1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
|
(* *********************************************************************)
(* *)
(* The Compcert verified compiler *)
(* *)
(* Xavier Leroy, INRIA Paris-Rocquencourt *)
(* *)
(* Copyright Institut National de Recherche en Informatique et en *)
(* Automatique. All rights reserved. This file is distributed *)
(* under the terms of the INRIA Non-Commercial License Agreement. *)
(* *)
(* *********************************************************************)
(** The whole compiler and its proof of semantic preservation *)
(** Libraries. *)
Require Import Axioms.
Require Import Coqlib.
Require Import Maps.
Require Import Errors.
Require Import AST.
Require Import Values.
Require Import Smallstep.
(** Languages (syntax and semantics). *)
Require Csyntax.
Require Csem.
Require Cstrategy.
Require Cexec.
Require Clight.
Require Csharpminor.
Require Cminor.
Require CminorSel.
Require RTL.
Require LTL.
Require LTLin.
Require Linear.
Require Mach.
Require Machsem.
Require Asm.
(** Translation passes. *)
Require Initializers.
Require SimplExpr.
Require Cshmgen.
Require Cminorgen.
Require Selection.
Require RTLgen.
Require Tailcall.
Require Constprop.
Require CSE.
Require Allocation.
Require Tunneling.
Require Linearize.
Require CleanupLabels.
Require Reload.
Require RRE.
Require Stacking.
Require Asmgen.
(** Type systems. *)
Require RTLtyping.
Require LTLtyping.
Require LTLintyping.
Require Lineartyping.
Require Machtyping.
(** Proofs of semantic preservation and typing preservation. *)
Require SimplExprproof.
Require Cshmgenproof.
Require Cminorgenproof.
Require Selectionproof.
Require RTLgenproof.
Require Tailcallproof.
Require Constpropproof.
Require CSEproof.
Require Allocproof.
Require Alloctyping.
Require Tunnelingproof.
Require Tunnelingtyping.
Require Linearizeproof.
Require Linearizetyping.
Require CleanupLabelsproof.
Require CleanupLabelstyping.
Require Reloadproof.
Require Reloadtyping.
Require RREproof.
Require RREtyping.
Require Stackingproof.
Require Stackingtyping.
Require Asmgenproof.
(** Pretty-printers (defined in Caml). *)
Parameter print_Clight: Clight.program -> unit.
Parameter print_Cminor: Cminor.program -> unit.
Parameter print_RTL: RTL.fundef -> unit.
Parameter print_RTL_tailcall: RTL.fundef -> unit.
Parameter print_RTL_constprop: RTL.fundef -> unit.
Parameter print_RTL_cse: RTL.fundef -> unit.
Parameter print_LTLin: LTLin.fundef -> unit.
Parameter print_Mach: Mach.fundef -> unit.
Open Local Scope string_scope.
(** * Composing the translation passes *)
(** We first define useful monadic composition operators,
along with funny (but convenient) notations. *)
Definition apply_total (A B: Type) (x: res A) (f: A -> B) : res B :=
match x with Error msg => Error msg | OK x1 => OK (f x1) end.
Definition apply_partial (A B: Type)
(x: res A) (f: A -> res B) : res B :=
match x with Error msg => Error msg | OK x1 => f x1 end.
Notation "a @@@ b" :=
(apply_partial _ _ a b) (at level 50, left associativity).
Notation "a @@ b" :=
(apply_total _ _ a b) (at level 50, left associativity).
Definition print {A: Type} (printer: A -> unit) (prog: A) : A :=
let unused := printer prog in prog.
(** We define three translation functions for whole programs: one
starting with a C program, one with a Cminor program, one with an
RTL program. The three translations produce Asm programs ready for
pretty-printing and assembling.
There are two ways to compose the compiler passes. The first
translates every function from the Cminor program from Cminor to
RTL, then to LTL, etc, all the way to Asm, and iterates this
transformation for every function. The second translates the whole
Cminor program to a RTL program, then to an LTL program, etc.
Between CminorSel and Asm, we follow the first approach because it has
lower memory requirements. The translation from Clight to Asm
follows the second approach.
