summaryrefslogtreecommitdiff
path: root/driver/Interp.ml
blob: b7971edde4639e4b4e88e27cbfbe3b51b6aad3d6 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
(* *********************************************************************)
(*                                                                     *)
(*              The Compcert verified compiler                         *)
(*                                                                     *)
(*          Xavier Leroy, INRIA Paris-Rocquencourt                     *)
(*                                                                     *)
(*  Copyright Institut National de Recherche en Informatique et en     *)
(*  Automatique.  All rights reserved.  This file is distributed       *)
(*  under the terms of the INRIA Non-Commercial License Agreement.     *)
(*                                                                     *)
(* *********************************************************************)

(* Interpreting CompCert C sources *)

type caml_float = float

open Format
open Camlcoq
open Datatypes
open AST
open Integers
open Floats
open Values
open Memory
open Globalenvs
open Events
open Ctypes
open Cop
open Csyntax
open Csem
open Clflags

(* Configuration *)

let trace = ref 1   (* 0 if quiet, 1 if normally verbose, 2 if full trace *)

type mode = First | Random | All

let mode = ref First

(* Printing events *)

let print_id_ofs p (id, ofs) =
  let id = extern_atom id and ofs = camlint_of_coqint ofs in
  if ofs = 0l
  then fprintf p " %s" id
  else fprintf p " %s%+ld" id ofs

let print_eventval p = function
  | EVint n -> fprintf p "%ld" (camlint_of_coqint n)
  | EVfloat f -> fprintf p "%F" (camlfloat_of_coqfloat f)
  | EVptr_global(id, ofs) -> fprintf p "&%a" print_id_ofs (id, ofs)

let print_eventval_list p = function
  | [] -> ()
  | v1 :: vl ->
      print_eventval p v1;
      List.iter (fun v -> fprintf p ",@ %a" print_eventval v) vl

let print_event p = function
  | Event_syscall(id, args, res) ->
      fprintf p "extcall %s(%a) -> %a"
                (extern_atom id)
                print_eventval_list args
                print_eventval res
  | Event_vload(chunk, id, ofs, res) ->
      fprintf p "volatile load %s[&%s%+ld] -> %a"
                (PrintAST.name_of_chunk chunk)
                (extern_atom id) (camlint_of_coqint ofs)
                print_eventval res
  | Event_vstore(chunk, id, ofs, arg) ->
      fprintf p "volatile store %s[&%s%+ld] <- %a"
                (PrintAST.name_of_chunk chunk)
                (extern_atom id) (camlint_of_coqint ofs)
                print_eventval arg
  | Event_annot(text, args) ->
      fprintf p "annotation \"%s\" %a"
                (extern_atom text)
                print_eventval_list args

(* Printing states *)

let name_of_fundef prog fd =
  let rec find_name = function
  | [] -> "<unknown function>"
  | (id, Gfun fd') :: rem ->
      if fd = fd' then extern_atom id else find_name rem
  | (id, Gvar v) :: rem ->
      find_name rem
  in find_name prog.prog_defs

let name_of_function prog fn =
  name_of_fundef prog (Internal fn)

let invert_local_variable e b =
  Maps.PTree.fold 
    (fun res id (b', _) -> if b = b' then Some id else res)
    e None

let print_pointer ge e p (b, ofs) =
  match invert_local_variable e b with
  | Some id -> print_id_ofs p (id, ofs)
  | None ->
      match Genv.invert_symbol ge b with
      | Some id -> print_id_ofs p (id, ofs)
      | None -> ()

let print_val = PrintCsyntax.print_value

let print_val_list p vl =
  match vl with
  | [] -> ()
  | v1 :: vl ->
      print_val p v1;
      List.iter (fun v -> fprintf p ",@ %a" print_val v) vl

