1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
|
(* *********************************************************************)
(* *)
(* The Compcert verified compiler *)
(* *)
(* Xavier Leroy, INRIA Paris-Rocquencourt *)
(* *)
(* Copyright Institut National de Recherche en Informatique et en *)
(* Automatique. All rights reserved. This file is distributed *)
(* under the terms of the GNU General Public License as published by *)
(* the Free Software Foundation, either version 2 of the License, or *)
(* (at your option) any later version. This file is also distributed *)
(* under the terms of the INRIA Non-Commercial License Agreement. *)
(* *)
(* *********************************************************************)
(* Operations on C types and abstract syntax *)
open Printf
open Cerrors
open C
open Env
open Machine
(* Set and Map structures over identifiers *)
module Ident = struct
type t = ident
let compare id1 id2 = Pervasives.compare id1.stamp id2.stamp
end
module IdentSet = Set.Make(Ident)
module IdentMap = Map.Make(Ident)
(* Operations on attributes *)
(* Lists of attributes are kept sorted in increasing order *)
let rec add_attributes (al1: attributes) (al2: attributes) =
match al1, al2 with
| [], _ -> al2
| _, [] -> al1
| a1 :: al1', a2 :: al2' ->
if a1 < a2 then a1 :: add_attributes al1' al2
else if a1 > a2 then a2 :: add_attributes al1 al2'
else a1 :: add_attributes al1' al2'
let rec remove_attributes (al1: attributes) (al2: attributes) =
(* viewed as sets: al1 \ al2 *)
match al1, al2 with
| [], _ -> []
| _, [] -> al1
| a1 :: al1', a2 :: al2' ->
if a1 < a2 then a1 :: remove_attributes al1' al2
else if a1 > a2 then remove_attributes al1 al2'
else remove_attributes al1' al2'
let rec incl_attributes (al1: attributes) (al2: attributes) =
match al1, al2 with
| [], _ -> true
| _ :: _, [] -> false
| a1 :: al1', a2 :: al2' ->
if a1 < a2 then false
else if a1 > a2 then incl_attributes al1 al2'
else incl_attributes al1' al2'
let rec find_custom_attributes (names: string list) (al: attributes) =
match al with
| [] -> []
| Attr(name, args) :: tl when List.mem name names ->
args :: find_custom_attributes names tl
| _ :: tl ->
find_custom_attributes names tl
(* Adding top-level attributes to a type. Doesn't need to unroll defns. *)
(* Array types cannot carry attributes, so add them to the element type. *)
let rec add_attributes_type attr t =
match t with
| TVoid a -> TVoid (add_attributes attr a)
| TInt(ik, a) -> TInt(ik, add_attributes attr a)
| TFloat(fk, a) -> TFloat(fk, add_attributes attr a)
| TPtr(ty, a) -> TPtr(ty, add_attributes attr a)
| TArray(ty, sz, a) -> TArray(add_attributes_type attr ty, sz, a)
| TFun(ty, params, vararg, a) -> TFun(ty, params, vararg, add_attributes attr
a)
| TNamed(s, a) -> TNamed(s, add_attributes attr a)
| TStruct(s, a) -> TStruct(s, add_attributes attr a)
| TUnion(s, a) -> TUnion(s, add_attributes attr a)
(* Unrolling of typedef *)
let rec unroll env t =
match t with
| TNamed(name, attr) ->
let ty = Env.find_typedef env name in
unroll env (add_attributes_type attr ty)
| _ -> t
(* Extracting the attributes of a type *)
let rec attributes_of_type env t =
match t with
| TVoid a -> a
| TInt(ik, a) -> a
| TFloat(fk, a) -> a
| TPtr(ty, a) -> a
| TArray(ty, sz, a) -> add_attributes a (attributes_of_type env ty)
| TFun(ty, params, vararg, a) -> a
