summaryrefslogtreecommitdiff
path: root/common/Switch.v
blob: 4723f50ccf9cc99a92bcd4dfcc5204e69d537676 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
(* *********************************************************************)
(*                                                                     *)
(*              The Compcert verified compiler                         *)
(*                                                                     *)
(*          Xavier Leroy, INRIA Paris-Rocquencourt                     *)
(*                                                                     *)
(*  Copyright Institut National de Recherche en Informatique et en     *)
(*  Automatique.  All rights reserved.  This file is distributed       *)
(*  under the terms of the GNU General Public License as published by  *)
(*  the Free Software Foundation, either version 2 of the License, or  *)
(*  (at your option) any later version.  This file is also distributed *)
(*  under the terms of the INRIA Non-Commercial License Agreement.     *)
(*                                                                     *)
(* *********************************************************************)

(** Multi-way branches (``switch'' statements) and their compilation
    to comparison trees. *)

Require Import EqNat.
Require Import Coqlib.
Require Import Maps.
Require Import Integers.
Require Import Values.

(** A multi-way branch is composed of a list of (key, action) pairs,
  plus a default action.  *)

Definition table : Type := list (Z * nat).

Fixpoint switch_target (n: Z) (dfl: nat) (cases: table)
                       {struct cases} : nat :=
  match cases with
  | nil => dfl
  | (key, action) :: rem =>
      if zeq n key then action else switch_target n dfl rem
  end.

Inductive switch_argument: bool -> val -> Z -> Prop :=
  | switch_argument_32: forall i,
      switch_argument false (Vint i) (Int.unsigned i)
  | switch_argument_64: forall i,
      switch_argument true (Vlong i) (Int64.unsigned i).

(** Multi-way branches are translated to comparison trees.
    Each node of the tree performs either
- an equality against one of the keys;
- or a "less than" test against one of the keys;
- or a computed branch (jump table) against a range of key values. *)

Inductive comptree : Type :=
  | CTaction (act: nat)
  | CTifeq (key: Z) (act: nat) (cne: comptree)
  | CTiflt (key: Z) (clt: comptree) (cge: comptree)
  | CTjumptable (ofs: Z) (sz: Z) (acts: list nat) (cother: comptree).

Section COMPTREE.

Variable modulus: Z.
Hypothesis modulus_pos: modulus > 0.

Fixpoint comptree_match (n: Z) (t: comptree) {struct t}: option nat :=
  match t with
  | CTaction act => Some act
  | CTifeq key act t' =>
      if zeq n key then Some act else comptree_match n t'
  | CTiflt key t1 t2 =>
      if zlt n key then comptree_match n t1 else comptree_match n t2
  | CTjumptable ofs sz tbl t' =>
      let delta := (n - ofs) mod modulus in
      if zlt delta sz
      then list_nth_z tbl (delta mod Int.modulus)
      else comptree_match n t'
  end.

(** The translation from a table to a comparison tree is performed
  by untrusted Caml code (function [compile_switch] in
  file [RTLgenaux.ml]).  In Coq, we validate a posteriori the
  result of this function.  In other terms, we now develop
  and prove correct Coq functions that take a table and a comparison
  tree, and check that their semantics are equivalent. *)

Fixpoint split_lt (pivot: Z) (cases: table)
                  {struct cases} : table * table :=
  match cases with
  | nil => (nil, nil)
  | (key, act) :: rem =>
      let (l, r) := split_lt pivot rem in
      if zlt key pivot
      then ((key, act) :: l, r)
      else (l, (key, act) :: r)
  end.

Fixpoint split_eq (pivot: Z) (cases: table)
                  {struct cases} : option nat * table :=
  match cases with
  | nil => (None, nil)
  | (key, act) :: rem =>
      let (same, others) := split_eq pivot rem in
      if zeq key pivot
      then (Some act, others)
      else (same, (key, act) :: others)
  end.

Fixpoint split_between (dfl: nat) (ofs sz: Z) (cases: table)
                       {struct cases} : ZMap.t nat * table :=
  match cases with
  | nil => (ZMap.init dfl, nil)
  | (key, act) :: rem =>
      let (inside, outside) := split_between dfl ofs sz rem in
      if zlt ((key - ofs) mod modulus) sz
      then (ZMap.set key act inside, outside)
      else (inside, (key, act) :: outside)
  end.

Definition refine_low_bound (v lo: Z) :=
  if zeq v lo then lo + 1 else lo.

Definition refine_high_bound (v hi: Z) :=
  if zeq v hi then hi - 1 else hi.

Fixpoint validate_jumptable (cases: ZMap.t nat) 
                            (tbl: list nat) (n: Z) {struct tbl} : bool :=
  match tbl with
  | nil => true
  | act :: rem =>
      beq_nat act (ZMap.get n cases)
      && validate_jumptable cases rem (Zsucc n)
  end.