let print_state p (prog, ge, s) =
  match s with
  | State(f, s, k, e, m) ->
      PrintCsyntax.print_pointer_hook := print_pointer ge e;
      fprintf p "in function %s, statement@ @[<hv 0>%a@]"
              (name_of_function prog f)
              PrintCsyntax.print_stmt s
  | ExprState(f, r, k, e, m) ->
      PrintCsyntax.print_pointer_hook := print_pointer ge e;
      fprintf p "in function %s, expression@ @[<hv 0>%a@]"
              (name_of_function prog f)
              PrintCsyntax.print_expr r
  | Callstate(fd, args, k, m) ->
      PrintCsyntax.print_pointer_hook := print_pointer ge Maps.PTree.empty;
      fprintf p "calling@ @[<hov 2>%s(%a)@]"
              (name_of_fundef prog fd)
              print_val_list args
  | Returnstate(res, k, m) ->
      PrintCsyntax.print_pointer_hook := print_pointer ge Maps.PTree.empty;
      fprintf p "returning@ %a"
              print_val res
  | Stuckstate ->
      fprintf p "stuck after an undefined expression"

(* Comparing memory states *)

let compare_mem m1 m2 =
  (* assumes nextblocks were already compared equal *)
  (* should permissions be taken into account? *)
  Pervasives.compare m1.Mem.mem_contents m2.Mem.mem_contents

(* Comparing continuations *)

let some_expr = Eval(Vptr(Mem.nullptr, Int.zero), Tvoid)

let rank_cont = function
  | Kstop -> 0
  | Kdo _ -> 1
  | Kseq _ -> 2
  | Kifthenelse _ -> 3
  | Kwhile1 _ -> 4
  | Kwhile2 _ -> 5
  | Kdowhile1 _ -> 6
  | Kdowhile2 _ -> 7
  | Kfor2 _ -> 8
  | Kfor3 _ -> 9
  | Kfor4 _ -> 10
  | Kswitch1 _ -> 11
  | Kswitch2 _ -> 12
  | Kreturn _ -> 13
  | Kcall _ -> 14

let rec compare_cont k1 k2 =
  if k1 == k2 then 0 else
  match k1, k2 with
  | Kstop, Kstop -> 0
  | Kdo k1, Kdo k2 -> compare_cont k1 k2
  | Kseq(s1, k1), Kseq(s2, k2) ->  
      let c = compare s1 s2 in if c <> 0 then c else compare_cont k1 k2
  | Kifthenelse(s1, s1', k1), Kifthenelse(s2, s2', k2) ->
      let c = compare (s1,s1') (s2,s2') in
      if c <> 0 then c else compare_cont k1 k2
  | Kwhile1(e1, s1, k1), Kwhile1(e2, s2, k2) ->
      let c = compare (e1,s1) (e2,s2) in
      if c <> 0 then c else compare_cont k1 k2
  | Kwhile2(e1, s1, k1), Kwhile2(e2, s2, k2) ->
      let c = compare (e1,s1) (e2,s2) in
      if c <> 0 then c else compare_cont k1 k2
  | Kdowhile1(e1, s1, k1), Kdowhile1(e2, s2, k2) ->
      let c = compare (e1,s1) (e2,s2) in
      if c <> 0 then c else compare_cont k1 k2
  | Kdowhile2(e1, s1, k1), Kdowhile2(e2, s2, k2) ->
      let c = compare (e1,s1) (e2,s2) in
      if c <> 0 then c else compare_cont k1 k2
  | Kfor2(e1, s1, s1', k1), Kfor2(e2, s2, s2', k2) ->
      let c = compare (e1,s1,s1') (e2,s2,s2') in
      if c <> 0 then c else compare_cont k1 k2
  | Kfor3(e1, s1, s1', k1), Kfor3(e2, s2, s2', k2) ->
      let c = compare (e1,s1,s1') (e2,s2,s2') in
      if c <> 0 then c else compare_cont k1 k2
  | Kfor4(e1, s1, s1', k1), Kfor4(e2, s2, s2', k2) ->
      let c = compare (e1,s1,s1') (e2,s2,s2') in
      if c <> 0 then c else compare_cont k1 k2
  | Kswitch1(sl1, k1), Kswitch1(sl2, k2) ->
      let c = compare sl1 sl2 in
      if c <> 0 then c else compare_cont k1 k2
  | Kreturn k1, Kreturn k2 ->
      compare_cont k1 k2
  | Kcall(f1, e1, c1, ty1, k1), Kcall(f2, e2, c2, ty2, k2) ->
      let c = compare (f1, e1, c1 some_expr, ty1) (f2, e2, c2 some_expr, ty2) in
      if c <> 0 then c else compare_cont k1 k2
  | _, _ ->
      compare (rank_cont k1) (rank_cont k2)

