1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
|
(* *********************************************************************)
(* *)
(* The Compcert verified compiler *)
(* *)
(* Xavier Leroy, INRIA Paris-Rocquencourt *)
(* *)
(* Copyright Institut National de Recherche en Informatique et en *)
(* Automatique. All rights reserved. This file is distributed *)
(* under the terms of the GNU General Public License as published by *)
(* the Free Software Foundation, either version 2 of the License, or *)
(* (at your option) any later version. This file is also distributed *)
(* under the terms of the INRIA Non-Commercial License Agreement. *)
(* *)
(* *********************************************************************)
(* A solver for subtyping constraints. *)
Require Import Recdef Coqlib Maps Errors.
Local Open Scope nat_scope.
Local Open Scope error_monad_scope.
(** This module provides a solver for sets of subtyping constraints of the
following kinds: [base-type <: T(x)] or [T(x) <: base-type] or [T(x) <: T(y)].
The unknowns are the types [T(x)] of every identifier [x]. *)
(** The interface for base types and the subtyping relation. *)
Module Type TYPE_ALGEBRA.
(** Type expressions *)
Variable t: Type.
Variable eq: forall (x y: t), {x=y} + {x<>y}.
Variable default: t.
(** Subtyping *)
Variable sub: t -> t -> Prop.
Hypothesis sub_refl: forall x, sub x x.
Hypothesis sub_trans: forall x y z, sub x y -> sub y z -> sub x z.
Variable sub_dec: forall x y, {sub x y} + {~sub x y}.
(** Least upper bounds. [lub x y] is specified only when [x] and [y] have
a common supertype; it can be arbitrary otherwise. *)
Variable lub: t -> t -> t.
Hypothesis lub_left: forall x y z, sub x z -> sub y z -> sub x (lub x y).
Hypothesis lub_right: forall x y z, sub x z -> sub y z -> sub y (lub x y).
Hypothesis lub_min: forall x y z, sub x z -> sub y z -> sub (lub x y) z.
(** Greater lower bounds. [glb x y] is specified only when [x] and [y] have
a common subtype; it can be arbitrary otherwise.*)
Variable glb: t -> t -> t.
Hypothesis glb_left: forall x y z, sub z x -> sub z y -> sub (glb x y) x.
Hypothesis glb_right: forall x y z, sub z x -> sub z y -> sub (glb x y) y.
Hypothesis glb_max: forall x y z, sub z x -> sub z y -> sub z (glb x y).
(** Low and high bounds for a given type. *)
Variable low_bound: t -> t.
Variable high_bound: t -> t.
Hypothesis low_bound_sub: forall t, sub (low_bound t) t.
Hypothesis low_bound_minorant: forall x y, sub x y -> sub (low_bound y) x.
Hypothesis high_bound_sub: forall t, sub t (high_bound t).
Hypothesis high_bound_majorant: forall x y, sub x y -> sub y (high_bound x).
(** Measure over types *)
Variable weight: t -> nat.
Variable max_weight: nat.
Hypothesis weight_range: forall t, weight t <= max_weight.
Hypothesis weight_sub: forall x y, sub x y -> weight x <= weight y.
Hypothesis weight_sub_strict: forall x y, sub x y -> x <> y -> weight x < weight y.
End TYPE_ALGEBRA.
(** The constraint solver. *)
Module SubSolver (T: TYPE_ALGEBRA).
(* The current set of constraints is represented by a record with two components:
- [te_typ]: a partial map from variables to pairs [tlo, thi]
of types, representing the low and high bounds for this variable.
- [te_sub]: a list of pairs [(x,y)] of variables, indicating that
the type of [x] must be a subtype of the type of [y].
*)
Inductive bounds : Type := B (lo: T.t) (hi: T.t) (SUB: T.sub lo hi).
Definition constraint : Type := (positive * positive)%type.
Record typenv : Type := Typenv {
te_typ: PTree.t bounds; (**r mapping var -> low & high bounds *)
te_sub: list constraint (**r additional subtyping constraints *)
}.
Definition initial : typenv := {| te_typ := PTree.empty _; te_sub := nil |}.
(** Add the constraint [ty <: T(x)]. *)
Definition type_def (e: typenv) (x: positive) (ty: T.t) : res typenv :=
match e.(te_typ)!x with
| None =>
let b := B ty (T.high_bound ty) (T.high_bound_sub ty) in
OK {| te_typ := PTree.set x b e.(te_typ);
te_sub := e.(te_sub) |}
| Some(B lo hi s1) =>
match T.sub_dec ty hi with
| left s2 =>
let lo' := T.lub lo ty in
if T.eq lo lo' then OK e else
let b := B lo' hi (T.lub_min lo ty hi s1 s2) in
OK {| te_typ := PTree.set x b e.(te_typ);
te_sub := e.(te_sub) |}
| right _ =>
Error (MSG "bad definition of variable " :: POS x :: nil)
end
end.
