
generalize (shl_align_correct mx ex ez).
generalize (shl_align_correct my ey ez).
generalize (snd_shl_align mx ex ez (Zle_min_l ex ey)).
generalize (snd_shl_align my ey ez (Zle_min_r ex ey)).
destruct (shl_align mx ex ez) as (mx', ex').
destruct (shl_align my ey ez) as (my', ey').
simpl.
intros H1 H2.
rewrite H1, H2.
clear H1 H2.
intros (H1, _) (H2, _).
rewrite H1, H2.
clear H1 H2.
rewrite <- 2!F2R_cond_Zopp.
unfold F2R. simpl.
now rewrite <- Rmult_plus_distr_r, <- Z2R_plus.
rewrite Hp.
assert (Sz: (bpow radix2 emax <= Rabs (round radix2 fexp (round_mode m) (F2R (Float radix2 mz ez))))%R -> sx = Rlt_bool (F2R (Float radix2 mz ez)) 0 /\ sx = sy).
(* . *)
rewrite <- Hp.
intros Bz.
destruct (Bool.bool_dec sx sy) as [Hs|Hs].
(* .. *)
refine (conj _ Hs).
rewrite Hs.
apply sym_eq.
case sy.
apply Rlt_bool_true.
rewrite <- (Rplus_0_r 0).
apply Rplus_lt_compat.
now apply F2R_lt_0_compat.
now apply F2R_lt_0_compat.
apply Rlt_bool_false.
rewrite <- (Rplus_0_r 0).
apply Rplus_le_compat.
now apply F2R_ge_0_compat.
now apply F2R_ge_0_compat.
(* .. *)
elim Rle_not_lt with (1 := Bz).
generalize (bounded_lt_emax _ _ Hx) (bounded_lt_emax _ _ Hy) (andb_prop _ _ Hx) (andb_prop _ _ Hy).
intros Bx By (Hx',_) (Hy',_).
generalize (canonic_canonic_mantissa sx _ _ Hx') (canonic_canonic_mantissa sy _ _ Hy').
clear -Bx By Hs.
intros Cx Cy.
destruct sx.
(* ... *)
destruct sy.
now elim Hs.
clear Hs.
apply Rabs_lt.
split.
apply Rlt_le_trans with (F2R (Float radix2 (cond_Zopp true (Zpos mx)) ex)).
rewrite F2R_Zopp.
now apply Ropp_lt_contravar.
apply round_ge_generic...
now apply generic_format_canonic.
pattern (F2R (Float radix2 (cond_Zopp true (Zpos mx)) ex)) at 1 ; rewrite <- Rplus_0_r.
apply Rplus_le_compat_l.
now apply F2R_ge_0_compat.
apply Rle_lt_trans with (2 := By).
apply round_le_generic...
now apply generic_format_canonic.
rewrite <- (Rplus_0_l (F2R (Float radix2 (Zpos my) ey))).
apply Rplus_le_compat_r.
now apply F2R_le_0_compat.
(* ... *)
destruct sy.
2: now elim Hs.
clear Hs.
apply Rabs_lt.
split.
apply Rlt_le_trans with (F2R (Float radix2 (cond_Zopp true (Zpos my)) ey)).
rewrite F2R_Zopp.
now apply Ropp_lt_contravar.
apply round_ge_generic...
now apply generic_format_canonic.
pattern (F2R (Float radix2 (cond_Zopp true (Zpos my)) ey)) at 1 ; rewrite <- Rplus_0_l.
apply Rplus_le_compat_r.
now apply F2R_ge_0_compat.
apply Rle_lt_trans with (2 := Bx).
apply round_le_generic...
now apply generic_format_canonic.
rewrite <- (Rplus_0_r (F2R (Float radix2 (Zpos mx) ex))).
apply Rplus_le_compat_l.
now apply F2R_le_0_compat.
(* . *)
generalize (binary_normalize_correct m mz ez szero).
case Rlt_bool_spec.
split; try easy. split; try easy.
destruct (Rcompare_spec (F2R (beta:=radix2) {| Fnum := mz; Fexp := ez |}) 0); try easy.
rewrite H1 in Hp.
apply Rplus_opp_r_uniq in Hp.
rewrite <- F2R_Zopp in Hp.
eapply canonic_unicity in Hp.
inversion Hp. destruct sy, sx, m; try discriminate H3; easy.
apply canonic_canonic_mantissa.
apply Bool.andb_true_iff in Hy. easy.
replace (-cond_Zopp sx (Z.pos mx))%Z with  (cond_Zopp (negb sx) (Z.pos mx))
  by (destruct sx; auto).
apply canonic_canonic_mantissa.
apply Bool.andb_true_iff in Hx. easy.
intros Hz' Vz.
specialize (Sz Hz').
split.
rewrite Vz.
now apply f_equal.
apply Sz.
Qed.

