summaryrefslogtreecommitdiff
path: root/cparser/Elab.ml
blob: a352e5f62ce8fb41a1df1fa8d06567fdf7582c78 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
(* *********************************************************************)
(*                                                                     *)
(*              The Compcert verified compiler                         *)
(*                                                                     *)
(*          Xavier Leroy, INRIA Paris-Rocquencourt                     *)
(*                                                                     *)
(*  Copyright Institut National de Recherche en Informatique et en     *)
(*  Automatique.  All rights reserved.  This file is distributed       *)
(*  under the terms of the GNU General Public License as published by  *)
(*  the Free Software Foundation, either version 2 of the License, or  *)
(*  (at your option) any later version.  This file is also distributed *)
(*  under the terms of the INRIA Non-Commercial License Agreement.     *)
(*                                                                     *)
(* *********************************************************************)

(* Elaboration from Cabs parse tree to C simplified, typed syntax tree *)

(* Numbered references are to sections of the ISO C99 standard *)

open Format
open Machine
open Cabs
open Cabshelper
open C
open Cutil
open Env

(** * Utility functions *)

(* Error reporting  *)

let fatal_error loc fmt =
  Cerrors.fatal_error ("%a: Error:@ " ^^ fmt) format_cabsloc loc

let error loc fmt =
  Cerrors.error ("%a: Error:@ " ^^ fmt) format_cabsloc loc

let warning loc fmt =
  Cerrors.warning ("%a: Warning:@ " ^^ fmt) format_cabsloc loc

(* Error reporting for Env functions *)

let wrap fn loc env arg =
  try fn env arg
  with Env.Error msg -> fatal_error loc "%s" (Env.error_message msg)

(* Translation of locations *)

let elab_loc l = (l.filename, l.lineno)

(* Buffering of the result (a list of topdecl *)

let top_declarations = ref ([] : globdecl list)

let emit_elab loc td =
  let loc = elab_loc loc in
  top_declarations := { gdesc = td; gloc = loc } :: !top_declarations

let reset() = top_declarations := []

let elaborated_program () =
  let p = !top_declarations in
  top_declarations := [];
  (* Reverse it and eliminate unreferenced declarations *)
  Cleanup.program p

(* Monadic map for functions env -> 'a -> 'b * env *)

let rec mmap f env = function
  | [] -> ([], env)
  | hd :: tl ->
      let (hd', env1) = f env hd in
      let (tl', env2) = mmap f env1 tl in
      (hd' :: tl', env2)

(* To detect redefinitions within the same scope *)

let previous_def fn env arg =
  try
    Some (fn env arg)
  with Env.Error _ ->
    None

let redef fn env arg =
  match previous_def fn env arg with
  | None -> false
  | Some(id, info) -> Env.in_current_scope env id

(* Forward declarations *)

let elab_expr_f : (cabsloc -> Env.t -> Cabs.expression -> C.exp) ref
  = ref (fun _ _ _ -> assert false)

let elab_funbody_f : (C.typ -> Env.t -> statement -> C.stmt) ref
  = ref (fun _ _ _ -> assert false)


(** * Elaboration of constants - C99 section 6.4.4 *)

let has_suffix s suff = 
  let ls = String.length s and lsuff = String.length suff in
  ls >= lsuff && String.sub s (ls - lsuff) lsuff = suff

let chop_last s n =
  assert (String.length s >= n);
  String.sub s 0 (String.length s - n)

let has_prefix s pref = 
  let ls = String.length s and lpref = String.length pref in
  ls >= lpref && String.sub s 0 lpref = pref

let chop_first s n =
  assert (String.length s >= n);
  String.sub s n (String.length s - n)

exception Overflow
exception Bad_digit

let parse_int base s =
  let max_val = (* (2^64-1) / base, unsigned *)
    match base with
    |  8 -> 2305843009213693951L
    | 10 -> 1844674407370955161L
    | 16 -> 1152921504606846975L
    |  _ -> assert false in
  let v = ref 0L in
  for i = 0 to String.length s - 1 do
    if !v > max_val then raise Overflow;
    v := Int64.mul !v (Int64.of_int base);
    let c = s.[i] in
    let digit =
      if c >= '0' && c <= '9' then Char.code c - 48
      else if c >= 'A' && c <= 'F' then Char.code c - 55
      else raise Bad_digit in
    if digit >= base then raise Bad_digit;
    v := Int64.add !v (Int64.of_int digit)
  done;
  !v

let integer_representable v ik =
  let bitsize = sizeof_ikind ik * 8
  and signed = is_signed_ikind ik in
  if bitsize >= 64 then
    (not signed) || (v >= 0L && v <= 0x7FFF_FFFF_FFFF_FFFFL)
  else if not signed then
    v >= 0L && v < Int64.shift_left 1L bitsize
  else
    v >= 0L && v < Int64.shift_left 1L (bitsize - 1)

let elab_int_constant loc s0 =
  let s = String.uppercase s0 in
  (* Determine possible types and chop type suffix *)
  let (s, dec_kinds, hex_kinds) =
    if has_suffix s "ULL" || has_suffix s "LLU" then
      (chop_last s 3, [IULongLong], [IULongLong])
    else if has_suffix s "LL" then
      (chop_last s 2, [ILongLong], [ILongLong; IULongLong])
    else if has_suffix s "UL" || has_suffix s "LU" then
      (chop_last s 2, [IULong; IULongLong], [IULong; IULongLong])
    else if has_suffix s "L" then
      (chop_last s 1, [ILong; ILongLong],
                      [ILong; IULong; ILongLong; IULongLong])
    else if has_suffix s "U" then
      (chop_last s 1, [IUInt; IULong; IULongLong],
                      [IUInt; IULong; IULongLong])
    else
      (s, [IInt; ILong; ILongLong],
          [IInt; IUInt; ILong; IULong; ILongLong; IULongLong])
  in
  (* Determine base *)
  let (s, base) =
    if has_prefix s "0X" then
      (chop_first s 2, 16)
    else if has_prefix s "0" then
      (chop_first s 1, 8)
    else
      (s, 10)
  in
  (* Parse digits *)
  let v =
    try parse_int base s
    with
    | Overflow ->
        error loc "integer literal '%s' is too large" s0;
        0L
    | Bad_digit ->
        error loc "bad digit in integer literal '%s'" s0;
        0L
  in
  (* Find smallest allowable type that fits *)
  let ty =
    try List.find (fun ty -> integer_representable v ty) 
                  (if base = 10 then dec_kinds else hex_kinds)
    with Not_found ->
      error loc "integer literal '%s' cannot be represented" s0;
      IInt
  in
  (v, ty)

let elab_float_constant loc f =
  let ty = match f.suffix_FI with
    | Some ("l"|"L") -> FLongDouble
    | Some ("f"|"F") -> FFloat
    | None -> FDouble
    | _ -> assert false (* The lexer should not accept anything else. *)
  in
  let v = {
    hex=f.isHex_FI;
    intPart=begin match f.integer_FI with Some s -> s | None -> "0" end;
    fracPart=begin match f.fraction_FI with Some s -> s | None -> "0" end;
    exp=begin match f.exponent_FI with Some s -> s | None -> "0" end }
  in
  (v, ty)

let elab_char_constant loc wide chars =
  let nbits = if wide then 8 * !config.sizeof_wchar else 8 in
  (* Treat multi-char constants as a number in base 2^nbits *)
  let max_digit = Int64.shift_left 1L nbits in
  let max_val = Int64.shift_left 1L (64 - nbits) in
  let v =
    List.fold_left 
      (fun acc d ->
        if acc >= max_val then
          error loc "character constant overflows";
        if d >= max_digit then
          warning loc "escape sequence is out of range (code 0x%LX)" d;
        Int64.add (Int64.shift_left acc nbits) d)
      0L chars in
  if not (integer_representable v IInt) then
    warning loc "character constant cannot be represented at type 'int'";
  (* C99 6.4.4.4 item 10: single character -> represent at type char *)
  Ceval.normalize_int v (if List.length chars = 1 then IChar else IInt)

let elab_string_literal loc wide chars =
  let nbits = if wide then 8 * !config.sizeof_wchar else 8 in 
  let char_max = Int64.shift_left 1L nbits in
  List.iter
    (fun c ->
      if c < 0L || c >= char_max
      then warning loc "escape sequence is out of range (code 0x%LX)" c)
    chars;
  if wide then
    CWStr chars
  else begin
    let res = String.create (List.length chars) in
    List.iteri
      (fun i c -> res.[i] <- Char.chr (Int64.to_int c))
      chars;
    CStr res
  end

let elab_constant loc = function
  | CONST_INT s ->
      let (v, ik) = elab_int_constant loc s in
      CInt(v, ik, s)
  | CONST_FLOAT f ->
      let (v, fk) = elab_float_constant loc f in
      CFloat(v, fk)
  | CONST_CHAR(wide, s) ->
      CInt(elab_char_constant loc wide s, IInt, "")
  | CONST_STRING(wide, s) ->
      elab_string_literal loc wide s


(** * Elaboration of type expressions, type specifiers, name declarations *)

(* Elaboration of attributes *)

exception Wrong_attr_arg

let elab_attr_arg loc env a =
  match a with
  | VARIABLE s ->
      begin try
        match Env.lookup_ident env s with
        | (id, II_ident(sto, ty)) ->  AIdent s
        | (id, II_enum v) -> AInt v
      with Env.Error _ ->
        AIdent s
      end
  | _ ->
      let b = !elab_expr_f loc env a in
      match Ceval.constant_expr env b.etyp b with
      | Some(CInt(n, _, _)) -> AInt n
      | Some(CStr s) -> AString s
      | _ -> raise Wrong_attr_arg

let elab_gcc_attr_word = function
  | GCC_ATTR_IDENT s -> s
  | GCC_ATTR_CONST -> "const"
  | GCC_ATTR_PACKED -> "__packed__"

let elab_gcc_attr loc env = function
  | GCC_ATTR_EMPTY -> []
  | GCC_ATTR_NOARGS w ->
      let v = elab_gcc_attr_word w in
      [Attr(v, [])]
  | GCC_ATTR_ARGS (w, args) ->
      let v = elab_gcc_attr_word w in
      begin try
        [Attr(v, List.map (elab_attr_arg loc env) args)]
      with Wrong_attr_arg ->
        warning loc "cannot parse '%s' attribute, ignored" v; []
      end

let is_power_of_two n = n > 0L && Int64.(logand n (pred n)) = 0L

let extract_alignas loc a =
  match a with
  | Attr(("aligned"|"__aligned__"), args) ->
      begin match args with
      | [AInt n] when is_power_of_two n -> AAlignas (Int64.to_int n)
      | _ -> warning loc "bad 'aligned' attribute, ignored"; a
      end
  | _ -> a

let elab_attribute env = function
  | GCC_ATTR (l, loc) ->
      List.fold_left add_attributes []
        (List.map (fun attr -> [attr])
           (List.map (extract_alignas loc)
              (List.flatten
                 (List.map (elab_gcc_attr loc env) l))))
  | PACKED_ATTR (args, loc) ->
      [Attr("__packed__", List.map (elab_attr_arg loc env) args)]
  | ALIGNAS_ATTR ([a], loc) ->
      begin match elab_attr_arg loc env a with
      | AInt n when is_power_of_two n -> [AAlignas (Int64.to_int n)]
      | _ -> warning loc "bad _Alignas value, ignored"; []
      end
  | ALIGNAS_ATTR (_, loc) ->
      warning loc "_Alignas takes exactly one parameter, ignored"; []

let elab_attributes env al =
  List.fold_left add_attributes [] (List.map (elab_attribute env) al)

