summaryrefslogtreecommitdiff
path: root/common/Memtype.v
blob: cfbe51158d5046b3e143819ea47c23b3fa6a7501 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
(* *********************************************************************)
(*                                                                     *)
(*              The Compcert verified compiler                         *)
(*                                                                     *)
(*          Xavier Leroy, INRIA Paris-Rocquencourt                     *)
(*                                                                     *)
(*  Copyright Institut National de Recherche en Informatique et en     *)
(*  Automatique.  All rights reserved.  This file is distributed       *)
(*  under the terms of the GNU General Public License as published by  *)
(*  the Free Software Foundation, either version 2 of the License, or  *)
(*  (at your option) any later version.  This file is also distributed *)
(*  under the terms of the INRIA Non-Commercial License Agreement.     *)
(*                                                                     *)
(* *********************************************************************)

(** This file defines the interface for the memory model that
  is used in the dynamic semantics of all the languages used in the compiler.
  It defines a type [mem] of memory states, the following 4 basic
  operations over memory states, and their properties:
- [load]: read a memory chunk at a given address;
- [store]: store a memory chunk at a given address;
- [alloc]: allocate a fresh memory block;
- [free]: invalidate a memory block.
*)

Require Import Coqlib.
Require Import AST.
Require Import Integers.
Require Import Floats.
Require Import Values.
Require Import Memdata.

(** Memory states are accessed by addresses [b, ofs]: pairs of a block
  identifier [b] and a byte offset [ofs] within that block.
  Each address is in one of the following five states:
- Freeable (exclusive access): all operations permitted
- Writable: load, store and pointer comparison operations are permitted,
  but freeing is not.
- Readable: only load and pointer comparison operations are permitted.
- Nonempty: valid, but only pointer comparisons are permitted.
- Empty: not yet allocated or previously freed; no operation permitted.

The first four cases are represented by the following type of permissions.
Being empty is represented by the absence of any permission.
*)

Inductive permission: Type :=
  | Freeable: permission
  | Writable: permission
  | Readable: permission
  | Nonempty: permission.

(** In the list, each permission implies the other permissions further down the
    list.  We reflect this fact by the following order over permissions. *)

Inductive perm_order: permission -> permission -> Prop :=
  | perm_F_any: forall p, perm_order Freeable p
  | perm_W_R:   perm_order Writable Readable
  | perm_any_N: forall p, perm_order p Nonempty.

Hint Constructors perm_order: mem.

Module Type MEM.

(** The abstract type of memory states. *)
Parameter mem: Type.

Definition nullptr: block := 0.

(** * Operations on memory states *)

(** [empty] is the initial memory state. *)
Parameter empty: mem.

(** [alloc m lo hi] allocates a fresh block of size [hi - lo] bytes.
  Valid offsets in this block are between [lo] included and [hi] excluded.
  These offsets are writable in the returned memory state.
  This block is not initialized: its contents are initially undefined.
  Returns a pair [(m', b)] of the updated memory state [m'] and
  the identifier [b] of the newly-allocated block.
  Note that [alloc] never fails: we are modeling an infinite memory. *)
Parameter alloc: forall (m: mem) (lo hi: Z), mem * block.

(** [free m b lo hi] frees (deallocates) the range of offsets from [lo]
  included to [hi] excluded in block [b].  Returns the updated memory
  state, or [None] if the freed addresses are not writable. *)
Parameter free: forall (m: mem) (b: block) (lo hi: Z), option mem.

(** [load chunk m b ofs] reads a memory quantity [chunk] from
  addresses [b, ofs] to [b, ofs + size_chunk chunk - 1] in memory state
  [m].  Returns the value read, or [None] if the accessed addresses
  are not readable. *)
Parameter load: forall (chunk: memory_chunk) (m: mem) (b: block) (ofs: Z), option val.

(** [store chunk m b ofs v] writes value [v] as memory quantity [chunk]
  from addresses [b, ofs] to [b, ofs + size_chunk chunk - 1] in memory state
  [m].  Returns the updated memory state, or [None] if the accessed addresses
  are not writable. *)
Parameter store: forall (chunk: memory_chunk) (m: mem) (b: block) (ofs: Z) (v: val), option mem.

(** [loadv] and [storev] are variants of [load] and [store] where
  the address being accessed is passed as a value (of the [Vptr] kind). *)

Definition loadv (chunk: memory_chunk) (m: mem) (addr: val) : option val :=
  match addr with
  | Vptr b ofs => load chunk m b (Int.signed ofs)
  | _ => None
  end.

Definition storev (chunk: memory_chunk) (m: mem) (addr v: val) : option mem :=
  match addr with
  | Vptr b ofs => store chunk m b (Int.signed ofs) v
  | _ => None
  end.

(** [loadbytes m b ofs n] reads and returns the byte-level representation of
  the values contained at offsets [ofs] to [ofs + n - 1] within block [b]
  in memory state [m].  These values must be integers or floats.
  [None] is returned if the accessed addresses are not readable
  or contain undefined or pointer values. *)
Parameter loadbytes: forall (m: mem) (b: block) (ofs n: Z), option (list byte).

(** [free_list] frees all the given (block, lo, hi) triples. *)
Fixpoint free_list (m: mem) (l: list (block * Z * Z)) {struct l}: option mem :=
  match l with
  | nil => Some m
  | (b, lo, hi) :: l' =>
      match free m b lo hi with
      | None => None
      | Some m' => free_list m' l'
      end
  end.