Fixpoint type_defs (e: typenv) (rl: list positive) (tyl: list T.t) {struct rl}: res typenv :=
match rl, tyl with
| nil, nil => OK e
| r1::rs, ty1::tys => do e1 <- type_def e r1 ty1; type_defs e1 rs tys
| _, _ => Error (msg "arity mismatch")
end.
(** Add the constraint [T(x) <: ty]. *)
Definition type_use (e: typenv) (x: positive) (ty: T.t) : res typenv :=
match e.(te_typ)!x with
| None =>
let b := B (T.low_bound ty) ty (T.low_bound_sub ty) in
OK {| te_typ := PTree.set x b e.(te_typ);
te_sub := e.(te_sub) |}
| Some(B lo hi s1) =>
match T.sub_dec lo ty with
| left s2 =>
let hi' := T.glb hi ty in
if T.eq hi hi' then OK e else
let b := B lo hi' (T.glb_max hi ty lo s1 s2) in
OK {| te_typ := PTree.set x b e.(te_typ);
te_sub := e.(te_sub) |}
| right _ =>
Error (MSG "bad use of variable " :: POS x :: nil)
end
end.
Fixpoint type_uses (e: typenv) (rl: list positive) (tyl: list T.t) {struct rl}: res typenv :=
match rl, tyl with
| nil, nil => OK e
| r1::rs, ty1::tys => do e1 <- type_use e r1 ty1; type_uses e1 rs tys
| _, _ => Error (msg "arity mismatch")
end.
(** Add the constraint [T(x) <: T(y)].
The boolean result is [true] if the types of [r1] and [r2] could be
made more precise. Otherwise, [te_typ] does not change and
[false] is returned. *)
Definition type_move (e: typenv) (r1 r2: positive) : res (bool * typenv) :=
if peq r1 r2 then OK (false, e) else
match e.(te_typ)!r1, e.(te_typ)!r2 with
| None, None =>
OK (false, {| te_typ := e.(te_typ); te_sub := (r1, r2) :: e.(te_sub) |})
| Some(B lo1 hi1 s1), None =>
let b2 := B lo1 (T.high_bound lo1) (T.high_bound_sub lo1) in
OK (true, {| te_typ := PTree.set r2 b2 e.(te_typ);
te_sub := if T.sub_dec hi1 lo1 then e.(te_sub)
else (r1, r2) :: e.(te_sub) |})
| None, Some(B lo2 hi2 s2) =>
let b1 := B (T.low_bound hi2) hi2 (T.low_bound_sub hi2) in
OK (true, {| te_typ := PTree.set r1 b1 e.(te_typ);
te_sub := if T.sub_dec hi2 lo2 then e.(te_sub)
else (r1, r2) :: e.(te_sub) |})
| Some(B lo1 hi1 s1), Some(B lo2 hi2 s2) =>
if T.sub_dec hi1 lo2 then
(* The constraint is always true, don't record it *)
OK (false, e)
else match T.sub_dec lo1 hi2 with
| left s =>
(* Tighten the bounds on [r1] and [r2] when possible and record
the constraint. *)
let lo2' := T.lub lo1 lo2 in
let hi1' := T.glb hi1 hi2 in
let b1 := B lo1 hi1' (T.glb_max hi1 hi2 lo1 s1 s) in
let b2 := B lo2' hi2 (T.lub_min lo1 lo2 hi2 s s2) in
if T.eq lo2 lo2' then
if T.eq hi1 hi1' then
OK (false, {| te_typ := e.(te_typ);
te_sub := (r1, r2) :: e.(te_sub) |})
else
OK (true, {| te_typ := PTree.set r1 b1 e.(te_typ);
te_sub := (r1, r2) :: e.(te_sub) |})
else
if T.eq hi1 hi1' then
OK (true, {| te_typ := PTree.set r2 b2 e.(te_typ);
te_sub := (r1, r2) :: e.(te_sub) |})
else
OK (true, {| te_typ := PTree.set r2 b2 (PTree.set r1 b1 e.(te_typ));
te_sub := (r1, r2) :: e.(te_sub) |})
| right _ =>
Error(MSG "ill-typed move from " :: POS r1 :: MSG " to " :: POS r2 :: nil)
end
end.
(** Solve the remaining subtyping constraints by iteration. *)
Fixpoint solve_rec (e: typenv) (changed: bool) (q: list constraint) : res (typenv * bool) :=
match q with
| nil =>
OK (e, changed)
| (r1, r2) :: q' =>
do (changed1, e1) <- type_move e r1 r2; solve_rec e1 (changed || changed1) q'
end.
(** Measuring the state *)
Definition weight_bounds (ob: option bounds) : nat :=
match ob with None => T.max_weight + 1 | Some(B lo hi s) => T.weight hi - T.weight lo end.
Lemma weight_bounds_1:
forall lo hi s, weight_bounds (Some (B lo hi s)) < weight_bounds None.
Proof.
intros; simpl. generalize (T.weight_range hi); omega.
Qed.
