1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
|
(* *********************************************************************)
(* *)
(* The Compcert verified compiler *)
(* *)
(* Xavier Leroy, INRIA Paris-Rocquencourt *)
(* *)
(* Copyright Institut National de Recherche en Informatique et en *)
(* Automatique. All rights reserved. This file is distributed *)
(* under the terms of the GNU General Public License as published by *)
(* the Free Software Foundation, either version 2 of the License, or *)
(* (at your option) any later version. This file is also distributed *)
(* under the terms of the INRIA Non-Commercial License Agreement. *)
(* *)
(* *********************************************************************)
(* Elimination of bit fields in structs *)
(* Assumes: unblocked code.
Preserves: unblocked code. *)
open Printf
open Machine
open C
open Cutil
open Transform
(* Info associated to each bitfield *)
type bitfield_info =
{ bf_carrier: string; (* name of underlying regular field *)
bf_carrier_typ: typ; (* type of underlying regular field *)
bf_pos: int; (* start bit *)
bf_size: int; (* size in bit *)
bf_signed: bool; (* is field signed or unsigned? *)
bf_signed_res: bool (* is result of extracting field signed or unsigned? *)
}
(* invariants:
0 <= pos < bitsizeof(int)
0 < sz <= bitsizeof(int)
0 < pos + sz <= bitsizeof(int)
*)
(* Mapping (struct identifier, bitfield name) -> bitfield info *)
let bitfield_table =
(Hashtbl.create 57: (ident * string, bitfield_info) Hashtbl.t)
(* Signedness issues *)
let unsigned_ikind_for_carrier nbits =
if nbits <= 8 then IUChar else
if nbits <= 8 * !config.sizeof_short then IUShort else
if nbits <= 8 * !config.sizeof_int then IUInt else
if nbits <= 8 * !config.sizeof_long then IULong else
if nbits <= 8 * !config.sizeof_longlong then IULongLong else
assert false
let fits_unsigned v n =
v >= 0L && v < Int64.shift_left 1L n
let fits_signed v n =
let p = Int64.shift_left 1L (n-1) in v >= Int64.neg p && v < p
let is_signed_enum_bitfield env sid fld eid n =
let info = Env.find_enum env eid in
if List.for_all (fun (_, v, _) -> int_representable v n false) info.Env.ei_members
then false
else if List.for_all (fun (_, v, _) -> int_representable v n true) info.Env.ei_members
then true
else begin
Cerrors.warning "Warning: not all values of type 'enum %s' can be represented in bit-field '%s' of struct '%s' (%d bits are not enough)" eid.name fld sid.name n;
false
end
(* Packing algorithm -- keep consistent with [Cutil.pack_bitfield]! *)
let pack_bitfields env sid ml =
let rec pack accu pos = function
| [] ->
(pos, accu, [])
| m :: ms as ml ->
match m.fld_bitfield with
| None -> (pos, accu, ml)
| Some n ->
if n = 0 then
(pos, accu, ms) (* bit width 0 means end of pack *)
else if pos + n > 8 * !config.sizeof_int then
(pos, accu, ml) (* doesn't fit in current word *)
else begin
let signed =
match unroll env m.fld_typ with
| TInt(ik, _) -> is_signed_ikind ik
| TEnum(eid, _) -> is_signed_enum_bitfield env sid m.fld_name eid n
| _ -> assert false (* should never happen, checked in Elab *) in
let signed2 =
match unroll env (type_of_member env m) with
| TInt(ik, _) -> is_signed_ikind ik
| _ -> assert false (* should never happen, checked in Elab *) in
pack ((m.fld_name, pos, n, signed, signed2) :: accu) (pos + n) ms
end
in pack [] 0 ml
let rec transf_members env id count = function