(* Comparing states *)

let rank_state = function
  | State _ -> 0
  | ExprState _ -> 1
  | Callstate _ -> 2
  | Returnstate _ -> 3
  | Stuckstate -> assert false

let mem_state = function
  | State(f, s, k, e, m) -> m
  | ExprState(f, r, k, e, m) -> m
  | Callstate(fd, args, k, m) -> m
  | Returnstate(res, k, m) -> m
  | Stuckstate -> assert false

let compare_state s1 s2 =
  if s1 == s2 then 0 else
  let c = Z.compare (mem_state s1).Mem.nextblock (mem_state s2).Mem.nextblock in
  if c <> 0 then c else begin
  match s1, s2 with
  | State(f1,s1,k1,e1,m1), State(f2,s2,k2,e2,m2) ->
      let c = compare (f1,s1,e1) (f2,s2,e2) in if c <> 0 then c else
      let c = compare_cont k1 k2 in if c <> 0 then c else
      compare_mem m1 m2
  | ExprState(f1,r1,k1,e1,m1), ExprState(f2,r2,k2,e2,m2) ->
      let c = compare (f1,r1,e1) (f2,r2,e2) in if c <> 0 then c else
      let c = compare_cont k1 k2 in if c <> 0 then c else
      compare_mem m1 m2
  | Callstate(fd1,args1,k1,m1), Callstate(fd2,args2,k2,m2) ->
      let c = compare (fd1,args1) (fd2,args2) in if c <> 0 then c else
      let c = compare_cont k1 k2 in if c <> 0 then c else
      compare_mem m1 m2
  | Returnstate(res1,k1,m1), Returnstate(res2,k2,m2) ->
      let c = compare res1 res2 in if c <> 0 then c else
      let c = compare_cont k1 k2 in if c <> 0 then c else
      compare_mem m1 m2
  | _, _ ->
      compare (rank_state s1) (rank_state s2)
  end

(* Sets of states already explored *)

module StateSet =
  Set.Make(struct
             type t = state * Determinism.world
             let compare (s1,w1) (s2,w2) = compare_state s1 s2
           end)

(* Purging states that will never be reached again based on their memory
   next block.  All states with nextblock <= the given nextblock are
   removed.  We take advantage of the fact that StateSets are sorted
   by increasing nextblock, cf. the definition of compare_state above. *)

let rec purge_seen nextblock seen =
  let min = try Some(StateSet.min_elt seen) with Not_found -> None in
  match min with
  | None -> seen
  | Some((s, w) as sw) ->
      if Z.le (mem_state s).Mem.nextblock nextblock
      then purge_seen nextblock (StateSet.remove sw seen)
      else seen

(* Extract a string from a global pointer *)

let extract_string ge m id ofs =
  let b = Buffer.create 80 in
  let rec extract blk ofs =
    match Memory.Mem.load Mint8unsigned m blk ofs with
    | Some(Vint n) ->
        let c = Char.chr (Int32.to_int (camlint_of_coqint n)) in
        if c = '\000' then begin
          Some(Buffer.contents b)
        end else begin
          Buffer.add_char b c; 
          extract blk (Z.succ ofs)
        end
    | _ ->
        None in
  match Genv.find_symbol ge id with
  | None -> None
  | Some blk -> extract blk ofs

(* Emulation of printf *)