| TNamed(s, a) -> attributes_of_type env (unroll env t)
| TStruct(s, a) ->
let ci = Env.find_struct env s in add_attributes ci.ci_attr a
| TUnion(s, a) ->
let ci = Env.find_union env s in add_attributes ci.ci_attr a
(* Changing the attributes of a type (at top-level) *)
(* Same hack as above for array types. *)
let rec change_attributes_type env (f: attributes -> attributes) t =
match t with
| TVoid a -> TVoid (f a)
| TInt(ik, a) -> TInt(ik, f a)
| TFloat(fk, a) -> TFloat(fk, f a)
| TPtr(ty, a) -> TPtr(ty, f a)
| TArray(ty, sz, a) ->
TArray(change_attributes_type env f ty, sz, a)
| TFun(ty, params, vararg, a) -> TFun(ty, params, vararg, f a)
| TNamed(s, a) ->
let t1 = unroll env t in
let t2 = change_attributes_type env f t1 in
if t2 = t1 then t else t2 (* avoid useless expansion *)
| TStruct(s, a) -> TStruct(s, f a)
| TUnion(s, a) -> TUnion(s, f a)
let remove_attributes_type env attr t =
change_attributes_type env (fun a -> remove_attributes a attr) t
let erase_attributes_type env t =
change_attributes_type env (fun a -> []) t
(* Type compatibility *)
exception Incompat
let combine_types ?(noattrs = false) env t1 t2 =
let comp_attr a1 a2 =
if a1 = a2 then a2
else if noattrs then add_attributes a1 a2
else raise Incompat
and comp_base x1 x2 =
if x1 = x2 then x2 else raise Incompat
and comp_array_size sz1 sz2 =
match sz1, sz2 with
| None, _ -> sz2
| _, None -> sz1
| Some n1, Some n2 -> if n1 = n2 then Some n2 else raise Incompat
and comp_conv (id, ty) =
match unroll env ty with
| TInt(kind, attr) ->
begin match kind with
| IBool | IChar | ISChar | IUChar | IShort | IUShort -> raise Incompat
| _ -> ()
end
| TFloat(kind, attr) ->
begin match kind with
| FFloat -> raise Incompat
| _ -> ()
end
| _ -> () in
let rec comp t1 t2 =
match t1, t2 with
| TVoid a1, TVoid a2 ->
TVoid(comp_attr a1 a2)
| TInt(ik1, a1), TInt(ik2, a2) ->
TInt(comp_base ik1 ik2, comp_attr a1 a2)
| TFloat(fk1, a1), TFloat(fk2, a2) ->
TFloat(comp_base fk1 fk2, comp_attr a1 a2)
| TPtr(ty1, a1), TPtr(ty2, a2) ->
TPtr(comp ty1 ty2, comp_attr a1 a2)
| TArray(ty1, sz1, a1), TArray(ty2, sz2, a2) ->
TArray(comp ty1 ty2, comp_array_size sz1 sz2, comp_attr a1 a2)
| TFun(ty1, params1, vararg1, a1), TFun(ty2, params2, vararg2, a2) ->
let (params, vararg) =
match params1, params2 with
| None, None -> None, false
| None, Some l2 -> List.iter comp_conv l2; (params2, vararg2)
| Some l1, None -> List.iter comp_conv l1; (params1, vararg1)
| Some l1, Some l2 ->
if List.length l1 <> List.length l2 then raise Incompat;
(Some(List.map2 (fun (id1, ty1) (id2, ty2) -> (id2, comp ty1 ty2))
l1 l2),
comp_base vararg1 vararg2)
in
TFun(comp ty1 ty2, params, vararg, comp_attr a1 a2)
| TNamed _, _ -> comp (unroll env t1) t2
| _, TNamed _ -> comp t1 (unroll env t2)
| TStruct(s1, a1), TStruct(s2, a2) ->
TStruct(comp_base s1 s2, comp_attr a1 a2)
| TUnion(s1, a1), TUnion(s2, a2) ->
TUnion(comp_base s1 s2, comp_attr a1 a2)
| _, _ ->
raise Incompat
in try Some(comp t1 t2) with Incompat -> None
let compatible_types ?noattrs env t1 t2 =
match combine_types ?noattrs env t1 t2 with Some _ -> true | None -> false
(* Naive placement algorithm for bit fields, might not match that
of the compiler. *)
let pack_bitfields ml =
let rec pack nbits = function
| [] ->
(nbits, [])
| m :: ms as ml ->
match m.fld_bitfield with
| None -> (nbits, ml)
| Some n ->