(** * Permissions, block validity, access validity, and bounds *)

(** The next block of a memory state is the block identifier for the
  next allocation.  It increases by one at each allocation.
  Block identifiers below [nextblock] are said to be valid, meaning
  that they have been allocated previously.  Block identifiers above
  [nextblock] are fresh or invalid, i.e. not yet allocated.  Note that
  a block identifier remains valid after a [free] operation over this
  block. *)

Parameter nextblock: mem -> block.
Axiom nextblock_pos:
  forall m, nextblock m > 0.

Definition valid_block (m: mem) (b: block) :=
  b < nextblock m.
Axiom valid_not_valid_diff:
  forall m b b', valid_block m b -> ~(valid_block m b') -> b <> b'.

(** [perm m b ofs p] holds if the address [b, ofs] in memory state [m]
  has permission [p]: one of writable, readable, and nonempty.
  If the address is empty, [perm m b ofs p] is false for all values of [p]. *)
Parameter perm: forall (m: mem) (b: block) (ofs: Z) (p: permission), Prop.

(** Logical implications between permissions *)

Axiom perm_implies:
  forall m b ofs p1 p2, perm m b ofs p1 -> perm_order p1 p2 -> perm m b ofs p2.

(** Having a (nonempty) permission implies that the block is valid.
  In other words, invalid blocks, not yet allocated, are all empty. *)
Axiom perm_valid_block:
  forall m b ofs p, perm m b ofs p -> valid_block m b.

(* Unused?
(** The [Mem.perm] predicate is decidable. *)
Axiom perm_dec:
  forall m b ofs p, {perm m b ofs p} + {~ perm m b ofs p}.
*)

(** [range_perm m b lo hi p] holds iff the addresses [b, lo] to [b, hi-1]
  all have permission [p]. *)
Definition range_perm (m: mem) (b: block) (lo hi: Z) (p: permission) : Prop :=
  forall ofs, lo <= ofs < hi -> perm m b ofs p.

Axiom range_perm_implies:
  forall m b lo hi p1 p2,
  range_perm m b lo hi p1 -> perm_order p1 p2 -> range_perm m b lo hi p2.

(** An access to a memory quantity [chunk] at address [b, ofs] with
  permission [p] is valid in [m] if the accessed addresses all have
  permission [p] and moreover the offset is properly aligned. *)
Definition valid_access (m: mem) (chunk: memory_chunk) (b: block) (ofs: Z) (p: permission): Prop :=
  range_perm m b ofs (ofs + size_chunk chunk) p
  /\ (align_chunk chunk | ofs).

Axiom valid_access_implies:
  forall m chunk b ofs p1 p2,
  valid_access m chunk b ofs p1 -> perm_order p1 p2 ->
  valid_access m chunk b ofs p2.

Axiom valid_access_valid_block:
  forall m chunk b ofs,
  valid_access m chunk b ofs Nonempty ->
  valid_block m b.

Axiom valid_access_perm:
  forall m chunk b ofs p,
  valid_access m chunk b ofs p ->
  perm m b ofs p.

(** [valid_pointer m b ofs] returns [true] if the address [b, ofs]
  is nonempty in [m] and [false] if it is empty. *)

Parameter valid_pointer: forall (m: mem) (b: block) (ofs: Z), bool.

Axiom valid_pointer_nonempty_perm:
  forall m b ofs,
  valid_pointer m b ofs = true <-> perm m b ofs Nonempty.
Axiom valid_pointer_valid_access:
  forall m b ofs,
  valid_pointer m b ofs = true <-> valid_access m Mint8unsigned b ofs Nonempty.

(** Each block has associated low and high bounds.  These are the bounds 
    that were given when the block was allocated.  *)

Parameter bounds: forall (m: mem) (b: block), Z*Z.

Notation low_bound m b := (fst(bounds m b)).
Notation high_bound m b := (snd(bounds m b)).

(** The crucial properties of bounds is that any offset below the low
    bound or above the high bound is empty. *)

Axiom perm_in_bounds:
  forall m b ofs p, perm m b ofs p -> low_bound m b <= ofs < high_bound m b.

Axiom range_perm_in_bounds:
  forall m b lo hi p, 
  range_perm m b lo hi p -> lo < hi ->
  low_bound m b <= lo /\ hi <= high_bound m b.

Axiom valid_access_in_bounds:
  forall m chunk b ofs p,
  valid_access m chunk b ofs p ->
  low_bound m b <= ofs /\ ofs + size_chunk chunk <= high_bound m b.

(** * Properties of the memory operations *)

(** ** Properties of the initial memory state. *)

Axiom nextblock_empty: nextblock empty = 1.
Axiom perm_empty: forall b ofs p, ~perm empty b ofs p.
Axiom valid_access_empty:
  forall chunk b ofs p, ~valid_access empty chunk b ofs p.

(** ** Properties of [load]. *)

(** A load succeeds if and only if the access is valid for reading *)
Axiom valid_access_load:
  forall m chunk b ofs,
  valid_access m chunk b ofs Readable ->
  exists v, load chunk m b ofs = Some v.
Axiom load_valid_access:
  forall m chunk b ofs v,
  load chunk m b ofs = Some v ->
  valid_access m chunk b ofs Readable.

