summaryrefslogtreecommitdiff
path: root/common/Memtype.v
blob: d94c895fe18256de82228f1e60a5dbca8558e56f (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
(* *********************************************************************)
(*                                                                     *)
(*              The Compcert verified compiler                         *)
(*                                                                     *)
(*          Xavier Leroy, INRIA Paris-Rocquencourt                     *)
(*                                                                     *)
(*  Copyright Institut National de Recherche en Informatique et en     *)
(*  Automatique.  All rights reserved.  This file is distributed       *)
(*  under the terms of the GNU General Public License as published by  *)
(*  the Free Software Foundation, either version 2 of the License, or  *)
(*  (at your option) any later version.  This file is also distributed *)
(*  under the terms of the INRIA Non-Commercial License Agreement.     *)
(*                                                                     *)
(* *********************************************************************)

(** This file defines the interface for the memory model that
  is used in the dynamic semantics of all the languages used in the compiler.
  It defines a type [mem] of memory states, the following 4 basic
  operations over memory states, and their properties:
- [load]: read a memory chunk at a given address;
- [store]: store a memory chunk at a given address;
- [alloc]: allocate a fresh memory block;
- [free]: invalidate a memory block.
*)

Require Import Coqlib.
Require Import AST.
Require Import Integers.
Require Import Floats.
Require Import Values.
Require Import Memdata.

(** Memory states are accessed by addresses [b, ofs]: pairs of a block
  identifier [b] and a byte offset [ofs] within that block.
  Each address is associated to permissions, also known as access rights.
  The following permissions are expressible:
- Freeable (exclusive access): all operations permitted
- Writable: load, store and pointer comparison operations are permitted,
  but freeing is not.
- Readable: only load and pointer comparison operations are permitted.
- Nonempty: valid, but only pointer comparisons are permitted.
- Empty: not yet allocated or previously freed; no operation permitted.

The first four cases are represented by the following type of permissions.
Being empty is represented by the absence of any permission.
*)

Inductive permission: Type :=
  | Freeable: permission
  | Writable: permission
  | Readable: permission
  | Nonempty: permission.

(** In the list, each permission implies the other permissions further down the
    list.  We reflect this fact by the following order over permissions. *)

Inductive perm_order: permission -> permission -> Prop :=
  | perm_refl:  forall p, perm_order p p
  | perm_F_any: forall p, perm_order Freeable p
  | perm_W_R:   perm_order Writable Readable
  | perm_any_N: forall p, perm_order p Nonempty.

Hint Constructors perm_order: mem.

Lemma perm_order_trans:
  forall p1 p2 p3, perm_order p1 p2 -> perm_order p2 p3 -> perm_order p1 p3.
Proof.
  intros. inv H; inv H0; constructor.
Qed.

(** Each address has not one, but two permissions associated
  with it.  The first is the current permission.  It governs whether
  operations (load, store, free, etc) over this address succeed or
  not.  The other is the maximal permission.  It is always at least as
  strong as the current permission.  Once a block is allocated, the
  maximal permission of an address within this block can only
  decrease, as a result of [free] or [drop_perm] operations, or of
  external calls.  In contrast, the current permission of an address
  can be temporarily lowered by an external call, then raised again by
  another external call. *)

Inductive perm_kind: Type :=
  | Max: perm_kind
  | Cur: perm_kind.

Module Type MEM.

(** The abstract type of memory states. *)
Parameter mem: Type.

(** * Operations on memory states *)

(** [empty] is the initial memory state. *)
Parameter empty: mem.

(** [alloc m lo hi] allocates a fresh block of size [hi - lo] bytes.
  Valid offsets in this block are between [lo] included and [hi] excluded.
  These offsets are writable in the returned memory state.
  This block is not initialized: its contents are initially undefined.
  Returns a pair [(m', b)] of the updated memory state [m'] and
  the identifier [b] of the newly-allocated block.
  Note that [alloc] never fails: we are modeling an infinite memory. *)
Parameter alloc: forall (m: mem) (lo hi: Z), mem * block.

(** [free m b lo hi] frees (deallocates) the range of offsets from [lo]
  included to [hi] excluded in block [b].  Returns the updated memory
  state, or [None] if the freed addresses are not writable. *)
Parameter free: forall (m: mem) (b: block) (lo hi: Z), option mem.

(** [load chunk m b ofs] reads a memory quantity [chunk] from
  addresses [b, ofs] to [b, ofs + size_chunk chunk - 1] in memory state
  [m].  Returns the value read, or [None] if the accessed addresses
  are not readable. *)
Parameter load: forall (chunk: memory_chunk) (m: mem) (b: block) (ofs: Z), option val.

(** [store chunk m b ofs v] writes value [v] as memory quantity [chunk]
  from addresses [b, ofs] to [b, ofs + size_chunk chunk - 1] in memory state
  [m].  Returns the updated memory state, or [None] if the accessed addresses
  are not writable. *)
Parameter store: forall (chunk: memory_chunk) (m: mem) (b: block) (ofs: Z) (v: val), option mem.

(** [loadv] and [storev] are variants of [load] and [store] where
  the address being accessed is passed as a value (of the [Vptr] kind). *)

Definition loadv (chunk: memory_chunk) (m: mem) (addr: val) : option val :=
  match addr with
  | Vptr b ofs => load chunk m b (Int.unsigned ofs)
  | _ => None
  end.

Definition storev (chunk: memory_chunk) (m: mem) (addr v: val) : option mem :=
  match addr with
  | Vptr b ofs => store chunk m b (Int.unsigned ofs) v
  | _ => None
  end.

(** [loadbytes m b ofs n] reads and returns the byte-level representation of
  the values contained at offsets [ofs] to [ofs + n - 1] within block [b]
  in memory state [m].
  [None] is returned if the accessed addresses are not readable. *)
Parameter loadbytes: forall (m: mem) (b: block) (ofs n: Z), option (list memval).

(** [storebytes m b ofs bytes] stores the given list of bytes [bytes]
  starting at location [(b, ofs)].  Returns updated memory state
  or [None] if the accessed locations are not writable. *)
Parameter storebytes: forall (m: mem) (b: block) (ofs: Z) (bytes: list memval), option mem.

(** [free_list] frees all the given (block, lo, hi) triples. *)
Fixpoint free_list (m: mem) (l: list (block * Z * Z)) {struct l}: option mem :=
  match l with
  | nil => Some m
  | (b, lo, hi) :: l' =>
      match free m b lo hi with
      | None => None
      | Some m' => free_list m' l'
      end
  end.

(** [drop_perm m b lo hi p] sets the permissions of the byte range
    [(b, lo) ... (b, hi - 1)] to [p].  These bytes must have [Freeable] permissions
    in the initial memory state [m].
    Returns updated memory state, or [None] if insufficient permissions. *)

Parameter drop_perm: forall (m: mem) (b: block) (lo hi: Z) (p: permission), option mem.