| [] -> []
| m :: ms as ml ->
if m.fld_bitfield = None then
m :: transf_members env id count ms
else begin
let (nbits, bitfields, ml') = pack_bitfields env id ml in
if nbits = 0 then
(* Lone zero-size bitfield: just ignore *)
transf_members env id count ml'
else begin
(* Create integer field of sufficient size for this bitfield group *)
let carrier = sprintf "__bf%d" count in
let carrier_ikind = unsigned_ikind_for_carrier nbits in
let carrier_typ = TInt(carrier_ikind, []) in
(* Enter each field with its bit position, size, signedness *)
List.iter
(fun (name, pos, sz, signed, signed2) ->
if name <> "" then begin
let pos' =
if !config.bitfields_msb_first
then sizeof_ikind carrier_ikind * 8 - pos - sz
else pos in
Hashtbl.add bitfield_table
(id, name)
{bf_carrier = carrier; bf_carrier_typ = carrier_typ;
bf_pos = pos'; bf_size = sz;
bf_signed = signed; bf_signed_res = signed2}
end)
bitfields;
{ fld_name = carrier; fld_typ = carrier_typ; fld_bitfield = None}
:: transf_members env id (count + 1) ml'
end
end
let transf_composite env su id attr ml =
match su with
| Struct -> (attr, transf_members env id 1 ml)
| Union -> (attr, ml)
(* Bitfield manipulation expressions *)
let left_shift_count bf =
intconst
(Int64.of_int (8 * !config.sizeof_int - (bf.bf_pos + bf.bf_size)))
IInt
let right_shift_count bf =
intconst
(Int64.of_int (8 * !config.sizeof_int - bf.bf_size))
IInt
let insertion_mask bf =
let m =
Int64.shift_left
(Int64.pred (Int64.shift_left 1L bf.bf_size))
bf.bf_pos in
(* Give the mask an hexadecimal string representation, nicer to read *)
{edesc = EConst(CInt(m, IUInt, sprintf "0x%LXU" m)); etyp = TInt(IUInt, [])}
(* Extract the value of a bitfield *)
(* Reference C code:
unsigned int bitfield_unsigned_extract(unsigned int x, int ofs, int sz)
{
return (x << (BITSIZE_UINT - (ofs + sz))) >> (BITSIZE_UINT - sz);
}
signed int bitfield_signed_extract(unsigned int x, int ofs, int sz)
{
return ((signed int) (x << (BITSIZE_UINT - (ofs + sz))))
>> (BITSIZE_UINT - sz);
}
*)
let bitfield_extract bf carrier =
let e1 =
{edesc = EBinop(Oshl, carrier, left_shift_count bf, TInt(IUInt, []));
etyp = carrier.etyp} in
let ty = TInt((if bf.bf_signed then IInt else IUInt), []) in
let e2 =
{edesc = ECast(ty, e1); etyp = ty} in
let e3 =
{edesc = EBinop(Oshr, e2, right_shift_count bf, e2.etyp);
etyp = ty} in
if bf.bf_signed_res = bf.bf_signed then e3 else begin
let ty' = TInt((if bf.bf_signed_res then IInt else IUInt), []) in
{edesc = ECast(ty', e3); etyp = ty'}
end
(* Assign a bitfield within a carrier *)
(* Reference C code:
unsigned int bitfield_insert(unsigned int x, int ofs, int sz, unsigned int y)
{
unsigned int mask = ((1U << sz) - 1) << ofs;
return (x & ~mask) | ((y << ofs) & mask);
}
*)
let bitfield_assign bf carrier newval =
let msk = insertion_mask bf in
let notmsk = {edesc = EUnop(Onot, msk); etyp = msk.etyp} in
let newval_shifted =
{edesc = EBinop(Oshl, newval, intconst (Int64.of_int bf.bf_pos) IUInt,
TInt(IUInt,[]));
etyp = TInt(IUInt,[])} in
let newval_masked =
{edesc = EBinop(Oand, newval_shifted, msk, TInt(IUInt,[]));
etyp = TInt(IUInt,[])}
and oldval_masked =
{edesc = EBinop(Oand, carrier, notmsk, TInt(IUInt,[]));
etyp = TInt(IUInt,[])} in
{edesc = EBinop(Oor, oldval_masked, newval_masked, TInt(IUInt,[]));
etyp = TInt(IUInt,[])}
(* Check whether a field access (e.f or e->f) is a bitfield access.