(** The value returned by [load] belongs to the type of the memory quantity
  accessed: [Vundef], [Vint] or [Vptr] for an integer quantity,
  [Vundef] or [Vfloat] for a float quantity. *)
Axiom load_type:
  forall m chunk b ofs v,
  load chunk m b ofs = Some v ->
  Val.has_type v (type_of_chunk chunk).

(** For a small integer or float type, the value returned by [load]
  is invariant under the corresponding cast. *)
Axiom load_cast:
  forall m chunk b ofs v,
  load chunk m b ofs = Some v ->
  match chunk with
  | Mint8signed => v = Val.sign_ext 8 v
  | Mint8unsigned => v = Val.zero_ext 8 v
  | Mint16signed => v = Val.sign_ext 16 v
  | Mint16unsigned => v = Val.zero_ext 16 v
  | Mfloat32 => v = Val.singleoffloat v
  | _ => True
  end.

Axiom load_int8_signed_unsigned:
  forall m b ofs,
  load Mint8signed m b ofs = option_map (Val.sign_ext 8) (load Mint8unsigned m b ofs).

Axiom load_int16_signed_unsigned:
  forall m b ofs,
  load Mint16signed m b ofs = option_map (Val.sign_ext 16) (load Mint16unsigned m b ofs).


(** ** Properties of [loadbytes]. *)

(** If [loadbytes] succeeds, the corresponding [load] succeeds and
  returns a [Vint] or [Vfloat] value that is determined by the
  bytes read by [loadbytes]. *)
Axiom loadbytes_load:
  forall chunk m b ofs bytes,
  loadbytes m b ofs (size_chunk chunk) = Some bytes ->
  (align_chunk chunk | ofs) ->
  load chunk m b ofs =
    Some(match type_of_chunk chunk with
         | Tint => Vint(decode_int chunk bytes)
         | Tfloat => Vfloat(decode_float chunk bytes)
         end).

(** Conversely, if [load] returns an int or a float, the corresponding
  [loadbytes] succeeds and returns a list of bytes which decodes into the
  result of [load]. *)
Axiom load_int_loadbytes:
  forall chunk m b ofs n,
  load chunk m b ofs = Some(Vint n) ->
  type_of_chunk chunk = Tint /\
  exists bytes, loadbytes m b ofs (size_chunk chunk) = Some bytes
             /\ n = decode_int chunk bytes.

Axiom load_float_loadbytes:
  forall chunk m b ofs f,
  load chunk m b ofs = Some(Vfloat f) ->
  type_of_chunk chunk = Tfloat /\
  exists bytes, loadbytes m b ofs (size_chunk chunk) = Some bytes
             /\ f = decode_float chunk bytes.


(** [loadbytes] returns a list of length [n] (the number of bytes read). *)
Axiom loadbytes_length:
  forall m b ofs n bytes,
  loadbytes m b ofs n = Some bytes ->
  length bytes = nat_of_Z n.

(** Composing or decomposing [loadbytes] operations at adjacent addresses. *)
Axiom loadbytes_concat:
  forall m b ofs n1 n2 bytes1 bytes2,
  loadbytes m b ofs n1 = Some bytes1 ->
  loadbytes m b (ofs + n1) n2 = Some bytes2 ->
  n1 >= 0 -> n2 >= 0 ->
  loadbytes m b ofs (n1 + n2) = Some(bytes1 ++ bytes2).
Axiom loadbytes_split:
  forall m b ofs n1 n2 bytes,
  loadbytes m b ofs (n1 + n2) = Some bytes ->
  n1 >= 0 -> n2 >= 0 ->
  exists bytes1, exists bytes2,
     loadbytes m b ofs n1 = Some bytes1 
  /\ loadbytes m b (ofs + n1) n2 = Some bytes2
  /\ bytes = bytes1 ++ bytes2.

(** ** Properties of [store]. *)

(** [store] preserves block validity, permissions, access validity, and bounds.
  Moreover, a [store] succeeds if and only if the corresponding access
  is valid for writing. *)

Axiom nextblock_store:
  forall chunk m1 b ofs v m2, store chunk m1 b ofs v = Some m2 ->
  nextblock m2 = nextblock m1.
Axiom store_valid_block_1:
  forall chunk m1 b ofs v m2, store chunk m1 b ofs v = Some m2 ->
  forall b', valid_block m1 b' -> valid_block m2 b'.
Axiom store_valid_block_2:
  forall chunk m1 b ofs v m2, store chunk m1 b ofs v = Some m2 ->
  forall b', valid_block m2 b' -> valid_block m1 b'.

Axiom perm_store_1:
  forall chunk m1 b ofs v m2, store chunk m1 b ofs v = Some m2 ->
  forall b' ofs' p, perm m1 b' ofs' p -> perm m2 b' ofs' p.
Axiom perm_store_2:
  forall chunk m1 b ofs v m2, store chunk m1 b ofs v = Some m2 ->
  forall b' ofs' p, perm m2 b' ofs' p -> perm m1 b' ofs' p.

Axiom valid_access_store:
  forall m1 chunk b ofs v,
  valid_access m1 chunk b ofs Writable ->
  { m2: mem | store chunk m1 b ofs v = Some m2 }.
Axiom store_valid_access_1:
  forall chunk m1 b ofs v m2, store chunk m1 b ofs v = Some m2 ->
  forall chunk' b' ofs' p,
  valid_access m1 chunk' b' ofs' p -> valid_access m2 chunk' b' ofs' p.
Axiom store_valid_access_2:
  forall chunk m1 b ofs v m2, store chunk m1 b ofs v = Some m2 ->
  forall chunk' b' ofs' p,
  valid_access m2 chunk' b' ofs' p -> valid_access m1 chunk' b' ofs' p.
Axiom store_valid_access_3:
  forall chunk m1 b ofs v m2, store chunk m1 b ofs v = Some m2 ->
  valid_access m1 chunk b ofs Writable.