Fixpoint validate (default: nat) (cases: table) (t: comptree)
                  (lo hi: Z) {struct t} : bool :=
  match t with
  | CTaction act =>
      match cases with
      | nil =>
          beq_nat act default
      | (key1, act1) :: _ =>
          zeq key1 lo && zeq lo hi && beq_nat act act1
      end
  | CTifeq pivot act t' =>
      zle 0 pivot && zlt pivot modulus &&
      match split_eq pivot cases with
      | (None, _) =>
          false
      | (Some act', others) =>
          beq_nat act act' 
          && validate default others t'
                      (refine_low_bound pivot lo)
                      (refine_high_bound pivot hi)
      end
  | CTiflt pivot t1 t2 =>
      zle 0 pivot && zlt pivot modulus &&
      match split_lt pivot cases with
      | (lcases, rcases) =>
          validate default lcases t1 lo (pivot - 1)
          && validate default rcases t2 pivot hi
      end
  | CTjumptable ofs sz tbl t' =>
      let tbl_len := list_length_z tbl in
      zle 0 ofs && zle 0 sz && zlt (ofs + sz) modulus &&
      zle sz tbl_len && zlt sz Int.modulus &&
      match split_between default ofs sz cases with
      | (inside, outside) =>
          validate_jumptable inside tbl ofs
          && validate default outside t' lo hi
     end
  end.

Definition validate_switch (default: nat) (cases: table) (t: comptree) :=
  validate default cases t 0 (modulus - 1).

(** Structural properties checked by validation *)

Inductive wf_comptree: comptree -> Prop :=
  | wf_action: forall act,
      wf_comptree (CTaction act)
  | wf_ifeq: forall key act cne,
      0 <= key < modulus -> wf_comptree cne -> wf_comptree (CTifeq key act cne)
  | wf_iflt: forall key clt cge,
      0 <= key < modulus -> wf_comptree clt -> wf_comptree cge -> wf_comptree (CTiflt key clt cge)
  | wf_jumptable: forall ofs sz acts cother,
      0 <= ofs < modulus -> 0 <= sz < modulus ->
      wf_comptree cother ->
      wf_comptree (CTjumptable ofs sz acts cother).

Lemma validate_wf:
  forall default t cases lo hi,
  validate default cases t lo hi = true ->
  wf_comptree t.
Proof.
  induction t; simpl; intros; InvBooleans.
- constructor.
- destruct (split_eq key cases) as [[act'|] others]; try discriminate; InvBooleans.
  constructor; eauto.  
- destruct (split_lt key cases) as [lc rc]; InvBooleans.
  constructor; eauto.
- destruct (split_between default ofs sz cases) as [ins out]; InvBooleans. 
  constructor; eauto; omega.
Qed.

(** Semantic correctness proof for validation. *)

Lemma split_eq_prop:
  forall v default n cases optact cases',
  split_eq n cases = (optact, cases') ->
  switch_target v default cases =
   (if zeq v n
    then match optact with Some act => act | None => default end
    else switch_target v default cases').
Proof.
  induction cases; simpl; intros until cases'.
- intros. inv H. simpl. destruct (zeq v n); auto.
- destruct a as [key act].
  destruct (split_eq n cases) as [same other] eqn:SEQ.
  rewrite (IHcases same other) by auto. 
  destruct (zeq key n); intros EQ; inv EQ.
+ destruct (zeq v n); auto. 
+ simpl. destruct (zeq v key). 
  * subst v. rewrite zeq_false by auto. auto.
  * auto.
Qed.

Lemma split_lt_prop:
  forall v default n cases lcases rcases,
  split_lt n cases = (lcases, rcases) ->
  switch_target v default cases =
    (if zlt v n
     then switch_target v default lcases
     else switch_target v default rcases).
Proof.
  induction cases; intros until rcases; simpl.
- intros. inv H. simpl. destruct (zlt v n); auto.
- destruct a as [key act]. 
  destruct (split_lt n cases) as [lc rc] eqn:SEQ.
  rewrite (IHcases lc rc) by auto.
  destruct (zlt key n); intros EQ; inv EQ; simpl.
+ destruct (zeq v key). rewrite zlt_true by omega. auto. auto.
+ destruct (zeq v key). rewrite zlt_false by omega. auto. auto.
Qed.