If so, return carrier expression (e and *e, respectively)
and bitfield_info *)
let rec is_bitfield_access env e =
match e.edesc with
| EUnop(Odot fieldname, e1) ->
begin match unroll env e1.etyp with
| TStruct(id, _) ->
(try Some(e1, Hashtbl.find bitfield_table (id, fieldname))
with Not_found -> None)
| _ ->
None
end
| EUnop(Oarrow fieldname, e1) ->
begin match unroll env e1.etyp with
| TPtr(ty, _) ->
is_bitfield_access env
{edesc = EUnop(Odot fieldname,
{edesc = EUnop(Oderef, e1); etyp = ty});
etyp = e.etyp}
| _ ->
None
end
| _ -> None
(* Expressions *)
let transf_expr env ctx e =
let rec texp ctx e =
match e.edesc with
| EConst _ -> e
| ESizeof _ -> e
| EAlignof _ -> e
| EVar _ -> e
| EUnop(Odot s, e1) ->
begin match is_bitfield_access env e with
| None ->
{edesc = EUnop(Odot s, texp Val e1); etyp = e.etyp}
| Some(ex, bf) ->
transf_read ex bf
end
| EUnop(Oarrow s, e1) ->
begin match is_bitfield_access env e with
| None ->
{edesc = EUnop(Oarrow s, texp Val e1); etyp = e.etyp}
| Some(ex, bf) ->
transf_read ex bf
end
| EUnop((Opreincr|Opredecr) as op, e1) ->
begin match is_bitfield_access env e1 with
| None ->
{edesc = EUnop(op, texp Val e1); etyp = e.etyp}
| Some(ex, bf) ->
transf_pre ctx (op_for_incr_decr op) ex bf e1.etyp
end
| EUnop((Opostincr|Opostdecr) as op, e1) ->
begin match is_bitfield_access env e1 with
| None ->
{edesc = EUnop(op, texp Val e1); etyp = e.etyp}
| Some(ex, bf) ->
transf_post ctx (op_for_incr_decr op) ex bf e1.etyp
end
| EUnop(op, e1) ->
{edesc = EUnop(op, texp Val e1); etyp = e.etyp}
| EBinop(Oassign, e1, e2, ty) ->
begin match is_bitfield_access env e1 with
| None ->
{edesc = EBinop(Oassign, texp Val e1, texp Val e2, ty);
etyp = e.etyp}
| Some(ex, bf) ->
transf_assign ctx ex bf e2
end
| EBinop((Oadd_assign|Osub_assign|Omul_assign|Odiv_assign
|Omod_assign|Oand_assign|Oor_assign|Oxor_assign
|Oshl_assign|Oshr_assign) as op,
e1, e2, ty) ->
begin match is_bitfield_access env e1 with
| None ->
{edesc = EBinop(op, texp Val e1, texp Val e2, ty); etyp = e.etyp}
| Some(ex, bf) ->
transf_assignop ctx (op_for_assignop op) ex bf e2 ty
end
| EBinop(Ocomma, e1, e2, ty) ->
{edesc = EBinop(Ocomma, texp Effects e1, texp Val e2, ty);
etyp = e.etyp}
| EBinop(op, e1, e2, ty) ->
{edesc = EBinop(op, texp Val e1, texp Val e2, ty); etyp = e.etyp}
| EConditional(e1, e2, e3) ->
{edesc = EConditional(texp Val e1, texp ctx e2, texp ctx e3);
etyp = e.etyp}
| ECast(ty, e1) ->
{edesc = ECast(ty, texp Val e1); etyp = e.etyp}
| ECall(e1, el) ->
{edesc = ECall(texp Val e1, List.map (texp Val) el); etyp = e.etyp}
and transf_read e bf =
bitfield_extract bf
{edesc = EUnop(Odot bf.bf_carrier, texp Val e); etyp = bf.bf_carrier_typ}
and transf_assign ctx e1 bf e2 =
bind_lvalue env (texp Val e1) (fun base ->
let carrier =
{edesc = EUnop(Odot bf.bf_carrier, base); etyp = bf.bf_carrier_typ} in
let asg =
eassign carrier (bitfield_assign bf carrier (texp Val e2)) in
if ctx = Val then ecomma asg (bitfield_extract bf carrier) else asg)
and transf_assignop ctx op e1 bf e2 tyres =
bind_lvalue env (texp Val e1) (fun base ->
let carrier =
{edesc = EUnop(Odot bf.bf_carrier, base); etyp = bf.bf_carrier_typ} in
let rhs =