(* All ISO C 99 formats except size modifiers [ll] (long long) and [L]
   (long double) *)

let re_conversion = Str.regexp
  "%[-+0# ]*[0-9]*\\(\\.[0-9]*\\)?\\([lhjzt]\\|hh\\)?\\([aAcdeEfgGinopsuxX%]\\)"

external format_float: string -> caml_float -> string
  = "caml_format_float"
external format_int32: string -> int32 -> string
  = "caml_int32_format"

let do_printf ge m fmt args =

  let b = Buffer.create 80 in
  let len = String.length fmt in

  let opt_search_forward pos =
    try Some(Str.search_forward re_conversion fmt pos)
    with Not_found -> None in

  let rec scan pos args =
    if pos < len then begin
    match opt_search_forward pos with
    | None ->
        Buffer.add_substring b fmt pos (len - pos)
    | Some pos1 ->
        Buffer.add_substring b fmt pos (pos1 - pos);
        let pat = Str.matched_string fmt
        and conv = Str.matched_group 3 fmt
        and pos' = Str.match_end() in
        match args, conv.[0] with
        | _, '%' ->
            Buffer.add_char b '%';
            scan pos' args
        | [], _ ->
            Buffer.add_string b "<missing argument>";
            scan pos' []
        | EVint i :: args', ('d'|'i'|'u'|'o'|'x'|'X'|'c') ->
            Buffer.add_string b (format_int32 pat (camlint_of_coqint i));
            scan pos' args'
        | EVfloat f :: args', ('f'|'e'|'E'|'g'|'G'|'a') ->
            Buffer.add_string b (format_float pat (camlfloat_of_coqfloat f));
            scan pos' args'
        | EVptr_global(id, ofs) :: args', 's' ->
            Buffer.add_string b
              (match extract_string ge m id ofs with
               | Some s -> s
               | None -> "<bad string>");
            scan pos' args'
        | EVptr_global(id, ofs) :: args', 'p' ->
            Printf.bprintf b "<&%s%+ld>" (extern_atom id) (camlint_of_coqint ofs);
            scan pos' args'
        | _ :: args', _ ->
            Buffer.add_string b "<formatting error>";
            scan pos' args'
    end
  in scan 0 args; Buffer.contents b

(* Implementing external functions *)

let re_stub = Str.regexp "\\$[if]*$"

let chop_stub name = Str.replace_first re_stub "" name

let (>>=) opt f = match opt with None -> None | Some arg -> f arg

let rec world ge m =
  Determinism.World(world_io ge m, world_vload ge m, world_vstore ge m)

and world_io ge m id args =
  match chop_stub(extern_atom id), args with
  | "printf", EVptr_global(id, ofs) :: args' ->
      flush stderr;
      begin match extract_string ge m id ofs with
      | Some fmt -> print_string (do_printf ge m fmt args')
      | None -> print_string "<bad printf>\n"
      end;
      flush stdout;
      Some(EVint Integers.Int.zero, world ge m)
  | _, _ ->
      None

and world_vload ge m chunk id ofs =
  Genv.find_symbol ge id >>= fun b ->
  Mem.load chunk m b ofs >>= fun v ->
  Cexec.eventval_of_val ge v (type_of_chunk chunk) >>= fun ev ->
  Some(ev, world ge m)

and world_vstore ge m chunk id ofs ev =
  Genv.find_symbol ge id >>= fun b ->
  Cexec.val_of_eventval ge ev (type_of_chunk chunk) >>= fun v ->
  Mem.store chunk m b ofs v >>= fun m' ->
  Some(world ge m')

let do_event p ge time w ev =
  if !trace >= 1 then
    fprintf p "@[<hov 2>Time %d: observable event: %a@]@."
              time print_event ev;
  (* Return new world after external action *)
  match ev with
  | Event_vstore(chunk, id, ofs, v) ->
      begin match Determinism.nextworld_vstore w chunk id ofs v with
      | None -> assert false
      | Some w' -> w'
      end
  | _ -> w

let rec do_events p ge time w t =
  match t with
  | [] -> w
  | ev :: t' -> do_events p ge time (do_event p ge time w ev) t'