(* Auxiliary for typespec elaboration *)

let typespec_rank = function (* Don't change this *)
  | Cabs.Tvoid -> 0
  | Cabs.Tsigned -> 1
  | Cabs.Tunsigned -> 2
  | Cabs.Tchar -> 3
  | Cabs.Tshort -> 4
  | Cabs.Tlong -> 5
  | Cabs.Tint -> 6
  | Cabs.Tfloat -> 8
  | Cabs.Tdouble -> 9
  | Cabs.T_Bool -> 10
  | _ -> 11 (* There should be at most one of the others *)

let typespec_order t1 t2 = compare (typespec_rank t1) (typespec_rank t2)

(* Elaboration of a type specifier.  Returns 5-tuple:
     (storage class, "inline" flag, "typedef" flag, elaborated type, new env)
   Optional argument "only" is true if this is a standalone
   struct or union declaration, without variable names.
   C99 section 6.7.2.
*)

let rec elab_specifier ?(only = false) loc env specifier =
  (* We first divide the parts of the specifier as follows:
       - a storage class
       - a set of attributes (const, volatile, restrict)
       - a list of type specifiers *)
  let sto = ref Storage_default
  and inline = ref false
  and attr = ref []
  and tyspecs = ref [] 
  and typedef = ref false in

  let do_specifier = function
  | SpecCV cv ->
      attr := add_attributes (elab_cvspec env cv) !attr
  | SpecStorage st ->
      if !sto <> Storage_default && st <> TYPEDEF then
        error loc "multiple storage specifiers";
      begin match st with
      | AUTO -> ()
      | STATIC -> sto := Storage_static
      | EXTERN -> sto := Storage_extern
      | REGISTER -> sto := Storage_register
      | TYPEDEF -> 
          if !typedef then
            error loc "multiple uses of 'typedef'";
          typedef := true
      end
  | SpecInline -> inline := true
  | SpecType tys -> tyspecs := tys :: !tyspecs in

  List.iter do_specifier specifier;

  let simple ty = (!sto, !inline, !typedef, add_attributes_type !attr ty, env) in

  (* As done in CIL, partition !attr into type-related attributes,
     which are returned, and other attributes, which are left in !attr.
     The returned type-related attributes are applied to the
     struct/union/enum being defined.
     The leftover non-type-related attributes will be applied
     to the variable being defined. *)
  let get_type_attrs () =
    let (ta, nta) = List.partition attr_is_type_related !attr in
    attr := nta;
    ta in

  (* Now interpret the list of type specifiers.  Much of this code
     is stolen from CIL. *)
  match List.stable_sort typespec_order (List.rev !tyspecs) with
    | [Cabs.Tvoid] -> simple (TVoid [])

    | [Cabs.T_Bool] -> simple (TInt(IBool, []))
    | [Cabs.Tchar] -> simple (TInt(IChar, []))
    | [Cabs.Tsigned; Cabs.Tchar] -> simple (TInt(ISChar, []))
    | [Cabs.Tunsigned; Cabs.Tchar] -> simple (TInt(IUChar, []))

    | [Cabs.Tshort] -> simple (TInt(IShort, []))
    | [Cabs.Tsigned; Cabs.Tshort] -> simple (TInt(IShort, []))
    | [Cabs.Tshort; Cabs.Tint] -> simple (TInt(IShort, []))
    | [Cabs.Tsigned; Cabs.Tshort; Cabs.Tint] -> simple (TInt(IShort, []))

    | [Cabs.Tunsigned; Cabs.Tshort] -> simple (TInt(IUShort, []))
    | [Cabs.Tunsigned; Cabs.Tshort; Cabs.Tint] -> simple (TInt(IUShort, []))

    | [] -> simple (TInt(IInt, []))
    | [Cabs.Tint] -> simple (TInt(IInt, []))
    | [Cabs.Tsigned] -> simple (TInt(IInt, []))
    | [Cabs.Tsigned; Cabs.Tint] -> simple (TInt(IInt, []))

    | [Cabs.Tunsigned] -> simple (TInt(IUInt, []))
    | [Cabs.Tunsigned; Cabs.Tint] -> simple (TInt(IUInt, []))

    | [Cabs.Tlong] -> simple (TInt(ILong, []))
    | [Cabs.Tsigned; Cabs.Tlong] -> simple (TInt(ILong, []))
    | [Cabs.Tlong; Cabs.Tint] -> simple (TInt(ILong, []))
    | [Cabs.Tsigned; Cabs.Tlong; Cabs.Tint] -> simple (TInt(ILong, []))

    | [Cabs.Tunsigned; Cabs.Tlong] -> simple (TInt(IULong, []))
    | [Cabs.Tunsigned; Cabs.Tlong; Cabs.Tint] -> simple (TInt(IULong, []))

    | [Cabs.Tlong; Cabs.Tlong] -> simple (TInt(ILongLong, []))
    | [Cabs.Tsigned; Cabs.Tlong; Cabs.Tlong] -> simple (TInt(ILongLong, []))
    | [Cabs.Tlong; Cabs.Tlong; Cabs.Tint] -> simple (TInt(ILongLong, []))
    | [Cabs.Tsigned; Cabs.Tlong; Cabs.Tlong; Cabs.Tint] -> simple (TInt(ILongLong, []))

    | [Cabs.Tunsigned; Cabs.Tlong; Cabs.Tlong] -> simple (TInt(IULongLong, []))
    | [Cabs.Tunsigned; Cabs.Tlong; Cabs.Tlong; Cabs.Tint] -> simple (TInt(IULongLong, []))

    | [Cabs.Tfloat] -> simple (TFloat(FFloat, []))
    | [Cabs.Tdouble] -> simple (TFloat(FDouble, []))

    | [Cabs.Tlong; Cabs.Tdouble] -> simple (TFloat(FLongDouble, []))

    (* Now the other type specifiers *)

    | [Cabs.Tnamed id] ->
        let (id', info) = wrap Env.lookup_typedef loc env id in
        simple (TNamed(id', []))

    | [Cabs.Tstruct_union(STRUCT, id, optmembers, a)] ->
        let a' =
          add_attributes (get_type_attrs()) (elab_attributes env a) in
        let (id', env') =
          elab_struct_or_union only Struct loc id optmembers a' env in
        (!sto, !inline, !typedef, TStruct(id', !attr), env')

    | [Cabs.Tstruct_union(UNION, id, optmembers, a)] ->
        let a' =
          add_attributes (get_type_attrs()) (elab_attributes env a) in
        let (id', env') =
          elab_struct_or_union only Union loc id optmembers a' env in
        (!sto, !inline, !typedef, TUnion(id', !attr), env')

    | [Cabs.Tenum(id, optmembers, a)] ->
        let a' =
          add_attributes (get_type_attrs()) (elab_attributes env a) in
        let (id', env') =
          elab_enum only loc id optmembers a' env in
        (!sto, !inline, !typedef, TEnum(id', !attr), env')

    (* Specifier doesn't make sense *)
    | _ ->
        fatal_error loc "illegal combination of type specifiers"

(* Elaboration of a type qualifier. *)

and elab_cvspec env = function
  | CV_CONST -> [AConst]
  | CV_VOLATILE -> [AVolatile]
  | CV_RESTRICT -> [ARestrict]
  | CV_ATTR attr -> elab_attribute env attr

(* Elaboration of a type declarator.  C99 section 6.7.5. *)

and elab_type_declarator loc env ty = function
  | Cabs.JUSTBASE ->
      (ty, env)
  | Cabs.ARRAY(d, cv_specs, sz) ->
      let a = List.fold_left add_attributes [] (List.map (elab_cvspec env) cv_specs) in
      let sz' =
        match sz with
        | None ->
            None
        | Some sz ->
            match Ceval.integer_expr env (!elab_expr_f loc env sz) with
            | Some n ->
                if n < 0L then error loc "array size is negative";
                if n = 0L then warning loc "array of size 0";
                Some n
            | None ->
                error loc "array size is not a compile-time constant";
                Some 1L in (* produces better error messages later *)
       elab_type_declarator loc env (TArray(ty, sz', a)) d
  | Cabs.PTR(cv_specs, d) ->
      let a = List.fold_left add_attributes [] (List.map (elab_cvspec env) cv_specs) in
      elab_type_declarator loc env (TPtr(ty, a)) d
  | Cabs.PROTO(d, (params, vararg)) ->
       begin match unroll env ty with
       | TArray _ | TFun _ ->
           error loc "illegal function return type@ %a" Cprint.typ ty
       | _ -> ()
       end;
       let params' = elab_parameters env params in
       elab_type_declarator loc env (TFun(ty, params', vararg, [])) d

(* Elaboration of parameters in a prototype *)

and elab_parameters env params =
  match params with
  | [] -> (* old-style K&R prototype *)
      None
  | _ ->
      (* Prototype introduces a new scope *)
      let (vars, _) = mmap elab_parameter (Env.new_scope env) params in
      (* Catch special case f(void) *)
      match vars with
        | [ ( {name=""}, TVoid _) ] -> Some []
        | _ -> Some vars

(* Elaboration of a function parameter *)

and elab_parameter env (PARAM (spec, id, decl, attr, loc)) =
  let (sto, inl, tydef, bty, env1) = elab_specifier loc env spec in
  if tydef then
    error loc "'typedef' used in function parameter";
  let (ty, env2) = elab_type_declarator loc env1 bty decl in
  let ty = add_attributes_type (elab_attributes env attr) ty in
  if sto <> Storage_default && sto <> Storage_register then
    error loc
      "'extern' or 'static' storage not supported for function parameter";
  if inl then
    error loc "'inline' can only appear on functions";
  let id = match id with None -> "" | Some id -> id in
  if id <> "" && redef Env.lookup_ident env id then
    error loc "redefinition of parameter '%s'" id;
  (* replace array and function types by pointer types *)
  let ty1 = argument_conversion env1 ty in
  let (id', env2) = Env.enter_ident env1 id sto ty1 in
  ( (id', ty1) , env2 )

(* Elaboration of a (specifier, Cabs "name") pair *)

and elab_name env spec (Name (id, decl, attr, loc)) =
  let (sto, inl, tydef, bty, env') = elab_specifier loc env spec in
  if tydef then
    error loc "'typedef' is forbidden here";
  let (ty, env'') = elab_type_declarator loc env' bty decl in 
  let a = elab_attributes env attr in
  (id, sto, inl, add_attributes_type a ty, env'')