Lemma weight_bounds_2:
forall lo1 hi1 s1 lo2 hi2 s2,
T.sub lo2 lo1 -> T.sub hi1 hi2 -> lo1 <> lo2 \/ hi1 <> hi2 ->
weight_bounds (Some (B lo1 hi1 s1)) < weight_bounds (Some (B lo2 hi2 s2)).
Proof.
intros; simpl.
generalize (T.weight_sub _ _ s1) (T.weight_sub _ _ s2) (T.weight_sub _ _ H) (T.weight_sub _ _ H0); intros.
destruct H1.
assert (T.weight lo2 < T.weight lo1) by (apply T.weight_sub_strict; auto). omega.
assert (T.weight hi1 < T.weight hi2) by (apply T.weight_sub_strict; auto). omega.
Qed.
Hint Resolve T.sub_refl: ty.
Lemma weight_type_move:
forall e r1 r2 changed e',
type_move e r1 r2 = OK(changed, e') ->
(e'.(te_sub) = e.(te_sub) \/ e'.(te_sub) = (r1, r2) :: e.(te_sub))
/\ (forall r, weight_bounds e'.(te_typ)!r <= weight_bounds e.(te_typ)!r)
/\ (changed = true ->
weight_bounds e'.(te_typ)!r1 + weight_bounds e'.(te_typ)!r2
< weight_bounds e.(te_typ)!r1 + weight_bounds e.(te_typ)!r2).
Proof.
unfold type_move; intros.
destruct (peq r1 r2).
inv H. split; auto. split; intros. omega. discriminate.
destruct (te_typ e)!r1 as [[lo1 hi1 s1]|] eqn:E1;
destruct (te_typ e)!r2 as [[lo2 hi2 s2]|] eqn:E2.
- destruct (T.sub_dec hi1 lo2).
inv H. split; auto. split; intros. omega. discriminate.
destruct (T.sub_dec lo1 hi2); try discriminate.
set (lo2' := T.lub lo1 lo2) in *.
set (hi1' := T.glb hi1 hi2) in *.
assert (S1': T.sub hi1' hi1) by (eapply T.glb_left; eauto).
assert (S2': T.sub lo2 lo2') by (eapply T.lub_right; eauto).
set (b1 := B lo1 hi1' (T.glb_max hi1 hi2 lo1 s1 s)) in *.
set (b2 := B lo2' hi2 (T.lub_min lo1 lo2 hi2 s s2)) in *.
Local Opaque weight_bounds.
destruct (T.eq lo2 lo2'); destruct (T.eq hi1 hi1'); inversion H; clear H; subst changed e'; simpl.
+ split; auto. split; intros. omega. discriminate.
+ assert (weight_bounds (Some b1) < weight_bounds (Some (B lo1 hi1 s1)))
by (apply weight_bounds_2; auto with ty).
split; auto. split; intros.
rewrite PTree.gsspec. destruct (peq r r1). subst r. rewrite E1. omega. omega.
rewrite PTree.gss. rewrite PTree.gso by auto. rewrite E2. omega.
+ assert (weight_bounds (Some b2) < weight_bounds (Some (B lo2 hi2 s2)))
by (apply weight_bounds_2; auto with ty).
split; auto. split; intros.
rewrite PTree.gsspec. destruct (peq r r2). subst r. rewrite E2. omega. omega.
rewrite PTree.gss. rewrite PTree.gso by auto. rewrite E1. omega.
+ assert (weight_bounds (Some b1) < weight_bounds (Some (B lo1 hi1 s1)))
by (apply weight_bounds_2; auto with ty).
assert (weight_bounds (Some b2) < weight_bounds (Some (B lo2 hi2 s2)))
by (apply weight_bounds_2; auto with ty).
split; auto. split; intros.
rewrite ! PTree.gsspec.
destruct (peq r r2). subst r. rewrite E2. omega.
destruct (peq r r1). subst r. rewrite E1. omega.
omega.
rewrite PTree.gss. rewrite PTree.gso by auto. rewrite PTree.gss. omega.
- set (b2 := B lo1 (T.high_bound lo1) (T.high_bound_sub lo1)) in *.
assert (weight_bounds (Some b2) < weight_bounds None) by (apply weight_bounds_1).
inv H; simpl.
split. destruct (T.sub_dec hi1 lo1); auto.
split; intros.
rewrite PTree.gsspec. destruct (peq r r2). subst r; rewrite E2; omega. omega.
rewrite PTree.gss. rewrite PTree.gso by auto. rewrite E1. omega.
- set (b1 := B (T.low_bound hi2) hi2 (T.low_bound_sub hi2)) in *.
assert (weight_bounds (Some b1) < weight_bounds None) by (apply weight_bounds_1).
inv H; simpl.
split. destruct (T.sub_dec hi2 lo2); auto.
split; intros.
rewrite PTree.gsspec. destruct (peq r r1). subst r; rewrite E1; omega. omega.
rewrite PTree.gss. rewrite PTree.gso by auto. rewrite E2. omega.