(* Debugging stuck expressions *)

let (|||) a b = a || b (* strict boolean or *)

let diagnose_stuck_expr p ge w f a kont e m =
  let rec diagnose k a =
  (* diagnose subexpressions first *)
  let found =
    match k, a with
    | LV, Ederef(r, ty) -> diagnose RV r
    | LV, Efield(r, f, ty) -> diagnose RV r
    | RV, Evalof(l, ty) -> diagnose LV l
    | RV, Eaddrof(l, ty) -> diagnose LV l
    | RV, Eunop(op, r1, ty) -> diagnose RV r1
    | RV, Ebinop(op, r1, r2, ty) -> diagnose RV r1 ||| diagnose RV r2
    | RV, Ecast(r1, ty) -> diagnose RV r1
    | RV, Econdition(r1, r2, r3, ty) -> diagnose RV r1
    | RV, Eassign(l1, r2, ty) -> diagnose LV l1 ||| diagnose RV r2
    | RV, Eassignop(op, l1, r2, tyres, ty) -> diagnose LV l1 ||| diagnose RV r2
    | RV, Epostincr(id, l, ty) -> diagnose LV l
    | RV, Ecomma(r1, r2, ty) -> diagnose RV r1
    | RV, Eparen(r1, ty) -> diagnose RV r1
    | RV, Ecall(r1, rargs, ty) -> diagnose RV r1 ||| diagnose_list rargs
    | _, _ -> false in
  if found then true else begin
    let l = Cexec.step_expr ge e w k a m in
    if List.exists (fun (ctx,red) -> red = Cexec.Stuckred) l then begin
      PrintCsyntax.print_pointer_hook := print_pointer ge e;
      fprintf p "@[<hov 2>Stuck subexpression:@ %a@]@."
              PrintCsyntax.print_expr a;
      true
    end else false
  end

  and diagnose_list al =
    match al with
    | Enil -> false
    | Econs(a1, al') -> diagnose RV a1 ||| diagnose_list al'

  in diagnose RV a

let diagnose_stuck_state p ge w = function
  | ExprState(f,a,k,e,m) -> ignore(diagnose_stuck_expr p ge w f a k e m)
  | _ -> ()

(* Exploration *)

let do_step p prog ge time (s, w) =
  if !trace >= 2 then
    fprintf p "@[<hov 2>Time %d: %a@]@." time print_state (prog, ge, s);
  match Cexec.at_final_state s with
  | Some r ->
      if !trace >= 1 then
        fprintf p "Time %d: program terminated (exit code = %ld)@."
                  time (camlint_of_coqint r);
      begin match !mode with
      | All -> []
      | First | Random -> exit (Int32.to_int (camlint_of_coqint r))
      end
  | None ->
      let l = Cexec.do_step ge w s in
      if l = [] || List.exists (fun (t,s) -> s = Stuckstate) l then begin
        pp_set_max_boxes p 1000;
        fprintf p "@[<hov 2>Stuck state: %a@]@." print_state (prog, ge, s);
        diagnose_stuck_state p ge w s;
        fprintf p "ERROR: Undefined behavior@.";
        exit 126
      end else begin
        List.map (fun (t, s') -> (s', do_events p ge time w t)) l
      end

let rec explore_one p prog ge time sw =
  let succs = do_step p prog ge time sw in
  if succs <> [] then begin
    let sw' =
      match !mode with
      | First -> List.hd succs
      | Random -> List.nth succs (Random.int (List.length succs))
      | All -> assert false in
    explore_one p prog ge (time + 1) sw'
  end

(* A priority queue structure where the priority is inversely proportional
   to the memory nextblock. *)

module PrioQueue = struct

  type elt = int * StateSet.elt

  type queue = Empty | Node of elt * queue * queue

  let empty = Empty

  let singleton elt = Node(elt, Empty, Empty)

  let higher_prio (time1, (s1, w1)) (time2, (s2, w2)) =
    Z.lt (mem_state s1).Mem.nextblock (mem_state s2).Mem.nextblock

  let rec insert queue elt =
    match queue with
    | Empty -> Node(elt, Empty, Empty)
    | Node(e, left, right) ->
        if higher_prio elt e
        then Node(elt, insert right e, left)
        else Node(e, insert right elt, left)

  let rec remove_top = function
  | Empty -> assert false
  | Node(elt, left, Empty) -> left
  | Node(elt, Empty, right) -> right
  | Node(elt, (Node(lelt, _, _) as left),
              (Node(relt, _, _) as right)) ->
      if higher_prio lelt relt
      then Node(lelt, remove_top left, right)
      else Node(relt, left, remove_top right)

  let extract = function
  | Empty -> None
  | Node(elt, _, _) as queue -> Some(elt, remove_top queue)

