summaryrefslogtreecommitdiff
path: root/common/Smallstep.v
blob: 02b18fc8d9c806204aaf7b21a25c64dada17946c (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
(* *********************************************************************)
(*                                                                     *)
(*              The Compcert verified compiler                         *)
(*                                                                     *)
(*          Xavier Leroy, INRIA Paris-Rocquencourt                     *)
(*                                                                     *)
(*  Copyright Institut National de Recherche en Informatique et en     *)
(*  Automatique.  All rights reserved.  This file is distributed       *)
(*  under the terms of the GNU General Public License as published by  *)
(*  the Free Software Foundation, either version 2 of the License, or  *)
(*  (at your option) any later version.  This file is also distributed *)
(*  under the terms of the INRIA Non-Commercial License Agreement.     *)
(*                                                                     *)
(* *********************************************************************)

(** Tools for small-step operational semantics *)

(** This module defines generic operations and theorems over
  the one-step transition relations that are used to specify
  operational semantics in small-step style. *)

Require Import Relations.
Require Import Wellfounded.
Require Import Coqlib.
Require Import Events.
Require Import Globalenvs.
Require Import Integers.

Set Implicit Arguments.

(** * Closures of transitions relations *)

Section CLOSURES.

Variable genv: Type.
Variable state: Type.

(** A one-step transition relation has the following signature.
  It is parameterized by a global environment, which does not
  change during the transition.  It relates the initial state
  of the transition with its final state.  The [trace] parameter
  captures the observable events possibly generated during the
  transition. *)

Variable step: genv -> state -> trace -> state -> Prop.

(** No transitions: stuck state *)

Definition nostep (ge: genv) (s: state) : Prop :=
  forall t s', ~(step ge s t s').

(** Zero, one or several transitions.  Also known as Kleene closure,
    or reflexive transitive closure. *)

Inductive star (ge: genv): state -> trace -> state -> Prop :=
  | star_refl: forall s,
      star ge s E0 s
  | star_step: forall s1 t1 s2 t2 s3 t,
      step ge s1 t1 s2 -> star ge s2 t2 s3 -> t = t1 ** t2 ->
      star ge s1 t s3.

Lemma star_one:
  forall ge s1 t s2, step ge s1 t s2 -> star ge s1 t s2.
Proof.
  intros. eapply star_step; eauto. apply star_refl. traceEq. 
Qed.

Lemma star_two:
  forall ge s1 t1 s2 t2 s3 t,
  step ge s1 t1 s2 -> step ge s2 t2 s3 -> t = t1 ** t2 ->
  star ge s1 t s3.
Proof.
  intros. eapply star_step; eauto. apply star_one; auto.  
Qed.

Lemma star_three:
  forall ge s1 t1 s2 t2 s3 t3 s4 t,
  step ge s1 t1 s2 -> step ge s2 t2 s3 -> step ge s3 t3 s4 -> t = t1 ** t2 ** t3 ->
  star ge s1 t s4.
Proof.
  intros. eapply star_step; eauto. eapply star_two; eauto. 
Qed.

Lemma star_four:
  forall ge s1 t1 s2 t2 s3 t3 s4 t4 s5 t,
  step ge s1 t1 s2 -> step ge s2 t2 s3 ->
  step ge s3 t3 s4 -> step ge s4 t4 s5 -> t = t1 ** t2 ** t3 ** t4 ->
  star ge s1 t s5.
Proof.
  intros. eapply star_step; eauto. eapply star_three; eauto. 
Qed.

Lemma star_trans:
  forall ge s1 t1 s2, star ge s1 t1 s2 ->
  forall t2 s3 t, star ge s2 t2 s3 -> t = t1 ** t2 -> star ge s1 t s3.
Proof.
  induction 1; intros.
  rewrite H0. simpl. auto.
  eapply star_step; eauto. traceEq.
Qed.

Lemma star_left:
  forall ge s1 t1 s2 t2 s3 t,
  step ge s1 t1 s2 -> star ge s2 t2 s3 -> t = t1 ** t2 ->
  star ge s1 t s3.
Proof star_step.

Lemma star_right:
  forall ge s1 t1 s2 t2 s3 t,
  star ge s1 t1 s2 -> step ge s2 t2 s3 -> t = t1 ** t2 ->
  star ge s1 t s3.
Proof.
  intros. eapply star_trans. eauto. apply star_one. eauto. auto.
Qed.

Lemma star_E0_ind:
  forall ge (P: state -> state -> Prop),
  (forall s, P s s) ->
  (forall s1 s2 s3, step ge s1 E0 s2 -> P s2 s3 -> P s1 s3) ->
  forall s1 s2, star ge s1 E0 s2 -> P s1 s2.
Proof.
  intros ge P BASE REC. 
  assert (forall s1 t s2, star ge s1 t s2 -> t = E0 -> P s1 s2).
    induction 1; intros; subst.
    auto.
    destruct (Eapp_E0_inv _ _ H2). subst. eauto.
  eauto.
Qed. 

(** One or several transitions.  Also known as the transitive closure. *)

Inductive plus (ge: genv): state -> trace -> state -> Prop :=
  | plus_left: forall s1 t1 s2 t2 s3 t,
      step ge s1 t1 s2 -> star ge s2 t2 s3 -> t = t1 ** t2 ->
      plus ge s1 t s3.

Lemma plus_one:
  forall ge s1 t s2,
  step ge s1 t s2 -> plus ge s1 t s2.
Proof.
  intros. econstructor; eauto. apply star_refl. traceEq.
Qed.

Lemma plus_two:
  forall ge s1 t1 s2 t2 s3 t,
  step ge s1 t1 s2 -> step ge s2 t2 s3 -> t = t1 ** t2 ->
  plus ge s1 t s3.
Proof.
  intros. eapply plus_left; eauto. apply star_one; auto.  
Qed.

Lemma plus_three:
  forall ge s1 t1 s2 t2 s3 t3 s4 t,
  step ge s1 t1 s2 -> step ge s2 t2 s3 -> step ge s3 t3 s4 -> t = t1 ** t2 ** t3 ->
  plus ge s1 t s4.
Proof.
  intros. eapply plus_left; eauto. eapply star_two; eauto. 
Qed.

Lemma plus_four:
  forall ge s1 t1 s2 t2 s3 t3 s4 t4 s5 t,
  step ge s1 t1 s2 -> step ge s2 t2 s3 ->
  step ge s3 t3 s4 -> step ge s4 t4 s5 -> t = t1 ** t2 ** t3 ** t4 ->
  plus ge s1 t s5.
Proof.
  intros. eapply plus_left; eauto. eapply star_three; eauto. 
Qed.

Lemma plus_star:
  forall ge s1 t s2, plus ge s1 t s2 -> star ge s1 t s2.
Proof.
  intros. inversion H; subst.
  eapply star_step; eauto. 
Qed.

Lemma plus_right:
  forall ge s1 t1 s2 t2 s3 t,
  star ge s1 t1 s2 -> step ge s2 t2 s3 -> t = t1 ** t2 ->
  plus ge s1 t s3.
Proof.
  intros. inversion H; subst. simpl. apply plus_one. auto.
  rewrite Eapp_assoc. eapply plus_left; eauto.
  eapply star_right; eauto. 
Qed.

Lemma plus_left':
  forall ge s1 t1 s2 t2 s3 t,
  step ge s1 t1 s2 -> plus ge s2 t2 s3 -> t = t1 ** t2 ->
  plus ge s1 t s3.
Proof.
  intros. eapply plus_left; eauto. apply plus_star; auto.
Qed.

Lemma plus_right':
  forall ge s1 t1 s2 t2 s3 t,
  plus ge s1 t1 s2 -> step ge s2 t2 s3 -> t = t1 ** t2 ->
  plus ge s1 t s3.
Proof.
  intros. eapply plus_right; eauto. apply plus_star; auto.
Qed.

Lemma plus_star_trans:
  forall ge s1 t1 s2 t2 s3 t,
  plus ge s1 t1 s2 -> star ge s2 t2 s3 -> t = t1 ** t2 -> plus ge s1 t s3.
Proof.
  intros. inversion H; subst. 
  econstructor; eauto. eapply star_trans; eauto.
  traceEq.
Qed.

Lemma star_plus_trans:
  forall ge s1 t1 s2 t2 s3 t,
  star ge s1 t1 s2 -> plus ge s2 t2 s3 -> t = t1 ** t2 -> plus ge s1 t s3.
Proof.
  intros. inversion H; subst.
  simpl; auto.
  rewrite Eapp_assoc. 
  econstructor. eauto. eapply star_trans. eauto. 
  apply plus_star. eauto. eauto. auto.
Qed.

Lemma plus_trans:
  forall ge s1 t1 s2 t2 s3 t,
  plus ge s1 t1 s2 -> plus ge s2 t2 s3 -> t = t1 ** t2 -> plus ge s1 t s3.
Proof.
  intros. eapply plus_star_trans. eauto. apply plus_star. eauto. auto.
Qed.

Lemma plus_inv:
  forall ge s1 t s2, 
  plus ge s1 t s2 ->
  step ge s1 t s2 \/ exists s', exists t1, exists t2, step ge s1 t1 s' /\ plus ge s' t2 s2 /\ t = t1 ** t2.
Proof.
  intros. inversion H; subst. inversion H1; subst.
  left. rewrite E0_right. auto.
  right. exists s3; exists t1; exists (t0 ** t3); split. auto.
  split. econstructor; eauto. auto.
Qed.