- inv H. split; auto. simpl; split; intros. omega. congruence.
Qed.
Definition weight_constraints (b: PTree.t bounds) (cstr: list constraint) : nat :=
List.fold_right (fun xy n => n + weight_bounds b!(fst xy) + weight_bounds b!(snd xy)) 0 cstr.
Remark weight_constraints_tighter:
forall b1 b2, (forall r, weight_bounds b1!r <= weight_bounds b2!r) ->
forall q, weight_constraints b1 q <= weight_constraints b2 q.
Proof.
induction q; simpl. omega. generalize (H (fst a)) (H (snd a)); omega.
Qed.
Lemma weight_solve_rec:
forall q e changed e' changed',
solve_rec e changed q = OK(e', changed') ->
(forall r, weight_bounds e'.(te_typ)!r <= weight_bounds e.(te_typ)!r) /\
weight_constraints e'.(te_typ) e'.(te_sub) + (if changed' && negb changed then 1 else 0)
<= weight_constraints e.(te_typ) e.(te_sub) + weight_constraints e.(te_typ) q.
Proof.
induction q; simpl; intros.
- inv H. split. intros; omega. replace (changed' && negb changed') with false.
omega. destruct changed'; auto.
- destruct a as [r1 r2]; monadInv H; simpl.
rename x into changed1. rename x0 into e1.
exploit weight_type_move; eauto. intros [A [B C]].
exploit IHq; eauto. intros [D E].
split. intros. eapply le_trans. eapply D. eapply B.
assert (P: weight_constraints (te_typ e1) (te_sub e) <=
weight_constraints (te_typ e) (te_sub e))
by (apply weight_constraints_tighter; auto).
assert (Q: weight_constraints (te_typ e1) (te_sub e1) <=
weight_constraints (te_typ e1) (te_sub e) +
weight_bounds (te_typ e1)!r1 + weight_bounds (te_typ e1)!r2).
{ destruct A as [Q|Q]; rewrite Q. omega. simpl. omega. }
assert (R: weight_constraints (te_typ e1) q <= weight_constraints (te_typ e) q)
by (apply weight_constraints_tighter; auto).
set (ch1 := if changed' && negb (changed || changed1) then 1 else 0) in *.
set (ch2 := if changed' && negb changed then 1 else 0) in *.
destruct changed1.
assert (ch2 <= ch1 + 1).
{ unfold ch2, ch1. rewrite orb_true_r. simpl. rewrite andb_false_r.
destruct (changed' && negb changed); omega. }
exploit C; eauto. omega.
assert (ch2 <= ch1).
{ unfold ch2, ch1. rewrite orb_false_r. omega. }
generalize (B r1) (B r2); omega.
Qed.
Definition weight_typenv (e: typenv) : nat :=
weight_constraints e.(te_typ) e.(te_sub).
(** Iterative solving of the remaining constraints *)
Function solve_constraints (e: typenv) {measure weight_typenv e}: res typenv :=
match solve_rec {| te_typ := e.(te_typ); te_sub := nil |} false e.(te_sub) with
| OK(e', false) => OK e (**r no more changes, fixpoint reached *)
| OK(e', true) => solve_constraints e' (**r one more iteration *)
| Error msg => Error msg
end.
Proof.
intros. exploit weight_solve_rec; eauto. simpl. intros [A B].
unfold weight_typenv. omega.
Qed.
Definition typassign := positive -> T.t.
Definition makeassign (e: typenv) : typassign :=
fun x => match e.(te_typ)!x with Some(B lo hi s) => lo | None => T.default end.
Definition solve (e: typenv) : res typassign :=
do e' <- solve_constraints e; OK(makeassign e').
(** What it means to be a solution *)
Definition satisf (te: typassign) (e: typenv) : Prop :=
(forall x lo hi s, e.(te_typ)!x = Some(B lo hi s) -> T.sub lo (te x) /\ T.sub (te x) hi)
/\ (forall x y, In (x, y) e.(te_sub) -> T.sub (te x) (te y)).
Lemma satisf_initial: forall te, satisf te initial.
Proof.
unfold initial; intros; split; simpl; intros.
rewrite PTree.gempty in H; discriminate.
contradiction.
Qed.
(** Soundness proof *)
Lemma type_def_incr:
forall te x ty e e', type_def e x ty = OK e' -> satisf te e' -> satisf te e.
Proof.
unfold type_def; intros. destruct (te_typ e)!x as [[lo hi s1]|] eqn:E.
- destruct (T.sub_dec ty hi); try discriminate.
destruct (T.eq lo (T.lub lo ty)); monadInv H.
subst e'; auto.
destruct H0 as [P Q]; split; auto; intros.
destruct (peq x x0).
+ subst x0. rewrite E in H; inv H.
exploit (P x); simpl. rewrite PTree.gss; eauto. intuition.
apply T.sub_trans with (T.lub lo0 ty); auto. eapply T.lub_left; eauto.
+ eapply P; simpl. rewrite PTree.gso; eauto.