(* Elaboration of a name group.  C99 section 6.7.6 *)

and elab_name_group loc env (spec, namelist) =
  let (sto, inl, tydef, bty, env') =
    elab_specifier loc env spec in
  if tydef then
    error loc "'typedef' is forbidden here";
  if inl then
    error loc "'inline' is forbidden here";
  let elab_one_name env (Name (id, decl, attr, loc)) =
    let (ty, env1) =
      elab_type_declarator loc env bty decl in 
    let a = elab_attributes env attr in
    ((id, add_attributes_type a ty), env1) in
  (mmap elab_one_name env' namelist, sto)

(* Elaboration of an init-name group *)

and elab_init_name_group loc env (spec, namelist) =
  let (sto, inl, tydef, bty, env') =
    elab_specifier ~only:(namelist=[]) loc env spec in
  let elab_one_name env (Init_name (Name (id, decl, attr, loc), init)) =
    let (ty, env1) =
      elab_type_declarator loc env bty decl in 
    let a = elab_attributes env attr in
    if inl && not (is_function_type env ty) then
      error loc "'inline' can only appear on functions";
    ((id, add_attributes_type a ty, init), env1) in
  (mmap elab_one_name env' namelist, sto, tydef)

(* Elaboration of a field group *)

and elab_field_group env (Field_group (spec, fieldlist, loc)) =
  let fieldlist = List.map (
    function
      | (None, x) -> (Name ("", JUSTBASE, [], cabslu), x)
      | (Some n, x) -> (n, x))
    fieldlist
  in

  let ((names, env'), sto) =
    elab_name_group loc env (spec, List.map fst fieldlist) in

  if sto <> Storage_default then
    error loc "non-default storage in struct or union";

  let elab_bitfield (Name (_, _, _, loc), optbitsize) (id, ty) =
    let optbitsize' =
      match optbitsize with
      | None -> None
      | Some sz ->
          let ik =
            match unroll env' ty with
            | TInt(ik, _) -> ik
            | TEnum(_, _) -> enum_ikind
            | _ -> ILongLong (* trigger next error message *) in
          if integer_rank ik > integer_rank IInt then begin
            error loc
              "the type of bitfield '%s' must be an integer type \
               no bigger than 'int'" id;
            None
          end else begin
            match Ceval.integer_expr env' (!elab_expr_f loc env sz) with
            | Some n ->
                if n < 0L then begin
                  error loc "bit size of '%s' (%Ld) is negative" id n;
                  None
                end else
                if n > Int64.of_int(sizeof_ikind ik * 8) then begin
                  error loc "bit size of '%s' (%Ld) exceeds its type" id n;
                  None
                end else
                if n = 0L && id <> "" then begin
                  error loc "member '%s' has zero size" id;
                  None
                end else
                  Some(Int64.to_int n)
            | None ->
                error loc "bit size of '%s' is not a compile-time constant" id;
                None
          end in
    { fld_name = id; fld_typ = ty; fld_bitfield = optbitsize' } 
  in
  (List.map2 elab_bitfield fieldlist names, env')

(* Elaboration of a struct or union. C99 section 6.7.2.1 *)

and elab_struct_or_union_info kind loc env members attrs =
  let (m, env') = mmap elab_field_group env members in
  let m = List.flatten m in
  (* Check for incomplete types *)
  let rec check_incomplete = function
  | [] -> ()
  | [ { fld_typ = TArray(ty_elt, None, _) } ] when kind = Struct -> ()
        (* C99: ty[] allowed as last field of a struct *)
  | fld :: rem ->
      if wrap incomplete_type loc env' fld.fld_typ then
        error loc "member '%s' has incomplete type" fld.fld_name;
      check_incomplete rem in
  check_incomplete m;
  (* Warn for empty structs or unions *)
  if m = [] then
    warning loc "empty %s" (if kind = Struct then "struct" else "union");
  (composite_info_def env' kind attrs m, env')

and elab_struct_or_union only kind loc tag optmembers attrs env =
  let warn_attrs () =
    if attrs <> [] then
      warning loc "attributes over struct/union ignored in this context" in
  let optbinding, tag =
    match tag with
      | None -> None, ""
      | Some s ->
          Env.lookup_composite env s, s
  in
  match optbinding, optmembers with
  | Some(tag', ci), None
    when (not only) || Env.in_current_scope env tag' ->
      (* Reference to an already declared struct or union.
         Special case: if this is an "only" declaration (without variable names)
         and the composite was bound in another scope,
         create a new incomplete composite instead via the case
         "_, None" below. *)
      warn_attrs();
      (tag', env)
  | Some(tag', ({ci_sizeof = None} as ci)), Some members
    when Env.in_current_scope env tag' ->
      if ci.ci_kind <> kind then
        error loc "struct/union mismatch on tag '%s'" tag;
      (* finishing the definition of an incomplete struct or union *)
      let (ci', env') = elab_struct_or_union_info kind loc env members attrs in
      (* Emit a global definition for it *)
      emit_elab loc (Gcompositedef(kind, tag', attrs, ci'.ci_members));
      (* Replace infos but keep same ident *)
      (tag', Env.add_composite env' tag' ci')
  | Some(tag', {ci_sizeof = Some _}), Some _
    when Env.in_current_scope env tag' ->
      error loc "redefinition of struct or union '%s'" tag;
      (tag', env)
  | _, None ->
      (* declaration of an incomplete struct or union *)
      if tag = "" then
        error loc "anonymous, incomplete struct or union";
      let ci = composite_info_decl env kind attrs in
      (* enter it with a new name *)
      let (tag', env') = Env.enter_composite env tag ci in
      (* emit it *)
      emit_elab loc (Gcompositedecl(kind, tag', attrs));
      (tag', env')
  | _, Some members ->
      (* definition of a complete struct or union *)
      let ci1 = composite_info_decl env kind attrs in
      (* enter it, incomplete, with a new name *)
      let (tag', env') = Env.enter_composite env tag ci1 in
      (* emit a declaration so that inner structs and unions can refer to it *)
      emit_elab loc (Gcompositedecl(kind, tag', attrs));
      (* elaborate the members *)
      let (ci2, env'') =
        elab_struct_or_union_info kind loc env' members attrs in
      (* emit a definition *)
      emit_elab loc (Gcompositedef(kind, tag', attrs, ci2.ci_members));
      (* Replace infos but keep same ident *)
      (tag', Env.add_composite env'' tag' ci2)

(* Elaboration of an enum item.  C99 section 6.7.2.2 *)

and elab_enum_item env ((s, exp), loc) nextval =
  let (v, exp') =
    match exp with
    | None ->
        (nextval, None)
    | Some exp ->
        let exp' = !elab_expr_f loc env exp in
        match Ceval.integer_expr env exp' with
        | Some n -> (n, Some exp')
        | None ->
            error loc
              "value of enumerator '%s' is not a compile-time constant" s;
            (nextval, Some exp') in
  if redef Env.lookup_ident env s then
    error loc "redefinition of enumerator '%s'" s;
  if not (int_representable v (8 * sizeof_ikind enum_ikind) (is_signed_ikind enum_ikind)) then
     warning loc "the value of '%s' is not representable with type %a"
                 s Cprint.typ (TInt(enum_ikind, []));
  let (id, env') = Env.enter_enum_item env s v in
  ((id, v, exp'), Int64.succ v, env')

(* Elaboration of an enumeration declaration.   C99 section 6.7.2.2  *)

and elab_enum only loc tag optmembers attrs env =
  let tag = match tag with None -> "" | Some s -> s in
  match optmembers with
  | None ->
    if only then
      fatal_error loc
         "forward declaration of 'enum %s' is not allowed in ISO C" tag;
      let (tag', info) = wrap Env.lookup_enum loc env tag in (tag', env)
  | Some members ->
      if tag <> "" && redef Env.lookup_enum env tag then
        error loc "redefinition of 'enum %s'" tag;
      let rec elab_members env nextval = function
      | [] -> ([], env)
      | hd :: tl ->
          let (dcl1, nextval1, env1) = elab_enum_item env hd nextval in
          let (dcl2, env2) = elab_members env1 nextval1 tl in
          (dcl1 :: dcl2, env2) in
      let (dcls, env') = elab_members env 0L members in
      let info = { ei_members = dcls; ei_attr = attrs } in
      let (tag', env'') = Env.enter_enum env' tag info in
      emit_elab loc (Genumdef(tag', attrs, dcls));
      (tag', env'')

(* Elaboration of a naked type, e.g. in a cast *)

let elab_type loc env spec decl =
  let (sto, inl, tydef, bty, env') = elab_specifier loc env spec in
  let (ty, env'') = elab_type_declarator loc env' bty decl in 
  if sto <> Storage_default || inl || tydef then
    error loc "'typedef', 'extern', 'static', 'register' and 'inline' are meaningless in cast";
  ty


(* Elaboration of expressions *)

let elab_expr loc env a =

  let err fmt = error loc fmt in  (* non-fatal error *)
  let error fmt = fatal_error loc fmt in
  let warning fmt = warning loc fmt in

  let rec elab = function

(* 6.5.1 Primary expressions *)

  | VARIABLE s ->
      begin match wrap Env.lookup_ident loc env s with
      | (id, II_ident(sto, ty)) ->
          { edesc = EVar id; etyp = ty }
      | (id, II_enum v) ->
          { edesc = EConst(CEnum(id, v)); etyp = TInt(enum_ikind, []) }
      end

  | CONSTANT cst ->
      let cst' = elab_constant loc cst in
      { edesc = EConst cst'; etyp = type_of_constant cst' }

(* 6.5.2 Postfix expressions *)

  | INDEX(a1, a2) ->            (* e1[e2] *)
      let b1 = elab a1 in let b2 = elab a2 in
      let tres =
        match (unroll env b1.etyp, unroll env b2.etyp) with
        | (TPtr(t, _) | TArray(t, _, _)), (TInt _ | TEnum _) -> t
        | (TInt _ | TEnum _), (TPtr(t, _) | TArray(t, _, _)) -> t
        | t1, t2 -> error "incorrect types for array subscripting" in
      { edesc = EBinop(Oindex, b1, b2, TPtr(tres, [])); etyp = tres }

  | MEMBEROF(a1, fieldname) ->
      let b1 = elab a1 in
      let (fld, attrs) =
        match unroll env b1.etyp with
        | TStruct(id, attrs) ->
            (wrap Env.find_struct_member loc env (id, fieldname), attrs)
        | TUnion(id, attrs) ->
            (wrap Env.find_union_member loc env (id, fieldname), attrs)
        | _ ->
            error "left-hand side of '.' is not a struct or union" in
      (* A field of a const/volatile struct or union is itself const/volatile *)
      { edesc = EUnop(Odot fieldname, b1);
        etyp = add_attributes_type (List.filter attr_inherited_by_members attrs)
                                   (type_of_member env fld) }

  | MEMBEROFPTR(a1, fieldname) ->
      let b1 = elab a1 in
      let (fld, attrs) =
        match unroll env b1.etyp with
        | TPtr(t, _) | TArray(t,_,_) ->
            begin match unroll env t with
            | TStruct(id, attrs) ->
                (wrap Env.find_struct_member loc env (id, fieldname), attrs)
            | TUnion(id, attrs) ->
                (wrap Env.find_union_member loc env (id, fieldname), attrs)
            | _ ->
                error "left-hand side of '->' is not a pointer to a struct or union"
            end
        | _ ->
            error "left-hand side of '->' is not a pointer " in
      { edesc = EUnop(Oarrow fieldname, b1);
        etyp = add_attributes_type (List.filter attr_inherited_by_members attrs)
                                   (type_of_member env fld) }