Definition Bminus minus_nan m x y := Bplus minus_nan m x (Bopp pair y).

Theorem Bminus_correct :
  forall minus_nan m x y,
  is_finite x = true ->
  is_finite y = true ->
  if Rlt_bool (Rabs (round radix2 fexp (round_mode m) (B2R x - B2R y))) (bpow radix2 emax) then
    B2R (Bminus minus_nan m x y) = round radix2 fexp (round_mode m) (B2R x - B2R y) /\
    is_finite (Bminus minus_nan m x y) = true /\
    Bsign (Bminus minus_nan m x y) =
      match Rcompare (B2R x - B2R y) 0 with
        | Eq => match m with mode_DN => orb (Bsign x) (negb (Bsign y))
                                 | _ => andb (Bsign x) (negb (Bsign y)) end
        | Lt => true
        | Gt => false
      end
  else
    (B2FF (Bminus minus_nan m x y) = binary_overflow m (Bsign x) /\ Bsign x = negb (Bsign y)).
Proof with auto with typeclass_instances.
intros m minus_nan x y Fx Fy.
replace (negb (Bsign y)) with (Bsign (Bopp pair y)).
unfold Rminus.
erewrite <- B2R_Bopp.
apply Bplus_correct.
exact Fx.
rewrite is_finite_Bopp. auto. now destruct y as [ | | | ].
Qed.

(** Division *)
Definition Fdiv_core_binary m1 e1 m2 e2 :=
  let d1 := Zdigits2 m1 in
  let d2 := Zdigits2 m2 in
  let e := (e1 - e2)%Z in
  let (m, e') :=
    match (d2 + prec - d1)%Z with
    | Zpos p => (m1 * Zpower_pos 2 p, e + Zneg p)%Z
    | _ => (m1, e)
    end in
  let '(q, r) :=  Zdiv_eucl m m2 in
  (q, e', new_location m2 r loc_Exact).