if n = 0 then
(nbits, ms) (* bit width 0 means end of pack *)
else if nbits + n > 8 * !config.sizeof_int then
(nbits, ml) (* doesn't fit in current word *)
else
pack (nbits + n) ms (* add to current word *)
in
let (nbits, ml') = pack 0 ml in
let (sz, al) =
(* A lone bitfield of width 0 consumes no space and aligns to 1 *)
if nbits = 0 then (0, 1) else
if nbits <= 8 then (1, 1) else
if nbits <= 16 then (2, 2) else
if nbits <= 32 then (4, 4) else
if nbits <= 64 then (8, 8) else assert false in
(sz, al, ml')
(* Natural alignment, in bytes *)
let alignof_ikind = function
| IBool | IChar | ISChar | IUChar -> 1
| IInt | IUInt -> !config.alignof_int
| IShort | IUShort -> !config.alignof_short
| ILong | IULong -> !config.alignof_long
| ILongLong | IULongLong -> !config.alignof_longlong
let alignof_fkind = function
| FFloat -> !config.alignof_float
| FDouble -> !config.alignof_double
| FLongDouble -> !config.alignof_longdouble
(* Return natural alignment of given type, or None if the type is incomplete *)
let rec alignof env t =
match t with
| TVoid _ -> !config.alignof_void
| TInt(ik, _) -> Some(alignof_ikind ik)
| TFloat(fk, _) -> Some(alignof_fkind fk)
| TPtr(_, _) -> Some(!config.alignof_ptr)
| TArray(ty, _, _) -> alignof env ty
| TFun(_, _, _, _) -> !config.alignof_fun
| TNamed(_, _) -> alignof env (unroll env t)
| TStruct(name, _) ->
let ci = Env.find_struct env name in ci.ci_alignof
| TUnion(name, _) ->
let ci = Env.find_union env name in ci.ci_alignof
(* Compute the natural alignment of a struct or union. *)
let alignof_struct_union env members =
let rec align_rec al = function
| [] -> Some al
| m :: rem as ml ->
if m.fld_bitfield = None then begin
match alignof env m.fld_typ with
| None -> None
| Some a -> align_rec (max a al) rem
end else begin
let (s, a, ml') = pack_bitfields ml in
align_rec (max a al) ml'
end
in align_rec 1 members
let align x boundary =
(* boundary must be a power of 2 *)
(x + boundary - 1) land (lnot (boundary - 1))
(* Size of, in bytes *)
let sizeof_ikind = function
| IBool | IChar | ISChar | IUChar -> 1
| IInt | IUInt -> !config.sizeof_int
| IShort | IUShort -> !config.sizeof_short
| ILong | IULong -> !config.sizeof_long
| ILongLong | IULongLong -> !config.sizeof_longlong
let sizeof_fkind = function
| FFloat -> !config.sizeof_float
| FDouble -> !config.sizeof_double
| FLongDouble -> !config.sizeof_longdouble
(* Overflow-avoiding multiplication of an int64 and an int, with
result in type int. *)
let cautious_mul (a: int64) (b: int) =
if b = 0 || a <= Int64.of_int (max_int / b)
then Some(Int64.to_int a * b)
else None
(* Return size of type, in bytes, or [None] if the type is incomplete *)
let rec sizeof env t =
match t with
| TVoid _ -> !config.sizeof_void
| TInt(ik, _) -> Some(sizeof_ikind ik)
| TFloat(fk, _) -> Some(sizeof_fkind fk)
| TPtr(_, _) -> Some(!config.sizeof_ptr)
| TArray(ty, None, _) -> None
| TArray(ty, Some n, _) as t' ->
begin match sizeof env ty with
| None -> None
| Some s ->
match cautious_mul n s with
| Some sz -> Some sz
| None -> error "sizeof(%a) overflows" Cprint.typ t'; Some 1
end
| TFun(_, _, _, _) -> !config.sizeof_fun
| TNamed(_, _) -> sizeof env (unroll env t)
| TStruct(name, _) ->
let ci = Env.find_struct env name in ci.ci_sizeof
| TUnion(name, _) ->
let ci = Env.find_union env name in ci.ci_sizeof
(* Compute the size of a union.