(* Hack to treat vararg.h functions the GCC way.  Helps with testing.
    va_start(ap,n)
      (preprocessing) --> __builtin_va_start(ap, arg)
      (elaboration)   --> __builtin_va_start(ap)
    va_arg(ap, ty)
      (preprocessing) --> __builtin_va_arg(ap, ty)
      (elaboration)   --> __builtin_va_arg(ap, sizeof(ty))
*)
  | CALL((VARIABLE "__builtin_va_start" as a1), [a2; a3]) ->
      let b1 = elab a1 and b2 = elab a2 and _b3 = elab a3 in
      { edesc = ECall(b1, [b2]);
        etyp = TVoid [] }

  | BUILTIN_VA_ARG (a2, a3) ->
      let ident =
        match wrap Env.lookup_ident loc env "__builtin_va_arg" with
          | (id, II_ident(sto, ty)) -> { edesc = EVar id; etyp = ty }
          | _ -> assert false
      in
      let b2 = elab a2 and b3 = elab (TYPE_SIZEOF a3) in
      let ty = match b3.edesc with ESizeof ty -> ty | _ -> assert false in
      let ty' = default_argument_conversion env ty in
      if not (compatible_types env ty ty') then
        warning "'%a' is promoted to '%a' when passed through '...'.@ You should pass '%a', not '%a', to 'va_arg'"
                Cprint.typ ty Cprint.typ ty'
                Cprint.typ ty' Cprint.typ ty;
      { edesc = ECall(ident, [b2; b3]); etyp = ty }

  | CALL(a1, al) ->
      let b1 =
        (* Catch the old-style usage of calling a function without
           having declared it *)
        match a1 with
        | VARIABLE n when not (Env.ident_is_bound env n) ->
            warning "implicit declaration of function '%s'" n;
            let ty = TFun(TInt(IInt, []), None, false, []) in
            (* Emit an extern declaration for it *)
            let id = Env.fresh_ident n in
            emit_elab loc (Gdecl(Storage_extern, id, ty, None));
            { edesc = EVar id; etyp = ty }
        | _ -> elab a1 in
      let bl = List.map elab al in
      (* Extract type information *)
      let (res, args, vararg) =
        match unroll env b1.etyp with
        | TFun(res, args, vararg, a) -> (res, args, vararg)
        | TPtr(ty, a) ->
            begin match unroll env ty with
            | TFun(res, args, vararg, a) -> (res, args, vararg)
            | _ -> error "the function part of a call does not have a function type"
            end
        | _ -> error "the function part of a call does not have a function type"
      in
      (* Type-check the arguments against the prototype *)
      let bl' =
        match args with
        | None -> bl
        | Some proto -> elab_arguments 1 bl proto vararg in
      { edesc = ECall(b1, bl'); etyp = res }

  | UNARY(POSINCR, a1) ->
      elab_pre_post_incr_decr Opostincr "postfix '++'" a1
  | UNARY(POSDECR, a1) ->
      elab_pre_post_incr_decr Opostdecr "postfix '--'" a1

(* 6.5.3 Unary expressions *)

  | CAST ((spec, dcl), SINGLE_INIT a1) ->
      let ty = elab_type loc env spec dcl in
      let b1 = elab a1 in
      if not (valid_cast env b1.etyp ty) then
        err "illegal cast from %a@ to %a" Cprint.typ b1.etyp Cprint.typ ty;
      { edesc = ECast(ty, b1); etyp = ty }

  | CAST ((spec, dcl), _) ->
      err "compound literals are not supported";
      (* continue with dummy expression of the correct type *)
      let ty = elab_type loc env spec dcl in
      { edesc = ECast(ty, nullconst); etyp = ty }

  | EXPR_SIZEOF a1 ->
      let b1 = elab a1 in
      if wrap incomplete_type loc env b1.etyp then
        err "incomplete type %a" Cprint.typ b1.etyp;
      let bdesc =
        (* Catch special cases sizeof("string literal") *)
        match b1.edesc with
        | EConst(CStr s) ->
            let sz = String.length s + 1 in
            EConst(CInt(Int64.of_int sz, size_t_ikind, ""))
        | EConst(CWStr s) ->
            let sz = (!config).sizeof_wchar * (List.length s + 1) in
            EConst(CInt(Int64.of_int sz, size_t_ikind, ""))
        | _ ->
            ESizeof b1.etyp in
      { edesc = bdesc; etyp = TInt(size_t_ikind, []) }

  | TYPE_SIZEOF (spec, dcl) ->
      let ty = elab_type loc env spec dcl in
      if wrap incomplete_type loc env ty then
        err "incomplete type %a" Cprint.typ ty;
      { edesc = ESizeof ty; etyp = TInt(size_t_ikind, []) }

  | EXPR_ALIGNOF a1 ->
      let b1 = elab a1 in
      if wrap incomplete_type loc env b1.etyp then
        err "incomplete type %a" Cprint.typ b1.etyp;
      { edesc = EAlignof b1.etyp; etyp =  TInt(size_t_ikind, []) }

  | TYPE_ALIGNOF (spec, dcl) ->
      let ty = elab_type loc env spec dcl in
      if wrap incomplete_type loc env ty then
        err "incomplete type %a" Cprint.typ ty;
      { edesc = EAlignof ty; etyp =  TInt(size_t_ikind, []) }

  | UNARY(PLUS, a1) ->
      let b1 = elab a1 in
      if not (is_arith_type env b1.etyp) then
        err "argument of unary '+' is not an arithmetic type";
      { edesc = EUnop(Oplus, b1); etyp = unary_conversion env b1.etyp }

  | UNARY(MINUS, a1) ->
      let b1 = elab a1 in
      if not (is_arith_type env b1.etyp) then
        err "argument of unary '-' is not an arithmetic type";
      { edesc = EUnop(Ominus, b1); etyp = unary_conversion env b1.etyp }

  | UNARY(BNOT, a1) ->
      let b1 = elab a1 in
      if not (is_integer_type env b1.etyp) then
        err "argument of '~' is not an integer type";
      { edesc = EUnop(Onot, b1); etyp = unary_conversion env b1.etyp }

  | UNARY(NOT, a1) ->
      let b1 = elab a1 in
      if not (is_scalar_type env b1.etyp) then
        err "argument of '!' is not a scalar type";
      { edesc = EUnop(Olognot, b1); etyp = TInt(IInt, []) }

  | UNARY(ADDROF, a1) ->
      let b1 = elab a1 in
      if not (is_lvalue b1 || is_function_type env b1.etyp) then
        err "argument of '&' is not an l-value";
      { edesc = EUnop(Oaddrof, b1); etyp = TPtr(b1.etyp, []) }

  | UNARY(MEMOF, a1) ->
      let b1 = elab a1 in
      begin match unroll env b1.etyp with
      (* '*' applied to a function type has no effect *)
      | TFun _ -> b1
      | TPtr(ty, _) | TArray(ty, _, _) ->
          { edesc = EUnop(Oderef, b1); etyp = ty }
      | _ ->
          error "argument of unary '*' is not a pointer"
      end

  | UNARY(PREINCR, a1) ->
      elab_pre_post_incr_decr Opreincr "prefix '++'" a1
  | UNARY(PREDECR, a1) ->
      elab_pre_post_incr_decr Opredecr "prefix '--'" a1

(* 6.5.5 to 6.5.12  Binary operator expressions *)

  | BINARY(MUL, a1, a2) ->
      elab_binary_arithmetic "*" Omul a1 a2

  | BINARY(DIV, a1, a2) ->
      elab_binary_arithmetic "/" Odiv a1 a2

  | BINARY(MOD, a1, a2) ->
      elab_binary_integer "/" Omod a1 a2

  | BINARY(ADD, a1, a2) ->
      let b1 = elab a1 in
      let b2 = elab a2 in
      let tyres =
        if is_arith_type env b1.etyp && is_arith_type env b2.etyp then
          binary_conversion env b1.etyp b2.etyp
        else begin
          let ty =
            match unroll env b1.etyp, unroll env b2.etyp with
            | (TPtr(ty, a) | TArray(ty, _, a)), (TInt _ | TEnum _) -> ty
            | (TInt _ | TEnum _), (TPtr(ty, a) | TArray(ty, _, a)) -> ty
            | _, _ -> error "type error in binary '+'" in
          if not (pointer_arithmetic_ok env ty) then
            err "illegal pointer arithmetic in binary '+'";
          TPtr(ty, [])
        end in
      { edesc = EBinop(Oadd, b1, b2, tyres); etyp = tyres }

  | BINARY(SUB, a1, a2) ->
      let b1 = elab a1 in
      let b2 = elab a2 in
      let (tyop, tyres) =
        if is_arith_type env b1.etyp && is_arith_type env b2.etyp then begin
          let tyres = binary_conversion env b1.etyp b2.etyp in
          (tyres, tyres)
        end else begin
          match unroll env b1.etyp, unroll env b2.etyp with
          | (TPtr(ty, a) | TArray(ty, _, a)), (TInt _ | TEnum _) ->
              if not (pointer_arithmetic_ok env ty) then
                err "illegal pointer arithmetic in binary '-'";
              (TPtr(ty, []), TPtr(ty, []))
          | (TInt _ | TEnum _), (TPtr(ty, a) | TArray(ty, _, a)) ->
              if not (pointer_arithmetic_ok env ty) then
                err "illegal pointer arithmetic in binary '-'";
              (TPtr(ty, []), TPtr(ty, []))
          | (TPtr(ty1, a1) | TArray(ty1, _, a1)),
            (TPtr(ty2, a2) | TArray(ty2, _, a2)) ->
              if not (compatible_types ~noattrs:true env ty1 ty2) then
                err "mismatch between pointer types in binary '-'";
              if not (pointer_arithmetic_ok env ty1) then
                err "illegal pointer arithmetic in binary '-'";
              if wrap sizeof loc env ty1 = Some 0 then
                err "subtraction between two pointers to zero-sized objects";
              (TPtr(ty1, []), TInt(ptrdiff_t_ikind, []))
          | _, _ -> error "type error in binary '-'"
        end in
      { edesc = EBinop(Osub, b1, b2, tyop); etyp = tyres }

  | BINARY(SHL, a1, a2) ->
      elab_shift "<<" Oshl a1 a2

  | BINARY(SHR, a1, a2) ->
      elab_shift ">>" Oshr a1 a2

  | BINARY(EQ, a1, a2) ->
      elab_comparison Oeq a1 a2
  | BINARY(NE, a1, a2) ->
      elab_comparison One a1 a2
  | BINARY(LT, a1, a2) ->
      elab_comparison Olt a1 a2
  | BINARY(GT, a1, a2) ->
      elab_comparison Ogt a1 a2
  | BINARY(LE, a1, a2) ->
      elab_comparison Ole a1 a2
  | BINARY(GE, a1, a2) ->
      elab_comparison Oge a1 a2

  | BINARY(BAND, a1, a2) ->
      elab_binary_integer "&" Oand a1 a2
  | BINARY(BOR, a1, a2) ->
      elab_binary_integer "|" Oor a1 a2
  | BINARY(XOR, a1, a2) ->
      elab_binary_integer "^" Oxor a1 a2