Axiom bounds_store:
  forall chunk m1 b ofs v m2, store chunk m1 b ofs v = Some m2 ->
  forall b', bounds m2 b' = bounds m1 b'.

(** Load-store properties. *)

Axiom load_store_similar:
  forall chunk m1 b ofs v m2, store chunk m1 b ofs v = Some m2 ->
  forall chunk',
  size_chunk chunk' = size_chunk chunk ->
  exists v', load chunk' m2 b ofs = Some v' /\ decode_encode_val v chunk chunk' v'.

Axiom load_store_same:
  forall chunk m1 b ofs v m2, store chunk m1 b ofs v = Some m2 ->
  Val.has_type v (type_of_chunk chunk) ->
  load chunk m2 b ofs = Some (Val.load_result chunk v).

Axiom load_store_other:
  forall chunk m1 b ofs v m2, store chunk m1 b ofs v = Some m2 ->
  forall chunk' b' ofs',
  b' <> b
  \/ ofs' + size_chunk chunk' <= ofs
  \/ ofs + size_chunk chunk <= ofs' ->
  load chunk' m2 b' ofs' = load chunk' m1 b' ofs'.

(** Integrity of pointer values. *)

Axiom load_store_pointer_overlap:
  forall chunk m1 b ofs v_b v_o m2 chunk' ofs' v,
  store chunk m1 b ofs (Vptr v_b v_o) = Some m2 ->
  load chunk' m2 b ofs' = Some v ->
  ofs' <> ofs ->
  ofs' + size_chunk chunk' > ofs ->
  ofs + size_chunk chunk > ofs' ->
  v = Vundef.
Axiom load_store_pointer_mismatch:
  forall chunk m1 b ofs v_b v_o m2 chunk' v,
  store chunk m1 b ofs (Vptr v_b v_o) = Some m2 ->
  load chunk' m2 b ofs = Some v ->
  chunk <> Mint32 \/ chunk' <> Mint32 ->
  v = Vundef.
Axiom load_pointer_store:
  forall chunk m1 b ofs v m2, store chunk m1 b ofs v = Some m2 ->
  forall chunk' b' ofs' v_b v_o,
  load chunk' m2 b' ofs' = Some(Vptr v_b v_o) ->
  (chunk = Mint32 /\ v = Vptr v_b v_o /\ chunk' = Mint32 /\ b' = b /\ ofs' = ofs)
  \/ (b' <> b \/ ofs' + size_chunk chunk' <= ofs \/ ofs + size_chunk chunk <= ofs').

(** Load-store properties for [loadbytes]. *)

Axiom loadbytes_store_same:
  forall chunk m1 b ofs v m2, store chunk m1 b ofs v = Some m2 ->
  loadbytes m2 b ofs (size_chunk chunk) =
  match v with
  | Vundef => None
  | Vint n => Some(encode_int chunk n)
  | Vfloat n => Some(encode_float chunk n)
  | Vptr _ _ => None
  end.
Axiom loadbytes_store_other:
  forall chunk m1 b ofs v m2, store chunk m1 b ofs v = Some m2 ->
  forall b' ofs' n,
  b' <> b \/ n <= 0 \/ ofs' + n <= ofs \/ ofs + size_chunk chunk <= ofs' ->
  loadbytes m2 b' ofs' n = loadbytes m1 b' ofs' n.

(** [store] is insensitive to the signedness or the high bits of
  small integer quantities. *)

Axiom store_signed_unsigned_8:
  forall m b ofs v,
  store Mint8signed m b ofs v = store Mint8unsigned m b ofs v.
Axiom store_signed_unsigned_16:
  forall m b ofs v,
  store Mint16signed m b ofs v = store Mint16unsigned m b ofs v.
Axiom store_int8_zero_ext:
  forall m b ofs n,
  store Mint8unsigned m b ofs (Vint (Int.zero_ext 8 n)) =
  store Mint8unsigned m b ofs (Vint n).
Axiom store_int8_sign_ext:
  forall m b ofs n,
  store Mint8signed m b ofs (Vint (Int.sign_ext 8 n)) =
  store Mint8signed m b ofs (Vint n).
Axiom store_int16_zero_ext:
  forall m b ofs n,
  store Mint16unsigned m b ofs (Vint (Int.zero_ext 16 n)) =
  store Mint16unsigned m b ofs (Vint n).
Axiom store_int16_sign_ext:
  forall m b ofs n,
  store Mint16signed m b ofs (Vint (Int.sign_ext 16 n)) =
  store Mint16signed m b ofs (Vint n).
Axiom store_float32_truncate:
  forall m b ofs n,
  store Mfloat32 m b ofs (Vfloat (Float.singleoffloat n)) =
  store Mfloat32 m b ofs (Vfloat n).

(** ** Properties of [alloc]. *)

(** The identifier of the freshly allocated block is the next block
  of the initial memory state. *)

Axiom alloc_result:
  forall m1 lo hi m2 b, alloc m1 lo hi = (m2, b) ->
  b = nextblock m1.