The translation of an RTL function to an Asm function is as follows. *)
Definition transf_rtl_fundef (f: RTL.fundef) : res Asm.fundef :=
OK f
@@ print print_RTL
@@ Tailcall.transf_fundef
@@ print print_RTL_tailcall
@@ Constprop.transf_fundef
@@ print print_RTL_constprop
@@@ CSE.transf_fundef
@@ print print_RTL_cse
@@@ Allocation.transf_fundef
@@ Tunneling.tunnel_fundef
@@@ Linearize.transf_fundef
@@ CleanupLabels.transf_fundef
@@ print print_LTLin
@@ Reload.transf_fundef
@@ RRE.transf_fundef
@@@ Stacking.transf_fundef
@@ print print_Mach
@@@ Asmgen.transf_fundef.
(* Here is the translation of a CminorSel function to an Asm function. *)
Definition transf_cminorsel_fundef (f: CminorSel.fundef) : res Asm.fundef :=
OK f
@@@ RTLgen.transl_fundef
@@@ transf_rtl_fundef.
(** The corresponding translations for whole program follow. *)
Definition transf_rtl_program (p: RTL.program) : res Asm.program :=
transform_partial_program transf_rtl_fundef p.
Definition transf_cminor_program (p: Cminor.program) : res Asm.program :=
OK p
@@ print print_Cminor
@@ Selection.sel_program
@@@ transform_partial_program transf_cminorsel_fundef.
Definition transf_clight_program (p: Clight.program) : res Asm.program :=
OK p
@@ print print_Clight
@@@ Cshmgen.transl_program
@@@ Cminorgen.transl_program
@@@ transf_cminor_program.
Definition transf_c_program (p: Csyntax.program) : res Asm.program :=
OK p
@@@ SimplExpr.transl_program
@@@ transf_clight_program.
(** Force [Initializers] and [Cexec] to be extracted as well. *)
Definition transl_init := Initializers.transl_init.
Definition cexec_do_step := Cexec.do_step.
(** The following lemmas help reason over compositions of passes. *)
Lemma print_identity:
forall (A: Type) (printer: A -> unit) (prog: A),
print printer prog = prog.
Proof.
intros; unfold print. destruct (printer prog); auto.
Qed.
Lemma map_partial_compose:
forall (X A B C: Type)
(ctx: X -> errmsg)
(f1: A -> res B) (f2: B -> res C)
(pa: list (X * A)) (pc: list (X * C)),
map_partial ctx (fun f => f1 f @@@ f2) pa = OK pc ->
{ pb | map_partial ctx f1 pa = OK pb /\ map_partial ctx f2 pb = OK pc }.
Proof.
induction pa; simpl.
intros. inv H. econstructor; eauto.
intro pc. destruct a as [x a].
destruct (f1 a) as [] _eqn; simpl; try congruence.
destruct (f2 b) as [] _eqn; simpl; try congruence.
destruct (map_partial ctx (fun f => f1 f @@@ f2) pa) as [] _eqn; simpl; try congruence.
intros. inv H.
destruct (IHpa l) as [pb [P Q]]; auto.
rewrite P; simpl.
econstructor; split. eauto. simpl. rewrite Heqr0. rewrite Q. auto.
Qed.
Lemma transform_partial_program_compose:
forall (A B C V: Type)
(f1: A -> res B) (f2: B -> res C)
(pa: program A V) (pc: program C V),
transform_partial_program (fun f => f1 f @@@ f2) pa = OK pc ->
{ pb | transform_partial_program f1 pa = OK pb /\
transform_partial_program f2 pb = OK pc }.
Proof.
intros. unfold transform_partial_program in H.
destruct (map_partial prefix_name (fun f : A => f1 f @@@ f2) (prog_funct pa)) as [] _eqn;
simpl in H; inv H.
destruct (map_partial_compose _ _ _ _ _ _ _ _ _ Heqr) as [xb [P Q]].
exists (mkprogram xb (prog_main pa) (prog_vars pa)); split.
unfold transform_partial_program. rewrite P; auto.
unfold transform_partial_program. simpl. rewrite Q; auto.
Qed.
Lemma transform_program_partial_program:
forall (A B V: Type) (f: A -> B) (p: program A V) (tp: program B V),
transform_partial_program (fun x => OK (f x)) p = OK tp ->
transform_program f p = tp.