It is the size is the max of the sizes of fields, rounded up to the
natural alignment. *)
let sizeof_union env members =
let rec sizeof_rec sz = function
| [] ->
begin match alignof_struct_union env members with
| None -> None (* should not happen? *)
| Some al -> Some (align sz al)
end
| m :: rem ->
begin match sizeof env m.fld_typ with
| None -> None
| Some s -> sizeof_rec (max sz s) rem
end
in sizeof_rec 0 members
(* Compute the size of a struct.
We lay out fields consecutively, inserting padding to preserve
their natural alignment. *)
let sizeof_struct env members =
let rec sizeof_rec ofs = function
| [] | [ { fld_typ = TArray(_, None, _) } ] ->
(* C99: ty[] allowed as last field *)
begin match alignof_struct_union env members with
| None -> None (* should not happen? *)
| Some al -> Some (align ofs al)
end
| m :: rem as ml ->
if m.fld_bitfield = None then begin
match alignof env m.fld_typ, sizeof env m.fld_typ with
| Some a, Some s -> sizeof_rec (align ofs a + s) rem
| _, _ -> None
end else begin
let (s, a, ml') = pack_bitfields ml in
sizeof_rec (align ofs a + s) ml'
end
in sizeof_rec 0 members
(* Determine whether a type is incomplete *)
let incomplete_type env t =
match sizeof env t with None -> true | Some _ -> false
(* Computing composite_info records *)
let composite_info_decl env su attr =
{ ci_kind = su; ci_members = [];
ci_alignof = None; ci_sizeof = None;
ci_attr = attr }
let composite_info_def env su attr m =
{ ci_kind = su; ci_members = m;
ci_alignof = alignof_struct_union env m;
ci_sizeof =
begin match su with
| Struct -> sizeof_struct env m
| Union -> sizeof_union env m
end;
ci_attr = attr }
(* Type of a function definition *)
let fundef_typ fd =
TFun(fd.fd_ret, Some fd.fd_params, fd.fd_vararg, [])
(* Signedness of integer kinds *)
let is_signed_ikind = function
| IBool -> false
| IChar -> !config.char_signed
| ISChar -> true
| IUChar -> false
| IInt -> true
| IUInt -> false
| IShort -> true
| IUShort -> false
| ILong -> true
| IULong -> false
| ILongLong -> true
| IULongLong -> false
(* Conversion to unsigned ikind *)
let unsigned_ikind_of = function
| IBool -> IBool
| IChar | ISChar | IUChar -> IUChar
| IInt | IUInt -> IUInt
| IShort | IUShort -> IUShort
| ILong | IULong -> IULong
| ILongLong | IULongLong -> IULongLong
(* Conversion to signed ikind *)
let signed_ikind_of = function
| IBool -> IBool
| IChar | ISChar | IUChar -> ISChar
| IInt | IUInt -> IInt
| IShort | IUShort -> IShort
| ILong | IULong -> ILong
| ILongLong | IULongLong -> ILongLong
(* Some classification functions over types *)
let is_void_type env t =
match unroll env t with
| TVoid _ -> true
| _ -> false
let is_integer_type env t =
match unroll env t with
| TInt(_, _) -> true
| _ -> false
let is_arith_type env t =
match unroll env t with
| TInt(_, _) -> true
| TFloat(_, _) -> true
| _ -> false
let is_pointer_type env t =
match unroll env t with
| TPtr _ -> true
| _ -> false
let is_scalar_type env t =
match unroll env t with
| TInt(_, _) -> true