(** Effect of [alloc] on block validity. *)

Axiom nextblock_alloc:
  forall m1 lo hi m2 b, alloc m1 lo hi = (m2, b) ->
  nextblock m2 = Zsucc (nextblock m1).

Axiom valid_block_alloc:
  forall m1 lo hi m2 b, alloc m1 lo hi = (m2, b) ->
  forall b', valid_block m1 b' -> valid_block m2 b'.
Axiom fresh_block_alloc:
  forall m1 lo hi m2 b, alloc m1 lo hi = (m2, b) ->
  ~(valid_block m1 b).
Axiom valid_new_block:
  forall m1 lo hi m2 b, alloc m1 lo hi = (m2, b) ->
  valid_block m2 b.
Axiom valid_block_alloc_inv:
  forall m1 lo hi m2 b, alloc m1 lo hi = (m2, b) ->
  forall b', valid_block m2 b' -> b' = b \/ valid_block m1 b'.

(** Effect of [alloc] on permissions. *)

Axiom perm_alloc_1:
  forall m1 lo hi m2 b, alloc m1 lo hi = (m2, b) ->
  forall b' ofs p, perm m1 b' ofs p -> perm m2 b' ofs p.
Axiom perm_alloc_2:
  forall m1 lo hi m2 b, alloc m1 lo hi = (m2, b) ->
  forall ofs, lo <= ofs < hi -> perm m2 b ofs Freeable.
Axiom perm_alloc_3:
  forall m1 lo hi m2 b, alloc m1 lo hi = (m2, b) ->
  forall ofs p, ofs < lo \/ hi <= ofs -> ~perm m2 b ofs p.
Axiom perm_alloc_inv:
  forall m1 lo hi m2 b, alloc m1 lo hi = (m2, b) ->
  forall b' ofs p, 
  perm m2 b' ofs p ->
  if zeq b' b then lo <= ofs < hi else perm m1 b' ofs p.

(** Effect of [alloc] on access validity. *)

Axiom valid_access_alloc_other:
  forall m1 lo hi m2 b, alloc m1 lo hi = (m2, b) ->
  forall chunk b' ofs p,
  valid_access m1 chunk b' ofs p ->
  valid_access m2 chunk b' ofs p.
Axiom valid_access_alloc_same:
  forall m1 lo hi m2 b, alloc m1 lo hi = (m2, b) ->
  forall chunk ofs,
  lo <= ofs -> ofs + size_chunk chunk <= hi -> (align_chunk chunk | ofs) ->
  valid_access m2 chunk b ofs Freeable.
Axiom valid_access_alloc_inv:
  forall m1 lo hi m2 b, alloc m1 lo hi = (m2, b) ->
  forall chunk b' ofs p,
  valid_access m2 chunk b' ofs p ->
  if eq_block b' b
  then lo <= ofs /\ ofs + size_chunk chunk <= hi /\ (align_chunk chunk | ofs)
  else valid_access m1 chunk b' ofs p.

(** Effect of [alloc] on bounds. *)

Axiom bounds_alloc:
  forall m1 lo hi m2 b, alloc m1 lo hi = (m2, b) ->
  forall b', bounds m2 b' = if eq_block b' b then (lo, hi) else bounds m1 b'.

Axiom bounds_alloc_same:
  forall m1 lo hi m2 b, alloc m1 lo hi = (m2, b) ->
  bounds m2 b = (lo, hi).

Axiom bounds_alloc_other:
  forall m1 lo hi m2 b, alloc m1 lo hi = (m2, b) ->
  forall b', b' <> b -> bounds m2 b' = bounds m1 b'.

(** Load-alloc properties. *)

Axiom load_alloc_unchanged:
  forall m1 lo hi m2 b, alloc m1 lo hi = (m2, b) ->
  forall chunk b' ofs,
  valid_block m1 b' ->
  load chunk m2 b' ofs = load chunk m1 b' ofs.
Axiom load_alloc_other:
  forall m1 lo hi m2 b, alloc m1 lo hi = (m2, b) ->
  forall chunk b' ofs v,
  load chunk m1 b' ofs = Some v ->
  load chunk m2 b' ofs = Some v.
Axiom load_alloc_same:
  forall m1 lo hi m2 b, alloc m1 lo hi = (m2, b) ->
  forall chunk ofs v,
  load chunk m2 b ofs = Some v ->
  v = Vundef.
Axiom load_alloc_same':
  forall m1 lo hi m2 b, alloc m1 lo hi = (m2, b) ->
  forall chunk ofs,
  lo <= ofs -> ofs + size_chunk chunk <= hi -> (align_chunk chunk | ofs) ->
  load chunk m2 b ofs = Some Vundef.

(** ** Properties of [free]. *)

(** [free] succeeds if and only if the correspond range of addresses
  has [Freeable] permission. *)

Axiom range_perm_free:
  forall m1 b lo hi,
  range_perm m1 b lo hi Freeable ->
  { m2: mem | free m1 b lo hi = Some m2 }.
Axiom free_range_perm:
  forall m1 bf lo hi m2, free m1 bf lo hi = Some m2 ->
  range_perm m1 bf lo hi Freeable.

(** Block validity is preserved by [free]. *)

Axiom nextblock_free:
  forall m1 bf lo hi m2, free m1 bf lo hi = Some m2 ->
  nextblock m2 = nextblock m1.
Axiom valid_block_free_1:
  forall m1 bf lo hi m2, free m1 bf lo hi = Some m2 ->
  forall b, valid_block m1 b -> valid_block m2 b.
Axiom valid_block_free_2:
  forall m1 bf lo hi m2, free m1 bf lo hi = Some m2 ->
  forall b, valid_block m2 b -> valid_block m1 b.