Lemma split_between_prop:
  forall v default ofs sz cases inside outside,
  split_between default ofs sz cases = (inside, outside) ->
  switch_target v default cases =
    (if zlt ((v - ofs) mod modulus) sz
     then ZMap.get v inside
     else switch_target v default outside).
Proof.
  induction cases; intros until outside; simpl; intros SEQ.
- inv SEQ. rewrite ZMap.gi. simpl. destruct (zlt ((v - ofs) mod modulus) sz); auto.
- destruct a as [key act]. 
  destruct (split_between default ofs sz cases) as [ins outs].
  erewrite IHcases; eauto.
  destruct (zlt ((key - ofs) mod modulus) sz); inv SEQ.
+ rewrite ZMap.gsspec. unfold ZIndexed.eq.
  destruct (zeq v key).
  subst v. rewrite zlt_true by auto. auto.
  auto.
+ simpl. destruct (zeq v key). 
  subst v. rewrite zlt_false by auto. auto.
  auto.
Qed.

Lemma validate_jumptable_correct_rec:
  forall cases tbl base v,
  validate_jumptable cases tbl base = true ->
  0 <= v < list_length_z tbl ->
  list_nth_z tbl v = Some(ZMap.get (base + v) cases).
Proof.
  induction tbl; simpl; intros.
- unfold list_length_z in H0. simpl in H0. omegaContradiction.
- InvBooleans. rewrite list_length_z_cons in H0. apply beq_nat_true in H1. 
  destruct (zeq v 0).
  + replace (base + v) with base by omega. congruence.
  + replace (base + v) with (Z.succ base + Z.pred v) by omega. 
    apply IHtbl. auto. omega. 
Qed.

Lemma validate_jumptable_correct:
  forall cases tbl ofs v sz,
  validate_jumptable cases tbl ofs = true ->
  (v - ofs) mod modulus < sz ->
  0 <= sz -> 0 <= ofs -> ofs + sz < modulus ->
  0 <= v < modulus ->
  sz <= list_length_z tbl ->
  list_nth_z tbl ((v - ofs) mod modulus) = Some(ZMap.get v cases).
Proof.
  intros.
  rewrite (validate_jumptable_correct_rec cases tbl ofs); auto.
- f_equal. f_equal. rewrite Zmod_small. omega. 
  destruct (zle ofs v). omega. 
  assert (M: ((v - ofs) + 1 * modulus) mod modulus = (v - ofs) + modulus).
  { rewrite Zmod_small. omega. omega. }
  rewrite Z_mod_plus in M by auto. rewrite M in H0. omega.
- generalize (Z_mod_lt (v - ofs) modulus modulus_pos). omega. 
Qed.

Lemma validate_correct_rec:
  forall default v,
  0 <= v < modulus ->
  forall t cases lo hi,
  validate default cases t lo hi = true ->
  lo <= v <= hi ->
  comptree_match v t = Some (switch_target v default cases).
Proof.
  intros default v VRANGE. induction t; simpl; intros until hi.
- (* base case *)
  destruct cases as [ | [key1 act1] cases1]; intros.
+ apply beq_nat_true in H. subst act. reflexivity. 
+ InvBooleans. apply beq_nat_true in H2. subst. simpl. 
  destruct (zeq v hi). auto. omegaContradiction.
- (* eq node *)
  destruct (split_eq key cases) as [optact others] eqn:EQ. intros.
  destruct optact as [act1|]; InvBooleans; try discriminate.
  apply beq_nat_true in H.
  rewrite (split_eq_prop v default _ _ _ _ EQ).
  destruct (zeq v key). 
  + congruence.
  + eapply IHt; eauto. 
    unfold refine_low_bound, refine_high_bound. split.
    destruct (zeq key lo); omega. 
    destruct (zeq key hi); omega.
- (* lt node *)
  destruct (split_lt key cases) as [lcases rcases] eqn:EQ; intros; InvBooleans.
  rewrite (split_lt_prop v default _ _ _ _ EQ). destruct (zlt v key). 
  eapply IHt1. eauto. omega.
  eapply IHt2. eauto. omega.
- (* jumptable node *)
  destruct (split_between default ofs sz cases) as [ins outs] eqn:EQ; intros; InvBooleans.
  rewrite (split_between_prop v _ _ _ _ _ _ EQ).
  assert (0 <= (v - ofs) mod modulus < modulus) by (apply Z_mod_lt; omega).
  destruct (zlt ((v - ofs) mod modulus) sz).
  rewrite Zmod_small by omega. eapply validate_jumptable_correct; eauto.  
  eapply IHt; eauto. 
Qed.

Definition table_tree_agree
    (default: nat) (cases: table) (t: comptree) : Prop :=
  forall v, 0 <= v < modulus -> comptree_match v t = Some(switch_target v default cases).

Theorem validate_switch_correct:
  forall default t cases,
  validate_switch default cases t = true ->
  wf_comptree t /\ table_tree_agree default cases t.
Proof.
  unfold validate_switch, table_tree_agree; split.
  eapply validate_wf; eauto. 
  intros; eapply validate_correct_rec; eauto. omega. 
Qed.

End COMPTREE.