(* 6.5.13 and 6.5.14 Logical operator expressions *)

  | BINARY(AND, a1, a2) ->
      elab_logical_operator "&&" Ologand a1 a2
  | BINARY(OR, a1, a2) ->
      elab_logical_operator "||" Ologor a1 a2

(* 6.5.15 Conditional expressions *)
  | QUESTION(a1, a2, a3) ->
      let b1 = elab a1 in
      let b2 = elab a2 in
      let b3 = elab a3 in
      if not (is_scalar_type env b1.etyp) then
        err ("the first argument of '? :' is not a scalar type");
      begin match pointer_decay env b2.etyp, pointer_decay env b3.etyp with
      | (TInt _ | TFloat _ | TEnum _), (TInt _ | TFloat _ | TEnum _) ->
          { edesc = EConditional(b1, b2, b3);
            etyp = binary_conversion env b2.etyp b3.etyp }
      | TPtr(ty1, a1), TPtr(ty2, a2) ->
          let tyres =
            if is_void_type env ty1 || is_void_type env ty2 then
              TPtr(TVoid (add_attributes a1 a2), [])
            else
              match combine_types ~noattrs:true env
                                  (TPtr(ty1, a1)) (TPtr(ty2, a2)) with
              | None ->
                  error "the second and third arguments of '? :' \
                         have incompatible pointer types"
              | Some ty -> ty
            in
          { edesc = EConditional(b1, b2, b3); etyp = tyres }
      | TPtr(ty1, a1), TInt _ when is_literal_0 b3 ->
          { edesc = EConditional(b1, b2, nullconst); etyp = TPtr(ty1, []) }
      | TInt _, TPtr(ty2, a2) when is_literal_0 b2 ->
          { edesc = EConditional(b1, nullconst, b3); etyp = TPtr(ty2, []) }
      | ty1, ty2 ->
          match combine_types ~noattrs:true env ty1 ty2 with
          | None ->
              error ("the second and third arguments of '? :' have incompatible types")
          | Some tyres ->
              { edesc = EConditional(b1, b2, b3); etyp = tyres }
      end

(* 6.5.16 Assignment expressions *)

  | BINARY(ASSIGN, a1, a2) ->
      let b1 = elab a1 in
      let b2 = elab a2 in
      if List.mem AConst (attributes_of_type env b1.etyp) then
        err "left-hand side of assignment has 'const' type";
      if not (is_modifiable_lvalue env b1) then
        err "left-hand side of assignment is not a modifiable l-value";
      if not (valid_assignment env b2 b1.etyp) then begin
        if valid_cast env b2.etyp b1.etyp then
          warning "assigning a value of type@ %a@ to a lvalue of type@ %a"
                  Cprint.typ b2.etyp Cprint.typ b1.etyp
        else
          err "assigning a value of type@ %a@ to a lvalue of type@ %a"
                  Cprint.typ b2.etyp Cprint.typ b1.etyp;
      end;
      { edesc = EBinop(Oassign, b1, b2, b1.etyp); etyp = b1.etyp }

  | BINARY((ADD_ASSIGN | SUB_ASSIGN | MUL_ASSIGN | DIV_ASSIGN | MOD_ASSIGN
            | BAND_ASSIGN | BOR_ASSIGN | XOR_ASSIGN | SHL_ASSIGN | SHR_ASSIGN
            as op), a1, a2) ->
      let (sop, top) =
        match op with
        | ADD_ASSIGN -> (ADD, Oadd_assign)
        | SUB_ASSIGN -> (SUB, Osub_assign)
        | MUL_ASSIGN -> (MUL, Omul_assign)
        | DIV_ASSIGN -> (DIV, Odiv_assign)
        | MOD_ASSIGN -> (MOD, Omod_assign)
        | BAND_ASSIGN -> (BAND, Oand_assign)
        | BOR_ASSIGN -> (BOR, Oor_assign)
        | XOR_ASSIGN -> (XOR, Oxor_assign)
        | SHL_ASSIGN -> (SHL, Oshl_assign)
        | SHR_ASSIGN -> (SHR, Oshr_assign)
        | _ -> assert false in
      begin match elab (BINARY(sop, a1, a2)) with
      | { edesc = EBinop(_, b1, b2, _); etyp = ty } as b ->
          if List.mem AConst (attributes_of_type env b1.etyp) then
            err "left-hand side of assignment has 'const' type";
          if not (is_modifiable_lvalue env b1) then
            err ("left-hand side of assignment is not a modifiable l-value");
          if not (valid_assignment env b b1.etyp) then begin
            if valid_cast env ty b1.etyp then
              warning "assigning a value of type@ %a@ to a lvalue of type@ %a"
                      Cprint.typ ty Cprint.typ b1.etyp
            else
              err "assigning a value of type@ %a@ to a lvalue of type@ %a"
                      Cprint.typ ty Cprint.typ b1.etyp;
          end;
          { edesc = EBinop(top, b1, b2, ty); etyp = b1.etyp }
      | _ -> assert false
      end

(* 6.5.17 Sequential expressions *)

  | BINARY(COMMA, a1, a2) ->
      let b1 = elab a1 in
      let b2 = elab a2 in
      { edesc = EBinop (Ocomma, b1, b2, b2.etyp); etyp = b2.etyp }

(* Elaboration of pre- or post- increment/decrement *)
  and elab_pre_post_incr_decr op msg a1 =
      let b1 = elab a1 in
      if not (is_modifiable_lvalue env b1) then
        err "the argument of %s is not a modifiable l-value" msg;
      if not (is_scalar_type env b1.etyp) then
        err "the argument of %s must be an arithmetic or pointer type" msg;
      { edesc = EUnop(op, b1); etyp = b1.etyp }

(* Elaboration of binary operators over integers *)
  and elab_binary_integer msg op a1 a2 =
      let b1 = elab a1 in
      if not (is_integer_type env b1.etyp) then
        error "the first argument of '%s' is not an integer type" msg;
      let b2 = elab a2 in
      if not (is_integer_type env b2.etyp) then
        error "the second argument of '%s' is not an integer type" msg;
      let tyres = binary_conversion env b1.etyp b2.etyp in
      { edesc = EBinop(op, b1, b2, tyres); etyp = tyres }

(* Elaboration of binary operators over arithmetic types *)
  and elab_binary_arithmetic msg op a1 a2 =
      let b1 = elab a1 in
      if not (is_arith_type env b1.etyp) then
        error "the first argument of '%s' is not an arithmetic type" msg;
      let b2 = elab a2 in
      if not (is_arith_type env b2.etyp) then
        error "the second argument of '%s' is not an arithmetic type" msg;
      let tyres = binary_conversion env b1.etyp b2.etyp in
      { edesc = EBinop(op, b1, b2, tyres); etyp = tyres }

(* Elaboration of shift operators *)
  and elab_shift msg op a1 a2 =
      let b1 = elab a1 in
      if not (is_integer_type env b1.etyp) then
        error "the first argument of '%s' is not an integer type" msg;
      let b2 = elab a2 in
      if not (is_integer_type env b2.etyp) then
        error "the second argument of '%s' is not an integer type" msg;
      let tyres = unary_conversion env b1.etyp in
      { edesc = EBinop(op, b1, b2, tyres); etyp = tyres }

(* Elaboration of comparisons *)
  and elab_comparison op a1 a2 =
      let b1 = elab a1 in
      let b2 = elab a2 in
      let resdesc =
        match pointer_decay env b1.etyp, pointer_decay env b2.etyp with
        | (TInt _ | TFloat _ | TEnum _), (TInt _ | TFloat _ | TEnum _) ->
            EBinop(op, b1, b2, binary_conversion env b1.etyp b2.etyp)
        | TInt _, TPtr(ty, _) when is_literal_0 b1 ->
            EBinop(op, nullconst, b2, TPtr(ty, []))
        | TPtr(ty, _), TInt _ when is_literal_0 b2 ->
            EBinop(op, b1, nullconst, TPtr(ty, []))
        | TPtr(ty1, _), TPtr(ty2, _)
          when is_void_type env ty1 ->
            EBinop(op, b1, b2, TPtr(ty2, []))
        | TPtr(ty1, _), TPtr(ty2, _)
          when is_void_type env ty2 ->
            EBinop(op, b1, b2, TPtr(ty1, []))
        | TPtr(ty1, _), TPtr(ty2, _) ->
            if not (compatible_types ~noattrs:true env ty1 ty2) then
              warning "comparison between incompatible pointer types";
            EBinop(op, b1, b2, TPtr(ty1, []))
        | TPtr _, (TInt _ | TEnum _)
        | (TInt _ | TEnum _), TPtr _ ->
            warning "comparison between integer and pointer";
            EBinop(op, b1, b2, TPtr(TVoid [], []))
        | ty1, ty2 ->
            error "illegal comparison between types@ %a@ and %a"
                  Cprint.typ b1.etyp Cprint.typ b2.etyp in
      { edesc = resdesc; etyp = TInt(IInt, []) }

(* Elaboration of && and || *)
  and elab_logical_operator msg op a1 a2 =
      let b1 = elab a1 in
      if not (is_scalar_type env b1.etyp) then
        err "the first argument of '%s' is not a scalar type" msg;
      let b2 = elab a2 in
      if not (is_scalar_type env b2.etyp) then
        err "the second argument of '%s' is not a scalar type" msg;
      { edesc = EBinop(op, b1, b2, TInt(IInt, [])); etyp = TInt(IInt, []) }