Proof.
intros until tp. unfold transform_partial_program.
rewrite map_partial_total. simpl. intros. inv H. auto.
Qed.
Lemma transform_program_compose:
forall (A B C V: Type)
(f1: A -> res B) (f2: B -> C)
(pa: program A V) (pc: program C V),
transform_partial_program (fun f => f1 f @@ f2) pa = OK pc ->
{ pb | transform_partial_program f1 pa = OK pb /\
transform_program f2 pb = pc }.
Proof.
intros.
replace (fun f : A => f1 f @@ f2)
with (fun f : A => f1 f @@@ (fun x => OK (f2 x))) in H.
destruct (transform_partial_program_compose _ _ _ _ _ _ _ _ H) as [pb [X Y]].
exists pb; split. auto.
apply transform_program_partial_program. auto.
apply extensionality; intro. destruct(f1 x); auto.
Qed.
Lemma transform_partial_program_identity:
forall (A V: Type) (pa pb: program A V),
transform_partial_program (@OK A) pa = OK pb ->
pa = pb.
Proof.
intros until pb. unfold transform_partial_program.
replace (@OK A) with (fun b => @OK A b).
rewrite map_partial_identity. simpl. destruct pa; simpl; congruence.
apply extensionality; auto.
Qed.
Lemma transform_program_print_identity:
forall (A V: Type) (p: program A V) (f: A -> unit),
transform_program (print f) p = p.
Proof.
intros until f. unfold transform_program, transf_program.
destruct p; simpl; f_equal.
transitivity (map (fun x => x) prog_funct).
apply list_map_exten; intros. destruct x; simpl. rewrite print_identity. auto.
apply list_map_identity.
Qed.
Lemma compose_print_identity:
forall (A: Type) (x: res A) (f: A -> unit),
x @@ print f = x.
Proof.
intros. destruct x; simpl. rewrite print_identity. auto. auto.
Qed.
(** * Semantic preservation *)
(** We prove that the [transf_program] translations preserve semantics
by constructing the following simulations:
- Forward simulations from [Cstrategy] / [Cminor] / [RTL] to [Asm]
(composition of the forward simulations for each pass).
- Backward simulations for the same languages
(derived from the forward simulation, using receptiveness of the source
language and determinacy of [Asm]).
- Backward simulation from [Csem] to [Asm]
(composition of two backward simulations).
These results establish the correctness of the whole compiler! *)
Ltac TransfProgInv :=
match goal with
| [ H: transform_partial_program (fun f => _ @@@ _) _ = OK _ |- _ ] =>
let p := fresh "p" in let X := fresh "X" in let P := fresh "P" in
destruct (transform_partial_program_compose _ _ _ _ _ _ _ _ H) as [p [X P]];
clear H
| [ H: transform_partial_program (fun f => _ @@ _) _ = OK _ |- _ ] =>
let p := fresh "p" in let X := fresh "X" in let P := fresh "P" in
destruct (transform_program_compose _ _ _ _ _ _ _ _ H) as [p [X P]];
clear H
end.
Theorem transf_rtl_program_correct:
forall p tp,
transf_rtl_program p = OK tp ->
forward_simulation (RTL.semantics p) (Asm.semantics tp)
* backward_simulation (RTL.semantics p) (Asm.semantics tp).
Proof.
intros.
assert (F: forward_simulation (RTL.semantics p) (Asm.semantics tp)).
unfold transf_rtl_program, transf_rtl_fundef in H.
repeat TransfProgInv.
repeat rewrite transform_program_print_identity in *. subst.
generalize (transform_partial_program_identity _ _ _ _ X). intro EQ. subst.
generalize Alloctyping.program_typing_preserved
Tunnelingtyping.program_typing_preserved
Linearizetyping.program_typing_preserved
CleanupLabelstyping.program_typing_preserved
Reloadtyping.program_typing_preserved
RREtyping.program_typing_preserved
Stackingtyping.program_typing_preserved; intros.
eapply compose_forward_simulation. apply Tailcallproof.transf_program_correct.
eapply compose_forward_simulation. apply Constpropproof.transf_program_correct.
eapply compose_forward_simulation. apply CSEproof.transf_program_correct. eassumption.
eapply compose_forward_simulation. apply Allocproof.transf_program_correct. eassumption.