- inv H. destruct H0 as [P Q]; split; auto; intros.
eapply P; simpl. rewrite PTree.gso; eauto. congruence.
Qed.
Hint Resolve type_def_incr: ty.
Lemma type_def_sound:
forall te x ty e e', type_def e x ty = OK e' -> satisf te e' -> T.sub ty (te x).
Proof.
unfold type_def; intros. destruct H0 as [P Q].
destruct (te_typ e)!x as [[lo hi s1]|] eqn:E.
- destruct (T.sub_dec ty hi); try discriminate.
destruct (T.eq lo (T.lub lo ty)); monadInv H.
+ subst e'. apply T.sub_trans with lo.
rewrite e0. eapply T.lub_right; eauto. eapply P; eauto.
+ apply T.sub_trans with (T.lub lo ty).
eapply T.lub_right; eauto.
eapply (P x). simpl. rewrite PTree.gss; eauto.
- inv H. eapply (P x); simpl. rewrite PTree.gss; eauto.
Qed.
Lemma type_defs_incr:
forall te xl tyl e e', type_defs e xl tyl = OK e' -> satisf te e' -> satisf te e.
Proof.
induction xl; destruct tyl; simpl; intros; monadInv H; eauto with ty.
Qed.
Hint Resolve type_defs_incr: ty.
Lemma type_defs_sound:
forall te xl tyl e e', type_defs e xl tyl = OK e' -> satisf te e' -> list_forall2 T.sub tyl (map te xl).
Proof.
induction xl; destruct tyl; simpl; intros; monadInv H.
constructor.
constructor; eauto. eapply type_def_sound; eauto with ty.
Qed.
Lemma type_use_incr:
forall te x ty e e', type_use e x ty = OK e' -> satisf te e' -> satisf te e.
Proof.
unfold type_use; intros. destruct (te_typ e)!x as [[lo hi s1]|] eqn:E.
- destruct (T.sub_dec lo ty); try discriminate.
destruct (T.eq hi (T.glb hi ty)); monadInv H.
subst e'; auto.
destruct H0 as [P Q]; split; auto; intros.
destruct (peq x x0).
+ subst x0. rewrite E in H; inv H.
exploit (P x); simpl. rewrite PTree.gss; eauto. intuition.
apply T.sub_trans with (T.glb hi0 ty); auto. eapply T.glb_left; eauto.
+ eapply P; simpl. rewrite PTree.gso; eauto.
- inv H. destruct H0 as [P Q]; split; auto; intros.
eapply P; simpl. rewrite PTree.gso; eauto. congruence.
Qed.
Hint Resolve type_use_incr: ty.
Lemma type_use_sound:
forall te x ty e e', type_use e x ty = OK e' -> satisf te e' -> T.sub (te x) ty.
Proof.
unfold type_use; intros. destruct H0 as [P Q].
destruct (te_typ e)!x as [[lo hi s1]|] eqn:E.
- destruct (T.sub_dec lo ty); try discriminate.
destruct (T.eq hi (T.glb hi ty)); monadInv H.
+ subst e'. apply T.sub_trans with hi.
eapply P; eauto. rewrite e0. eapply T.glb_right; eauto.
+ apply T.sub_trans with (T.glb hi ty).
eapply (P x). simpl. rewrite PTree.gss; eauto.
eapply T.glb_right; eauto.
- inv H. eapply (P x); simpl. rewrite PTree.gss; eauto.
Qed.
Lemma type_uses_incr:
forall te xl tyl e e', type_uses e xl tyl = OK e' -> satisf te e' -> satisf te e.
Proof.
induction xl; destruct tyl; simpl; intros; monadInv H; eauto with ty.
Qed.
Hint Resolve type_uses_incr: ty.
Lemma type_uses_sound:
forall te xl tyl e e', type_uses e xl tyl = OK e' -> satisf te e' -> list_forall2 T.sub (map te xl) tyl.
Proof.
induction xl; destruct tyl; simpl; intros; monadInv H.
constructor.
constructor; eauto. eapply type_use_sound; eauto with ty.
Qed.
Lemma type_move_incr:
forall te e r1 r2 e' changed,
type_move e r1 r2 = OK(changed, e') -> satisf te e' -> satisf te e.
Proof.
unfold type_move; intros. destruct H0 as [P Q].
destruct (peq r1 r2). inv H; split; auto.
destruct (te_typ e)!r1 as [[lo1 hi1 s1]|] eqn:E1;
destruct (te_typ e)!r2 as [[lo2 hi2 s2]|] eqn:E2.
- destruct (T.sub_dec hi1 lo2). inv H; split; auto.
destruct (T.sub_dec lo1 hi2); try discriminate.
set (lo := T.lub lo1 lo2) in *. set (hi := T.glb hi1 hi2) in *.
destruct (T.eq lo2 lo); destruct (T.eq hi1 hi); monadInv H; simpl in *.
+ subst e'; simpl in *. split; auto.