(** Effect of [free] on permissions. *)

Axiom perm_free_1:
  forall m1 bf lo hi m2, free m1 bf lo hi = Some m2 ->
  forall b ofs p,
  b <> bf \/ ofs < lo \/ hi <= ofs ->
  perm m1 b ofs p ->
  perm m2 b ofs p.
Axiom perm_free_2:
  forall m1 bf lo hi m2, free m1 bf lo hi = Some m2 ->
  forall ofs p, lo <= ofs < hi -> ~ perm m2 bf ofs p.
Axiom perm_free_3:
  forall m1 bf lo hi m2, free m1 bf lo hi = Some m2 ->
  forall b ofs p,
  perm m2 b ofs p -> perm m1 b ofs p.

(** Effect of [free] on access validity. *)

Axiom valid_access_free_1:
  forall m1 bf lo hi m2, free m1 bf lo hi = Some m2 ->
  forall chunk b ofs p,
  valid_access m1 chunk b ofs p -> 
  b <> bf \/ lo >= hi \/ ofs + size_chunk chunk <= lo \/ hi <= ofs ->
  valid_access m2 chunk b ofs p.
Axiom valid_access_free_2:
  forall m1 bf lo hi m2, free m1 bf lo hi = Some m2 ->
  forall chunk ofs p,
  lo < hi -> ofs + size_chunk chunk > lo -> ofs < hi ->
  ~(valid_access m2 chunk bf ofs p).
Axiom valid_access_free_inv_1:
  forall m1 bf lo hi m2, free m1 bf lo hi = Some m2 ->
  forall chunk b ofs p,
  valid_access m2 chunk b ofs p ->
  valid_access m1 chunk b ofs p.
Axiom valid_access_free_inv_2:
  forall m1 bf lo hi m2, free m1 bf lo hi = Some m2 ->
  forall chunk ofs p,
  valid_access m2 chunk bf ofs p ->
  lo >= hi \/ ofs + size_chunk chunk <= lo \/ hi <= ofs.

(** [free] preserves bounds. *)

Axiom bounds_free:
  forall m1 bf lo hi m2, free m1 bf lo hi = Some m2 ->
  forall b, bounds m2 b = bounds m1 b.

(** Load-free properties *)

Axiom load_free:
  forall m1 bf lo hi m2, free m1 bf lo hi = Some m2 ->
  forall chunk b ofs,
  b <> bf \/ lo >= hi \/ ofs + size_chunk chunk <= lo \/ hi <= ofs ->
  load chunk m2 b ofs = load chunk m1 b ofs.

(** * Relating two memory states. *)

(** ** Memory extensions *)

(**  A store [m2] extends a store [m1] if [m2] can be obtained from [m1]
  by relaxing the permissions of [m1] (for instance, allocating larger
  blocks) and replacing some of the [Vundef] values stored in [m1] by
  more defined values stored in [m2] at the same addresses. *)

Parameter extends: mem -> mem -> Prop.

Axiom extends_refl:
  forall m, extends m m.

Axiom load_extends:
  forall chunk m1 m2 b ofs v1,
  extends m1 m2 ->
  load chunk m1 b ofs = Some v1 ->
  exists v2, load chunk m2 b ofs = Some v2 /\ Val.lessdef v1 v2.

Axiom loadv_extends:
  forall chunk m1 m2 addr1 addr2 v1,
  extends m1 m2 ->
  loadv chunk m1 addr1 = Some v1 ->
  Val.lessdef addr1 addr2 ->
  exists v2, loadv chunk m2 addr2 = Some v2 /\ Val.lessdef v1 v2.

Axiom store_within_extends:
  forall chunk m1 m2 b ofs v1 m1' v2,
  extends m1 m2 ->
  store chunk m1 b ofs v1 = Some m1' ->
  Val.lessdef v1 v2 ->
  exists m2',
     store chunk m2 b ofs v2 = Some m2'
  /\ extends m1' m2'.

Axiom store_outside_extends:
  forall chunk m1 m2 b ofs v m2',
  extends m1 m2 ->
  store chunk m2 b ofs v = Some m2' ->
  ofs + size_chunk chunk <= low_bound m1 b \/ high_bound m1 b <= ofs ->
  extends m1 m2'.

Axiom storev_extends:
  forall chunk m1 m2 addr1 v1 m1' addr2 v2,
  extends m1 m2 ->
  storev chunk m1 addr1 v1 = Some m1' ->
  Val.lessdef addr1 addr2 ->
  Val.lessdef v1 v2 ->
  exists m2',
     storev chunk m2 addr2 v2 = Some m2'
  /\ extends m1' m2'.

Axiom alloc_extends:
  forall m1 m2 lo1 hi1 b m1' lo2 hi2,
  extends m1 m2 ->
  alloc m1 lo1 hi1 = (m1', b) ->
  lo2 <= lo1 -> hi1 <= hi2 ->
  exists m2',
     alloc m2 lo2 hi2 = (m2', b)
  /\ extends m1' m2'.

Axiom free_left_extends:
  forall m1 m2 b lo hi m1',
  extends m1 m2 ->
  free m1 b lo hi = Some m1' ->
  extends m1' m2.