(** * Permissions, block validity, access validity, and bounds *)

(** The next block of a memory state is the block identifier for the
  next allocation.  It increases by one at each allocation.
  Block identifiers below [nextblock] are said to be valid, meaning
  that they have been allocated previously.  Block identifiers above
  [nextblock] are fresh or invalid, i.e. not yet allocated.  Note that
  a block identifier remains valid after a [free] operation over this
  block. *)

Parameter nextblock: mem -> block.

Definition valid_block (m: mem) (b: block) := Plt b (nextblock m).

Axiom valid_not_valid_diff:
  forall m b b', valid_block m b -> ~(valid_block m b') -> b <> b'.

(** [perm m b ofs k p] holds if the address [b, ofs] in memory state [m]
  has permission [p]: one of freeable, writable, readable, and nonempty.
  If the address is empty, [perm m b ofs p] is false for all values of [p].
  [k] is the kind of permission we are interested in: either the current
  permissions or the maximal permissions. *)
Parameter perm: forall (m: mem) (b: block) (ofs: Z) (k: perm_kind) (p: permission), Prop.

(** Logical implications between permissions *)

Axiom perm_implies:
  forall m b ofs k p1 p2, perm m b ofs k p1 -> perm_order p1 p2 -> perm m b ofs k p2.

(** The current permission is always less than or equal to the maximal permission. *)

Axiom perm_cur_max:
  forall m b ofs p, perm m b ofs Cur p -> perm m b ofs Max p.
Axiom perm_cur:
  forall m b ofs k p, perm m b ofs Cur p -> perm m b ofs k p.
Axiom perm_max:
  forall m b ofs k p, perm m b ofs k p -> perm m b ofs Max p.

(** Having a (nonempty) permission implies that the block is valid.
  In other words, invalid blocks, not yet allocated, are all empty. *)
Axiom perm_valid_block:
  forall m b ofs k p, perm m b ofs k p -> valid_block m b.

(* Unused?
(** The [Mem.perm] predicate is decidable. *)
Axiom perm_dec:
  forall m b ofs k p, {perm m b ofs k p} + {~ perm m b ofs k p}.
*)

(** [range_perm m b lo hi p] holds iff the addresses [b, lo] to [b, hi-1]
  all have permission [p] of kind [k]. *)
Definition range_perm (m: mem) (b: block) (lo hi: Z) (k: perm_kind) (p: permission) : Prop :=
  forall ofs, lo <= ofs < hi -> perm m b ofs k p.

Axiom range_perm_implies:
  forall m b lo hi k p1 p2,
  range_perm m b lo hi k p1 -> perm_order p1 p2 -> range_perm m b lo hi k p2.

(** An access to a memory quantity [chunk] at address [b, ofs] with
  permission [p] is valid in [m] if the accessed addresses all have
  current permission [p] and moreover the offset is properly aligned. *)
Definition valid_access (m: mem) (chunk: memory_chunk) (b: block) (ofs: Z) (p: permission): Prop :=
  range_perm m b ofs (ofs + size_chunk chunk) Cur p
  /\ (align_chunk chunk | ofs).

Axiom valid_access_implies:
  forall m chunk b ofs p1 p2,
  valid_access m chunk b ofs p1 -> perm_order p1 p2 ->
  valid_access m chunk b ofs p2.

Axiom valid_access_valid_block:
  forall m chunk b ofs,
  valid_access m chunk b ofs Nonempty ->
  valid_block m b.

Axiom valid_access_perm:
  forall m chunk b ofs k p,
  valid_access m chunk b ofs p ->
  perm m b ofs k p.

(** [valid_pointer m b ofs] returns [true] if the address [b, ofs]
  is nonempty in [m] and [false] if it is empty. *)

Parameter valid_pointer: forall (m: mem) (b: block) (ofs: Z), bool.

Axiom valid_pointer_nonempty_perm:
  forall m b ofs,
  valid_pointer m b ofs = true <-> perm m b ofs Cur Nonempty.
Axiom valid_pointer_valid_access:
  forall m b ofs,
  valid_pointer m b ofs = true <-> valid_access m Mint8unsigned b ofs Nonempty.

(** C allows pointers one past the last element of an array.  These are not
  valid according to the previously defined [valid_pointer]. The property
  [weak_valid_pointer m b ofs] holds if address [b, ofs] is a valid pointer
  in [m], or a pointer one past a valid block in [m].  *)

Definition weak_valid_pointer (m: mem) (b: block) (ofs: Z) :=
  valid_pointer m b ofs || valid_pointer m b (ofs - 1).

Axiom weak_valid_pointer_spec:
  forall m b ofs,
  weak_valid_pointer m b ofs = true <->
    valid_pointer m b ofs = true \/ valid_pointer m b (ofs - 1) = true.
Axiom valid_pointer_implies:
  forall m b ofs,
  valid_pointer m b ofs = true -> weak_valid_pointer m b ofs = true.

(** * Properties of the memory operations *)

(** ** Properties of the initial memory state. *)

Axiom nextblock_empty: nextblock empty = 1%positive.
Axiom perm_empty: forall b ofs k p, ~perm empty b ofs k p.
Axiom valid_access_empty:
  forall chunk b ofs p, ~valid_access empty chunk b ofs p.

(** ** Properties of [load]. *)

(** A load succeeds if and only if the access is valid for reading *)
Axiom valid_access_load:
  forall m chunk b ofs,
  valid_access m chunk b ofs Readable ->
  exists v, load chunk m b ofs = Some v.
Axiom load_valid_access:
  forall m chunk b ofs v,
  load chunk m b ofs = Some v ->
  valid_access m chunk b ofs Readable.

(** The value returned by [load] belongs to the type of the memory quantity
  accessed: [Vundef], [Vint] or [Vptr] for an integer quantity,
  [Vundef] or [Vfloat] for a float quantity. *)
Axiom load_type:
  forall m chunk b ofs v,
  load chunk m b ofs = Some v ->
  Val.has_type v (type_of_chunk chunk).

(** For a small integer or float type, the value returned by [load]
  is invariant under the corresponding cast. *)
Axiom load_cast:
  forall m chunk b ofs v,
  load chunk m b ofs = Some v ->
  match chunk with
  | Mint8signed => v = Val.sign_ext 8 v
  | Mint8unsigned => v = Val.zero_ext 8 v
  | Mint16signed => v = Val.sign_ext 16 v
  | Mint16unsigned => v = Val.zero_ext 16 v
  | _ => True
  end.

Axiom load_int8_signed_unsigned:
  forall m b ofs,
  load Mint8signed m b ofs = option_map (Val.sign_ext 8) (load Mint8unsigned m b ofs).

Axiom load_int16_signed_unsigned:
  forall m b ofs,
  load Mint16signed m b ofs = option_map (Val.sign_ext 16) (load Mint16unsigned m b ofs).


(** ** Properties of [loadbytes]. *)

(** [loadbytes] succeeds if and only if we have read permissions on the accessed
    memory area. *)

Axiom range_perm_loadbytes:
  forall m b ofs len,
  range_perm m b ofs (ofs + len) Cur Readable ->
  exists bytes, loadbytes m b ofs len = Some bytes.
Axiom loadbytes_range_perm:
  forall m b ofs len bytes,
  loadbytes m b ofs len = Some bytes ->
  range_perm m b ofs (ofs + len) Cur Readable.