Lemma star_inv:
  forall ge s1 t s2,
  star ge s1 t s2 ->
  (s2 = s1 /\ t = E0) \/ plus ge s1 t s2.
Proof.
  intros. inv H. left; auto. right; econstructor; eauto.
Qed.

Lemma plus_ind2:
  forall ge (P: state -> trace -> state -> Prop),
  (forall s1 t s2, step ge s1 t s2 -> P s1 t s2) ->
  (forall s1 t1 s2 t2 s3 t, 
   step ge s1 t1 s2 -> plus ge s2 t2 s3 -> P s2 t2 s3 -> t = t1 ** t2 ->
   P s1 t s3) ->
  forall s1 t s2, plus ge s1 t s2 -> P s1 t s2.
Proof.
  intros ge P BASE IND.
  assert (forall s1 t s2, star ge s1 t s2 ->
         forall s0 t0, step ge s0 t0 s1 ->
         P s0 (t0 ** t) s2).
  induction 1; intros.
  rewrite E0_right. apply BASE; auto.
  eapply IND. eauto. econstructor; eauto. subst t. eapply IHstar; eauto. auto.

  intros. inv H0. eauto. 
Qed.

Lemma plus_E0_ind:
  forall ge (P: state -> state -> Prop),
  (forall s1 s2 s3, step ge s1 E0 s2 -> star ge s2 E0 s3 -> P s1 s3) ->
  forall s1 s2, plus ge s1 E0 s2 -> P s1 s2.
Proof.
  intros. inv H0. exploit Eapp_E0_inv; eauto. intros [A B]; subst. eauto.
Qed.

(** Counted sequences of transitions *)

Inductive starN (ge: genv): nat -> state -> trace -> state -> Prop :=
  | starN_refl: forall s,
      starN ge O s E0 s
  | starN_step: forall n s t t1 s' t2 s'',
      step ge s t1 s' -> starN ge n s' t2 s'' -> t = t1 ** t2 ->
      starN ge (S n) s t s''.

Remark starN_star:
  forall ge n s t s', starN ge n s t s' -> star ge s t s'.
Proof.
  induction 1; econstructor; eauto.
Qed.

Remark star_starN:
  forall ge s t s', star ge s t s' -> exists n, starN ge n s t s'.
Proof.
  induction 1. 
  exists O; constructor.
  destruct IHstar as [n P]. exists (S n); econstructor; eauto.
Qed.

(** Infinitely many transitions *)

CoInductive forever (ge: genv): state -> traceinf -> Prop :=
  | forever_intro: forall s1 t s2 T,
      step ge s1 t s2 -> forever ge s2 T ->
      forever ge s1 (t *** T).

Lemma star_forever:
  forall ge s1 t s2, star ge s1 t s2 ->
  forall T, forever ge s2 T ->
  forever ge s1 (t *** T).
Proof.
  induction 1; intros. simpl. auto.
  subst t. rewrite Eappinf_assoc. 
  econstructor; eauto.
Qed.  

(** An alternate, equivalent definition of [forever] that is useful
    for coinductive reasoning. *)

Variable A: Type.
Variable order: A -> A -> Prop.

CoInductive forever_N (ge: genv) : A -> state -> traceinf -> Prop :=
  | forever_N_star: forall s1 t s2 a1 a2 T1 T2,
      star ge s1 t s2 -> 
      order a2 a1 ->
      forever_N ge a2 s2 T2 ->
      T1 = t *** T2 ->
      forever_N ge a1 s1 T1
  | forever_N_plus: forall s1 t s2 a1 a2 T1 T2,
      plus ge s1 t s2 ->
      forever_N ge a2 s2 T2 ->
      T1 = t *** T2 ->
      forever_N ge a1 s1 T1.

Hypothesis order_wf: well_founded order.

Lemma forever_N_inv:
  forall ge a s T,
  forever_N ge a s T ->
  exists t, exists s', exists a', exists T',
  step ge s t s' /\ forever_N ge a' s' T' /\ T = t *** T'.
Proof.
  intros ge a0. pattern a0. apply (well_founded_ind order_wf).
  intros. inv H0.
  (* star case *)
  inv H1.
  (* no transition *)
  change (E0 *** T2) with T2. apply H with a2. auto. auto. 
  (* at least one transition *)
  exists t1; exists s0; exists x; exists (t2 *** T2).
  split. auto. split. eapply forever_N_star; eauto.
  apply Eappinf_assoc.
  (* plus case *)
  inv H1.
  exists t1; exists s0; exists a2; exists (t2 *** T2).
  split. auto.
  split. inv H3. auto.  
  eapply forever_N_plus. econstructor; eauto. eauto. auto.
  apply Eappinf_assoc.
Qed.

Lemma forever_N_forever:
  forall ge a s T, forever_N ge a s T -> forever ge s T.
Proof.
  cofix COINDHYP; intros.
  destruct (forever_N_inv H) as [t [s' [a' [T' [P [Q R]]]]]].
  rewrite R. apply forever_intro with s'. auto. 
  apply COINDHYP with a'; auto.
Qed.

(** Yet another alternative definition of [forever]. *)

CoInductive forever_plus (ge: genv) : state -> traceinf -> Prop :=
  | forever_plus_intro: forall s1 t s2 T1 T2,
      plus ge s1 t s2 -> 
      forever_plus ge s2 T2 ->
      T1 = t *** T2 ->
      forever_plus ge s1 T1.

Lemma forever_plus_inv:
  forall ge s T,
  forever_plus ge s T ->
  exists s', exists t, exists T',
  step ge s t s' /\ forever_plus ge s' T' /\ T = t *** T'.
Proof.
  intros. inv H. inv H0. exists s0; exists t1; exists (t2 *** T2).
  split. auto.
  split. exploit star_inv; eauto. intros [[P Q] | R]. 
    subst. simpl. auto. econstructor; eauto. 
  traceEq.
Qed.

Lemma forever_plus_forever:
  forall ge s T, forever_plus ge s T -> forever ge s T.
Proof.
  cofix COINDHYP; intros.
  destruct (forever_plus_inv H) as [s' [t [T' [P [Q R]]]]].
  subst. econstructor; eauto.
Qed.

(** Infinitely many silent transitions *)

CoInductive forever_silent (ge: genv): state -> Prop :=
  | forever_silent_intro: forall s1 s2,
      step ge s1 E0 s2 -> forever_silent ge s2 ->
      forever_silent ge s1.

(** An alternate definition. *)

CoInductive forever_silent_N (ge: genv) : A -> state -> Prop :=
  | forever_silent_N_star: forall s1 s2 a1 a2,
      star ge s1 E0 s2 -> 
      order a2 a1 ->
      forever_silent_N ge a2 s2 ->
      forever_silent_N ge a1 s1
  | forever_silent_N_plus: forall s1 s2 a1 a2,
      plus ge s1 E0 s2 ->
      forever_silent_N ge a2 s2 ->
      forever_silent_N ge a1 s1.

Lemma forever_silent_N_inv:
  forall ge a s,
  forever_silent_N ge a s ->
  exists s', exists a',
  step ge s E0 s' /\ forever_silent_N ge a' s'.
Proof.
  intros ge a0. pattern a0. apply (well_founded_ind order_wf).
  intros. inv H0.
  (* star case *)
  inv H1.
  (* no transition *)
  apply H with a2. auto. auto. 
  (* at least one transition *)
  exploit Eapp_E0_inv; eauto. intros [P Q]. subst. 
  exists s0; exists x.
  split. auto. eapply forever_silent_N_star; eauto.
  (* plus case *)
  inv H1. exploit Eapp_E0_inv; eauto. intros [P Q]. subst. 
  exists s0; exists a2.
  split. auto. inv H3. auto.  
  eapply forever_silent_N_plus. econstructor; eauto. eauto.
Qed.

Lemma forever_silent_N_forever:
  forall ge a s, forever_silent_N ge a s -> forever_silent ge s.
Proof.
  cofix COINDHYP; intros.
  destruct (forever_silent_N_inv H) as [s' [a' [P Q]]].
  apply forever_silent_intro with s'. auto. 
  apply COINDHYP with a'; auto.
Qed.

(** Infinitely many non-silent transitions *)

CoInductive forever_reactive (ge: genv): state -> traceinf -> Prop :=
  | forever_reactive_intro: forall s1 s2 t T,
      star ge s1 t s2 -> t <> E0 -> forever_reactive ge s2 T ->
      forever_reactive ge s1 (t *** T).

Lemma star_forever_reactive:
  forall ge s1 t s2 T,
  star ge s1 t s2 -> forever_reactive ge s2 T ->
  forever_reactive ge s1 (t *** T).
Proof.
  intros. inv H0. rewrite <- Eappinf_assoc. econstructor. 
  eapply star_trans; eauto. 
  red; intro. exploit Eapp_E0_inv; eauto. intros [P Q]. contradiction.
  auto.
Qed.

End CLOSURES.

(** * Transition semantics *)

(** The general form of a transition semantics. *)

Record semantics : Type := Semantics {
  state: Type;
  funtype: Type;
  vartype: Type;
  step : Genv.t funtype vartype -> state -> trace -> state -> Prop;
  initial_state: state -> Prop;
  final_state: state -> int -> Prop;
  globalenv: Genv.t funtype vartype
}.

(** Handy notations. *)

Notation " 'Step' L " := (step L (globalenv L)) (at level 1) : smallstep_scope.
Notation " 'Star' L " := (star (step L) (globalenv L)) (at level 1) : smallstep_scope.
Notation " 'Plus' L " := (plus (step L) (globalenv L)) (at level 1) : smallstep_scope.
Notation " 'Forever_silent' L " := (forever_silent (step L) (globalenv L)) (at level 1) : smallstep_scope.
Notation " 'Forever_reactive' L " := (forever_reactive (step L) (globalenv L)) (at level 1) : smallstep_scope.
Notation " 'Nostep' L " := (nostep (step L) (globalenv L)) (at level 1) : smallstep_scope.