| TFloat(_, _) -> true
| TPtr _ -> true
| TArray _ -> true (* assume implicit decay *)
| TFun _ -> true (* assume implicit decay *)
| _ -> false
let is_composite_type env t =
match unroll env t with
| TStruct _ | TUnion _ -> true
| _ -> false
let is_function_type env t =
match unroll env t with
| TFun _ -> true
| _ -> false
(* Ranking of integer kinds *)
let integer_rank = function
| IBool -> 1
| IChar | ISChar | IUChar -> 2
| IShort | IUShort -> 3
| IInt | IUInt -> 4
| ILong | IULong -> 5
| ILongLong | IULongLong -> 6
(* Ranking of float kinds *)
let float_rank = function
| FFloat -> 1
| FDouble -> 2
| FLongDouble -> 3
(* Array and function types "decay" to pointer types in many cases *)
let pointer_decay env t =
match unroll env t with
| TArray(ty, _, _) -> TPtr(ty, [])
| TFun _ as ty -> TPtr(ty, [])
| t -> t
(* The usual unary conversions (H&S 6.3.3) *)
let unary_conversion env t =
match unroll env t with
(* Promotion of small integer types *)
| TInt(kind, attr) ->
begin match kind with
| IBool | IChar | ISChar | IUChar | IShort | IUShort ->
TInt(IInt, attr)
| IInt | IUInt | ILong | IULong | ILongLong | IULongLong ->
TInt(kind, attr)
end
(* Arrays and functions decay automatically to pointers *)
| TArray(ty, _, _) -> TPtr(ty, [])
| TFun _ as ty -> TPtr(ty, [])
(* Other types are not changed *)
| t -> t
(* The usual binary conversions (H&S 6.3.4).
Applies only to arithmetic types.
Return the type to which both sides are to be converted. *)
let binary_conversion env t1 t2 =
let t1 = unary_conversion env t1 in
let t2 = unary_conversion env t2 in
match unroll env t1, unroll env t2 with
| TFloat(FLongDouble, _), (TInt _ | TFloat _) -> t1
| (TInt _ | TFloat _), TFloat(FLongDouble, _) -> t2
| TFloat(FDouble, _), (TInt _ | TFloat _) -> t1
| (TInt _ | TFloat _), TFloat(FDouble, _) -> t2
| TFloat(FFloat, _), (TInt _ | TFloat _) -> t1
| (TInt _), TFloat(FFloat, _) -> t2
| TInt(k1, _), TInt(k2, _) ->
if k1 = k2 then t1 else begin
match is_signed_ikind k1, is_signed_ikind k2 with
| true, true | false, false ->
(* take the bigger of the two types *)
if integer_rank k1 >= integer_rank k2 then t1 else t2
| false, true ->
(* if rank (unsigned type) >= rank (signed type),
take the unsigned type *)
if integer_rank k1 >= integer_rank k2 then t1
(* if rank (unsigned type) < rank (signed type)
and all values of the unsigned type can be represented
in the signed type, take the signed type *)
else if sizeof_ikind k2 > sizeof_ikind k1 then t2
(* if rank (unsigned type) < rank (signed type)
and some values of the unsigned type cannot be represented
in the signed type,
take the unsigned type corresponding to the signed type *)
else TInt(unsigned_ikind_of k2, [])
| true, false ->
if integer_rank k2 >= integer_rank k1 then t2
else if sizeof_ikind k1 > sizeof_ikind k2 then t1
else TInt(unsigned_ikind_of k1, [])
end
| _, _ -> assert false
(* Conversion on function arguments (with protoypes) *)
let argument_conversion env t =
(* Arrays and functions degrade automatically to pointers *)