(** If [loadbytes] succeeds, the corresponding [load] succeeds and
  returns a value that is determined by the
  bytes read by [loadbytes]. *)
Axiom loadbytes_load:
  forall chunk m b ofs bytes,
  loadbytes m b ofs (size_chunk chunk) = Some bytes ->
  (align_chunk chunk | ofs) ->
  load chunk m b ofs = Some(decode_val chunk bytes).

(** Conversely, if [load] returns a value, the corresponding
  [loadbytes] succeeds and returns a list of bytes which decodes into the
  result of [load]. *)
Axiom load_loadbytes:
  forall chunk m b ofs v,
  load chunk m b ofs = Some v ->
  exists bytes, loadbytes m b ofs (size_chunk chunk) = Some bytes
             /\ v = decode_val chunk bytes.

(** [loadbytes] returns a list of length [n] (the number of bytes read). *)
Axiom loadbytes_length:
  forall m b ofs n bytes,
  loadbytes m b ofs n = Some bytes ->
  length bytes = nat_of_Z n.

Axiom loadbytes_empty:
  forall m b ofs n,
  n <= 0 -> loadbytes m b ofs n = Some nil.

(** Composing or decomposing [loadbytes] operations at adjacent addresses. *)
Axiom loadbytes_concat:
  forall m b ofs n1 n2 bytes1 bytes2,
  loadbytes m b ofs n1 = Some bytes1 ->
  loadbytes m b (ofs + n1) n2 = Some bytes2 ->
  n1 >= 0 -> n2 >= 0 ->
  loadbytes m b ofs (n1 + n2) = Some(bytes1 ++ bytes2).
Axiom loadbytes_split:
  forall m b ofs n1 n2 bytes,
  loadbytes m b ofs (n1 + n2) = Some bytes ->
  n1 >= 0 -> n2 >= 0 ->
  exists bytes1, exists bytes2,
     loadbytes m b ofs n1 = Some bytes1 
  /\ loadbytes m b (ofs + n1) n2 = Some bytes2
  /\ bytes = bytes1 ++ bytes2.

(** ** Properties of [store]. *)

(** [store] preserves block validity, permissions, access validity, and bounds.
  Moreover, a [store] succeeds if and only if the corresponding access
  is valid for writing. *)

Axiom nextblock_store:
  forall chunk m1 b ofs v m2, store chunk m1 b ofs v = Some m2 ->
  nextblock m2 = nextblock m1.
Axiom store_valid_block_1:
  forall chunk m1 b ofs v m2, store chunk m1 b ofs v = Some m2 ->
  forall b', valid_block m1 b' -> valid_block m2 b'.
Axiom store_valid_block_2:
  forall chunk m1 b ofs v m2, store chunk m1 b ofs v = Some m2 ->
  forall b', valid_block m2 b' -> valid_block m1 b'.

Axiom perm_store_1:
  forall chunk m1 b ofs v m2, store chunk m1 b ofs v = Some m2 ->
  forall b' ofs' k p, perm m1 b' ofs' k p -> perm m2 b' ofs' k p.
Axiom perm_store_2:
  forall chunk m1 b ofs v m2, store chunk m1 b ofs v = Some m2 ->
  forall b' ofs' k p, perm m2 b' ofs' k p -> perm m1 b' ofs' k p.

Axiom valid_access_store:
  forall m1 chunk b ofs v,
  valid_access m1 chunk b ofs Writable ->
  { m2: mem | store chunk m1 b ofs v = Some m2 }.
Axiom store_valid_access_1:
  forall chunk m1 b ofs v m2, store chunk m1 b ofs v = Some m2 ->
  forall chunk' b' ofs' p,
  valid_access m1 chunk' b' ofs' p -> valid_access m2 chunk' b' ofs' p.
Axiom store_valid_access_2:
  forall chunk m1 b ofs v m2, store chunk m1 b ofs v = Some m2 ->
  forall chunk' b' ofs' p,
  valid_access m2 chunk' b' ofs' p -> valid_access m1 chunk' b' ofs' p.
Axiom store_valid_access_3:
  forall chunk m1 b ofs v m2, store chunk m1 b ofs v = Some m2 ->
  valid_access m1 chunk b ofs Writable.

(** Load-store properties. *)

Axiom load_store_similar:
  forall chunk m1 b ofs v m2, store chunk m1 b ofs v = Some m2 ->
  forall chunk',
  size_chunk chunk' = size_chunk chunk ->
  align_chunk chunk' <= align_chunk chunk ->
  exists v', load chunk' m2 b ofs = Some v' /\ decode_encode_val v chunk chunk' v'.

Axiom load_store_same:
  forall chunk m1 b ofs v m2, store chunk m1 b ofs v = Some m2 ->
  load chunk m2 b ofs = Some (Val.load_result chunk v).

Axiom load_store_other:
  forall chunk m1 b ofs v m2, store chunk m1 b ofs v = Some m2 ->
  forall chunk' b' ofs',
  b' <> b
  \/ ofs' + size_chunk chunk' <= ofs
  \/ ofs + size_chunk chunk <= ofs' ->
  load chunk' m2 b' ofs' = load chunk' m1 b' ofs'.

(** Integrity of pointer values. *)

Definition compat_pointer_chunks (chunk1 chunk2: memory_chunk) : Prop :=
  match chunk1, chunk2 with
  | (Mint32 | Many32), (Mint32 | Many32) => True
  | Many64, Many64 => True
  | _, _ => False
  end.

Axiom load_store_pointer_overlap:
  forall chunk m1 b ofs v_b v_o m2 chunk' ofs' v,
  store chunk m1 b ofs (Vptr v_b v_o) = Some m2 ->
  load chunk' m2 b ofs' = Some v ->
  ofs' <> ofs ->
  ofs' + size_chunk chunk' > ofs ->
  ofs + size_chunk chunk > ofs' ->
  v = Vundef.
Axiom load_store_pointer_mismatch:
  forall chunk m1 b ofs v_b v_o m2 chunk' v,
  store chunk m1 b ofs (Vptr v_b v_o) = Some m2 ->
  load chunk' m2 b ofs = Some v ->
  ~compat_pointer_chunks chunk chunk' ->
  v = Vundef.
Axiom load_pointer_store:
  forall chunk m1 b ofs v m2 chunk' b' ofs' v_b v_o,
  store chunk m1 b ofs v = Some m2 ->
  load chunk' m2 b' ofs' = Some(Vptr v_b v_o) ->
  (v = Vptr v_b v_o /\ compat_pointer_chunks chunk chunk' /\ b' = b /\ ofs' = ofs)
  \/ (b' <> b \/ ofs' + size_chunk chunk' <= ofs \/ ofs + size_chunk chunk <= ofs').