Open Scope smallstep_scope.

(** * Forward simulations between two transition semantics. *)

(** The general form of a forward simulation. *)

Record forward_simulation (L1 L2: semantics) : Type :=
  Forward_simulation {
    fsim_index: Type;
    fsim_order: fsim_index -> fsim_index -> Prop;
    fsim_order_wf: well_founded fsim_order;
    fsim_match_states :> fsim_index -> state L1 -> state L2 -> Prop;
    fsim_match_initial_states:
      forall s1, initial_state L1 s1 ->
      exists i, exists s2, initial_state L2 s2 /\ fsim_match_states i s1 s2;
    fsim_match_final_states:
      forall i s1 s2 r, 
      fsim_match_states i s1 s2 -> final_state L1 s1 r -> final_state L2 s2 r;
    fsim_simulation:
      forall s1 t s1', Step L1 s1 t s1' ->
      forall i s2, fsim_match_states i s1 s2 ->
      exists i', exists s2',
         (Plus L2 s2 t s2' \/ (Star L2 s2 t s2' /\ fsim_order i' i))
      /\ fsim_match_states i' s1' s2';
    fsim_symbols_preserved:
      forall id, Genv.find_symbol (globalenv L2) id = Genv.find_symbol (globalenv L1) id
  }.

Implicit Arguments forward_simulation [].

(** An alternate form of the simulation diagram *)

Lemma fsim_simulation':
  forall L1 L2 (S: forward_simulation L1 L2),
  forall i s1 t s1', Step L1 s1 t s1' ->
  forall s2, S i s1 s2 ->
  (exists i', exists s2', Plus L2 s2 t s2' /\ S i' s1' s2')
  \/ (exists i', fsim_order S i' i /\ t = E0 /\ S i' s1' s2).
Proof.
  intros. exploit fsim_simulation; eauto. 
  intros [i' [s2' [A B]]]. intuition. 
  left; exists i'; exists s2'; auto.
  inv H2. 
  right; exists i'; auto.
  left; exists i'; exists s2'; split; auto. econstructor; eauto. 
Qed.

(** ** Forward simulation diagrams. *)

(** Various simulation diagrams that imply forward simulation *)

Section FORWARD_SIMU_DIAGRAMS.

Variable L1: semantics.
Variable L2: semantics.

Hypothesis symbols_preserved:
  forall id, Genv.find_symbol (globalenv L2) id = Genv.find_symbol (globalenv L1) id.

Variable match_states: state L1 -> state L2 -> Prop.

Hypothesis match_initial_states:
  forall s1, initial_state L1 s1 ->
  exists s2, initial_state L2 s2 /\ match_states s1 s2.

Hypothesis match_final_states:
  forall s1 s2 r,
  match_states s1 s2 ->
  final_state L1 s1 r ->
  final_state L2 s2 r.

(** Simulation when one transition in the first program
    corresponds to zero, one or several transitions in the second program.
    However, there is no stuttering: infinitely many transitions
    in the source program must correspond to infinitely many
    transitions in the second program. *)

Section SIMULATION_STAR_WF.

(** [order] is a well-founded ordering associated with states
  of the first semantics.  Stuttering steps must correspond
  to states that decrease w.r.t. [order]. *)

Variable order: state L1 -> state L1 -> Prop.
Hypothesis order_wf: well_founded order.

Hypothesis simulation:
  forall s1 t s1', Step L1 s1 t s1' ->
  forall s2, match_states s1 s2 ->
  exists s2',
  (Plus L2 s2 t s2' \/ (Star L2 s2 t s2' /\ order s1' s1))
  /\ match_states s1' s2'.

Lemma forward_simulation_star_wf: forward_simulation L1 L2.
Proof.
  apply Forward_simulation with
    (fsim_order := order)
    (fsim_match_states := fun idx s1 s2 => idx = s1 /\ match_states s1 s2);
  auto.
  intros. exploit match_initial_states; eauto. intros [s2 [A B]].
    exists s1; exists s2; auto.
  intros. destruct H. eapply match_final_states; eauto.
  intros. destruct H0. subst i. exploit simulation; eauto. intros [s2' [A B]].
  exists s1'; exists s2'; intuition.
Qed.

End SIMULATION_STAR_WF.

Section SIMULATION_STAR.

(** We now consider the case where we have a nonnegative integer measure
  associated with states of the first semantics.  It must decrease when we take 
  a stuttering step. *)

Variable measure: state L1 -> nat.

Hypothesis simulation:
  forall s1 t s1', Step L1 s1 t s1' ->
  forall s2, match_states s1 s2 ->
  (exists s2', Plus L2 s2 t s2' /\ match_states s1' s2')
  \/ (measure s1' < measure s1 /\ t = E0 /\ match_states s1' s2)%nat.

Lemma forward_simulation_star: forward_simulation L1 L2.
Proof.
  apply forward_simulation_star_wf with (ltof _ measure).
  apply well_founded_ltof.
  intros. exploit simulation; eauto. intros [[s2' [A B]] | [A [B C]]].
  exists s2'; auto.
  exists s2; split. right; split. rewrite B. apply star_refl. auto. auto.
Qed.

End SIMULATION_STAR.

(** Simulation when one transition in the first program corresponds
    to one or several transitions in the second program. *)

Section SIMULATION_PLUS.

Hypothesis simulation:
  forall s1 t s1', Step L1 s1 t s1' ->
  forall s2, match_states s1 s2 ->
  exists s2', Plus L2 s2 t s2' /\ match_states s1' s2'.

Lemma forward_simulation_plus: forward_simulation L1 L2.
Proof.
  apply forward_simulation_star with (measure := fun _ => O).
  intros. exploit simulation; eauto.
Qed.

End SIMULATION_PLUS.

(** Lock-step simulation: each transition in the first semantics
    corresponds to exactly one transition in the second semantics. *)

Section SIMULATION_STEP.

Hypothesis simulation:
  forall s1 t s1', Step L1 s1 t s1' ->
  forall s2, match_states s1 s2 ->
  exists s2', Step L2 s2 t s2' /\ match_states s1' s2'.

Lemma forward_simulation_step: forward_simulation L1 L2.
Proof.
  apply forward_simulation_plus. 
  intros. exploit simulation; eauto. intros [s2' [A B]].
  exists s2'; split; auto. apply plus_one; auto.
Qed.

End SIMULATION_STEP.

(** Simulation when one transition in the first program
    corresponds to zero or one transitions in the second program.
    However, there is no stuttering: infinitely many transitions
    in the source program must correspond to infinitely many
    transitions in the second program. *)

Section SIMULATION_OPT.

Variable measure: state L1 -> nat.

Hypothesis simulation:
  forall s1 t s1', Step L1 s1 t s1' ->
  forall s2, match_states s1 s2 ->
  (exists s2', Step L2 s2 t s2' /\ match_states s1' s2')
  \/ (measure s1' < measure s1 /\ t = E0 /\ match_states s1' s2)%nat.

Lemma forward_simulation_opt: forward_simulation L1 L2.
Proof.
  apply forward_simulation_star with measure.
  intros. exploit simulation; eauto. intros [[s2' [A B]] | [A [B C]]].
  left; exists s2'; split; auto. apply plus_one; auto.
  right; auto.
Qed.

End SIMULATION_OPT.

End FORWARD_SIMU_DIAGRAMS.

(** ** Forward simulation of transition sequences *)

Section SIMULATION_SEQUENCES.

Variable L1: semantics.
Variable L2: semantics.
Variable S: forward_simulation L1 L2.

Lemma simulation_star:
  forall s1 t s1', Star L1 s1 t s1' ->
  forall i s2, S i s1 s2 ->
  exists i', exists s2', Star L2 s2 t s2' /\ S i' s1' s2'.
Proof.
  induction 1; intros.
  exists i; exists s2; split; auto. apply star_refl.
  exploit fsim_simulation; eauto. intros [i' [s2' [A B]]].
  exploit IHstar; eauto. intros [i'' [s2'' [C D]]].
  exists i''; exists s2''; split; auto. eapply star_trans; eauto.
  intuition. apply plus_star; auto. 
Qed.

Lemma simulation_plus:
  forall s1 t s1', Plus L1 s1 t s1' ->
  forall i s2, S i s1 s2 ->
  (exists i', exists s2', Plus L2 s2 t s2' /\ S i' s1' s2')
  \/ (exists i', clos_trans _ (fsim_order S) i' i /\ t = E0 /\ S i' s1' s2).
Proof.
  induction 1 using plus_ind2; intros.
(* base case *)
  exploit fsim_simulation'; eauto. intros [A | [i' A]].
  left; auto.
  right; exists i'; intuition. 
(* inductive case *)
  exploit fsim_simulation'; eauto. intros [[i' [s2' [A B]]] | [i' [A [B C]]]].
  exploit simulation_star. apply plus_star; eauto. eauto. 
  intros [i'' [s2'' [P Q]]].
  left; exists i''; exists s2''; split; auto. eapply plus_star_trans; eauto.
  exploit IHplus; eauto. intros [[i'' [s2'' [P Q]]] | [i'' [P [Q R]]]].
  subst. simpl. left; exists i''; exists s2''; auto.
  subst. simpl. right; exists i''; intuition.
  eapply t_trans; eauto. eapply t_step; eauto.
Qed.