Axiom free_right_extends:
  forall m1 m2 b lo hi m2',
  extends m1 m2 ->
  free m2 b lo hi = Some m2' ->
  (forall ofs p, lo <= ofs < hi -> ~perm m1 b ofs p) ->
  extends m1 m2'.

Axiom free_parallel_extends:
  forall m1 m2 b lo hi m1',
  extends m1 m2 ->
  free m1 b lo hi = Some m1' ->
  exists m2',
     free m2 b lo hi = Some m2'
  /\ extends m1' m2'.

Axiom valid_block_extends:
  forall m1 m2 b,
  extends m1 m2 ->
  (valid_block m1 b <-> valid_block m2 b).
Axiom perm_extends:
  forall m1 m2 b ofs p,
  extends m1 m2 -> perm m1 b ofs p -> perm m2 b ofs p.
Axiom valid_access_extends:
  forall m1 m2 chunk b ofs p,
  extends m1 m2 -> valid_access m1 chunk b ofs p -> valid_access m2 chunk b ofs p.

(** * Memory injections *)

(** A memory injection [f] is a function from addresses to either [None]
  or [Some] of an address and an offset.  It defines a correspondence
  between the blocks of two memory states [m1] and [m2]:
- if [f b = None], the block [b] of [m1] has no equivalent in [m2];
- if [f b = Some(b', ofs)], the block [b] of [m2] corresponds to
  a sub-block at offset [ofs] of the block [b'] in [m2].

A memory injection [f] defines a relation [val_inject] between values
that is the identity for integer and float values, and relocates pointer 
values as prescribed by [f].  (See module [Values].)

Likewise, a memory injection [f] defines a relation between memory states 
that we now axiomatize. *)

Parameter inject: meminj -> mem -> mem -> Prop.

Axiom valid_block_inject_1:
  forall f m1 m2 b1 b2 delta,
  f b1 = Some(b2, delta) ->
  inject f m1 m2 ->
  valid_block m1 b1.

Axiom valid_block_inject_2:
  forall f m1 m2 b1 b2 delta,
  f b1 = Some(b2, delta) ->
  inject f m1 m2 ->
  valid_block m2 b2.

Axiom perm_inject:
  forall f m1 m2 b1 b2 delta ofs p,
  f b1 = Some(b2, delta) ->
  inject f m1 m2 ->
  perm m1 b1 ofs p -> perm m2 b2 (ofs + delta) p.

Axiom valid_access_inject:
  forall f m1 m2 chunk b1 ofs b2 delta p,
  f b1 = Some(b2, delta) ->
  inject f m1 m2 ->
  valid_access m1 chunk b1 ofs p ->
  valid_access m2 chunk b2 (ofs + delta) p.

Axiom valid_pointer_inject:
  forall f m1 m2 b1 ofs b2 delta,
  f b1 = Some(b2, delta) ->
  inject f m1 m2 ->
  valid_pointer m1 b1 ofs = true ->
  valid_pointer m2 b2 (ofs + delta) = true.

Axiom address_inject:
  forall f m1 m2 b1 ofs1 b2 delta,
  inject f m1 m2 ->
  perm m1 b1 (Int.signed ofs1) Nonempty ->
  f b1 = Some (b2, delta) ->
  Int.signed (Int.add ofs1 (Int.repr delta)) = Int.signed ofs1 + delta.

Axiom valid_pointer_inject_no_overflow:
  forall f m1 m2 b ofs b' x,
  inject f m1 m2 ->
  valid_pointer m1 b (Int.signed ofs) = true ->
  f b = Some(b', x) ->
  Int.min_signed <= Int.signed ofs + Int.signed (Int.repr x) <= Int.max_signed.

Axiom valid_pointer_inject_val:
  forall f m1 m2 b ofs b' ofs',
  inject f m1 m2 ->
  valid_pointer m1 b (Int.signed ofs) = true ->
  val_inject f (Vptr b ofs) (Vptr b' ofs') ->
  valid_pointer m2 b' (Int.signed ofs') = true.

Axiom inject_no_overlap:
  forall f m1 m2 b1 b2 b1' b2' delta1 delta2 ofs1 ofs2,
  inject f m1 m2 ->
  b1 <> b2 ->
  f b1 = Some (b1', delta1) ->
  f b2 = Some (b2', delta2) ->
  perm m1 b1 ofs1 Nonempty ->
  perm m1 b2 ofs2 Nonempty ->
  b1' <> b2' \/ ofs1 + delta1 <> ofs2 + delta2.

Axiom different_pointers_inject:
  forall f m m' b1 ofs1 b2 ofs2 b1' delta1 b2' delta2,
  inject f m m' ->
  b1 <> b2 ->
  valid_pointer m b1 (Int.signed ofs1) = true ->
  valid_pointer m b2 (Int.signed ofs2) = true ->
  f b1 = Some (b1', delta1) ->
  f b2 = Some (b2', delta2) ->
  b1' <> b2' \/
  Int.signed (Int.add ofs1 (Int.repr delta1)) <>
  Int.signed (Int.add ofs2 (Int.repr delta2)).

Axiom load_inject:
  forall f m1 m2 chunk b1 ofs b2 delta v1,
  inject f m1 m2 ->
  load chunk m1 b1 ofs = Some v1 ->
  f b1 = Some (b2, delta) ->
  exists v2, load chunk m2 b2 (ofs + delta) = Some v2 /\ val_inject f v1 v2.