(* Type-checking of function arguments *)
  and elab_arguments argno args params vararg =
    match args, params with
    | [], [] -> []
    | [], _::_ -> err "not enough arguments in function call"; []
    | _::_, [] -> 
        if vararg 
        then args
        else (err "too many arguments in function call"; args)
    | arg1 :: argl, (_, ty_p) :: paraml ->
        let ty_a = argument_conversion env arg1.etyp in
        if not (valid_assignment env {arg1 with etyp = ty_a} ty_p) then begin
          if valid_cast env ty_a ty_p then
            warning
              "argument #%d of function call has type@ %a@ \
               instead of the expected type@ %a"
              argno Cprint.typ ty_a Cprint.typ ty_p
          else
            err
              "argument #%d of function call has type@ %a@ \
               instead of the expected type@ %a"
              argno Cprint.typ ty_a Cprint.typ ty_p
        end;
        arg1 :: elab_arguments (argno + 1) argl paraml vararg

  in elab a

(* Filling in forward declaration *)
let _ = elab_expr_f := elab_expr

let elab_opt_expr loc env = function
  | None -> None
  | Some a -> Some (elab_expr loc env a)

let elab_for_expr loc env = function
  | None -> { sdesc = Sskip; sloc = elab_loc loc }
  | Some a -> { sdesc = Sdo (elab_expr loc env a); sloc = elab_loc loc }


(* Elaboration of initializers. C99 section 6.7.8 *)

let init_char_array_string opt_size s =
  let len = Int64.of_int (String.length s) in
  let size =
    match opt_size with
    | Some sz -> sz
    | None -> Int64.succ len  (* include final 0 character *) in
  let rec add_chars i init =
    if i < 0L then init else begin
      let c =
        if i < len then Int64.of_int (Char.code s.[Int64.to_int i]) else 0L in
      add_chars (Int64.pred i) (Init_single (intconst c IInt) :: init)
    end in
  Init_array (add_chars (Int64.pred size) [])

let init_int_array_wstring opt_size s =
  let len = Int64.of_int (List.length s) in
  let size =
    match opt_size with
    | Some sz -> sz
    | None -> Int64.succ len  (* include final 0 character *) in
  let rec add_chars i s init =
    if i < 0L then init else begin
      let (c, s') =
        match s with [] -> (0L, []) | c::s' -> (c, s') in
      add_chars (Int64.pred i) s' (Init_single (intconst c IInt) :: init)
    end in
  Init_array (add_chars (Int64.pred size) (List.rev s) [])

let check_init_type loc env a ty =
  if valid_assignment env a ty then ()
  else if valid_cast env a.etyp ty then
    warning loc
      "initializer has type@ %a@ instead of the expected type @ %a"
      Cprint.typ a.etyp Cprint.typ ty
  else
    error loc
      "initializer has type@ %a@ instead of the expected type @ %a"
      Cprint.typ a.etyp Cprint.typ ty

(* Representing initialization state using zippers *)

module I = struct

  type zipinit =
    | Ztop of string * typ

    | Zarray of zipinit                 (* ancestor *)
              * typ                     (* type of elements *)
              * int64 option            (* size *)
              * init                    (* default initializer *)
              * init list               (* elements before point, reversed *)
              * int64                   (* position of point *)
              * init list               (* elements after point *)

    | Zstruct of zipinit                (* ancestor *)
               * ident                  (* struct type *)
               * (field * init) list    (* elements before current, reversed *)
               * field                  (* current field *)
               * (field * init) list    (* elements after current *)

    | Zunion of zipinit                 (* ancestor *)
              * ident                   (* union type *)
              * field                   (* current member *)

  type state = zipinit * init        (* current point & init for this point *)

  (* The initial state: default initialization, current point at top *)
  let top env name ty = (Ztop(name, ty), default_init env ty)

  (* Change the initializer for the current point *)
  let set (z, i) i' = (z, i')

  (* Put the current point back to the top *)
  let rec to_top = function
    | Ztop(name, ty), i as zi -> zi
    | Zarray(z, ty, sz, dfl, before, idx, after), i ->
        to_top (z, Init_array (List.rev_append before (i :: after)))
    | Zstruct(z, id, before, fld, after), i ->
        to_top (z, Init_struct(id, List.rev_append before ((fld, i) :: after)))
    | Zunion(z, id, fld), i ->
        to_top (z, Init_union(id, fld, i))

  (* Extract the initializer corresponding to the current state *)
  let to_init zi = snd (to_top zi)

  (* The type of the current point *)
  let typeof = function
    | Ztop(name, ty), i -> ty
    | Zarray(z, ty, sz, dfl, before, idx, after), i -> ty
    | Zstruct(z, id, before, fld, after), i -> fld.fld_typ
    | Zunion(z, id, fld), i -> fld.fld_typ

  (* The name of the path leading to the current point, for error reporting *)
  let rec zipname = function
    | Ztop(name, ty) -> name
    | Zarray(z, ty, sz, dfl, before, idx, after) ->
        sprintf "%s[%Ld]" (zipname z) idx
    | Zstruct(z, id, before, fld, after) ->
        sprintf "%s.%s" (zipname z) fld.fld_name
    | Zunion(z, id, fld) ->
        sprintf "%s.%s" (zipname z) fld.fld_name

  let name (z, i) = zipname z

  (* Auxiliary functions to deal with arrays *)
  let index_below (idx: int64) (sz: int64 option) =
    match sz with None -> true | Some sz -> idx < sz

  let il_head dfl = function [] -> dfl | i1 :: il -> i1
  let il_tail = function [] -> [] | i1 :: il -> il

  (* Advance the current point to the next point in right-up order.
     Return None if no next point, i.e. we are at top *)
  let rec next = function
    | Ztop(name, ty), i -> None
    | Zarray(z, ty, sz, dfl, before, idx, after), i ->
        let idx' = Int64.succ idx in
        if index_below idx' sz
        then Some(Zarray(z, ty, sz, dfl, i :: before, idx', il_tail after),
                  il_head dfl after)
        else next (z, Init_array (List.rev_append before (i :: after)))
    | Zstruct(z, id, before, fld, []), i ->
        next (z, Init_struct(id, List.rev_append before [(fld, i)]))
    | Zstruct(z, id, before, fld, (fld1, i1) :: after), i ->
        Some(Zstruct(z, id, (fld, i) :: before, fld1, after), i1)
    | Zunion(z, id, fld), i ->
        next (z, Init_union(id, fld, i))

  (* Move the current point "down" to the first component of an array,
     struct, or union.  No effect if the current point is a scalar. *)
  let rec first env (z, i as zi) =
    let ty = typeof zi in
    match unroll env ty, i with
    | TArray(ty, sz, _), Init_array il ->
        if index_below 0L sz then begin
          let dfl = default_init env ty in
          Some(Zarray(z, ty, sz, dfl, [], 0L, il_tail il), il_head dfl il)
        end
        else None
    | TStruct(id, _), Init_struct(id', []) ->
        None
    | TStruct(id, _), Init_struct(id', (fld1, i1) :: flds) ->
        Some(Zstruct(z, id, [], fld1, flds), i1)
    | TUnion(id, _), Init_union(id', fld, i) ->
        begin match (Env.find_union env id).ci_members with
        | [] -> None
        | fld1 :: _ ->
            Some(Zunion(z, id, fld1),
                 if fld.fld_name = fld1.fld_name
                 then i
                 else default_init env fld1.fld_typ)
        end 
    | (TStruct _ | TUnion _), Init_single a ->
        (* This is a previous whole-struct initialization that we
           are going to overwrite.  Revert to the default initializer. *)
        first env (z, default_init env ty)
    | _ ->
        Some (z, i)

  (* Move to the [n]-th element of the current point, which must be
     an array. *)
  let index env (z, i as zi) n =
    match unroll env (typeof zi), i with
    | TArray(ty, sz, _), Init_array il ->
        if n >= 0L && index_below n sz then begin 
          let dfl = default_init env ty in
          let rec loop p before after =
            if p = n then
              Some(Zarray(z, ty, sz, dfl, before, n, il_tail after),
                   il_head dfl after)
            else
              loop (Int64.succ p)
                   (il_head dfl after :: before)
                   (il_tail after)
          in loop 0L [] il
        end else
          None
    | _, _ ->
        None

  (* Move to the member named [name] of the current point, which must be
     a struct or a union. *)
  let rec member env (z, i as zi) name =
    let ty = typeof zi in
    match unroll env ty, i with
    | TStruct(id, _), Init_struct(id', flds) ->
        let rec find before = function
          | [] -> None
          | (fld, i as f_i) :: after ->
              if fld.fld_name = name then
                Some(Zstruct(z, id, before, fld, after), i)
              else
                find (f_i :: before) after
        in find [] flds
    | TUnion(id, _), Init_union(id', fld, i) ->
        if fld.fld_name = name then
          Some(Zunion(z, id, fld), i)
        else begin
          let rec find = function
            | [] -> None
            | fld1 :: rem ->
                if fld1.fld_name = name then
                  Some(Zunion(z, id, fld1), default_init env fld1.fld_typ)
                else
                  find rem
           in find (Env.find_union env id).ci_members
         end
    | (TStruct _ | TUnion _), Init_single a ->
        member env (z, default_init env ty) name
    | _, _ ->
        None
end

(* Interpret the given designator, moving the initialization state [zi]
   "down" accordingly. *)

let rec elab_designator loc env zi desig =
  match desig with
  | [] -> 
      zi
  | INFIELD_INIT name :: desig' ->
      begin match I.member env zi name with
      | Some zi' ->
          elab_designator loc env zi' desig'
      | None ->
          error loc "%s has no member named %s" (I.name zi) name;
          raise Exit
      end
  | ATINDEX_INIT a :: desig' ->
      begin match Ceval.integer_expr env (elab_expr loc env a) with
      | None ->
          error loc "array element designator for %s is not a compile-time constant"
                    (I.name zi);
          raise Exit
      | Some n ->
          match I.index env zi n with
          | Some zi' ->
              elab_designator loc env zi' desig'
          | None ->
              error loc "bad array element designator %Ld within %s"
                      n (I.name zi);
            raise Exit
      end

(* Elaboration of an initialization expression.  Return the corresponding
   initializer. *)

let elab_init loc env root ty_root ie =

(* Perform the initializations described by the list [il] over
   the initialization state [zi].  [first] is true if we are at the
   beginning of a braced initializer.  Returns the final initializer. *)

let rec elab_list zi il first =
  match il with
  | [] ->
      (* All initialization items consumed. *)
      I.to_init zi
  | (desig, item) :: il' ->
      if desig = [] then begin
        match (if first then I.first env zi else I.next zi)
        with
        | None ->
            warning loc "excess elements at end of initializer for %s, ignored"
                        (I.name zi);
            I.to_init zi
        | Some zi' ->
            elab_item zi' item il'
      end else
        elab_item (elab_designator loc env (I.to_top zi) desig) item il'