Lemma simulation_forever_silent:
  forall i s1 s2,
  Forever_silent L1 s1 -> S i s1 s2 ->
  Forever_silent L2 s2.
Proof.
  assert (forall i s1 s2,
          Forever_silent L1 s1 -> S i s1 s2 ->
          forever_silent_N (step L2) (fsim_order S) (globalenv L2) i s2).
    cofix COINDHYP; intros.
    inv H. destruct (fsim_simulation S _ _ _ H1 _ _ H0) as [i' [s2' [A B]]].
    destruct A as [C | [C D]].
    eapply forever_silent_N_plus; eauto.
    eapply forever_silent_N_star; eauto.
  intros. eapply forever_silent_N_forever; eauto. apply fsim_order_wf.
Qed.

Lemma simulation_forever_reactive:
  forall i s1 s2 T,
  Forever_reactive L1 s1 T -> S i s1 s2 ->
  Forever_reactive L2 s2 T.
Proof.
  cofix COINDHYP; intros.
  inv H. 
  destruct (simulation_star H1 i _ H0) as [i' [st2' [A B]]].
  econstructor; eauto.
Qed.

End SIMULATION_SEQUENCES.

(** ** Composing two forward simulations *)

Section COMPOSE_SIMULATIONS.

Variable L1: semantics.
Variable L2: semantics.
Variable L3: semantics.
Variable S12: forward_simulation L1 L2.
Variable S23: forward_simulation L2 L3.

Let ff_index : Type := (fsim_index S23 * fsim_index S12)%type.

Let ff_order : ff_index -> ff_index -> Prop :=
  lex_ord (clos_trans _ (fsim_order S23)) (fsim_order S12).

Let ff_match_states (i: ff_index) (s1: state L1) (s3: state L3) : Prop :=
  exists s2, S12 (snd i) s1 s2 /\ S23 (fst i) s2 s3.

Lemma compose_forward_simulation: forward_simulation L1 L3.
Proof.
  apply Forward_simulation with (fsim_order := ff_order) (fsim_match_states := ff_match_states).
(* well founded *)
  unfold ff_order. apply wf_lex_ord. apply wf_clos_trans. apply fsim_order_wf. apply fsim_order_wf.
(* initial states *)
  intros. exploit (fsim_match_initial_states S12); eauto. intros [i [s2 [A B]]].
  exploit (fsim_match_initial_states S23); eauto. intros [i' [s3 [C D]]].
  exists (i', i); exists s3; split; auto. exists s2; auto. 
(* final states *)
  intros. destruct H as [s3 [A B]].
  eapply (fsim_match_final_states S23); eauto.
  eapply (fsim_match_final_states S12); eauto.
(* simulation *)
  intros. destruct H0 as [s3 [A B]]. destruct i as [i2 i1]; simpl in *.
  exploit (fsim_simulation' S12); eauto. intros [[i1' [s3' [C D]]] | [i1' [C [D E]]]].
  (* L2 makes one or several steps. *)
  exploit simulation_plus; eauto. intros [[i2' [s2' [P Q]]] | [i2' [P [Q R]]]].
  (* L3 makes one or several steps *)
  exists (i2', i1'); exists s2'; split. auto. exists s3'; auto.
  (* L3 makes no step *)
  exists (i2', i1'); exists s2; split. 
  right; split. subst t; apply star_refl. red. left. auto.
  exists s3'; auto. 
  (* L2 makes no step *)
  exists (i2, i1'); exists s2; split.
  right; split. subst t; apply star_refl. red. right. auto. 
  exists s3; auto.
(* symbols *)
  intros. transitivity (Genv.find_symbol (globalenv L2) id); apply fsim_symbols_preserved; auto.
Qed.

End COMPOSE_SIMULATIONS.

(** * Receptiveness and determinacy *)

Definition single_events (L: semantics) : Prop :=
  forall s t s', Step L s t s' -> (length t <= 1)%nat.

Record receptive (L: semantics) : Prop :=
  Receptive {
    sr_receptive: forall s t1 s1 t2,
      Step L s t1 s1 -> match_traces (globalenv L) t1 t2 -> exists s2, Step L s t2 s2;
    sr_traces:
      single_events L
  }.

Record determinate (L: semantics) : Prop :=
  Determinate {
    sd_determ: forall s t1 s1 t2 s2,
      Step L s t1 s1 -> Step L s t2 s2 ->
      match_traces (globalenv L) t1 t2 /\ (t1 = t2 -> s1 = s2);
    sd_traces:
      single_events L;
    sd_initial_determ: forall s1 s2,
      initial_state L s1 -> initial_state L s2 -> s1 = s2;
    sd_final_nostep: forall s r,
      final_state L s r -> Nostep L s;
    sd_final_determ: forall s r1 r2,
      final_state L s r1 -> final_state L s r2 -> r1 = r2
  }.

Section DETERMINACY.

Variable L: semantics.
Hypothesis DET: determinate L.

Lemma sd_determ_1:
  forall s t1 s1 t2 s2,
  Step L s t1 s1 -> Step L s t2 s2 -> match_traces (globalenv L) t1 t2.
Proof.
  intros. eapply sd_determ; eauto.
Qed. 

Lemma sd_determ_2:
  forall s t s1 s2,
  Step L s t s1 -> Step L s t s2 -> s1 = s2.
Proof.
  intros. eapply sd_determ; eauto.
Qed.

Lemma star_determinacy:
  forall s t s', Star L s t s' ->
  forall s'', Star L s t s'' -> Star L s' E0 s'' \/ Star L s'' E0 s'.
Proof.
  induction 1; intros. 
  auto.
  inv H2.
  right. eapply star_step; eauto.
  exploit sd_determ_1. eexact H. eexact H3. intros MT.
  exploit (sd_traces DET). eexact H. intros L1.
  exploit (sd_traces DET). eexact H3. intros L2.
  assert (t1 = t0 /\ t2 = t3).
    destruct t1. inv MT. auto. 
    destruct t1; simpl in L1; try omegaContradiction. 
    destruct t0. inv MT. destruct t0; simpl in L2; try omegaContradiction.
    simpl in H5. split. congruence. congruence.
  destruct H1; subst.
  assert (s2 = s4) by (eapply sd_determ_2; eauto). subst s4. 
  auto.
Qed.

End DETERMINACY.

(** * Backward simulations between two transition semantics. *)

Definition safe (L: semantics) (s: state L) : Prop :=
  forall s',
  Star L s E0 s' -> 
  (exists r, final_state L s' r)
  \/ (exists t, exists s'', Step L s' t s'').

Lemma star_safe:
  forall (L: semantics) s s',
  Star L s E0 s' -> safe L s -> safe L s'.
Proof.
  intros; red; intros. apply H0. eapply star_trans; eauto.
Qed. 

(** The general form of a backward simulation. *)

Record backward_simulation (L1 L2: semantics) : Type :=
  Backward_simulation {
    bsim_index: Type;
    bsim_order: bsim_index -> bsim_index -> Prop;
    bsim_order_wf: well_founded bsim_order;
    bsim_match_states :> bsim_index -> state L1 -> state L2 -> Prop;
    bsim_initial_states_exist:
      forall s1, initial_state L1 s1 -> exists s2, initial_state L2 s2;
    bsim_match_initial_states:
      forall s1 s2, initial_state L1 s1 -> initial_state L2 s2 ->
      exists i, exists s1', initial_state L1 s1' /\ bsim_match_states i s1' s2;
    bsim_match_final_states:
      forall i s1 s2 r, 
      bsim_match_states i s1 s2 -> safe L1 s1 -> final_state L2 s2 r -> 
      exists s1', Star L1 s1 E0 s1' /\ final_state L1 s1' r;
    bsim_progress:
      forall i s1 s2, 
      bsim_match_states i s1 s2 -> safe L1 s1 ->
      (exists r, final_state L2 s2 r) \/
      (exists t, exists s2', Step L2 s2 t s2');
    bsim_simulation:
      forall s2 t s2', Step L2 s2 t s2' ->
      forall i s1, bsim_match_states i s1 s2 -> safe L1 s1 ->
      exists i', exists s1',
         (Plus L1 s1 t s1' \/ (Star L1 s1 t s1' /\ bsim_order i' i))
      /\ bsim_match_states i' s1' s2';
    bsim_symbols_preserved:
      forall id, Genv.find_symbol (globalenv L2) id = Genv.find_symbol (globalenv L1) id
  }.

(** An alternate form of the simulation diagram *)

Lemma bsim_simulation':
  forall L1 L2 (S: backward_simulation L1 L2),
  forall i s2 t s2', Step L2 s2 t s2' ->
  forall s1, S i s1 s2 -> safe L1 s1 ->
  (exists i', exists s1', Plus L1 s1 t s1' /\ S i' s1' s2')
  \/ (exists i', bsim_order S i' i /\ t = E0 /\ S i' s1 s2').
Proof.
  intros. exploit bsim_simulation; eauto. 
  intros [i' [s1' [A B]]]. intuition. 
  left; exists i'; exists s1'; auto.
  inv H3. 
  right; exists i'; auto.
  left; exists i'; exists s1'; split; auto. econstructor; eauto. 
Qed.

(** ** Backward simulation diagrams. *)

(** Various simulation diagrams that imply backward simulation. *)

Section BACKWARD_SIMU_DIAGRAMS.

Variable L1: semantics.
Variable L2: semantics.

Hypothesis symbols_preserved:
  forall id, Genv.find_symbol (globalenv L2) id = Genv.find_symbol (globalenv L1) id.