Axiom loadv_inject:
  forall f m1 m2 chunk a1 a2 v1,
  inject f m1 m2 ->
  loadv chunk m1 a1 = Some v1 ->
  val_inject f a1 a2 ->
  exists v2, loadv chunk m2 a2 = Some v2 /\ val_inject f v1 v2.

Axiom store_mapped_inject:
  forall f chunk m1 b1 ofs v1 n1 m2 b2 delta v2,
  inject f m1 m2 ->
  store chunk m1 b1 ofs v1 = Some n1 ->
  f b1 = Some (b2, delta) ->
  val_inject f v1 v2 ->
  exists n2,
    store chunk m2 b2 (ofs + delta) v2 = Some n2
    /\ inject f n1 n2.

Axiom store_unmapped_inject:
  forall f chunk m1 b1 ofs v1 n1 m2,
  inject f m1 m2 ->
  store chunk m1 b1 ofs v1 = Some n1 ->
  f b1 = None ->
  inject f n1 m2.

Axiom store_outside_inject:
  forall f m1 m2 chunk b ofs v m2',
  inject f m1 m2 ->
  (forall b' delta,
    f b' = Some(b, delta) ->
    high_bound m1 b' + delta <= ofs
    \/ ofs + size_chunk chunk <= low_bound m1 b' + delta) ->
  store chunk m2 b ofs v = Some m2' ->
  inject f m1 m2'.

Axiom storev_mapped_inject:
  forall f chunk m1 a1 v1 n1 m2 a2 v2,
  inject f m1 m2 ->
  storev chunk m1 a1 v1 = Some n1 ->
  val_inject f a1 a2 ->
  val_inject f v1 v2 ->
  exists n2,
    storev chunk m2 a2 v2 = Some n2 /\ inject f n1 n2.

Axiom alloc_right_inject:
  forall f m1 m2 lo hi b2 m2',
  inject f m1 m2 ->
  alloc m2 lo hi = (m2', b2) ->
  inject f m1 m2'.

Axiom alloc_left_unmapped_inject:
  forall f m1 m2 lo hi m1' b1,
  inject f m1 m2 ->
  alloc m1 lo hi = (m1', b1) ->
  exists f',
     inject f' m1' m2
  /\ inject_incr f f'
  /\ f' b1 = None
  /\ (forall b, b <> b1 -> f' b = f b).

Definition inj_offset_aligned (delta: Z) (size: Z) : Prop :=
  forall chunk, size_chunk chunk <= size -> (align_chunk chunk | delta).

Axiom alloc_left_mapped_inject:
  forall f m1 m2 lo hi m1' b1 b2 delta,
  inject f m1 m2 ->
  alloc m1 lo hi = (m1', b1) ->
  valid_block m2 b2 ->
  Int.min_signed <= delta <= Int.max_signed ->
  delta = 0 \/ Int.min_signed <= low_bound m2 b2 /\ high_bound m2 b2 <= Int.max_signed ->
  (forall ofs p, lo <= ofs < hi -> perm m2 b2 (ofs + delta) p) ->
  inj_offset_aligned delta (hi-lo) ->
  (forall b ofs, 
   f b = Some (b2, ofs) -> 
   high_bound m1 b + ofs <= lo + delta \/
   hi + delta <= low_bound m1 b + ofs) ->
  exists f',
     inject f' m1' m2
  /\ inject_incr f f'
  /\ f' b1 = Some(b2, delta)
  /\ (forall b, b <> b1 -> f' b = f b).

Axiom alloc_parallel_inject:
  forall f m1 m2 lo1 hi1 m1' b1 lo2 hi2,
  inject f m1 m2 ->
  alloc m1 lo1 hi1 = (m1', b1) ->
  lo2 <= lo1 -> hi1 <= hi2 ->
  exists f', exists m2', exists b2,
  alloc m2 lo2 hi2 = (m2', b2)
  /\ inject f' m1' m2'
  /\ inject_incr f f'
  /\ f' b1 = Some(b2, 0)
  /\ (forall b, b <> b1 -> f' b = f b).

Axiom free_inject:
  forall f m1 l m1' m2 b lo hi m2',
  inject f m1 m2 ->
  free_list m1 l = Some m1' ->
  free m2 b lo hi = Some m2' ->
  (forall b1 delta ofs p,
    f b1 = Some(b, delta) -> perm m1 b1 ofs p -> lo <= ofs + delta < hi ->
    exists lo1, exists hi1, In (b1, lo1, hi1) l /\ lo1 <= ofs < hi1) ->
  inject f m1' m2'.

(** Memory states that inject into themselves. *)

Definition flat_inj (thr: block) : meminj :=
  fun (b: block) => if zlt b thr then Some(b, 0) else None.

Parameter inject_neutral: forall (thr: block) (m: mem), Prop.

Axiom neutral_inject:
  forall m, inject_neutral (nextblock m) m ->
  inject (flat_inj (nextblock m)) m m.

Axiom empty_inject_neutral:
  forall thr, inject_neutral thr empty.

Axiom alloc_inject_neutral:
  forall thr m lo hi b m',
  alloc m lo hi = (m', b) ->
  inject_neutral thr m ->
  nextblock m < thr ->
  inject_neutral thr m'.

Axiom store_inject_neutral:
  forall chunk m b ofs v m' thr,
  store chunk m b ofs v = Some m' ->
  inject_neutral thr m ->
  b < thr ->
  val_inject (flat_inj thr) v v ->
  inject_neutral thr m'.

End MEM.