(** Load-store properties for [loadbytes]. *)

Axiom loadbytes_store_same:
  forall chunk m1 b ofs v m2, store chunk m1 b ofs v = Some m2 ->
  loadbytes m2 b ofs (size_chunk chunk) = Some(encode_val chunk v).
Axiom loadbytes_store_other:
  forall chunk m1 b ofs v m2, store chunk m1 b ofs v = Some m2 ->
  forall b' ofs' n,
  b' <> b \/ n <= 0 \/ ofs' + n <= ofs \/ ofs + size_chunk chunk <= ofs' ->
  loadbytes m2 b' ofs' n = loadbytes m1 b' ofs' n.

(** [store] is insensitive to the signedness or the high bits of
  small integer quantities. *)

Axiom store_signed_unsigned_8:
  forall m b ofs v,
  store Mint8signed m b ofs v = store Mint8unsigned m b ofs v.
Axiom store_signed_unsigned_16:
  forall m b ofs v,
  store Mint16signed m b ofs v = store Mint16unsigned m b ofs v.
Axiom store_int8_zero_ext:
  forall m b ofs n,
  store Mint8unsigned m b ofs (Vint (Int.zero_ext 8 n)) =
  store Mint8unsigned m b ofs (Vint n).
Axiom store_int8_sign_ext:
  forall m b ofs n,
  store Mint8signed m b ofs (Vint (Int.sign_ext 8 n)) =
  store Mint8signed m b ofs (Vint n).
Axiom store_int16_zero_ext:
  forall m b ofs n,
  store Mint16unsigned m b ofs (Vint (Int.zero_ext 16 n)) =
  store Mint16unsigned m b ofs (Vint n).
Axiom store_int16_sign_ext:
  forall m b ofs n,
  store Mint16signed m b ofs (Vint (Int.sign_ext 16 n)) =
  store Mint16signed m b ofs (Vint n).

(** ** Properties of [storebytes]. *)

(** [storebytes] preserves block validity, permissions, access validity, and bounds.
  Moreover, a [storebytes] succeeds if and only if we have write permissions
  on the addressed memory area. *)

Axiom range_perm_storebytes:
  forall m1 b ofs bytes,
  range_perm m1 b ofs (ofs + Z_of_nat (length bytes)) Cur Writable ->
  { m2 : mem | storebytes m1 b ofs bytes = Some m2 }.
Axiom storebytes_range_perm:
  forall m1 b ofs bytes m2, storebytes m1 b ofs bytes = Some m2 ->
  range_perm m1 b ofs (ofs + Z_of_nat (length bytes)) Cur Writable.
Axiom perm_storebytes_1:
  forall m1 b ofs bytes m2, storebytes m1 b ofs bytes = Some m2 ->
  forall b' ofs' k p, perm m1 b' ofs' k p -> perm m2 b' ofs' k p.
Axiom perm_storebytes_2:
  forall m1 b ofs bytes m2, storebytes m1 b ofs bytes = Some m2 ->
  forall b' ofs' k p, perm m2 b' ofs' k p -> perm m1 b' ofs' k p.
Axiom storebytes_valid_access_1:
  forall m1 b ofs bytes m2, storebytes m1 b ofs bytes = Some m2 ->
  forall chunk' b' ofs' p,
  valid_access m1 chunk' b' ofs' p -> valid_access m2 chunk' b' ofs' p.
Axiom storebytes_valid_access_2:
  forall m1 b ofs bytes m2, storebytes m1 b ofs bytes = Some m2 ->
  forall chunk' b' ofs' p,
  valid_access m2 chunk' b' ofs' p -> valid_access m1 chunk' b' ofs' p.
Axiom nextblock_storebytes:
  forall m1 b ofs bytes m2, storebytes m1 b ofs bytes = Some m2 ->
  nextblock m2 = nextblock m1.
Axiom storebytes_valid_block_1:
  forall m1 b ofs bytes m2, storebytes m1 b ofs bytes = Some m2 ->
  forall b', valid_block m1 b' -> valid_block m2 b'.
Axiom storebytes_valid_block_2:
  forall m1 b ofs bytes m2, storebytes m1 b ofs bytes = Some m2 ->
  forall b', valid_block m2 b' -> valid_block m1 b'.

(** Connections between [store] and [storebytes]. *)

Axiom storebytes_store:
  forall m1 b ofs chunk v m2,
  storebytes m1 b ofs (encode_val chunk v) = Some m2 ->
  (align_chunk chunk | ofs) ->
  store chunk m1 b ofs v = Some m2.

Axiom store_storebytes:
  forall m1 b ofs chunk v m2,
  store chunk m1 b ofs v = Some m2 ->
  storebytes m1 b ofs (encode_val chunk v) = Some m2.

(** Load-store properties. *)

Axiom loadbytes_storebytes_same:
  forall m1 b ofs bytes m2, storebytes m1 b ofs bytes = Some m2 ->
  loadbytes m2 b ofs (Z_of_nat (length bytes)) = Some bytes.
Axiom loadbytes_storebytes_other:
  forall m1 b ofs bytes m2, storebytes m1 b ofs bytes = Some m2 ->
  forall b' ofs' len,
  len >= 0 ->
  b' <> b
  \/ ofs' + len <= ofs
  \/ ofs + Z_of_nat (length bytes) <= ofs' ->
  loadbytes m2 b' ofs' len = loadbytes m1 b' ofs' len.
Axiom load_storebytes_other:
  forall m1 b ofs bytes m2, storebytes m1 b ofs bytes = Some m2 ->
  forall chunk b' ofs',
  b' <> b
  \/ ofs' + size_chunk chunk <= ofs
  \/ ofs + Z_of_nat (length bytes) <= ofs' ->
  load chunk m2 b' ofs' = load chunk m1 b' ofs'.

(** Composing or decomposing [storebytes] operations at adjacent addresses. *)

Axiom storebytes_concat:
  forall m b ofs bytes1 m1 bytes2 m2,
  storebytes m b ofs bytes1 = Some m1 ->
  storebytes m1 b (ofs + Z_of_nat(length bytes1)) bytes2 = Some m2 ->
  storebytes m b ofs (bytes1 ++ bytes2) = Some m2.
Axiom storebytes_split:
  forall m b ofs bytes1 bytes2 m2,
  storebytes m b ofs (bytes1 ++ bytes2) = Some m2 ->
  exists m1,
     storebytes m b ofs bytes1 = Some m1
  /\ storebytes m1 b (ofs + Z_of_nat(length bytes1)) bytes2 = Some m2.

(** ** Properties of [alloc]. *)

(** The identifier of the freshly allocated block is the next block
  of the initial memory state. *)

Axiom alloc_result:
  forall m1 lo hi m2 b, alloc m1 lo hi = (m2, b) ->
  b = nextblock m1.

(** Effect of [alloc] on block validity. *)

Axiom nextblock_alloc:
  forall m1 lo hi m2 b, alloc m1 lo hi = (m2, b) ->
  nextblock m2 = Psucc (nextblock m1).