Variable match_states: state L1 -> state L2 -> Prop.

Hypothesis initial_states_exist:
  forall s1, initial_state L1 s1 -> exists s2, initial_state L2 s2.

Hypothesis match_initial_states:
  forall s1 s2, initial_state L1 s1 -> initial_state L2 s2 ->
  exists s1', initial_state L1 s1' /\ match_states s1' s2.

Hypothesis match_final_states:
  forall s1 s2 r, 
  match_states s1 s2 -> final_state L2 s2 r -> final_state L1 s1 r.

Hypothesis progress:
  forall s1 s2, 
  match_states s1 s2 -> safe L1 s1 ->
  (exists r, final_state L2 s2 r) \/
  (exists t, exists s2', Step L2 s2 t s2').

Section BACKWARD_SIMULATION_PLUS.

Hypothesis simulation:
  forall s2 t s2', Step L2 s2 t s2' ->
  forall s1, match_states s1 s2 -> safe L1 s1 ->
  exists s1', Plus L1 s1 t s1' /\ match_states s1' s2'.

Lemma backward_simulation_plus: backward_simulation L1 L2.
Proof.
  apply Backward_simulation with
    (bsim_order := fun (x y: unit) => False)
    (bsim_match_states := fun (i: unit) s1 s2 => match_states s1 s2);
  auto.
  red; intros; constructor; intros. contradiction.
  intros. exists tt; eauto.
  intros. exists s1; split. apply star_refl. eauto. 
  intros. exploit simulation; eauto. intros [s1' [A B]]. 
  exists tt; exists s1'; auto.
Qed.

End BACKWARD_SIMULATION_PLUS.

End BACKWARD_SIMU_DIAGRAMS.

(** ** Backward simulation of transition sequences *)

Section BACKWARD_SIMULATION_SEQUENCES.

Variable L1: semantics.
Variable L2: semantics.
Variable S: backward_simulation L1 L2.

Lemma bsim_E0_star:
  forall s2 s2', Star L2 s2 E0 s2' ->
  forall i s1, S i s1 s2 -> safe L1 s1 ->
  exists i', exists s1', Star L1 s1 E0 s1' /\ S i' s1' s2'.
Proof.
  intros s20 s20' STAR0. pattern s20, s20'. eapply star_E0_ind; eauto.
(* base case *)
  intros. exists i; exists s1; split; auto. apply star_refl.
(* inductive case *)
  intros. exploit bsim_simulation; eauto. intros [i' [s1' [A B]]].
  assert (Star L1 s0 E0 s1'). intuition. apply plus_star; auto. 
  exploit H0. eauto. eapply star_safe; eauto. intros [i'' [s1'' [C D]]].
  exists i''; exists s1''; split; auto. eapply star_trans; eauto.
Qed.

Lemma bsim_safe:
  forall i s1 s2,
  S i s1 s2 -> safe L1 s1 -> safe L2 s2.
Proof.
  intros; red; intros. 
  exploit bsim_E0_star; eauto. intros [i' [s1' [A B]]].
  eapply bsim_progress; eauto. eapply star_safe; eauto.
Qed.

Lemma bsim_E0_plus:
  forall s2 t s2', Plus L2 s2 t s2' -> t = E0 ->
  forall i s1, S i s1 s2 -> safe L1 s1 ->
     (exists i', exists s1', Plus L1 s1 E0 s1' /\ S i' s1' s2')
  \/ (exists i', clos_trans _ (bsim_order S) i' i /\ S i' s1 s2').
Proof.
  induction 1 using plus_ind2; intros; subst t.
(* base case *)
  exploit bsim_simulation'; eauto. intros [[i' [s1' [A B]]] | [i' [A [B C]]]].
  left; exists i'; exists s1'; auto.
  right; exists i'; intuition.
(* inductive case *)
  exploit Eapp_E0_inv; eauto. intros [EQ1 EQ2]; subst.
  exploit bsim_simulation'; eauto. intros [[i' [s1' [A B]]] | [i' [A [B C]]]].
  exploit bsim_E0_star. apply plus_star; eauto. eauto. eapply star_safe; eauto. apply plus_star; auto.
  intros [i'' [s1'' [P Q]]]. 
  left; exists i''; exists s1''; intuition. eapply plus_star_trans; eauto. 
  exploit IHplus; eauto. intros [P | [i'' [P Q]]].
  left; auto.
  right; exists i''; intuition. eapply t_trans; eauto. apply t_step; auto.
Qed.

Lemma star_non_E0_split:
  forall s2 t s2', Star L2 s2 t s2' -> (length t = 1)%nat ->
  exists s2x, exists s2y, Star L2 s2 E0 s2x /\ Step L2 s2x t s2y /\ Star L2 s2y E0 s2'.
Proof.
  induction 1; intros.
  simpl in H; discriminate.
  subst t.
  assert (EITHER: t1 = E0 \/ t2 = E0). 
    unfold Eapp in H2; rewrite app_length in H2. 
    destruct t1; auto. destruct t2; auto. simpl in H2; omegaContradiction.
  destruct EITHER; subst. 
  exploit IHstar; eauto. intros [s2x [s2y [A [B C]]]]. 
  exists s2x; exists s2y; intuition. eapply star_left; eauto. 
  rewrite E0_right. exists s1; exists s2; intuition. apply star_refl.
Qed.

End BACKWARD_SIMULATION_SEQUENCES.

(** ** Composing two backward simulations *)

Section COMPOSE_BACKWARD_SIMULATIONS.

Variable L1: semantics.
Variable L2: semantics.
Variable L3: semantics.
Hypothesis L3_single_events: single_events L3.
Variable S12: backward_simulation L1 L2.
Variable S23: backward_simulation L2 L3.

Let bb_index : Type := (bsim_index S12 * bsim_index S23)%type.

Let bb_order : bb_index -> bb_index -> Prop :=
  lex_ord (clos_trans _ (bsim_order S12)) (bsim_order S23).

Inductive bb_match_states: bb_index -> state L1 -> state L3 -> Prop :=
  | bb_match_later: forall i1 i2 s1 s3 s2x s2y,
      S12 i1 s1 s2x -> Star L2 s2x E0 s2y -> S23 i2 s2y s3 ->
      bb_match_states (i1, i2) s1 s3.

Lemma bb_match_at: forall i1 i2 s1 s3 s2,
  S12 i1 s1 s2 -> S23 i2 s2 s3 ->
  bb_match_states (i1, i2) s1 s3.
Proof.
  intros. econstructor; eauto. apply star_refl.
Qed. 

Lemma bb_simulation_base:
  forall s3 t s3', Step L3 s3 t s3' ->
  forall i1 s1 i2 s2, S12 i1 s1 s2 -> S23 i2 s2 s3 -> safe L1 s1 ->
  exists i', exists s1',
    (Plus L1 s1 t s1' \/ (Star L1 s1 t s1' /\ bb_order i' (i1, i2)))
    /\ bb_match_states i' s1' s3'.
Proof.
  intros.
  exploit (bsim_simulation' S23); eauto. eapply bsim_safe; eauto.
  intros [ [i2' [s2' [PLUS2 MATCH2]]] | [i2' [ORD2 [EQ MATCH2]]]].
  (* 1 L2 makes one or several transitions *)
  assert (EITHER: t = E0 \/ (length t = 1)%nat).
    exploit L3_single_events; eauto. 
    destruct t; auto. destruct t; auto. simpl. intros. omegaContradiction.
  destruct EITHER.
  (* 1.1 these are silent transitions *)
  subst t. exploit bsim_E0_plus; eauto. 
  intros [ [i1' [s1' [PLUS1 MATCH1]]] | [i1' [ORD1 MATCH1]]].
  (* 1.1.1 L1 makes one or several transitions *)
  exists (i1', i2'); exists s1'; split. auto. eapply bb_match_at; eauto. 
  (* 1.1.2 L1 makes no transitions *)
  exists (i1', i2'); exists s1; split. 
  right; split. apply star_refl. left; auto. 
  eapply bb_match_at; eauto. 
  (* 1.2 non-silent transitions *)
  exploit star_non_E0_split. apply plus_star; eauto. auto. 
  intros [s2x [s2y [P [Q R]]]].
  exploit bsim_E0_star. eexact P. eauto. auto. intros [i1' [s1x [X Y]]].
  exploit bsim_simulation'. eexact Q. eauto. eapply star_safe; eauto. 
  intros [[i1'' [s1y [U V]]] | [i1'' [U [V W]]]]; try (subst t; discriminate).
  exists (i1'', i2'); exists s1y; split.
  left. eapply star_plus_trans; eauto. eapply bb_match_later; eauto.
  (* 2. L2 makes no transitions *)
  subst. exists (i1, i2'); exists s1; split.
  right; split. apply star_refl. right; auto. 
  eapply bb_match_at; eauto.
Qed.

Lemma bb_simulation:
  forall s3 t s3', Step L3 s3 t s3' ->
  forall i s1, bb_match_states i s1 s3 -> safe L1 s1 ->
  exists i', exists s1',
    (Plus L1 s1 t s1' \/ (Star L1 s1 t s1' /\ bb_order i' i))
    /\ bb_match_states i' s1' s3'.
Proof.
  intros. inv H0. 
  exploit star_inv; eauto. intros [[EQ1 EQ2] | PLUS].
  (* 1. match at *)
  subst. eapply bb_simulation_base; eauto.
  (* 2. match later *)
  exploit bsim_E0_plus; eauto. 
  intros [[i1' [s1' [A B]]] | [i1' [A B]]].
  (* 2.1 one or several silent transitions *)
  exploit bb_simulation_base. eauto. auto. eexact B. eauto.
    eapply star_safe; eauto. eapply plus_star; eauto.
  intros [i'' [s1'' [C D]]].
  exists i''; exists s1''; split; auto.
  left. eapply plus_star_trans; eauto.
  destruct C as [P | [P Q]]. apply plus_star; eauto. eauto. 
  traceEq.
  (* 2.2 no silent transition *)
  exploit bb_simulation_base. eauto. auto. eexact B. eauto. auto.
  intros [i'' [s1'' [C D]]].
  exists i''; exists s1''; split; auto.
  intuition. right; intuition. 
  inv H6. left. eapply t_trans; eauto. left; auto.
Qed.