(* Perform the initialization described by [item] for the current
   subobject of state [zi].  Continue initializing with the list [il]. *)

and elab_item zi item il =
  let ty = I.typeof zi in
  match item, unroll env ty with
  (* Special case char array = "string literal" 
               or wchar array = L"wide string literal" *)
  | (SINGLE_INIT (CONSTANT (CONST_STRING(w, s)))
     | COMPOUND_INIT [_, SINGLE_INIT(CONSTANT (CONST_STRING(w, s)))]),
    TArray(ty_elt, sz, _)
    when is_integer_type env ty_elt ->
      begin match elab_string_literal loc w s, unroll env ty_elt with
      | CStr s, TInt((IChar | ISChar | IUChar), _) ->
          if not (I.index_below (Int64.of_int(String.length s - 1)) sz) then
            warning loc "initializer string for array of chars %s is too long"
                        (I.name zi);
          elab_list (I.set zi (init_char_array_string sz s)) il false
      | CStr _, _ ->
          error loc "initialization of an array of non-char elements with a string literal";
          elab_list zi il false
      | CWStr s, TInt(ik, _) when ik = wchar_ikind ->
          if not (I.index_below (Int64.of_int(List.length s - 1)) sz) then
            warning loc "initializer string for array of wide chars %s is too long"
                        (I.name zi);
          elab_list (I.set zi (init_int_array_wstring sz s)) il false
      | CWStr _, _ ->
          error loc "initialization of an array of non-wchar_t elements with a wide string literal";
          elab_list zi il false
      | _ -> assert false
      end
  (* Brace-enclosed compound initializer *)
  | COMPOUND_INIT il', _ ->
      (* Process the brace-enclosed stuff, obtaining its initializer *)
      let ini' = elab_list (I.top env (I.name zi) ty) il' true in
      (* Initialize current subobject with this state, and continue *)
      elab_list (I.set zi ini') il false
  (* Single expression *)
  | SINGLE_INIT a, _ ->
      let a' = elab_expr loc env a in
      elab_single zi a' il
  (* No initializer: can this happen? *)
  | NO_INIT, _ ->
      elab_list zi il false

(* Perform initialization by a single expression [a] for the current
   subobject of state [zi],  Continue initializing with the list [il']. *)

and elab_single zi a il =
  let ty = I.typeof zi in
  match unroll env ty with
  | TInt _ | TEnum _ | TFloat _ | TPtr _ ->
      (* This is a scalar: do direct initialization and continue *)
      check_init_type loc env a ty;
      elab_list (I.set zi (Init_single a)) il false
  | TStruct _ | TUnion _ when compatible_types ~noattrs:true env ty a.etyp ->
      (* This is a composite that can be initialized directly
         from the expression: do as above *)
      elab_list (I.set zi (Init_single a)) il false
  | TStruct _ | TUnion _ | TArray _ ->
      (* This is an aggregate: we need to drill into it, recursively *)
      begin match I.first env zi with
      | Some zi' ->
          elab_single zi' a il
      | None ->
          error loc "initializer for aggregate %s with no elements requires explicit braces"
                    (I.name zi);
          raise Exit
      end
  | _ ->
      error loc "impossible to initialize %s of type@ %a"
                (I.name zi) Cprint.typ ty;
      raise Exit

(* Start with top-level object initialized to default *)

in elab_item (I.top env root ty_root) ie []

(* Elaboration of a top-level initializer *)

let elab_initial loc env root ty ie =
  match ie with
  | NO_INIT -> None
  | _ ->
    try
      Some (elab_init loc env root ty ie)
    with
    | Exit -> None  (* error was already reported *)
    | Env.Error msg -> error loc "%s" (Env.error_message msg); None

(* Complete an array type with the size obtained from the initializer:
   "int x[] = { 1, 2, 3 }" becomes "int x[3] = ..." *)

let fixup_typ loc env ty init =
  match unroll env ty, init with
  | TArray(ty_elt, None, attr), Init_array il ->
      if il = [] then warning loc "array of size 0";
      TArray(ty_elt, Some(Int64.of_int(List.length il)), attr)
  | _ -> ty

(* Entry point *)

let elab_initializer loc env root ty ie =
  match elab_initial loc env root ty ie with
  | None ->
      (ty, None)
  | Some init ->
      (fixup_typ loc env ty init, Some init)

(* Handling of __func__ (section 6.4.2.2) *)

let __func__type_and_init s = 
  (TArray(TInt(IChar, [AConst]), Some(Int64.of_int (String.length s + 1)), []),
   init_char_array_string None s)


(* Elaboration of top-level and local definitions *)

let enter_typedefs loc env sto dl =
  if sto <> Storage_default then
    error loc "Non-default storage on 'typedef' definition";
  List.fold_left (fun env (s, ty, init) ->
    if init <> NO_INIT then
      error loc "initializer in typedef";
    if redef Env.lookup_typedef env s then
      error loc "redefinition of typedef '%s'" s;
    let (id, env') = Env.enter_typedef env s ty in
    emit_elab loc (Gtypedef(id, ty));
    env') env dl

let enter_or_refine_ident local loc env s sto ty =
  match previous_def Env.lookup_ident env s with
  | Some(id, II_ident(old_sto, old_ty))
    when sto = Storage_extern || Env.in_current_scope env id ->
      if local && Env.in_current_scope env id then
        error loc "redefinition of local variable '%s'" s;
      let new_ty =
        match combine_types env old_ty ty with
        | Some new_ty ->
            new_ty
        | None ->
            warning loc "redefinition of '%s' with incompatible type" s; ty in
      let new_sto =
        if old_sto = Storage_extern then sto else
        if sto = Storage_extern then old_sto else
        if old_sto = sto then sto else begin
          warning loc "redefinition of '%s' with incompatible storage class" s;
          sto
        end in
      (id, new_sto, Env.add_ident env id new_sto new_ty)
  | Some(id, II_enum v) when Env.in_current_scope env id ->
      error loc "illegal redefinition of enumerator '%s'" s;
      (id, sto, Env.add_ident env id sto ty)
  | _ ->
      let (id, env') = Env.enter_ident env s sto ty in (id, sto, env')

let enter_decdefs local loc env sto dl =
  (* Sanity checks on storage class *)
  if sto = Storage_register && not local then
    error loc "'register' on global declaration";
  if sto <> Storage_default && dl = [] then
    warning loc "Storage class specifier on empty declaration";
  let rec enter_decdef (decls, env) (s, ty, init) =
    if sto = Storage_extern && init <> NO_INIT then
      error loc "'extern' declaration cannot have an initializer";
    (* Adjust storage for function declarations *)
    let sto1 =
      match unroll env ty, sto with
      | TFun _, Storage_default -> 
          Storage_extern
      | TFun _, (Storage_static | Storage_register) ->
          if local then error loc "invalid storage class for '%s'" s;
          sto
      | _, _ ->
          sto in
    (* enter ident in environment with declared type, because
       initializer can refer to the ident *)
    let (id, sto', env1) = enter_or_refine_ident local loc env s sto1 ty in
    (* process the initializer *)
    let (ty', init') = elab_initializer loc env1 s ty init in
    (* update environment with refined type *)
    let env2 = Env.add_ident env1 id sto' ty' in
    (* check for incomplete type *)
    if local && sto' <> Storage_extern
             && not (is_function_type env ty')
             && wrap incomplete_type loc env ty' then
      error loc "'%s' has incomplete type" s;
    if local && sto' <> Storage_extern && sto' <> Storage_static then
      (* Local definition *)
      ((sto', id, ty', init') :: decls, env2)
    else begin
      (* Global definition *)
      emit_elab loc (Gdecl(sto', id, ty', init'));
      (decls, env2)
    end in
  let (decls, env') = List.fold_left enter_decdef ([], env) dl in
  (List.rev decls, env')

let elab_fundef env spec name body loc =
  let (s, sto, inline, ty, env1) = elab_name env spec name in
  if sto = Storage_register then
    error loc "a function definition cannot have 'register' storage class";
  (* Fix up the type.  We can have params = None but only for an
     old-style parameterless function "int f() {...}" *)
  let ty =
    match ty with
    | TFun(ty_ret, None, vararg, attr) -> TFun(ty_ret, Some [], vararg, attr)
    | _ -> ty in
  (* Extract info from type *)
  let (ty_ret, params, vararg, attr) =
    match ty with
    | TFun(ty_ret, Some params, vararg, attr) -> (ty_ret, params, vararg, attr)
    | _ -> fatal_error loc "wrong type for function definition" in
  (* Enter function in the environment, for recursive references *)
  let (fun_id, sto1, env1) = enter_or_refine_ident false loc env s sto ty in
  (* Enter parameters in the environment *)
  let env2 =
    List.fold_left (fun e (id, ty) -> Env.add_ident e id Storage_default ty)
                   (Env.new_scope env1) params in
  (* Define "__func__" and enter it in the environment *)
  let (func_ty, func_init) = __func__type_and_init s in
  let (func_id, _, env3) =
    enter_or_refine_ident true loc env2 "__func__" Storage_static func_ty in
  emit_elab loc (Gdecl(Storage_static, func_id, func_ty, Some func_init));
  (* Elaborate function body *)
  let body' = !elab_funbody_f ty_ret env3 body in
  (* Build and emit function definition *)
  let fn =
    { fd_storage = sto1;
      fd_inline = inline;
      fd_name = fun_id;
      fd_attrib = attr;
      fd_ret = ty_ret;
      fd_params = params;
      fd_vararg = vararg;
      fd_locals = [];
      fd_body = body' } in
  emit_elab loc (Gfundef fn);
  env1

let elab_kr_fundef env spec name params defs body loc =
  warning loc "Non-prototype, pre-standard function definition.@  Converting to prototype form";
  (* Check that the declarations only declare parameters *)
  let check_one_decl (Init_name(Name(s, dty, attrs, loc'), ie)) =
    if not (List.mem s params) then
      error loc' "Declaration of '%s' which is not a function parameter" s;
    if ie <> NO_INIT then
      error loc' "Illegal initialization of function parameter '%s'" s in
  let check_decl = function
  | DECDEF((spec', name_init_list), loc') ->
      List.iter check_one_decl name_init_list
  | d ->
      (* Should never be produced by the parser *)
      fatal_error (get_definitionloc d)
                  "Illegal declaration of function parameter" in
  List.iter check_decl defs;
  (* Convert old-style K&R function definition to modern prototyped form *)
  let rec convert_param param = function
  | [] ->
      (* Parameter is not declared, defaults to "int" in ISO C90,
         is an error in ISO C99.  Just emit a warning. *)
      warning loc "Type of '%s' defaults to 'int'" param;
      PARAM([SpecType Tint], Some param, JUSTBASE, [], loc)
  | DECDEF((spec', name_init_list), loc') :: defs ->
      let rec convert = function
        | [] -> convert_param param defs
        | Init_name(Name(s, dty, attrs, loc''), ie) :: l ->
            if s = param
            then PARAM(spec', Some param, dty, attrs, loc'')
            else convert l
      in convert name_init_list
  | _ ->
      assert false (* checked earlier *) in
  let params' =
    List.map (fun p -> convert_param p defs) params in
  let name' =
    let (Name(s, dty, attr, loc')) = name in
    Name(s, append_decltype dty (PROTO(JUSTBASE, (params', false))),
         attr, loc') in
  (* Elaborate the prototyped form *)
  elab_fundef env spec name' body loc

let rec elab_definition (local: bool) (env: Env.t) (def: Cabs.definition)
                    : decl list * Env.t =
  match def with
  (* "int f(int x) { ... }" *)
  | FUNDEF(spec, name, body, loc) ->
      if local then error loc "local definition of a function";
      let env1 = elab_fundef env spec name body loc in
      ([], env1)