Axiom valid_block_alloc:
  forall m1 lo hi m2 b, alloc m1 lo hi = (m2, b) ->
  forall b', valid_block m1 b' -> valid_block m2 b'.
Axiom fresh_block_alloc:
  forall m1 lo hi m2 b, alloc m1 lo hi = (m2, b) ->
  ~(valid_block m1 b).
Axiom valid_new_block:
  forall m1 lo hi m2 b, alloc m1 lo hi = (m2, b) ->
  valid_block m2 b.
Axiom valid_block_alloc_inv:
  forall m1 lo hi m2 b, alloc m1 lo hi = (m2, b) ->
  forall b', valid_block m2 b' -> b' = b \/ valid_block m1 b'.

(** Effect of [alloc] on permissions. *)

Axiom perm_alloc_1:
  forall m1 lo hi m2 b, alloc m1 lo hi = (m2, b) ->
  forall b' ofs k p, perm m1 b' ofs k p -> perm m2 b' ofs k p.
Axiom perm_alloc_2:
  forall m1 lo hi m2 b, alloc m1 lo hi = (m2, b) ->
  forall ofs k, lo <= ofs < hi -> perm m2 b ofs k Freeable.
Axiom perm_alloc_3:
  forall m1 lo hi m2 b, alloc m1 lo hi = (m2, b) ->
  forall ofs k p, perm m2 b ofs k p -> lo <= ofs < hi.
Axiom perm_alloc_4:
  forall m1 lo hi m2 b, alloc m1 lo hi = (m2, b) ->
  forall b' ofs k p, perm m2 b' ofs k p -> b' <> b -> perm m1 b' ofs k p.
Axiom perm_alloc_inv:
  forall m1 lo hi m2 b, alloc m1 lo hi = (m2, b) ->
  forall b' ofs k p, 
  perm m2 b' ofs k p ->
  if eq_block b' b then lo <= ofs < hi else perm m1 b' ofs k p.

(** Effect of [alloc] on access validity. *)

Axiom valid_access_alloc_other:
  forall m1 lo hi m2 b, alloc m1 lo hi = (m2, b) ->
  forall chunk b' ofs p,
  valid_access m1 chunk b' ofs p ->
  valid_access m2 chunk b' ofs p.
Axiom valid_access_alloc_same:
  forall m1 lo hi m2 b, alloc m1 lo hi = (m2, b) ->
  forall chunk ofs,
  lo <= ofs -> ofs + size_chunk chunk <= hi -> (align_chunk chunk | ofs) ->
  valid_access m2 chunk b ofs Freeable.
Axiom valid_access_alloc_inv:
  forall m1 lo hi m2 b, alloc m1 lo hi = (m2, b) ->
  forall chunk b' ofs p,
  valid_access m2 chunk b' ofs p ->
  if eq_block b' b
  then lo <= ofs /\ ofs + size_chunk chunk <= hi /\ (align_chunk chunk | ofs)
  else valid_access m1 chunk b' ofs p.

(** Load-alloc properties. *)

Axiom load_alloc_unchanged:
  forall m1 lo hi m2 b, alloc m1 lo hi = (m2, b) ->
  forall chunk b' ofs,
  valid_block m1 b' ->
  load chunk m2 b' ofs = load chunk m1 b' ofs.
Axiom load_alloc_other:
  forall m1 lo hi m2 b, alloc m1 lo hi = (m2, b) ->
  forall chunk b' ofs v,
  load chunk m1 b' ofs = Some v ->
  load chunk m2 b' ofs = Some v.
Axiom load_alloc_same:
  forall m1 lo hi m2 b, alloc m1 lo hi = (m2, b) ->
  forall chunk ofs v,
  load chunk m2 b ofs = Some v ->
  v = Vundef.
Axiom load_alloc_same':
  forall m1 lo hi m2 b, alloc m1 lo hi = (m2, b) ->
  forall chunk ofs,
  lo <= ofs -> ofs + size_chunk chunk <= hi -> (align_chunk chunk | ofs) ->
  load chunk m2 b ofs = Some Vundef.

(** ** Properties of [free]. *)

(** [free] succeeds if and only if the correspond range of addresses
  has [Freeable] current permission. *)

Axiom range_perm_free:
  forall m1 b lo hi,
  range_perm m1 b lo hi Cur Freeable ->
  { m2: mem | free m1 b lo hi = Some m2 }.
Axiom free_range_perm:
  forall m1 bf lo hi m2, free m1 bf lo hi = Some m2 ->
  range_perm m1 bf lo hi Cur Freeable.

(** Block validity is preserved by [free]. *)

Axiom nextblock_free:
  forall m1 bf lo hi m2, free m1 bf lo hi = Some m2 ->
  nextblock m2 = nextblock m1.
Axiom valid_block_free_1:
  forall m1 bf lo hi m2, free m1 bf lo hi = Some m2 ->
  forall b, valid_block m1 b -> valid_block m2 b.
Axiom valid_block_free_2:
  forall m1 bf lo hi m2, free m1 bf lo hi = Some m2 ->
  forall b, valid_block m2 b -> valid_block m1 b.

(** Effect of [free] on permissions. *)

Axiom perm_free_1:
  forall m1 bf lo hi m2, free m1 bf lo hi = Some m2 ->
  forall b ofs k p,
  b <> bf \/ ofs < lo \/ hi <= ofs ->
  perm m1 b ofs k p ->
  perm m2 b ofs k p.
Axiom perm_free_2:
  forall m1 bf lo hi m2, free m1 bf lo hi = Some m2 ->
  forall ofs k p, lo <= ofs < hi -> ~ perm m2 bf ofs k p.
Axiom perm_free_3:
  forall m1 bf lo hi m2, free m1 bf lo hi = Some m2 ->
  forall b ofs k p,
  perm m2 b ofs k p -> perm m1 b ofs k p.

(** Effect of [free] on access validity. *)

Axiom valid_access_free_1:
  forall m1 bf lo hi m2, free m1 bf lo hi = Some m2 ->
  forall chunk b ofs p,
  valid_access m1 chunk b ofs p -> 
  b <> bf \/ lo >= hi \/ ofs + size_chunk chunk <= lo \/ hi <= ofs ->
  valid_access m2 chunk b ofs p.
Axiom valid_access_free_2:
  forall m1 bf lo hi m2, free m1 bf lo hi = Some m2 ->
  forall chunk ofs p,
  lo < hi -> ofs + size_chunk chunk > lo -> ofs < hi ->
  ~(valid_access m2 chunk bf ofs p).
Axiom valid_access_free_inv_1:
  forall m1 bf lo hi m2, free m1 bf lo hi = Some m2 ->
  forall chunk b ofs p,
  valid_access m2 chunk b ofs p ->
  valid_access m1 chunk b ofs p.
Axiom valid_access_free_inv_2:
  forall m1 bf lo hi m2, free m1 bf lo hi = Some m2 ->
  forall chunk ofs p,
  valid_access m2 chunk bf ofs p ->
  lo >= hi \/ ofs + size_chunk chunk <= lo \/ hi <= ofs.