Lemma compose_backward_simulation: backward_simulation L1 L3.
Proof.
  apply Backward_simulation with (bsim_order := bb_order) (bsim_match_states := bb_match_states).
(* well founded *)
  unfold bb_order. apply wf_lex_ord. apply wf_clos_trans. apply bsim_order_wf. apply bsim_order_wf.
(* initial states exist *)
  intros. exploit (bsim_initial_states_exist S12); eauto. intros [s2 A].
  eapply (bsim_initial_states_exist S23); eauto.
(* match initial states *)
  intros s1 s3 INIT1 INIT3.
  exploit (bsim_initial_states_exist S12); eauto. intros [s2 INIT2].
  exploit (bsim_match_initial_states S23); eauto. intros [i2 [s2' [INIT2' M2]]].
  exploit (bsim_match_initial_states S12); eauto. intros [i1 [s1' [INIT1' M1]]].
  exists (i1, i2); exists s1'; intuition. eapply bb_match_at; eauto.
(* match final states *)
  intros i s1 s3 r MS SAFE FIN. inv MS.
  exploit (bsim_match_final_states S23); eauto. 
    eapply star_safe; eauto. eapply bsim_safe; eauto. 
  intros [s2' [A B]].
  exploit bsim_E0_star. eapply star_trans. eexact H0. eexact A. auto. eauto. auto.
  intros [i1' [s1' [C D]]].
  exploit (bsim_match_final_states S12); eauto. eapply star_safe; eauto. 
  intros [s1'' [P Q]]. 
  exists s1''; split; auto. eapply star_trans; eauto.
(* progress *)
  intros i s1 s3 MS SAFE. inv MS.
  eapply (bsim_progress S23). eauto. eapply star_safe; eauto. eapply bsim_safe; eauto. 
(* simulation *)
  exact bb_simulation.
(* symbols *)
  intros. transitivity (Genv.find_symbol (globalenv L2) id); apply bsim_symbols_preserved; auto.
Qed.

End COMPOSE_BACKWARD_SIMULATIONS.

(** ** Converting a forward simulation to a backward simulation *)

Section FORWARD_TO_BACKWARD.

Variable L1: semantics.
Variable L2: semantics.
Variable FS: forward_simulation L1 L2.
Hypothesis L1_receptive: receptive L1.
Hypothesis L2_determinate: determinate L2.

(** Exploiting forward simulation *)

Inductive f2b_transitions: state L1 -> state L2 -> Prop :=
  | f2b_trans_final: forall s1 s2 s1' r,
      Star L1 s1 E0 s1' ->
      final_state L1 s1' r ->
      final_state L2 s2 r ->
      f2b_transitions s1 s2
  | f2b_trans_step: forall s1 s2 s1' t s1'' s2' i' i'',
      Star L1 s1 E0 s1' ->
      Step L1 s1' t s1'' ->
      Plus L2 s2 t s2' ->
      FS i' s1' s2 -> 
      FS i'' s1'' s2' ->
      f2b_transitions s1 s2.

Lemma f2b_progress:
  forall i s1 s2, FS i s1 s2 -> safe L1 s1 -> f2b_transitions s1 s2.
Proof.
  intros i0; pattern i0. apply well_founded_ind with (R := fsim_order FS). 
  apply fsim_order_wf.
  intros i REC s1 s2 MATCH SAFE.
  destruct (SAFE s1) as [[r FINAL] | [t [s1' STEP1]]]. apply star_refl.
  (* final state reached *)
  eapply f2b_trans_final; eauto. 
  apply star_refl.
  eapply fsim_match_final_states; eauto. 
  (* L1 can make one step *)
  exploit (fsim_simulation FS); eauto. intros [i' [s2' [A MATCH']]].
  assert (B: Plus L2 s2 t s2' \/ (s2' = s2 /\ t = E0 /\ fsim_order FS i' i)).
    intuition.
    destruct (star_inv H0); intuition.
  clear A. destruct B as [PLUS2 | [EQ1 [EQ2 ORDER]]].
  eapply f2b_trans_step; eauto. apply star_refl.
  subst. exploit REC; eauto. eapply star_safe; eauto. apply star_one; auto.
  intros TRANS; inv TRANS.
  eapply f2b_trans_final; eauto. eapply star_left; eauto. 
  eapply f2b_trans_step; eauto. eapply star_left; eauto.
Qed.

Lemma fsim_simulation_not_E0:
  forall s1 t s1', Step L1 s1 t s1' -> t <> E0 ->
  forall i s2, FS i s1 s2 ->
  exists i', exists s2', Plus L2 s2 t s2' /\ FS i' s1' s2'.
Proof.
  intros. exploit (fsim_simulation FS); eauto. intros [i' [s2' [A B]]].
  exists i'; exists s2'; split; auto.
  destruct A. auto. destruct H2. exploit star_inv; eauto. intros [[EQ1 EQ2] | P]; auto.
  congruence.
Qed.

(** Exploiting determinacy *)

Remark silent_or_not_silent:
  forall t, t = E0 \/ t <> E0.
Proof.
  intros; unfold E0; destruct t; auto; right; congruence.
Qed.

Remark not_silent_length:
  forall t1 t2, (length (t1 ** t2) <= 1)%nat -> t1 = E0 \/ t2 = E0.
Proof.
  unfold Eapp, E0; intros. rewrite app_length in H. 
  destruct t1; destruct t2; auto. simpl in H. omegaContradiction.
Qed.

Lemma f2b_determinacy_inv:
  forall s2 t' s2' t'' s2'',
  Step L2 s2 t' s2' -> Step L2 s2 t'' s2'' ->
  (t' = E0 /\ t'' = E0 /\ s2' = s2'')
  \/ (t' <> E0 /\ t'' <> E0 /\ match_traces (globalenv L1) t' t'').
Proof.
  intros. 
  assert (match_traces (globalenv L2) t' t'').
    eapply sd_determ_1; eauto. 
  destruct (silent_or_not_silent t').
  subst. inv H1.  
  left; intuition. eapply sd_determ_2; eauto.
  destruct (silent_or_not_silent t'').
  subst. inv H1. elim H2; auto. 
  right; intuition. 
  eapply match_traces_preserved with (ge1 := (globalenv L2)); auto. 
  intros; symmetry; apply (fsim_symbols_preserved FS). 
Qed.

Lemma f2b_determinacy_star:
  forall s s1, Star L2 s E0 s1 -> 
  forall t s2 s3,
  Step L2 s1 t s2 -> t <> E0 ->
  Star L2 s t s3 ->
  Star L2 s1 t s3.
Proof.
  intros s0 s01 ST0. pattern s0, s01. eapply star_E0_ind; eauto.
  intros. inv H3. congruence.
  exploit f2b_determinacy_inv. eexact H. eexact H4.
  intros [[EQ1 [EQ2 EQ3]] | [NEQ1 [NEQ2 MT]]].
  subst. simpl in *. eauto. 
  congruence.
Qed.

(** Orders *)

Inductive f2b_index : Type :=
  | F2BI_before (n: nat)
  | F2BI_after (n: nat).

Inductive f2b_order: f2b_index -> f2b_index -> Prop :=
  | f2b_order_before: forall n n',
      (n' < n)%nat ->
      f2b_order (F2BI_before n') (F2BI_before n)
  | f2b_order_after: forall n n',
      (n' < n)%nat ->
      f2b_order (F2BI_after n') (F2BI_after n)
  | f2b_order_switch: forall n n',
      f2b_order (F2BI_before n') (F2BI_after n).

Lemma wf_f2b_order:
  well_founded f2b_order.
Proof.
  assert (ACC1: forall n, Acc f2b_order (F2BI_before n)).
    intros n0; pattern n0; apply lt_wf_ind; intros.
    constructor; intros. inv H0. auto. 
  assert (ACC2: forall n, Acc f2b_order (F2BI_after n)).
    intros n0; pattern n0; apply lt_wf_ind; intros.
    constructor; intros. inv H0. auto. auto. 
  red; intros. destruct a; auto.
Qed.

(** Constructing the backward simulation *)

Inductive f2b_match_states: f2b_index -> state L1 -> state L2 -> Prop :=
  | f2b_match_at: forall i s1 s2,
      FS i s1 s2 ->
      f2b_match_states (F2BI_after O) s1 s2
  | f2b_match_before: forall s1 t s1' s2b s2 n s2a i,
      Step L1 s1 t s1' ->  t <> E0 ->
      Star L2 s2b E0 s2 ->
      starN (step L2) (globalenv L2) n s2 t s2a ->
      FS i s1 s2b ->
      f2b_match_states (F2BI_before n) s1 s2
  | f2b_match_after: forall n s2 s2a s1 i,
      starN (step L2) (globalenv L2) (S n) s2 E0 s2a ->
      FS i s1 s2a ->
      f2b_match_states (F2BI_after (S n)) s1 s2.