+ subst e'; simpl in *. split; auto. intros. destruct (peq x r1).
subst x.
rewrite E1 in H. injection H; intros; subst lo0 hi0.
exploit (P r1). rewrite PTree.gss; eauto. intuition.
apply T.sub_trans with (T.glb hi1 hi2); auto. eapply T.glb_left; eauto.
eapply P. rewrite PTree.gso; eauto.
+ subst e'; simpl in *. split; auto. intros. destruct (peq x r2).
subst x.
rewrite E2 in H. injection H; intros; subst lo0 hi0.
exploit (P r2). rewrite PTree.gss; eauto. intuition.
apply T.sub_trans with (T.lub lo1 lo2); auto. eapply T.lub_right; eauto.
eapply P. rewrite PTree.gso; eauto.
+ split; auto. intros.
destruct (peq x r1). subst x.
rewrite E1 in H. injection H; intros; subst lo0 hi0.
exploit (P r1). rewrite PTree.gso; eauto. rewrite PTree.gss; eauto. intuition.
apply T.sub_trans with (T.glb hi1 hi2); auto. eapply T.glb_left; eauto.
destruct (peq x r2). subst x.
rewrite E2 in H. injection H; intros; subst lo0 hi0.
exploit (P r2). rewrite PTree.gss; eauto. intuition.
apply T.sub_trans with (T.lub lo1 lo2); auto. eapply T.lub_right; eauto.
eapply P. rewrite ! PTree.gso; eauto.
- inv H; simpl in *. split; intros.
eapply P. rewrite PTree.gso; eauto. congruence.
apply Q. destruct (T.sub_dec hi1 lo1); auto with coqlib.
- inv H; simpl in *. split; intros.
eapply P. rewrite PTree.gso; eauto. congruence.
apply Q. destruct (T.sub_dec hi2 lo2); auto with coqlib.
- inv H; simpl in *. split; auto.
Qed.
Hint Resolve type_move_incr: ty.
Lemma type_move_sound:
forall te e r1 r2 e' changed,
type_move e r1 r2 = OK(changed, e') -> satisf te e' -> T.sub (te r1) (te r2).
Proof.
unfold type_move; intros. destruct H0 as [P Q].
destruct (peq r1 r2). subst r2. apply T.sub_refl.
destruct (te_typ e)!r1 as [[lo1 hi1 s1]|] eqn:E1;
destruct (te_typ e)!r2 as [[lo2 hi2 s2]|] eqn:E2.
- destruct (T.sub_dec hi1 lo2).
inv H. apply T.sub_trans with hi1. eapply P; eauto. apply T.sub_trans with lo2; auto. eapply P; eauto.
destruct (T.sub_dec lo1 hi2); try discriminate.
set (lo := T.lub lo1 lo2) in *. set (hi := T.glb hi1 hi2) in *.
destruct (T.eq lo2 lo); destruct (T.eq hi1 hi); monadInv H; simpl in *.
+ subst e'; simpl in *. apply Q; auto.
+ subst e'; simpl in *. apply Q; auto.
+ subst e'; simpl in *. apply Q; auto.
+ apply Q; auto.
- inv H; simpl in *. destruct (T.sub_dec hi1 lo1).
+ apply T.sub_trans with hi1. eapply P; eauto. rewrite PTree.gso; eauto.
apply T.sub_trans with lo1; auto. eapply P. rewrite PTree.gss; eauto.
+ auto with coqlib.
- inv H; simpl in *. destruct (T.sub_dec hi2 lo2).
+ apply T.sub_trans with hi2. eapply P. rewrite PTree.gss; eauto.
apply T.sub_trans with lo2; auto. eapply P. rewrite PTree.gso; eauto.
+ auto with coqlib.
- inv H. simpl in Q; auto.
Qed.
Lemma solve_rec_incr:
forall te q e changed e' changed',
solve_rec e changed q = OK(e', changed') -> satisf te e' -> satisf te e.
Proof.
induction q; simpl; intros.
- inv H. auto.
- destruct a as [r1 r2]; monadInv H. eauto with ty.
Qed.
Lemma solve_rec_sound:
forall te r1 r2 q e changed e' changed',
solve_rec e changed q = OK(e', changed') -> In (r1, r2) q -> satisf te e' ->
T.sub (te r1) (te r2).
Proof.
induction q; simpl; intros.
- contradiction.
- destruct a as [r3 r4]; monadInv H. destruct H0.
+ inv H. eapply type_move_sound; eauto. eapply solve_rec_incr; eauto.
+ eapply IHq; eauto with ty.
Qed.
Lemma type_move_false:
forall e r1 r2 e',
type_move e r1 r2 = OK(false, e') ->
te_typ e' = te_typ e /\ T.sub (makeassign e r1) (makeassign e r2).
Proof.
unfold type_move; intros.
destruct (peq r1 r2). inv H. split; auto. apply T.sub_refl.
unfold makeassign;
destruct (te_typ e)!r1 as [[lo1 hi1 s1]|] eqn:E1;
destruct (te_typ e)!r2 as [[lo2 hi2 s2]|] eqn:E2.