  (* Return true if all elements of queue have strictly lower priority
     than elt. *)
  let dominate elt queue =
    match queue with
    | Empty -> true
    | Node(e, _, _) -> higher_prio elt e
end

let rec explore_all p prog ge seen queue =
  match PrioQueue.extract queue with
  | None -> ()
  | Some((time, sw) as tsw, queue') ->
      if StateSet.mem sw seen then
        explore_all p prog ge seen queue'
      else
        let succs = 
          List.rev_map (fun sw -> (time + 1, sw)) (do_step p prog ge time sw) in
        let queue'' = List.fold_left PrioQueue.insert queue' succs in
        let seen' = StateSet.add sw seen in
        let seen'' = 
          if PrioQueue.dominate tsw queue''
          then purge_seen (mem_state (fst sw)).Mem.nextblock seen'
          else seen' in
        explore_all p prog ge seen'' queue''

(* The variant of the source program used to build the world for
   executing events.  
   Volatile variables are turned into non-volatile ones, so that
     reads and writes can be performed.
   Readonly variables are kept, for string literals in particular.
   Writable variables are turned into empty vars, so that
     reads and writes just fail.
   Functions are preserved, although they are not used. *)

let world_program prog =
  let change_def (id, gd) =
    match gd with
    | Gvar gv ->
        let gv' =
          if gv.gvar_volatile then
            {gv with gvar_readonly = false; gvar_volatile = false}
          else if gv.gvar_readonly then
            gv
          else
            {gv with gvar_init = []} in
        (id, Gvar gv')
    | Gfun fd ->
        (id, gd) in
 {prog with prog_defs = List.map change_def prog.prog_defs}

(* Massaging the program to get a suitable "main" function *)

let change_main_function p old_main old_main_ty =
  let old_main = Evalof(Evar(old_main, old_main_ty), old_main_ty) in
  let arg1 = Eval(Vint(coqint_of_camlint 0l), type_int32s) in
  let arg2 = arg1 in
  let body =
    Sreturn(Some(Ecall(old_main, Econs(arg1, Econs(arg2, Enil)), type_int32s))) in
  let new_main_fn =
    { fn_return = type_int32s; fn_params = []; fn_vars = []; fn_body = body } in
  let new_main_id = intern_string "___main" in
  { prog_main = new_main_id;
    prog_defs = (new_main_id, Gfun(Internal new_main_fn)) :: p.prog_defs }

let rec find_main_function name = function
  | [] -> None
  | (id, Gfun fd) :: gdl -> if id = name then Some fd else find_main_function name gdl
  | (id, Gvar v) :: gdl -> find_main_function name gdl

let fixup_main p =
  match find_main_function p.prog_main p.prog_defs with
  | None ->
      fprintf err_formatter "ERROR: no main() function";
      None
  | Some main_fd ->
      match type_of_fundef main_fd with
      | Tfunction(Tnil, Tint(I32, Signed, _)) ->
          Some p
      | Tfunction(Tcons(Tint _, Tcons(Tpointer(Tpointer(Tint(I8,_,_),_),_), Tnil)),
                  Tint _) as ty ->
          Some (change_main_function p p.prog_main ty)
      | _ ->
          fprintf err_formatter "ERROR: wrong type for main() function";
          None

(* Execution of a whole program *)

let execute prog =
  Random.self_init();
  let p = std_formatter in
  pp_set_max_indent p 30;
  pp_set_max_boxes p 10;
  match fixup_main prog with
  | None -> ()
  | Some prog1 ->
      let wprog = world_program prog1 in
      let wge = Genv.globalenv wprog in
      match Genv.init_mem wprog with
      | None ->
          fprintf p "ERROR: World memory state undefined@."
      | Some wm ->
      match Cexec.do_initial_state prog1 with
      | None ->
          fprintf p "ERROR: Initial state undefined@."
      | Some(ge, s) ->
          match !mode with
          | First | Random ->
              explore_one p prog1 ge 0 (s, world wge wm)
          | All ->
              explore_all p prog1 ge StateSet.empty 
                                (PrioQueue.singleton (0, (s, world wge wm)))