Lemma Bdiv_correct_aux :
  forall m sx mx ex sy my ey,
  let x := F2R (Float radix2 (cond_Zopp sx (Zpos mx)) ex) in
  let y := F2R (Float radix2 (cond_Zopp sy (Zpos my)) ey) in
  let z :=
    let '(mz, ez, lz) := Fdiv_core_binary (Zpos mx) ex (Zpos my) ey in
    match mz with
    | Zpos mz => binary_round_aux m (xorb sx sy) mz ez lz
    | _ => F754_nan false xH (* dummy *)
    end in
  valid_binary z = true /\
  if Rlt_bool (Rabs (round radix2 fexp (round_mode m) (x / y))) (bpow radix2 emax) then
    FF2R radix2 z = round radix2 fexp (round_mode m) (x / y) /\
    is_finite_FF z = true /\ sign_FF z = xorb sx sy
  else
    z = binary_overflow m (xorb sx sy).
Proof.
intros m sx mx ex sy my ey.
replace (Fdiv_core_binary (Zpos mx) ex (Zpos my) ey) with (Fdiv_core radix2 prec (Zpos mx) ex (Zpos my) ey).
2: now unfold Fdiv_core_binary ; rewrite 2!Zdigits2_Zdigits.
refine (_ (Fdiv_core_correct radix2 prec (Zpos mx) ex (Zpos my) ey _ _ _)) ; try easy.
destruct (Fdiv_core radix2 prec (Zpos mx) ex (Zpos my) ey) as ((mz, ez), lz).
intros (Pz, Bz).
simpl.
replace (xorb sx sy) with (Rlt_bool (F2R (Float radix2 (cond_Zopp sx (Zpos mx)) ex) *
  / F2R (Float radix2 (cond_Zopp sy (Zpos my)) ey)) 0).
unfold Rdiv.
destruct mz as [|mz|mz].
(* . mz = 0 *)
elim (Zlt_irrefl prec).
now apply Zle_lt_trans with Z0.
(* . mz > 0 *)
apply binary_round_aux_correct.
rewrite Rabs_mult, Rabs_Rinv.
now rewrite <- 2!F2R_Zabs, 2!abs_cond_Zopp.
case sy.
apply Rlt_not_eq.
now apply F2R_lt_0_compat.
apply Rgt_not_eq.
now apply F2R_gt_0_compat.
revert Pz.
generalize (Zdigits radix2 (Zpos mz)).
unfold fexp, FLT_exp.
clear.
intros ; zify ; subst.
omega.
(* . mz < 0 *)
elim Rlt_not_le with (1 := proj2 (inbetween_float_bounds _ _ _ _ _ Bz)).
apply Rle_trans with R0.
apply F2R_le_0_compat.
now case mz.
apply Rmult_le_pos.
now apply F2R_ge_0_compat.
apply Rlt_le.
apply Rinv_0_lt_compat.
now apply F2R_gt_0_compat.
(* *)
case sy ; simpl.
change (Zneg my) with (Zopp (Zpos my)).
rewrite F2R_Zopp.
rewrite <- Ropp_inv_permute.
rewrite Ropp_mult_distr_r_reverse.
case sx ; simpl.
apply Rlt_bool_false.
rewrite <- Ropp_mult_distr_l_reverse.
apply Rmult_le_pos.
rewrite <- F2R_opp.
now apply F2R_ge_0_compat.
apply Rlt_le.
apply Rinv_0_lt_compat.
now apply F2R_gt_0_compat.
apply Rlt_bool_true.
rewrite <- Ropp_0.
apply Ropp_lt_contravar.
apply Rmult_lt_0_compat.
now apply F2R_gt_0_compat.
apply Rinv_0_lt_compat.
now apply F2R_gt_0_compat.
apply Rgt_not_eq.
now apply F2R_gt_0_compat.
case sx.
apply Rlt_bool_true.
rewrite F2R_Zopp.
rewrite Ropp_mult_distr_l_reverse.
rewrite <- Ropp_0.
apply Ropp_lt_contravar.
apply Rmult_lt_0_compat.
now apply F2R_gt_0_compat.
apply Rinv_0_lt_compat.
now apply F2R_gt_0_compat.
apply Rlt_bool_false.
apply Rmult_le_pos.
now apply F2R_ge_0_compat.
apply Rlt_le.
apply Rinv_0_lt_compat.
now apply F2R_gt_0_compat.
Qed.

Definition Bdiv div_nan m x y :=
  let f pl := B754_nan (fst pl) (snd pl) in
  match x, y with
  | B754_nan _ _, _ | _, B754_nan _ _ => f (div_nan x y)
  | B754_infinity sx, B754_infinity sy => f (div_nan x y)
  | B754_infinity sx, B754_finite sy _ _ _ => B754_infinity (xorb sx sy)
  | B754_finite sx _ _ _, B754_infinity sy => B754_zero (xorb sx sy)
  | B754_infinity sx, B754_zero sy => B754_infinity (xorb sx sy)
  | B754_zero sx, B754_infinity sy => B754_zero (xorb sx sy)
  | B754_finite sx _ _ _, B754_zero sy => B754_infinity (xorb sx sy)
  | B754_zero sx, B754_finite sy _ _ _ => B754_zero (xorb sx sy)
  | B754_zero sx, B754_zero sy => f (div_nan x y)
  | B754_finite sx mx ex _, B754_finite sy my ey _ =>
    FF2B _ (proj1 (Bdiv_correct_aux m sx mx ex sy my ey))
  end.