- destruct (T.sub_dec hi1 lo2).
inv H. split; auto. eapply T.sub_trans; eauto.
destruct (T.sub_dec lo1 hi2); try discriminate.
set (lo := T.lub lo1 lo2) in *. set (hi := T.glb hi1 hi2) in *.
destruct (T.eq lo2 lo); destruct (T.eq hi1 hi); try discriminate.
monadInv H. split; auto. rewrite e0. unfold lo. eapply T.lub_left; eauto.
- discriminate.
- discriminate.
- inv H. split; auto. apply T.sub_refl.
Qed.
Lemma solve_rec_false:
forall r1 r2 q e changed e',
solve_rec e changed q = OK(e', false) ->
changed = false /\
(In (r1, r2) q -> T.sub (makeassign e r1) (makeassign e r2)).
Proof.
induction q; simpl; intros.
- inv H. tauto.
- destruct a as [r3 r4]; monadInv H.
exploit IHq; eauto. intros [P Q].
destruct changed; try discriminate. destruct x; try discriminate.
exploit type_move_false; eauto. intros [U V].
split. auto. intros [A|A]. inv A. auto. exploit Q; auto.
unfold makeassign; rewrite U; auto.
Qed.
Lemma solve_constraints_incr:
forall te e e', solve_constraints e = OK e' -> satisf te e' -> satisf te e.
Proof.
intros te e; functional induction (solve_constraints e); intros.
- inv H. auto.
- exploit solve_rec_incr; eauto. intros [A B].
split; auto. intros; eapply solve_rec_sound; eauto.
- discriminate.
Qed.
Lemma solve_constraints_sound:
forall e e', solve_constraints e = OK e' -> satisf (makeassign e') e'.
Proof.
intros e0; functional induction (solve_constraints e0); intros.
- inv H. split; intros.
unfold makeassign; rewrite H. split; auto with ty.
exploit solve_rec_false. eauto. intros [A B]. eapply B; eauto.
- eauto.
- discriminate.
Qed.
Theorem solve_sound:
forall e te, solve e = OK te -> satisf te e.
Proof.
unfold solve; intros. monadInv H.
eapply solve_constraints_incr. eauto. eapply solve_constraints_sound; eauto.
Qed.
(** Completeness proof *)
Lemma type_def_complete:
forall te e x ty,
satisf te e -> T.sub ty (te x) -> exists e', type_def e x ty = OK e' /\ satisf te e'.
Proof.
unfold type_def; intros. destruct H as [P Q].
destruct (te_typ e)!x as [[lo hi s1]|] eqn:E.
- destruct (T.sub_dec ty hi).
destruct (T.eq lo (T.lub lo ty)).
exists e; split; auto. split; auto.
econstructor; split; eauto. split; simpl; auto; intros.
rewrite PTree.gsspec in H. destruct (peq x0 x).
inv H. exploit P; eauto. intuition. eapply T.lub_min; eauto.
eapply P; eauto.
elim n. apply T.sub_trans with (te x); auto. eapply P; eauto.
- econstructor; split; eauto. split; simpl; auto; intros.
rewrite PTree.gsspec in H. destruct (peq x0 x).
inv H. split; auto. apply T.high_bound_majorant; auto.
eapply P; eauto.
Qed.
Lemma type_defs_complete:
forall te xl tyl e,
satisf te e -> list_forall2 T.sub tyl (map te xl) ->
exists e', type_defs e xl tyl = OK e' /\ satisf te e'.
Proof.
induction xl; intros; inv H0; simpl.
econstructor; eauto.
exploit (type_def_complete te e a a1); auto. intros (e1 & P & Q).
exploit (IHxl al e1); auto. intros (e2 & U & V).
exists e2; split; auto. rewrite P; auto.
Qed.
Lemma type_use_complete:
forall te e x ty,
satisf te e -> T.sub (te x) ty -> exists e', type_use e x ty = OK e' /\ satisf te e'.
Proof.
unfold type_use; intros. destruct H as [P Q].
destruct (te_typ e)!x as [[lo hi s1]|] eqn:E.
- destruct (T.sub_dec lo ty).
destruct (T.eq hi (T.glb hi ty)).
exists e; split; auto. split; auto.
econstructor; split; eauto. split; simpl; auto; intros.
rewrite PTree.gsspec in H. destruct (peq x0 x).
inv H. exploit P; eauto. intuition. eapply T.glb_max; eauto.
eapply P; eauto.
elim n. apply T.sub_trans with (te x); auto. eapply P; eauto.
- econstructor; split; eauto. split; simpl; auto; intros.
rewrite PTree.gsspec in H. destruct (peq x0 x).
inv H. split; auto. apply T.low_bound_minorant; auto.
eapply P; eauto.
Qed.
Lemma type_uses_complete:
forall te xl tyl e,
satisf te e -> list_forall2 T.sub (map te xl) tyl ->
exists e', type_uses e xl tyl = OK e' /\ satisf te e'.