(* Other types are not changed *)
match unroll env t with
| TArray(ty, _, _) -> TPtr(ty, [])
| TFun _ as ty -> TPtr(ty, [])
| _ -> t (* preserve typedefs *)
(* Conversion on function arguments (old-style unprototyped, or vararg *)
(* H&S 6.3.5 *)
let default_argument_conversion env t =
match unary_conversion env t with
| TFloat(FFloat, attr) -> TFloat(FDouble, attr)
| t' -> t'
(** Is the type Tptr(ty, a) appropriate for pointer arithmetic? *)
let pointer_arithmetic_ok env ty =
match unroll env ty with
| TVoid _ | TFun _ -> false
| _ -> not (incomplete_type env ty)
(** The type of [x.fld]. Normally, it's the type of the field [fld],
but if it is an unsigned bitfield of size < length of its type,
its type is the corresponding signed int. *)
let type_of_member env fld =
match fld.fld_bitfield with
| None -> fld.fld_typ
| Some w ->
match unroll env fld.fld_typ with
| TInt(ik, attr) ->
if w < sizeof_ikind ik * 8
then TInt(signed_ikind_of ik, attr)
else fld.fld_typ
| _ ->
assert false
(** Special types *)
let find_matching_unsigned_ikind sz =
if sz = !config.sizeof_int then IUInt
else if sz = !config.sizeof_long then IULong
else if sz = !config.sizeof_longlong then IULongLong
else assert false
let find_matching_signed_ikind sz =
if sz = !config.sizeof_int then IInt
else if sz = !config.sizeof_long then ILong
else if sz = !config.sizeof_longlong then ILongLong
else assert false
let wchar_ikind = find_matching_unsigned_ikind !config.sizeof_wchar
let size_t_ikind = find_matching_unsigned_ikind !config.sizeof_size_t
let ptr_t_ikind = find_matching_unsigned_ikind !config.sizeof_ptr
let ptrdiff_t_ikind = find_matching_signed_ikind !config.sizeof_ptrdiff_t
let enum_ikind = IInt
(** The type of a constant *)
let type_of_constant = function
| CInt(_, ik, _) -> TInt(ik, [])
| CFloat(_, fk, _) -> TFloat(fk, [])
| CStr _ -> TPtr(TInt(IChar, []), []) (* XXX or array? const? *)
| CWStr _ -> TPtr(TInt(wchar_ikind, []), []) (* XXX or array? const? *)
| CEnum(_, _) -> TInt(IInt, [])
(* Check that a C expression is a lvalue *)
let rec is_lvalue e =
match e.edesc with
| EVar id -> true
| EUnop((Oderef | Oarrow _), _) -> true
| EUnop(Odot _, e') -> is_lvalue e'
| EBinop(Oindex, _, _, _) -> true
| _ -> false
(* Check that a C expression is a modifiable l-value: an l-value
whose type is not const, neither an array type, nor a function type,
nor an incomplete type. *)
let is_modifiable_lvalue env e =
is_lvalue e
&& not (List.mem AConst (attributes_of_type env e.etyp))
&& not (incomplete_type env e.etyp)
&& begin match unroll env e.etyp with
| TFun _ | TArray _ -> false
| _ -> true
end
(* Check that a C expression is the literal "0", which can be used
as a pointer. *)
let is_literal_0 e =
match e.edesc with
| EConst(CInt(0L, _, _)) -> true
| _ -> false
(* Assignment compatibility check over attributes.
Standard attributes ("const", "volatile", "restrict") can safely
be added (to the rhs type to get the lhs type) but must not be dropped.