Theorem Bdiv_correct :
  forall div_nan m x y,
  B2R y <> R0 ->
  if Rlt_bool (Rabs (round radix2 fexp (round_mode m) (B2R x / B2R y))) (bpow radix2 emax) then
    B2R (Bdiv div_nan m x y) = round radix2 fexp (round_mode m) (B2R x / B2R y) /\
    is_finite (Bdiv div_nan m x y) = is_finite x /\
    (is_nan (Bdiv div_nan m x y) = false ->
      Bsign (Bdiv div_nan m x y) = xorb (Bsign x) (Bsign y))
  else
    B2FF (Bdiv div_nan m x y) = binary_overflow m (xorb (Bsign x) (Bsign y)).
Proof.
intros div_nan m x [sy|sy|sy ply|sy my ey Hy] Zy ; try now elim Zy.
revert x.
unfold Rdiv.
intros [sx|sx|sx plx|sx mx ex Hx] ;
  try ( rewrite Rmult_0_l, round_0, Rabs_R0, Rlt_bool_true ; [ now repeat constructor | apply bpow_gt_0 | auto with typeclass_instances ] ).
simpl.
case Bdiv_correct_aux.
intros H1.
unfold Rdiv.
case Rlt_bool.
intros (H2, (H3, H4)).
split.
now rewrite B2R_FF2B.
split.
now rewrite is_finite_FF2B.
rewrite Bsign_FF2B. congruence.
intros H2.
now rewrite B2FF_FF2B.
Qed.

(** Square root *)
Definition Fsqrt_core_binary m e :=
  let d := Zdigits2 m in
  let s := Zmax (2 * prec - d) 0 in
  let e' := (e - s)%Z in
  let (s', e'') := if Zeven e' then (s, e') else (s + 1, e' - 1)%Z in
  let m' :=
    match s' with
    | Zpos p => (m * Zpower_pos 2 p)%Z
    | _ => m
    end in
  let (q, r) := Zsqrt m' in
  let l :=
    if Zeq_bool r 0 then loc_Exact
    else loc_Inexact (if Zle_bool r q then Lt else Gt) in
  (q, Zdiv2 e'', l).