(** Load-free properties *)

Axiom load_free:
  forall m1 bf lo hi m2, free m1 bf lo hi = Some m2 ->
  forall chunk b ofs,
  b <> bf \/ lo >= hi \/ ofs + size_chunk chunk <= lo \/ hi <= ofs ->
  load chunk m2 b ofs = load chunk m1 b ofs.

(** ** Properties of [drop_perm]. *)

Axiom nextblock_drop:
  forall m b lo hi p m', drop_perm m b lo hi p = Some m' ->
  nextblock m' = nextblock m.
Axiom drop_perm_valid_block_1:
  forall m b lo hi p m', drop_perm m b lo hi p = Some m' ->
  forall b', valid_block m b' -> valid_block m' b'.
Axiom drop_perm_valid_block_2:
  forall m b lo hi p m', drop_perm m b lo hi p = Some m' ->
  forall b', valid_block m' b' -> valid_block m b'.

Axiom range_perm_drop_1:
  forall m b lo hi p m', drop_perm m b lo hi p = Some m' ->
  range_perm m b lo hi Cur Freeable.
Axiom range_perm_drop_2:
  forall m b lo hi p,
  range_perm m b lo hi Cur Freeable -> { m' | drop_perm m b lo hi p = Some m' }.

Axiom perm_drop_1:
  forall m b lo hi p m', drop_perm m b lo hi p = Some m' ->
  forall ofs k, lo <= ofs < hi -> perm m' b ofs k p.
Axiom perm_drop_2:
  forall m b lo hi p m', drop_perm m b lo hi p = Some m' ->
  forall ofs k p', lo <= ofs < hi -> perm m' b ofs k p' -> perm_order p p'.
Axiom perm_drop_3:
  forall m b lo hi p m', drop_perm m b lo hi p = Some m' ->
  forall b' ofs k p', b' <> b \/ ofs < lo \/ hi <= ofs -> perm m b' ofs k p' -> perm m' b' ofs k p'.
Axiom perm_drop_4:
  forall m b lo hi p m', drop_perm m b lo hi p = Some m' ->
  forall b' ofs k p', perm m' b' ofs k p' -> perm m b' ofs k p'.

Axiom load_drop:
  forall m b lo hi p m', drop_perm m b lo hi p = Some m' ->
  forall chunk b' ofs, 
  b' <> b \/ ofs + size_chunk chunk <= lo \/ hi <= ofs \/ perm_order p Readable ->
  load chunk m' b' ofs = load chunk m b' ofs.

(** * Relating two memory states. *)

(** ** Memory extensions *)

(**  A store [m2] extends a store [m1] if [m2] can be obtained from [m1]
  by relaxing the permissions of [m1] (for instance, allocating larger
  blocks) and replacing some of the [Vundef] values stored in [m1] by
  more defined values stored in [m2] at the same addresses. *)

Parameter extends: mem -> mem -> Prop.

Axiom extends_refl:
  forall m, extends m m.

Axiom load_extends:
  forall chunk m1 m2 b ofs v1,
  extends m1 m2 ->
  load chunk m1 b ofs = Some v1 ->
  exists v2, load chunk m2 b ofs = Some v2 /\ Val.lessdef v1 v2.

Axiom loadv_extends:
  forall chunk m1 m2 addr1 addr2 v1,
  extends m1 m2 ->
  loadv chunk m1 addr1 = Some v1 ->
  Val.lessdef addr1 addr2 ->
  exists v2, loadv chunk m2 addr2 = Some v2 /\ Val.lessdef v1 v2.

Axiom loadbytes_extends:
  forall m1 m2 b ofs len bytes1,
  extends m1 m2 ->
  loadbytes m1 b ofs len = Some bytes1 ->
  exists bytes2, loadbytes m2 b ofs len = Some bytes2
              /\ list_forall2 memval_lessdef bytes1 bytes2.

Axiom store_within_extends:
  forall chunk m1 m2 b ofs v1 m1' v2,
  extends m1 m2 ->
  store chunk m1 b ofs v1 = Some m1' ->
  Val.lessdef v1 v2 ->
  exists m2',
     store chunk m2 b ofs v2 = Some m2'
  /\ extends m1' m2'.

Axiom store_outside_extends:
  forall chunk m1 m2 b ofs v m2',
  extends m1 m2 ->
  store chunk m2 b ofs v = Some m2' ->
  (forall ofs', perm m1 b ofs' Cur Readable -> ofs <= ofs' < ofs + size_chunk chunk -> False) ->
  extends m1 m2'.

Axiom storev_extends:
  forall chunk m1 m2 addr1 v1 m1' addr2 v2,
  extends m1 m2 ->
  storev chunk m1 addr1 v1 = Some m1' ->
  Val.lessdef addr1 addr2 ->
  Val.lessdef v1 v2 ->
  exists m2',
     storev chunk m2 addr2 v2 = Some m2'
  /\ extends m1' m2'.

Axiom storebytes_within_extends:
  forall m1 m2 b ofs bytes1 m1' bytes2,
  extends m1 m2 ->
  storebytes m1 b ofs bytes1 = Some m1' ->
  list_forall2 memval_lessdef bytes1 bytes2 ->
  exists m2',
     storebytes m2 b ofs bytes2 = Some m2'
  /\ extends m1' m2'.

Axiom storebytes_outside_extends:
  forall m1 m2 b ofs bytes2 m2',
  extends m1 m2 ->
  storebytes m2 b ofs bytes2 = Some m2' ->
  (forall ofs', perm m1 b ofs' Cur Readable -> ofs <= ofs' < ofs + Z_of_nat (length bytes2) -> False) ->
  extends m1 m2'.

Axiom alloc_extends:
  forall m1 m2 lo1 hi1 b m1' lo2 hi2,
  extends m1 m2 ->
  alloc m1 lo1 hi1 = (m1', b) ->
  lo2 <= lo1 -> hi1 <= hi2 ->
  exists m2',
     alloc m2 lo2 hi2 = (m2', b)
  /\ extends m1' m2'.

Axiom free_left_extends:
  forall m1 m2 b lo hi m1',
  extends m1 m2 ->
  free m1 b lo hi = Some m1' ->
  extends m1' m2.

Axiom free_right_extends:
  forall m1 m2 b lo hi m2',
  extends m1 m2 ->
  free m2 b lo hi = Some m2' ->
  (forall ofs k p, perm m1 b ofs k p -> lo <= ofs < hi -> False) ->
  extends m1 m2'.

Axiom free_parallel_extends:
  forall m1 m2 b lo hi m1',
  extends m1 m2 ->
  free m1 b lo hi = Some m1' ->
  exists m2',
     free m2 b lo hi = Some m2'
  /\ extends m1' m2'.