Remark f2b_match_after':
  forall n s2 s2a s1 i,
  starN (step L2) (globalenv L2) n s2 E0 s2a ->
  FS i s1 s2a ->
  f2b_match_states (F2BI_after n) s1 s2.
Proof.
  intros. inv H. 
  econstructor; eauto.
  econstructor; eauto. econstructor; eauto.
Qed.

(** Backward simulation of L2 steps *)

Lemma f2b_simulation_step:
  forall s2 t s2', Step L2 s2 t s2' ->
  forall i s1, f2b_match_states i s1 s2 -> safe L1 s1 ->
  exists i', exists s1',
    (Plus L1 s1 t s1' \/ (Star L1 s1 t s1' /\ f2b_order i' i))
     /\ f2b_match_states i' s1' s2'.
Proof.
  intros s2 t s2' STEP2 i s1 MATCH SAFE.
  inv MATCH.
(* 1. At matching states *)
  exploit f2b_progress; eauto. intros TRANS; inv TRANS.
  (* 1.1  L1 can reach final state and L2 is at final state: impossible! *)
  exploit (sd_final_nostep L2_determinate); eauto. contradiction.
  (* 1.2  L1 can make 0 or several steps; L2 can make 1 or several matching steps. *)
  inv H2. 
  exploit f2b_determinacy_inv. eexact H5. eexact STEP2.
  intros [[EQ1 [EQ2 EQ3]] | [NOT1 [NOT2 MT]]].
  (* 1.2.1  L2 makes a silent transition *)
  destruct (silent_or_not_silent t2).
  (* 1.2.1.1  L1 makes a silent transition too: perform transition now and go to "after" state *)
  subst. simpl in *. destruct (star_starN H6) as [n STEPS2].
  exists (F2BI_after n); exists s1''; split.
  left. eapply plus_right; eauto.
  eapply f2b_match_after'; eauto.
  (* 1.2.1.2 L1 makes a non-silent transition: keep it for later and go to "before" state *)
  subst. simpl in *. destruct (star_starN H6) as [n STEPS2].
  exists (F2BI_before n); exists s1'; split.
  right; split. auto. constructor.
  econstructor. eauto. auto. apply star_one; eauto. eauto. eauto. 
  (* 1.2.2 L2 makes a non-silent transition, and so does L1 *)
  exploit not_silent_length. eapply (sr_traces L1_receptive); eauto. intros [EQ | EQ].
  congruence.
  subst t2. rewrite E0_right in H1. 
  (* Use receptiveness to equate the traces *)
  exploit (sr_receptive L1_receptive); eauto. intros [s1''' STEP1].
  exploit fsim_simulation_not_E0. eexact STEP1. auto. eauto. 
  intros [i''' [s2''' [P Q]]]. inv P.
  (* Exploit determinacy *)
  exploit not_silent_length. eapply (sr_traces L1_receptive); eauto. intros [EQ | EQ].
  subst t0. simpl in *. exploit sd_determ_1. eauto. eexact STEP2. eexact H2. 
  intros. elim NOT2. inv H8. auto.
  subst t2. rewrite E0_right in *. 
  assert (s4 = s2'). eapply sd_determ_2; eauto. subst s4. 
  (* Perform transition now and go to "after" state *)
  destruct (star_starN H7) as [n STEPS2]. exists (F2BI_after n); exists s1'''; split.
  left. eapply plus_right; eauto. 
  eapply f2b_match_after'; eauto.

(* 2. Before *)
  inv H2. congruence.
  exploit f2b_determinacy_inv. eexact H4. eexact STEP2.
  intros [[EQ1 [EQ2 EQ3]] | [NOT1 [NOT2 MT]]].
  (* 2.1 L2 makes a silent transition: remain in "before" state *)
  subst. simpl in *. exists (F2BI_before n0); exists s1; split.
  right; split. apply star_refl. constructor. omega.
  econstructor; eauto. eapply star_right; eauto. 
  (* 2.2 L2 make a non-silent transition *)
  exploit not_silent_length. eapply (sr_traces L1_receptive); eauto. intros [EQ | EQ].
  congruence.
  subst. rewrite E0_right in *.
  (* Use receptiveness to equate the traces *)
  exploit (sr_receptive L1_receptive); eauto. intros [s1''' STEP1].
  exploit fsim_simulation_not_E0. eexact STEP1. auto. eauto. 
  intros [i''' [s2''' [P Q]]].
  (* Exploit determinacy *)
  exploit f2b_determinacy_star. eauto. eexact STEP2. auto. apply plus_star; eauto. 
  intro R. inv R. congruence. 
  exploit not_silent_length. eapply (sr_traces L1_receptive); eauto. intros [EQ | EQ].
  subst. simpl in *. exploit sd_determ_1. eauto. eexact STEP2. eexact H2. 
  intros. elim NOT2. inv H7; auto.  
  subst. rewrite E0_right in *. 
  assert (s3 = s2'). eapply sd_determ_2; eauto. subst s3.
  (* Perform transition now and go to "after" state *)
  destruct (star_starN H6) as [n STEPS2]. exists (F2BI_after n); exists s1'''; split.
  left. apply plus_one; auto.
  eapply f2b_match_after'; eauto.

(* 3. After *)
  inv H. exploit Eapp_E0_inv; eauto. intros [EQ1 EQ2]; subst. 
  exploit f2b_determinacy_inv. eexact H2. eexact STEP2.
  intros [[EQ1 [EQ2 EQ3]] | [NOT1 [NOT2 MT]]].
  subst. exists (F2BI_after n); exists s1; split.
  right; split. apply star_refl. constructor; omega.
  eapply f2b_match_after'; eauto.
  congruence.
Qed.

(** The backward simulation *)

Lemma forward_to_backward_simulation: backward_simulation L1 L2.
Proof.
  apply Backward_simulation with (bsim_order := f2b_order) (bsim_match_states := f2b_match_states).
  apply wf_f2b_order.
(* initial states exist *)
  intros. exploit (fsim_match_initial_states FS); eauto. intros [i [s2 [A B]]].
  exists s2; auto.
(* initial states *)
  intros. exploit (fsim_match_initial_states FS); eauto. intros [i [s2' [A B]]].
  assert (s2 = s2') by (eapply sd_initial_determ; eauto). subst s2'.
  exists (F2BI_after O); exists s1; split; auto. econstructor; eauto.
(* final states *)
  intros. inv H.
  exploit f2b_progress; eauto. intros TRANS; inv TRANS.
  assert (r0 = r) by (eapply (sd_final_determ L2_determinate); eauto). subst r0.
  exists s1'; auto.
  inv H4. exploit (sd_final_nostep L2_determinate); eauto. contradiction.
  inv H5. congruence. exploit (sd_final_nostep L2_determinate); eauto. contradiction.
  inv H2. exploit (sd_final_nostep L2_determinate); eauto. contradiction.
(* progress *)
  intros. inv H. 
  exploit f2b_progress; eauto. intros TRANS; inv TRANS. 
  left; exists r; auto. 
  inv H3. right; econstructor; econstructor; eauto.
  inv H4. congruence. right; econstructor; econstructor; eauto.
  inv H1. right; econstructor; econstructor; eauto.
(* simulation *)
  exact f2b_simulation_step.
(* symbols preserved *)
  exact (fsim_symbols_preserved FS).
Qed.

End FORWARD_TO_BACKWARD.

(** * Transforming a semantics into a single-event, equivalent semantics *)

Definition well_behaved_traces (L: semantics) : Prop :=
  forall s t s', Step L s t s' ->
  match t with nil => True | ev :: t' => output_trace t' end.

Section ATOMIC.

Variable L: semantics.

Hypothesis Lwb: well_behaved_traces L.

Inductive atomic_step (ge: Genv.t (funtype L) (vartype L)): (trace * state L) -> trace -> (trace * state L) -> Prop :=
  | atomic_step_silent: forall s s',
      Step L s E0 s' ->
      atomic_step ge (E0, s) E0 (E0, s')
  | atomic_step_start: forall s ev t s',
      Step L s (ev :: t) s' ->
      atomic_step ge (E0, s) (ev :: nil) (t, s')
  | atomic_step_continue: forall ev t s,
      output_trace (ev :: t) ->
      atomic_step ge (ev :: t, s) (ev :: nil) (t, s).

Definition atomic : semantics := {|
  state := (trace * state L)%type;
  funtype := funtype L;
  vartype := vartype L;
  step := atomic_step;
  initial_state := fun s => initial_state L (snd s) /\ fst s = E0;
  final_state := fun s r => final_state L (snd s) r /\ fst s = E0;
  globalenv := globalenv L
|}.

End ATOMIC.

(** A forward simulation from a semantics [L1] to a single-event semantics [L2]
  can be "factored" into a forward simulation from [atomic L1] to [L2]. *)

Section FACTOR_FORWARD_SIMULATION.

Variable L1: semantics.
Variable L2: semantics.
Variable sim: forward_simulation L1 L2.
Hypothesis L2single: single_events L2.

Inductive ffs_match: fsim_index sim -> (trace * state L1) -> state L2 -> Prop :=
  | ffs_match_at: forall i s1 s2,
      sim i s1 s2 ->
      ffs_match i (E0, s1) s2
  | ffs_match_buffer: forall i ev t s1 s2 s2',
      Star L2 s2 (ev :: t) s2' -> sim i s1 s2' ->
      ffs_match i (ev :: t, s1) s2.