Lemma Bsqrt_correct_aux :
  forall m mx ex (Hx : bounded mx ex = true),
  let x := F2R (Float radix2 (Zpos mx) ex) in
  let z :=
    let '(mz, ez, lz) := Fsqrt_core_binary (Zpos mx) ex in
    match mz with
    | Zpos mz => binary_round_aux m false mz ez lz
    | _ => F754_nan false xH (* dummy *)
    end in
  valid_binary z = true /\
  FF2R radix2 z = round radix2 fexp (round_mode m) (sqrt x) /\
  is_finite_FF z = true /\ sign_FF z = false.
Proof with auto with typeclass_instances.
intros m mx ex Hx.
replace (Fsqrt_core_binary (Zpos mx) ex) with (Fsqrt_core radix2 prec (Zpos mx) ex).
2: now unfold Fsqrt_core_binary ; rewrite Zdigits2_Zdigits.
simpl.
refine (_ (Fsqrt_core_correct radix2 prec (Zpos mx) ex _)) ; try easy.
destruct (Fsqrt_core radix2 prec (Zpos mx) ex) as ((mz, ez), lz).
intros (Pz, Bz).
destruct mz as [|mz|mz].
(* . mz = 0 *)
elim (Zlt_irrefl prec).
now apply Zle_lt_trans with Z0.
(* . mz > 0 *)
refine (_ (binary_round_aux_correct m (sqrt (F2R (Float radix2 (Zpos mx) ex))) mz ez lz _ _)).
rewrite Rlt_bool_false. 2: apply sqrt_ge_0.
rewrite Rlt_bool_true.
easy.
(* .. *)
rewrite Rabs_pos_eq.
refine (_ (relative_error_FLT_ex radix2 emin prec (prec_gt_0 prec) (round_mode m) (sqrt (F2R (Float radix2 (Zpos mx) ex))) _)).
fold fexp.
intros (eps, (Heps, Hr)).
rewrite Hr.
assert (Heps': (Rabs eps < 1)%R).
apply Rlt_le_trans with (1 := Heps).
fold (bpow radix2 0).
apply bpow_le.
generalize (prec_gt_0 prec).
clear ; omega.
apply Rsqr_incrst_0.
3: apply bpow_ge_0.
rewrite Rsqr_mult.
rewrite Rsqr_sqrt.
2: now apply F2R_ge_0_compat.
unfold Rsqr.
apply Rmult_ge_0_gt_0_lt_compat.
apply Rle_ge.
apply Rle_0_sqr.
apply bpow_gt_0.
now apply bounded_lt_emax.
apply Rlt_le_trans with 4%R.
apply Rsqr_incrst_1.
apply Rplus_lt_compat_l.
apply (Rabs_lt_inv _ _ Heps').
rewrite <- (Rplus_opp_r 1).
apply Rplus_le_compat_l.
apply Rlt_le.
apply (Rabs_lt_inv _ _ Heps').
now apply (Z2R_le 0 2).
change 4%R with (bpow radix2 2).
apply bpow_le.
generalize (prec_gt_0 prec).
clear -Hmax ; omega.
apply Rmult_le_pos.
apply sqrt_ge_0.
rewrite <- (Rplus_opp_r 1).
apply Rplus_le_compat_l.
apply Rlt_le.
apply (Rabs_lt_inv _ _ Heps').
rewrite Rabs_pos_eq.
2: apply sqrt_ge_0.
apply Rsqr_incr_0.
2: apply bpow_ge_0.
2: apply sqrt_ge_0.
rewrite Rsqr_sqrt.
2: now apply F2R_ge_0_compat.
apply Rle_trans with (bpow radix2 emin).
unfold Rsqr.
rewrite <- bpow_plus.
apply bpow_le.
unfold emin.
clear -Hmax ; omega.
apply generic_format_ge_bpow with fexp.
intros.
apply Zle_max_r.
now apply F2R_gt_0_compat.
apply generic_format_canonic.
apply (canonic_canonic_mantissa false).
apply (andb_prop _ _ Hx).
(* .. *)
apply round_ge_generic...
apply generic_format_0.
apply sqrt_ge_0.
rewrite Rabs_pos_eq.
exact Bz.
apply sqrt_ge_0.
revert Pz.
generalize (Zdigits radix2 (Zpos mz)).
unfold fexp, FLT_exp.
clear.
intros ; zify ; subst.
omega.
(* . mz < 0 *)
elim Rlt_not_le  with (1 := proj2 (inbetween_float_bounds _ _ _ _ _ Bz)).
apply Rle_trans with R0.
apply F2R_le_0_compat.
now case mz.
apply sqrt_ge_0.
Qed.

Definition Bsqrt sqrt_nan m x :=
  let f pl := B754_nan (fst pl) (snd pl) in
  match x with
  | B754_nan sx plx => f (sqrt_nan x)
  | B754_infinity false => x
  | B754_infinity true => f (sqrt_nan x)
  | B754_finite true _ _ _ => f (sqrt_nan x)
  | B754_zero _ => x
  | B754_finite sx mx ex Hx =>
    FF2B _ (proj1 (Bsqrt_correct_aux m mx ex Hx))
  end.

Theorem Bsqrt_correct :
  forall sqrt_nan m x,
  B2R (Bsqrt sqrt_nan m x) = round radix2 fexp (round_mode m) (sqrt (B2R x)) /\
  is_finite (Bsqrt sqrt_nan m x) = match x with B754_zero _ => true | B754_finite false _ _ _ => true | _ => false end /\
  (is_nan (Bsqrt sqrt_nan m x) = false -> Bsign (Bsqrt sqrt_nan m x) = Bsign x).
Proof.
intros sqrt_nan m [sx|[|]| |sx mx ex Hx] ; try ( now simpl ; rewrite sqrt_0, round_0 ; intuition auto with typeclass_instances ).
simpl.
case Bsqrt_correct_aux.
intros H1 (H2, (H3, H4)).
case sx.
refine (conj _ (conj (refl_equal false) _)).
apply sym_eq.
unfold sqrt.
case Rcase_abs.
intros _.
apply round_0.
auto with typeclass_instances.
intros H.
elim Rge_not_lt with (1 := H).
now apply F2R_lt_0_compat.
easy.
split.
now rewrite B2R_FF2B.
split.
now rewrite is_finite_FF2B.
intro. rewrite Bsign_FF2B. auto.
Qed.

End Binary.