Axiom valid_block_extends:
  forall m1 m2 b,
  extends m1 m2 ->
  (valid_block m1 b <-> valid_block m2 b).
Axiom perm_extends:
  forall m1 m2 b ofs k p,
  extends m1 m2 -> perm m1 b ofs k p -> perm m2 b ofs k p.
Axiom valid_access_extends:
  forall m1 m2 chunk b ofs p,
  extends m1 m2 -> valid_access m1 chunk b ofs p -> valid_access m2 chunk b ofs p.
Axiom valid_pointer_extends:
  forall m1 m2 b ofs,
  extends m1 m2 -> valid_pointer m1 b ofs = true -> valid_pointer m2 b ofs = true.
Axiom weak_valid_pointer_extends:
  forall m1 m2 b ofs,
  extends m1 m2 ->
  weak_valid_pointer m1 b ofs = true -> weak_valid_pointer m2 b ofs = true.

(** * Memory injections *)

(** A memory injection [f] is a function from addresses to either [None]
  or [Some] of an address and an offset.  It defines a correspondence
  between the blocks of two memory states [m1] and [m2]:
- if [f b = None], the block [b] of [m1] has no equivalent in [m2];
- if [f b = Some(b', ofs)], the block [b] of [m2] corresponds to
  a sub-block at offset [ofs] of the block [b'] in [m2].

A memory injection [f] defines a relation [val_inject] between values
that is the identity for integer and float values, and relocates pointer 
values as prescribed by [f].  (See module [Values].)

Likewise, a memory injection [f] defines a relation between memory states 
that we now axiomatize. *)

Parameter inject: meminj -> mem -> mem -> Prop.

Axiom valid_block_inject_1:
  forall f m1 m2 b1 b2 delta,
  f b1 = Some(b2, delta) ->
  inject f m1 m2 ->
  valid_block m1 b1.

Axiom valid_block_inject_2:
  forall f m1 m2 b1 b2 delta,
  f b1 = Some(b2, delta) ->
  inject f m1 m2 ->
  valid_block m2 b2.

Axiom perm_inject:
  forall f m1 m2 b1 b2 delta ofs k p,
  f b1 = Some(b2, delta) ->
  inject f m1 m2 ->
  perm m1 b1 ofs k p -> perm m2 b2 (ofs + delta) k p.

Axiom valid_access_inject:
  forall f m1 m2 chunk b1 ofs b2 delta p,
  f b1 = Some(b2, delta) ->
  inject f m1 m2 ->
  valid_access m1 chunk b1 ofs p ->
  valid_access m2 chunk b2 (ofs + delta) p.

Axiom valid_pointer_inject:
  forall f m1 m2 b1 ofs b2 delta,
  f b1 = Some(b2, delta) ->
  inject f m1 m2 ->
  valid_pointer m1 b1 ofs = true ->
  valid_pointer m2 b2 (ofs + delta) = true.

Axiom weak_valid_pointer_inject:
  forall f m1 m2 b1 ofs b2 delta,
  f b1 = Some(b2, delta) ->
  inject f m1 m2 ->
  weak_valid_pointer m1 b1 ofs = true ->
  weak_valid_pointer m2 b2 (ofs + delta) = true.

Axiom address_inject:
  forall f m1 m2 b1 ofs1 b2 delta p,
  inject f m1 m2 ->
  perm m1 b1 (Int.unsigned ofs1) Cur p ->
  f b1 = Some (b2, delta) ->
  Int.unsigned (Int.add ofs1 (Int.repr delta)) = Int.unsigned ofs1 + delta.

Axiom valid_pointer_inject_no_overflow:
  forall f m1 m2 b ofs b' delta,
  inject f m1 m2 ->
  valid_pointer m1 b (Int.unsigned ofs) = true ->
  f b = Some(b', delta) ->
  0 <= Int.unsigned ofs + Int.unsigned (Int.repr delta) <= Int.max_unsigned.

Axiom weak_valid_pointer_inject_no_overflow:
  forall f m1 m2 b ofs b' delta,
  inject f m1 m2 ->
  weak_valid_pointer m1 b (Int.unsigned ofs) = true ->
  f b = Some(b', delta) ->
  0 <= Int.unsigned ofs + Int.unsigned (Int.repr delta) <= Int.max_unsigned.

Axiom valid_pointer_inject_val:
  forall f m1 m2 b ofs b' ofs',
  inject f m1 m2 ->
  valid_pointer m1 b (Int.unsigned ofs) = true ->
  val_inject f (Vptr b ofs) (Vptr b' ofs') ->
  valid_pointer m2 b' (Int.unsigned ofs') = true.

Axiom weak_valid_pointer_inject_val:
  forall f m1 m2 b ofs b' ofs',
  inject f m1 m2 ->
  weak_valid_pointer m1 b (Int.unsigned ofs) = true ->
  val_inject f (Vptr b ofs) (Vptr b' ofs') ->
  weak_valid_pointer m2 b' (Int.unsigned ofs') = true.

Axiom inject_no_overlap:
  forall f m1 m2 b1 b2 b1' b2' delta1 delta2 ofs1 ofs2,
  inject f m1 m2 ->
  b1 <> b2 ->
  f b1 = Some (b1', delta1) ->
  f b2 = Some (b2', delta2) ->
  perm m1 b1 ofs1 Max Nonempty ->
  perm m1 b2 ofs2 Max Nonempty ->
  b1' <> b2' \/ ofs1 + delta1 <> ofs2 + delta2.

Axiom different_pointers_inject:
  forall f m m' b1 ofs1 b2 ofs2 b1' delta1 b2' delta2,
  inject f m m' ->
  b1 <> b2 ->
  valid_pointer m b1 (Int.unsigned ofs1) = true ->
  valid_pointer m b2 (Int.unsigned ofs2) = true ->
  f b1 = Some (b1', delta1) ->
  f b2 = Some (b2', delta2) ->
  b1' <> b2' \/
  Int.unsigned (Int.add ofs1 (Int.repr delta1)) <>
  Int.unsigned (Int.add ofs2 (Int.repr delta2)).

Axiom load_inject:
  forall f m1 m2 chunk b1 ofs b2 delta v1,
  inject f m1 m2 ->
  load chunk m1 b1 ofs = Some v1 ->
  f b1 = Some (b2, delta) ->
  exists v2, load chunk m2 b2 (ofs + delta) = Some v2 /\ val_inject f v1 v2.

Axiom loadv_inject:
  forall f m1 m2 chunk a1 a2 v1,
  inject f m1 m2 ->
  loadv chunk m1 a1 = Some v1 ->
  val_inject f a1 a2 ->
  exists v2, loadv chunk m2 a2 = Some v2 /\ val_inject f v1 v2.

Axiom loadbytes_inject:
  forall f m1 m2 b1 ofs len b2 delta bytes1,
  inject f m1 m2 ->
  loadbytes m1 b1 ofs len = Some bytes1 ->
  f b1 = Some (b2, delta) ->
  exists bytes2, loadbytes m2 b2 (ofs + delta) len = Some bytes2
              /\ list_forall2 (memval_inject f) bytes1 bytes2.

Axiom store_mapped_inject:
  forall f chunk m1 b1 ofs v1 n1 m2 b2 delta v2,
  inject f m1 m2 ->
  store chunk m1 b1 ofs v1 = Some n1 ->
  f b1 = Some (b2, delta) ->
  val_inject f v1 v2 ->
  exists n2,
    store chunk m2 b2 (ofs + delta) v2 = Some n2
    /\ inject f n1 n2.