Proof.
induction xl; intros; inv H0; simpl.
econstructor; eauto.
exploit (type_use_complete te e a b1); auto. intros (e1 & P & Q).
exploit (IHxl bl e1); auto. intros (e2 & U & V).
exists e2; split; auto. rewrite P; auto.
Qed.
Lemma type_move_complete:
forall te e r1 r2,
satisf te e -> T.sub (te r1) (te r2) ->
exists changed e', type_move e r1 r2 = OK(changed, e') /\ satisf te e'.
Proof.
unfold type_move; intros. elim H; intros P Q.
assert (Q': forall x y, In (x, y) ((r1, r2) :: te_sub e) -> T.sub (te x) (te y)).
{ intros. destruct H1; auto. congruence. }
destruct (peq r1 r2). econstructor; econstructor; eauto.
destruct (te_typ e)!r1 as [[lo1 hi1 s1]|] eqn:E1;
destruct (te_typ e)!r2 as [[lo2 hi2 s2]|] eqn:E2.
- exploit (P r1); eauto. intros [L1 U1].
exploit (P r2); eauto. intros [L2 U2].
destruct (T.sub_dec hi1 lo2). econstructor; econstructor; eauto.
destruct (T.sub_dec lo1 hi2).
destruct (T.eq lo2 (T.lub lo1 lo2)); destruct (T.eq hi1 (T.glb hi1 hi2));
econstructor; econstructor; split; eauto; split; auto; simpl; intros.
+ rewrite PTree.gsspec in H1. destruct (peq x r1).
clear e0. inv H1. split; auto.
apply T.glb_max. auto. apply T.sub_trans with (te r2); auto.
eapply P; eauto.
+ rewrite PTree.gsspec in H1. destruct (peq x r2).
clear e0. inv H1. split; auto.
apply T.lub_min. apply T.sub_trans with (te r1); auto. auto.
eapply P; eauto.
+ rewrite ! PTree.gsspec in H1. destruct (peq x r2).
inv H1. split; auto. apply T.lub_min; auto. apply T.sub_trans with (te r1); auto.
destruct (peq x r1).
inv H1. split; auto. apply T.glb_max; auto. apply T.sub_trans with (te r2); auto.
eapply P; eauto.
+ elim n1. apply T.sub_trans with (te r1); auto.
apply T.sub_trans with (te r2); auto.
- econstructor; econstructor; split; eauto; split.
+ simpl; intros. rewrite PTree.gsspec in H1. destruct (peq x r2).
inv H1. exploit P; eauto. intuition.
apply T.sub_trans with (te r1); auto.
apply T.high_bound_majorant. apply T.sub_trans with (te r1); auto.
eapply P; eauto.
+ destruct (T.sub_dec hi1 lo1); auto.
- econstructor; econstructor; split; eauto; split.
+ simpl; intros. rewrite PTree.gsspec in H1. destruct (peq x r1).
inv H1. exploit P; eauto. intuition.
apply T.low_bound_minorant. apply T.sub_trans with (te r2); auto.
apply T.sub_trans with (te r2); auto.
eapply P; eauto.
+ destruct (T.sub_dec hi2 lo2); auto.
- econstructor; econstructor; split; eauto; split; auto.
Qed.
Lemma solve_rec_complete:
forall te q e changed,
satisf te e ->
(forall r1 r2, In (r1, r2) q -> T.sub (te r1) (te r2)) ->
exists e' changed', solve_rec e changed q = OK(e', changed') /\ satisf te e'.
Proof.
induction q; simpl; intros.
- econstructor; econstructor; eauto.
- destruct a as [r1 r2].
exploit (type_move_complete te e r1 r2); auto. intros (changed1 & e1 & A & B).
exploit (IHq e1 (changed || changed1)); auto. intros (e' & changed' & C & D).
exists e'; exists changed'. rewrite A; simpl; rewrite C; auto.
Qed.
Lemma solve_constraints_complete:
forall te e, satisf te e -> exists e', solve_constraints e = OK e' /\ satisf te e'.
Proof.
intros te e. functional induction (solve_constraints e); intros.
- exists e; auto.
- exploit (solve_rec_complete te (te_sub e) {| te_typ := te_typ e; te_sub := nil |} false).
destruct H; split; auto. simpl; tauto.
destruct H; auto.
intros (e1 & changed1 & P & Q).
apply IHr. congruence.
- exploit (solve_rec_complete te (te_sub e) {| te_typ := te_typ e; te_sub := nil |} false).
destruct H; split; auto. simpl; tauto.
destruct H; auto.
intros (e1 & changed1 & P & Q).
congruence.
Qed.
Lemma solve_complete:
forall te e, satisf te e -> exists te', solve e = OK te'.
Proof.
intros. unfold solve.
destruct (solve_constraints_complete te e H) as (e' & P & Q).
econstructor. rewrite P. simpl. eauto.
Qed.
End SubSolver.
|