{edesc = EBinop(op, bitfield_extract bf carrier, texp Val e2, tyres);
etyp = tyres} in
let asg =
eassign carrier (bitfield_assign bf carrier rhs) in
if ctx = Val then ecomma asg (bitfield_extract bf carrier) else asg)
and transf_pre ctx op e1 bf tyfield =
transf_assignop ctx op e1 bf (intconst 1L IInt)
(unary_conversion env tyfield)
and transf_post ctx op e1 bf tyfield =
if ctx = Effects then
transf_pre ctx op e1 bf tyfield
else begin
bind_lvalue env (texp Val e1) (fun base ->
let carrier =
{edesc = EUnop(Odot bf.bf_carrier, base); etyp = bf.bf_carrier_typ} in
let temp = mk_temp env tyfield in
let tyres = unary_conversion env tyfield in
let settemp = eassign temp (bitfield_extract bf carrier) in
let rhs =
{edesc = EBinop(op, temp, intconst 1L IInt, tyres); etyp = tyres} in
let asg =
eassign carrier (bitfield_assign bf carrier rhs) in
ecomma (ecomma settemp asg) temp)
end
in texp ctx e
(* Statements *)
let transf_stmt env s =
Transform.stmt (fun loc env ctx e -> transf_expr env ctx e) env s
(* Functions *)
let transf_fundef env f =
Transform.fundef transf_stmt env f
(* Initializers *)
let bitfield_initializer bf i =
match i with
| Init_single e ->
let m = Int64.pred (Int64.shift_left 1L bf.bf_size) in
let e_mask =
{edesc = EConst(CInt(m, IUInt, sprintf "0x%LXU" m));
etyp = TInt(IUInt, [])} in
let e_and =
{edesc = EBinop(Oand, e, e_mask, TInt(IUInt,[]));
etyp = TInt(IUInt,[])} in
{edesc = EBinop(Oshl, e_and, intconst (Int64.of_int bf.bf_pos) IInt,
TInt(IUInt, []));
etyp = TInt(IUInt, [])}
| _ -> assert false
let rec pack_bitfield_init id carrier fld_init_list =
match fld_init_list with
| [] -> ([], [])
| (fld, i) :: rem ->
try
let bf = Hashtbl.find bitfield_table (id, fld.fld_name) in
if bf.bf_carrier <> carrier then
([], fld_init_list)
else begin
let (el, rem') = pack_bitfield_init id carrier rem in
(bitfield_initializer bf i :: el, rem')
end
with Not_found ->
([], fld_init_list)
let rec or_expr_list = function
| [] -> assert false
| [e] -> e
| e1 :: el ->
{edesc = EBinop(Oor, e1, or_expr_list el, TInt(IUInt,[]));
etyp = TInt(IUInt,[])}
let rec transf_struct_init id fld_init_list =
match fld_init_list with
| [] -> []
| (fld, i) :: rem ->
try
let bf = Hashtbl.find bitfield_table (id, fld.fld_name) in
let (el, rem') =
pack_bitfield_init id bf.bf_carrier fld_init_list in
({fld_name = bf.bf_carrier; fld_typ = bf.bf_carrier_typ;
fld_bitfield = None},
Init_single {edesc = ECast(bf.bf_carrier_typ, or_expr_list el);
etyp = bf.bf_carrier_typ})
:: transf_struct_init id rem'
with Not_found ->
(fld, i) :: transf_struct_init id rem
let rec transf_init env i =
match i with
| Init_single e -> Init_single (transf_expr env Val e)
| Init_array il -> Init_array (List.map (transf_init env) il)
| Init_struct(id, fld_init_list) ->
let fld_init_list' =
List.map (fun (f, i) -> (f, transf_init env i)) fld_init_list in
Init_struct(id, transf_struct_init id fld_init_list')
| Init_union(id, fld, i) -> Init_union(id, fld, transf_init env i)
let transf_decl env (sto, id, ty, init_opt) =
(sto, id, ty,
match init_opt with None -> None | Some i -> Some(transf_init env i))
(* Programs *)
let program p =
Transform.program
~composite:transf_composite
~decl: transf_decl
~fundef:transf_fundef
p
|