Axiom store_unmapped_inject:
  forall f chunk m1 b1 ofs v1 n1 m2,
  inject f m1 m2 ->
  store chunk m1 b1 ofs v1 = Some n1 ->
  f b1 = None ->
  inject f n1 m2.

Axiom store_outside_inject:
  forall f m1 m2 chunk b ofs v m2',
  inject f m1 m2 ->
  (forall b' delta ofs',
    f b' = Some(b, delta) ->
    perm m1 b' ofs' Cur Readable ->
    ofs <= ofs' + delta < ofs + size_chunk chunk -> False) ->
  store chunk m2 b ofs v = Some m2' ->
  inject f m1 m2'.

Axiom storev_mapped_inject:
  forall f chunk m1 a1 v1 n1 m2 a2 v2,
  inject f m1 m2 ->
  storev chunk m1 a1 v1 = Some n1 ->
  val_inject f a1 a2 ->
  val_inject f v1 v2 ->
  exists n2,
    storev chunk m2 a2 v2 = Some n2 /\ inject f n1 n2.

Axiom storebytes_mapped_inject:
  forall f m1 b1 ofs bytes1 n1 m2 b2 delta bytes2,
  inject f m1 m2 ->
  storebytes m1 b1 ofs bytes1 = Some n1 ->
  f b1 = Some (b2, delta) ->
  list_forall2 (memval_inject f) bytes1 bytes2 ->
  exists n2,
    storebytes m2 b2 (ofs + delta) bytes2 = Some n2
    /\ inject f n1 n2.

Axiom storebytes_unmapped_inject:
  forall f m1 b1 ofs bytes1 n1 m2,
  inject f m1 m2 ->
  storebytes m1 b1 ofs bytes1 = Some n1 ->
  f b1 = None ->
  inject f n1 m2.

Axiom storebytes_outside_inject:
  forall f m1 m2 b ofs bytes2 m2',
  inject f m1 m2 ->
  (forall b' delta ofs',
    f b' = Some(b, delta) ->
    perm m1 b' ofs' Cur Readable ->
    ofs <= ofs' + delta < ofs + Z_of_nat (length bytes2) -> False) ->
  storebytes m2 b ofs bytes2 = Some m2' ->
  inject f m1 m2'.

Axiom alloc_right_inject:
  forall f m1 m2 lo hi b2 m2',
  inject f m1 m2 ->
  alloc m2 lo hi = (m2', b2) ->
  inject f m1 m2'.

Axiom alloc_left_unmapped_inject:
  forall f m1 m2 lo hi m1' b1,
  inject f m1 m2 ->
  alloc m1 lo hi = (m1', b1) ->
  exists f',
     inject f' m1' m2
  /\ inject_incr f f'
  /\ f' b1 = None
  /\ (forall b, b <> b1 -> f' b = f b).

Definition inj_offset_aligned (delta: Z) (size: Z) : Prop :=
  forall chunk, size_chunk chunk <= size -> (align_chunk chunk | delta).

Axiom alloc_left_mapped_inject:
  forall f m1 m2 lo hi m1' b1 b2 delta,
  inject f m1 m2 ->
  alloc m1 lo hi = (m1', b1) ->
  valid_block m2 b2 ->
  0 <= delta <= Int.max_unsigned ->
  (forall ofs k p, perm m2 b2 ofs k p -> delta = 0 \/ 0 <= ofs < Int.max_unsigned) ->
  (forall ofs k p, lo <= ofs < hi -> perm m2 b2 (ofs + delta) k p) ->
  inj_offset_aligned delta (hi-lo) ->
  (forall b delta' ofs k p,
   f b = Some (b2, delta') -> 
   perm m1 b ofs k p ->
   lo + delta <= ofs + delta' < hi + delta -> False) ->
  exists f',
     inject f' m1' m2
  /\ inject_incr f f'
  /\ f' b1 = Some(b2, delta)
  /\ (forall b, b <> b1 -> f' b = f b).

Axiom alloc_parallel_inject:
  forall f m1 m2 lo1 hi1 m1' b1 lo2 hi2,
  inject f m1 m2 ->
  alloc m1 lo1 hi1 = (m1', b1) ->
  lo2 <= lo1 -> hi1 <= hi2 ->
  exists f', exists m2', exists b2,
  alloc m2 lo2 hi2 = (m2', b2)
  /\ inject f' m1' m2'
  /\ inject_incr f f'
  /\ f' b1 = Some(b2, 0)
  /\ (forall b, b <> b1 -> f' b = f b).

Axiom free_inject:
  forall f m1 l m1' m2 b lo hi m2',
  inject f m1 m2 ->
  free_list m1 l = Some m1' ->
  free m2 b lo hi = Some m2' ->
  (forall b1 delta ofs k p,
    f b1 = Some(b, delta) -> perm m1 b1 ofs k p -> lo <= ofs + delta < hi ->
    exists lo1, exists hi1, In (b1, lo1, hi1) l /\ lo1 <= ofs < hi1) ->
  inject f m1' m2'.

Axiom free_parallel_inject:
  forall f m1 m2 b lo hi m1' b' delta,
  inject f m1 m2 ->
  free m1 b lo hi = Some m1' ->
  f b = Some(b', delta) ->
  exists m2',
     free m2 b' (lo + delta) (hi + delta) = Some m2'
  /\ inject f m1' m2'.

Axiom drop_outside_inject:
  forall f m1 m2 b lo hi p m2',
  inject f m1 m2 -> 
  drop_perm m2 b lo hi p = Some m2' -> 
  (forall b' delta ofs k p,
    f b' = Some(b, delta) ->
    perm m1 b' ofs k p -> lo <= ofs + delta < hi -> False) ->
  inject f m1 m2'.

(** Memory states that inject into themselves. *)

Definition flat_inj (thr: block) : meminj :=
  fun (b: block) => if plt b thr then Some(b, 0) else None.

Parameter inject_neutral: forall (thr: block) (m: mem), Prop.

Axiom neutral_inject:
  forall m, inject_neutral (nextblock m) m ->
  inject (flat_inj (nextblock m)) m m.

Axiom empty_inject_neutral:
  forall thr, inject_neutral thr empty.

Axiom alloc_inject_neutral:
  forall thr m lo hi b m',
  alloc m lo hi = (m', b) ->
  inject_neutral thr m ->
  Plt (nextblock m) thr ->
  inject_neutral thr m'.

Axiom store_inject_neutral:
  forall chunk m b ofs v m' thr,
  store chunk m b ofs v = Some m' ->
  inject_neutral thr m ->
  Plt b thr ->
  val_inject (flat_inj thr) v v ->
  inject_neutral thr m'.

Axiom drop_inject_neutral:
  forall m b lo hi p m' thr,
  drop_perm m b lo hi p = Some m' ->
  inject_neutral thr m ->
  Plt b thr ->
  inject_neutral thr m'.

End MEM.