Custom attributes can safely be dropped but must not be added. *)
let valid_assignment_attr afrom ato =
let is_covariant = function Attr _ -> false | _ -> true in
let (afrom1, afrom2) = List.partition is_covariant afrom
and (ato1, ato2) = List.partition is_covariant ato in
incl_attributes afrom1 ato1 && incl_attributes ato2 afrom2
(* Check that an assignment is allowed *)
let valid_assignment env from tto =
match pointer_decay env from.etyp, pointer_decay env tto with
| (TInt _ | TFloat _), (TInt _ | TFloat _) -> true
| TInt _, TPtr _ -> is_literal_0 from
| TPtr(ty, _), TPtr(ty', _) ->
valid_assignment_attr (attributes_of_type env ty)
(attributes_of_type env ty')
&& (is_void_type env ty || is_void_type env ty'
|| compatible_types env
(erase_attributes_type env ty)
(erase_attributes_type env ty'))
| TStruct(s, _), TStruct(s', _) -> s = s'
| TUnion(s, _), TUnion(s', _) -> s = s'
| _, _ -> false
(* Check that a cast is allowed *)
let valid_cast env tfrom tto =
compatible_types ~noattrs:true env tfrom tto ||
begin match unroll env tfrom, unroll env tto with
| _, TVoid _ -> true
(* from any int-or-pointer (with array and functions decaying to pointers)
to any int-or-pointer *)
| (TInt _ | TPtr _ | TArray _ | TFun _), (TInt _ | TPtr _) -> true
(* between int and float types *)
| (TInt _ | TFloat _), (TInt _ | TFloat _) -> true
| _, _ -> false
end
(* Construct an integer constant *)
let intconst v ik =
{ edesc = EConst(CInt(v, ik, "")); etyp = TInt(ik, []) }
(* Construct a float constant *)
let floatconst v fk =
{ edesc = EConst(CFloat(v, fk, "")); etyp = TFloat(fk, []) }
(* Construct the literal "0" with void * type *)
let nullconst =
{ edesc = EConst(CInt(0L, ptr_t_ikind, "0")); etyp = TPtr(TVoid [], []) }
(* Construct a cast expression *)
let ecast ty e = { edesc = ECast(ty, e); etyp = ty }
(* Construct an assignment expression *)
let eassign e1 e2 = { edesc = EBinop(Oassign, e1, e2, e1.etyp); etyp = e1.etyp }
(* Construct a "," expression *)
let ecomma e1 e2 = { edesc = EBinop(Ocomma, e1, e2, e2.etyp); etyp = e2.etyp }
(* Construct an address-of expression. Can be applied not just to
an l-value but also to a sequence or a conditional of l-values. *)
let rec eaddrof e =
match e.edesc with
| EUnop(Oderef, e1) -> e1
| EBinop(Ocomma, e1, e2, _) -> ecomma e1 (eaddrof e2)
| EConditional(e1, e2, e3) ->
{ edesc = EConditional(e1, eaddrof e2, eaddrof e3); etyp = TPtr(e.etyp, []) }
| _ -> { edesc = EUnop(Oaddrof, e); etyp = TPtr(e.etyp, []) }
(* Construct a sequence *)
let sseq loc s1 s2 =
match s1.sdesc, s2.sdesc with
| Sskip, _ -> s2
| _, Sskip -> s1
| _, Sblock sl -> { sdesc = Sblock(s1 :: sl); sloc = loc }
| _, _ -> { sdesc = Sseq(s1, s2); sloc = loc }
(* Construct an assignment statement *)
let sassign loc lv rv =
{ sdesc = Sdo (eassign lv rv); sloc = loc }
(* Empty location *)
let no_loc = ("", -1)
(* Dummy skip statement *)
let sskip = { sdesc = Sskip; sloc = no_loc }
(* Print a location *)
let printloc oc (filename, lineno) =
if filename <> "" then Printf.fprintf oc "%s:%d: " filename lineno
(* Format a location *)
let formatloc pp (filename, lineno) =
if filename <> "" then Format.fprintf pp "%s:%d: " filename lineno
|