eapply compose_forward_simulation. apply Tunnelingproof.transf_program_correct.
eapply compose_forward_simulation. apply Linearizeproof.transf_program_correct. eassumption. eauto.
eapply compose_forward_simulation. apply CleanupLabelsproof.transf_program_correct.
eapply compose_forward_simulation. apply Reloadproof.transf_program_correct. eauto.
eapply compose_forward_simulation. apply RREproof.transf_program_correct. eauto.
eapply compose_forward_simulation. apply Stackingproof.transf_program_correct. eassumption. eauto 8.
apply Asmgenproof.transf_program_correct; eauto 10.
split. auto.
apply forward_to_backward_simulation. auto.
apply RTL.semantics_receptive.
apply Asm.semantics_determinate.
Qed.
Theorem transf_cminor_program_correct:
forall p tp,
transf_cminor_program p = OK tp ->
forward_simulation (Cminor.semantics p) (Asm.semantics tp)
* backward_simulation (Cminor.semantics p) (Asm.semantics tp).
Proof.
intros.
assert (F: forward_simulation (Cminor.semantics p) (Asm.semantics tp)).
unfold transf_cminor_program, transf_cminorsel_fundef in H.
simpl in H. repeat TransfProgInv.
eapply compose_forward_simulation. apply Selectionproof.transf_program_correct.
eapply compose_forward_simulation. apply RTLgenproof.transf_program_correct. eassumption.
exact (fst (transf_rtl_program_correct _ _ P)).
split. auto.
apply forward_to_backward_simulation. auto.
apply Cminor.semantics_receptive.
apply Asm.semantics_determinate.
Qed.
Theorem transf_clight_program_correct:
forall p tp,
transf_clight_program p = OK tp ->
forward_simulation (Clight.semantics p) (Asm.semantics tp)
* backward_simulation (Clight.semantics p) (Asm.semantics tp).
Proof.
intros.
assert (F: forward_simulation (Clight.semantics p) (Asm.semantics tp)).
revert H; unfold transf_clight_program; simpl.
rewrite print_identity.
caseEq (Cshmgen.transl_program p); simpl; try congruence; intros p1 EQ1.
caseEq (Cminorgen.transl_program p1); simpl; try congruence; intros p2 EQ2.
intros EQ3.
eapply compose_forward_simulation. apply Cshmgenproof.transl_program_correct. eauto.
eapply compose_forward_simulation. apply Cminorgenproof.transl_program_correct. eauto.
exact (fst (transf_cminor_program_correct _ _ EQ3)).
split. auto.
apply forward_to_backward_simulation. auto.
apply Clight.semantics_receptive.
apply Asm.semantics_determinate.
Qed.
Theorem transf_cstrategy_program_correct:
forall p tp,
transf_c_program p = OK tp ->
forward_simulation (Cstrategy.semantics p) (Asm.semantics tp)
* backward_simulation (atomic (Cstrategy.semantics p)) (Asm.semantics tp).
Proof.
intros.
assert (F: forward_simulation (Cstrategy.semantics p) (Asm.semantics tp)).
revert H; unfold transf_c_program; simpl.
caseEq (SimplExpr.transl_program p); simpl; try congruence; intros p0 EQ0.
intros EQ1.
eapply compose_forward_simulation. apply SimplExprproof.transl_program_correct. eauto.
exact (fst (transf_clight_program_correct _ _ EQ1)).
split. auto.
apply forward_to_backward_simulation.
apply factor_forward_simulation. auto. eapply sd_traces. eapply Asm.semantics_determinate.
apply atomic_receptive. apply Cstrategy.semantics_strongly_receptive.
apply Asm.semantics_determinate.
Qed.
Theorem transf_c_program_correct:
forall p tp,
transf_c_program p = OK tp ->
backward_simulation (Csem.semantics p) (Asm.semantics tp).
Proof.
intros.
apply compose_backward_simulation with (atomic (Cstrategy.semantics p)).
eapply sd_traces; eapply Asm.semantics_determinate.
apply factor_backward_simulation.
apply Cstrategy.strategy_simulation.
apply Csem.semantics_single_events.
eapply ssr_well_behaved; eapply Cstrategy.semantics_strongly_receptive.
exact (snd (transf_cstrategy_program_correct _ _ H)).
Qed.
|