Lemma star_non_E0_split':
  forall s2 t s2', Star L2 s2 t s2' -> 
  match t with
  | nil => True
  | ev :: t' => exists s2x, Plus L2 s2 (ev :: nil) s2x /\ Star L2 s2x t' s2'
  end.
Proof.
  induction 1. simpl. auto.
  exploit L2single; eauto. intros LEN. 
  destruct t1. simpl in *. subst. destruct t2. auto. 
  destruct IHstar as [s2x [A B]]. exists s2x; split; auto.
  eapply plus_left. eauto. apply plus_star; eauto. auto. 
  destruct t1. simpl in *. subst t. exists s2; split; auto. apply plus_one; auto.
  simpl in LEN. omegaContradiction.
Qed.  

Lemma ffs_simulation:
  forall s1 t s1', Step (atomic L1) s1 t s1' ->
  forall i s2, ffs_match i s1 s2 ->
  exists i', exists s2',
     (Plus L2 s2 t s2' \/ (Star L2 s2 t s2') /\ fsim_order sim i' i)
  /\ ffs_match i' s1' s2'.
Proof.
  induction 1; intros.
(* silent step *)
  inv H0. 
  exploit (fsim_simulation sim); eauto. 
  intros [i' [s2' [A B]]]. 
  exists i'; exists s2'; split. auto. constructor; auto.
(* start step *)
  inv H0. 
  exploit (fsim_simulation sim); eauto. 
  intros [i' [s2' [A B]]].
  destruct t as [ | ev' t]. 
  (* single event *)
  exists i'; exists s2'; split. auto. constructor; auto.
  (* multiple events *)
  assert (C: Star L2 s2 (ev :: ev' :: t) s2'). intuition. apply plus_star; auto. 
  exploit star_non_E0_split'. eauto. simpl. intros [s2x [P Q]]. 
  exists i'; exists s2x; split. auto. econstructor; eauto.
(* continue step *)
  inv H0. 
  exploit star_non_E0_split'. eauto. simpl. intros [s2x [P Q]]. 
  destruct t. 
  exists i; exists s2'; split. left. eapply plus_star_trans; eauto. constructor; auto. 
  exists i; exists s2x; split. auto. econstructor; eauto. 
Qed.

Theorem factor_forward_simulation:
  forward_simulation (atomic L1) L2.
Proof.
  apply Forward_simulation with (fsim_match_states := ffs_match) (fsim_order := fsim_order sim).
(* wf *)
  apply fsim_order_wf.
(* initial states *)
  intros. destruct s1 as [t1 s1]. simpl in H. destruct H. subst. 
  exploit (fsim_match_initial_states sim); eauto. intros [i [s2 [A B]]]. 
  exists i; exists s2; split; auto. constructor; auto.
(* final states *)
  intros. destruct s1 as [t1 s1]. simpl in H0; destruct H0; subst. inv H. 
  eapply (fsim_match_final_states sim); eauto.
(* simulation *)
  exact ffs_simulation.
(* symbols preserved *)
  simpl. exact (fsim_symbols_preserved sim).
Qed.

End FACTOR_FORWARD_SIMULATION.

(** Likewise, a backward simulation from a single-event semantics [L1] to a semantics [L2]
  can be "factored" as a backward simulation from [L1] to [atomic L2]. *)

Section FACTOR_BACKWARD_SIMULATION.

Variable L1: semantics.
Variable L2: semantics.
Variable sim: backward_simulation L1 L2.
Hypothesis L1single: single_events L1.
Hypothesis L2wb: well_behaved_traces L2.

Inductive fbs_match: bsim_index sim -> state L1 -> (trace * state L2) -> Prop :=
  | fbs_match_intro: forall i s1 t s2 s1',
      Star L1 s1 t s1' -> sim i s1' s2 ->
      t = E0 \/ output_trace t ->
      fbs_match i s1 (t, s2).

Lemma fbs_simulation:
  forall s2 t s2', Step (atomic L2) s2 t s2' ->
  forall i s1, fbs_match i s1 s2 -> safe L1 s1 ->
  exists i', exists s1',
     (Plus L1 s1 t s1' \/ (Star L1 s1 t s1' /\ bsim_order sim i' i))
     /\ fbs_match i' s1' s2'.
Proof.
  induction 1; intros.
(* silent step *)
  inv H0.
  exploit (bsim_simulation sim); eauto. eapply star_safe; eauto. 
  intros [i' [s1'' [A B]]].
  exists i'; exists s1''; split.
  destruct A as [P | [P Q]]. left. eapply star_plus_trans; eauto. right; split; auto. eapply star_trans; eauto. 
  econstructor. apply star_refl. auto. auto.
(* start step *)
  inv H0.
  exploit (bsim_simulation sim); eauto. eapply star_safe; eauto. 
  intros [i' [s1'' [A B]]].
  assert (C: Star L1 s1 (ev :: t) s1'').
    eapply star_trans. eauto. destruct A as [P | [P Q]]. apply plus_star; eauto. eauto. auto. 
  exploit star_non_E0_split'; eauto. simpl. intros [s1x [P Q]].
  exists i'; exists s1x; split.
  left; auto.
  econstructor; eauto.
  exploit L2wb; eauto. 
(* continue step *)
  inv H0. unfold E0 in H8; destruct H8; try congruence.
  exploit star_non_E0_split'; eauto. simpl. intros [s1x [P Q]].
  exists i; exists s1x; split. left; auto. econstructor; eauto. simpl in H0; tauto. 
Qed.

Lemma fbs_progress:
  forall i s1 s2, 
  fbs_match i s1 s2 -> safe L1 s1 ->
  (exists r, final_state (atomic L2) s2 r) \/
  (exists t, exists s2', Step (atomic L2) s2 t s2').
Proof.
  intros. inv H. destruct t.  
(* 1. no buffered events *)
  exploit (bsim_progress sim); eauto. eapply star_safe; eauto.
  intros [[r A] | [t [s2' A]]]. 
(* final state *)
  left; exists r; simpl; auto.
(* L2 can step *) 
  destruct t. 
  right; exists E0; exists (nil, s2'). constructor. auto.
  right; exists (e :: nil); exists (t, s2'). constructor. auto.
(* 2. some buffered events *)
  unfold E0 in H3; destruct H3. congruence. 
  right; exists (e :: nil); exists (t, s3). constructor. auto. 
Qed.

Theorem factor_backward_simulation:
  backward_simulation L1 (atomic L2).
Proof.
  apply Backward_simulation with (bsim_match_states := fbs_match) (bsim_order := bsim_order sim).
(* wf *)
  apply bsim_order_wf.
(* initial states exist *)
  intros. exploit (bsim_initial_states_exist sim); eauto. intros [s2 A].
  exists (E0, s2). simpl; auto. 
(* initial states match *)
  intros. destruct s2 as [t s2]; simpl in H0; destruct H0; subst.
  exploit (bsim_match_initial_states sim); eauto. intros [i [s1' [A B]]]. 
  exists i; exists s1'; split. auto. econstructor. apply star_refl. auto. auto.
(* final states match *)
  intros. destruct s2 as [t s2]; simpl in H1; destruct H1; subst.
  inv H. exploit (bsim_match_final_states sim); eauto. eapply star_safe; eauto. 
  intros [s1'' [A B]]. exists s1''; split; auto. eapply star_trans; eauto.
(* progress *)
  exact fbs_progress.
(* simulation *)
  exact fbs_simulation.
(* symbols *)
  simpl. exact (bsim_symbols_preserved sim).
Qed.

End FACTOR_BACKWARD_SIMULATION.

(** Receptiveness of [atomic L]. *)

Record strongly_receptive (L: semantics) : Prop :=
  Strongly_receptive {
    ssr_receptive: forall s ev1 t1 s1 ev2,
      Step L s (ev1 :: t1) s1 ->
      match_traces (globalenv L) (ev1 :: nil) (ev2 :: nil) ->
      exists s2, exists t2, Step L s (ev2 :: t2) s2;
    ssr_well_behaved:
      well_behaved_traces L
  }.

Theorem atomic_receptive:
  forall L, strongly_receptive L -> receptive (atomic L).
Proof.
  intros. constructor; intros.
(* receptive *)
  inv H0. 
  (* silent step *)
  inv H1. exists (E0, s'). constructor; auto.
  (* start step *)
  assert (exists ev2, t2 = ev2 :: nil). inv H1; econstructor; eauto. 
  destruct H0 as [ev2 EQ]; subst t2.
  exploit ssr_receptive; eauto. intros [s2 [t2 P]].
  exploit ssr_well_behaved. eauto. eexact P. simpl; intros Q. 
  exists (t2, s2). constructor; auto.
  (* continue step *)
  simpl in H2; destruct H2. 
  assert (t2 = ev :: nil). inv H1; simpl in H0; tauto.
  subst t2. exists (t, s0). constructor; auto. simpl; auto.  
(* single-event *)
  red. intros. inv H0; simpl; omega.
Qed.

(** * Connections with big-step semantics *)

(** The general form of a big-step semantics *)

Record bigstep_semantics : Type :=
  Bigstep_semantics {
    bigstep_terminates: trace -> int -> Prop;
    bigstep_diverges: traceinf -> Prop
  }.

(** Soundness with respect to a small-step semantics *)

Record bigstep_sound (B: bigstep_semantics) (L: semantics) : Prop :=
  Bigstep_sound {
    bigstep_terminates_sound:
      forall t r,
      bigstep_terminates B t r ->
      exists s1, exists s2, initial_state L s1 /\ Star L s1 t s2 /\ final_state L s2 r;
    bigstep_diverges_sound:
      forall T,
      bigstep_diverges B T ->
      exists s1, initial_state L s1 /\ forever (step L) (globalenv L) s1 T
}.