  (* "int f(x, y) double y; { ... }" *)
  | KRFUNDEF(spec, name, params, defs, body, loc) ->
      if local then error loc "local definition of a function";
      let env1 = elab_kr_fundef env spec name params defs body loc in
      ([], env1)

  (* "int x = 12, y[10], *z" *)
  | DECDEF(init_name_group, loc) ->
      let ((dl, env1), sto, tydef) = 
        elab_init_name_group loc env init_name_group in
      if tydef then
        let env2 = enter_typedefs loc env1 sto dl
        in ([], env2)
      else
        enter_decdefs local loc env1 sto dl

  (* pragma *)
  | PRAGMA(s, loc) ->
      emit_elab loc (Gpragma s);
      ([], env)

and elab_definitions local env = function
  | [] -> ([], env)
  | d1 :: dl ->
      let (decl1, env1) = elab_definition local env d1 in
      let (decl2, env2) = elab_definitions local env1 dl in
      (decl1 @ decl2, env2)


(* Contexts for elaborating statements *)

module StringSet = Set.Make(String)

type stmt_context = {
  ctx_return_typ: typ;          (**r return type for the function *)
  ctx_labels: StringSet.t;      (**r all labels defined in the function *)
  ctx_break: bool;              (**r is 'break' allowed? *)
  ctx_continue: bool            (**r is 'continue' allowed? *)
}

let stmt_labels stmt =
  let lbls = ref StringSet.empty in
  let rec do_stmt = function
  | BLOCK(b, _) -> do_block b
  | If(_, s1, Some s2, _) -> do_stmt s1; do_stmt s2
  | If(_, s1, None, _) -> do_stmt s1
  | WHILE(_, s1, _) -> do_stmt s1
  | DOWHILE(_, s1, _) -> do_stmt s1
  | FOR(_, _, _, s1, _) -> do_stmt s1
  | SWITCH(_, s1, _) -> do_stmt s1
  | CASE(_, s1, _) -> do_stmt s1
  | DEFAULT(s1, _) -> do_stmt s1
  | LABEL(lbl, s1, loc) ->
      if StringSet.mem lbl !lbls then
        error loc "multiply-defined label '%s'\n" lbl;
      lbls := StringSet.add lbl !lbls;
      do_stmt s1
  | _ -> ()
  and do_block b = List.iter do_stmt b
  in do_stmt stmt; !lbls

let ctx_loop ctx = { ctx with ctx_break = true; ctx_continue = true }

let ctx_switch ctx = { ctx with ctx_break = true }

(* Elaboration of statements *)

let rec elab_stmt env ctx s =

  match s with

(* 6.8.3 Expression statements *)

  | COMPUTATION(a, loc) ->
      { sdesc = Sdo (elab_expr loc env a); sloc = elab_loc loc }

(* 6.8.1 Labeled statements *)

  | LABEL(lbl, s1, loc) ->
      { sdesc = Slabeled(Slabel lbl, elab_stmt env ctx s1); sloc = elab_loc loc }

  | CASE(a, s1, loc) ->
      let a' = elab_expr loc env a in
      begin match Ceval.integer_expr env a' with
        | None ->
            error loc "argument of 'case' must be an integer compile-time constant"
        | Some n -> ()
      end;
      { sdesc = Slabeled(Scase a', elab_stmt env ctx s1); sloc = elab_loc loc }

  | DEFAULT(s1, loc) ->
      { sdesc = Slabeled(Sdefault, elab_stmt env ctx s1); sloc = elab_loc loc }

(* 6.8.2 Compound statements *)

  | BLOCK(b, loc) ->
      elab_block loc env ctx b

(* 6.8.4 Conditional statements *)

  | If(a, s1, s2, loc) ->
      let a' = elab_expr loc env a in
      if not (is_scalar_type env a'.etyp) then
        error loc "the condition of 'if' does not have scalar type";
      let s1' = elab_stmt env ctx s1 in
      let s2' = 
        match s2 with
          | None -> sskip
          | Some s2 -> elab_stmt env ctx s2
      in
      { sdesc = Sif(a', s1', s2'); sloc = elab_loc loc }

(* 6.8.5 Iterative statements *)

  | WHILE(a, s1, loc) ->
      let a' = elab_expr loc env a in
      if not (is_scalar_type env a'.etyp) then
        error loc "the condition of 'while' does not have scalar type";
      let s1' = elab_stmt env (ctx_loop ctx) s1 in
      { sdesc = Swhile(a', s1'); sloc = elab_loc loc }

  | DOWHILE(a, s1, loc) ->
      let s1' = elab_stmt env (ctx_loop ctx) s1 in
      let a' = elab_expr loc env a in
      if not (is_scalar_type env a'.etyp) then
        error loc "the condition of 'while' does not have scalar type";
      { sdesc = Sdowhile(s1', a'); sloc = elab_loc loc }

  | FOR(fc, a2, a3, s1, loc) ->
      let (a1', env', decls') =
        match fc with
        | Some (FC_EXP a1) ->
            (elab_for_expr loc env (Some a1), env, None)
        | None ->
            (elab_for_expr loc env None, env, None)
        | Some (FC_DECL def) ->
            let (dcl, env') = elab_definition true (Env.new_scope env) def in
            let loc = elab_loc (get_definitionloc def) in
            (sskip, env', 
             Some(List.map (fun d -> {sdesc = Sdecl d; sloc = loc}) dcl)) in
      let a2' =
        match a2 with
          | None -> intconst 1L IInt
          | Some a2 -> elab_expr loc env' a2 
      in
      if not (is_scalar_type env' a2'.etyp) then
        error loc "the condition of 'for' does not have scalar type";
      let a3' = elab_for_expr loc env' a3 in
      let s1' = elab_stmt env' (ctx_loop ctx) s1 in
      let sfor = { sdesc = Sfor(a1', a2', a3', s1'); sloc = elab_loc loc } in
      begin match decls' with
      | None -> sfor
      | Some sl -> { sdesc = Sblock (sl @ [sfor]); sloc = elab_loc loc }
      end

(* 6.8.4 Switch statement *)
  | SWITCH(a, s1, loc) ->
      let a' = elab_expr loc env a in
      if not (is_integer_type env a'.etyp) then
        error loc "the argument of 'switch' is not an integer";
      let s1' = elab_stmt env (ctx_switch ctx) s1 in
      { sdesc = Sswitch(a', s1'); sloc = elab_loc loc }

(* 6.8.6 Break and continue statements *)
  | BREAK loc ->
      if not ctx.ctx_break then
        error loc "'break' outside of a loop or a 'switch'";
      { sdesc = Sbreak; sloc = elab_loc loc }
  | CONTINUE loc ->
      if not ctx.ctx_continue then
        error loc "'continue' outside of a loop";
      { sdesc = Scontinue; sloc = elab_loc loc }

(* 6.8.6 Return statements *)
  | RETURN(a, loc) ->
      let a' = elab_opt_expr loc env a in
      begin match (unroll env ctx.ctx_return_typ, a') with
      | TVoid _, None -> ()
      | TVoid _, Some _ ->
          error loc
            "'return' with a value in a function of return type 'void'"
      | _, None ->
          warning loc
            "'return' without a value in a function of return type@ %a"
            Cprint.typ ctx.ctx_return_typ
      | _, Some b ->
          if not (valid_assignment env b ctx.ctx_return_typ) then begin
            if valid_cast env b.etyp ctx.ctx_return_typ then
              warning loc
                "return value has type@ %a@ \
                 instead of the expected type@ %a"
                Cprint.typ b.etyp Cprint.typ ctx.ctx_return_typ
            else
              error loc
                "return value has type@ %a@ \
                 instead of the expected type@ %a"
                Cprint.typ b.etyp Cprint.typ ctx.ctx_return_typ
          end
      end;
      { sdesc = Sreturn a'; sloc = elab_loc loc }

(* 6.8.6 Goto statements *)
  | GOTO(lbl, loc) ->
      if not (StringSet.mem lbl ctx.ctx_labels) then
        error loc "unknown 'goto' label %s" lbl;
      { sdesc = Sgoto lbl; sloc = elab_loc loc }

(* 6.8.3 Null statements *)
  | NOP loc ->
      { sdesc = Sskip; sloc = elab_loc loc }

(* Traditional extensions *)
  | ASM(wide, chars, loc) ->
      begin match elab_string_literal loc wide chars with
      | CStr s ->
          { sdesc = Sasm s; sloc = elab_loc loc }
      | _ ->
          error loc "wide strings not supported in asm statement";
          sskip
      end

(* Unsupported *)
  | DEFINITION def ->
      error (get_definitionloc def) "ill-placed definition";
      sskip

and elab_block loc env ctx b =
  let b' = elab_block_body (Env.new_scope env) ctx b in
  { sdesc = Sblock b'; sloc = elab_loc loc }

and elab_block_body env ctx sl =
  match sl with
  | [] ->
      []
  | DEFINITION def :: sl1 ->
      let (dcl, env') = elab_definition true env def in
      let loc = elab_loc (get_definitionloc def) in
      List.map (fun d -> {sdesc = Sdecl d; sloc = loc}) dcl
      @ elab_block_body env' ctx sl1
  | s :: sl1 ->
      let s' = elab_stmt env ctx s in
      s' :: elab_block_body env ctx sl1

(* Elaboration of a function body.  Return the corresponding C statement. *)

let elab_funbody return_typ env b =
  let ctx =
    { ctx_return_typ = return_typ;
      ctx_labels = stmt_labels b;
      ctx_break = false;
      ctx_continue = false } in
  elab_stmt env ctx b

(* Filling in forward declaration *)
let _ = elab_funbody_f := elab_funbody


(** * Entry point *)

let elab_file prog =
  reset();
  ignore (elab_definitions false (Builtins.environment()) prog);
  elaborated_program()
(*
  let rec inf = Datatypes.S inf in
  let ast:Cabs.definition list =
    Obj.magic
      (match Parser.translation_unit_file inf (Lexer.tokens_stream lb) with
         | Parser.Parser.Inter.Fail_pr ->
             (* Theoretically impossible : implies inconsistencies
                between grammars. *)
             Cerrors.fatal_error "Internal error while parsing"
         | Parser.Parser.Inter.Timeout_pr -> assert false
         | Parser.Parser.Inter.Parsed_pr (ast, _ ) -> ast)
  in
  reset();
  ignore (elab_definitions false (Builtins.environment()) ast);
  elaborated_program()
*)