summaryrefslogtreecommitdiff
path: root/common/Globalenvs.v
blob: 1ce7bf5ee7a04e84d3793953910fe96be2b74cef (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
(* *********************************************************************)
(*                                                                     *)
(*              The Compcert verified compiler                         *)
(*                                                                     *)
(*          Xavier Leroy, INRIA Paris-Rocquencourt                     *)
(*                                                                     *)
(*  Copyright Institut National de Recherche en Informatique et en     *)
(*  Automatique.  All rights reserved.  This file is distributed       *)
(*  under the terms of the GNU General Public License as published by  *)
(*  the Free Software Foundation, either version 2 of the License, or  *)
(*  (at your option) any later version.  This file is also distributed *)
(*  under the terms of the INRIA Non-Commercial License Agreement.     *)
(*                                                                     *)
(* *********************************************************************)

(** Global environments are a component of the dynamic semantics of 
  all languages involved in the compiler.  A global environment
  maps symbol names (names of functions and of global variables)
  to the corresponding memory addresses.  It also maps memory addresses
  of functions to the corresponding function descriptions.  

  Global environments, along with the initial memory state at the beginning
  of program execution, are built from the program of interest, as follows:
- A distinct memory address is assigned to each function of the program.
  These function addresses use negative numbers to distinguish them from
  addresses of memory blocks.  The associations of function name to function
  address and function address to function description are recorded in
  the global environment.
- For each global variable, a memory block is allocated and associated to
  the name of the variable.

  These operations reflect (at a high level of abstraction) what takes
  place during program linking and program loading in a real operating
  system. *)

Require Import Coqlib.
Require Import Errors.
Require Import Maps.
Require Import AST.
Require Import Integers.
Require Import Values.
Require Import Mem.

Set Implicit Arguments.

Module Type GENV.

(** ** Types and operations *)

  Variable t: Type -> Type.
   (** The type of global environments.  The parameter [F] is the type
       of function descriptions. *)

  Variable globalenv: forall (F V: Type), program F V -> t F.
   (** Return the global environment for the given program. *)

  Variable init_mem: forall (F V: Type), program F V -> mem.
   (** Return the initial memory state for the given program. *)

  Variable find_funct_ptr: forall (F: Type), t F -> block -> option F.
   (** Return the function description associated with the given address,
       if any. *)

  Variable find_funct: forall (F: Type), t F -> val -> option F.
   (** Same as [find_funct_ptr] but the function address is given as
       a value, which must be a pointer with offset 0. *)

  Variable find_symbol: forall (F: Type), t F -> ident -> option block.
   (** Return the address of the given global symbol, if any. *)

(** ** Properties of the operations. *)

  Hypothesis find_funct_inv:
    forall (F: Type) (ge: t F) (v: val) (f: F),
    find_funct ge v = Some f -> exists b, v = Vptr b Int.zero.
  Hypothesis find_funct_find_funct_ptr:
    forall (F: Type) (ge: t F) (b: block),
    find_funct ge (Vptr b Int.zero) = find_funct_ptr ge b.    

  Hypothesis find_symbol_exists:
    forall (F V: Type) (p: program F V)
           (id: ident) (init: list init_data) (v: V),
    In (id, init, v) (prog_vars p) ->
    exists b, find_symbol (globalenv p) id = Some b.
  Hypothesis find_funct_ptr_exists:
    forall (F V: Type) (p: program F V) (id: ident) (f: F),
    list_norepet (prog_funct_names p) ->
    list_disjoint (prog_funct_names p) (prog_var_names p) ->
    In (id, f) (prog_funct p) ->
    exists b, find_symbol (globalenv p) id = Some b
           /\ find_funct_ptr (globalenv p) b = Some f.

  Hypothesis find_funct_ptr_inversion:
    forall (F V: Type) (P: F -> Prop) (p: program F V) (b: block) (f: F),
    find_funct_ptr (globalenv p) b = Some f ->
    exists id, In (id, f) (prog_funct p).
  Hypothesis find_funct_inversion:
    forall (F V: Type) (P: F -> Prop) (p: program F V) (v: val) (f: F),
    find_funct (globalenv p) v = Some f ->
    exists id, In (id, f) (prog_funct p).
  Hypothesis find_funct_ptr_symbol_inversion:
    forall (F V: Type) (p: program F V) (id: ident) (b: block) (f: F),
    find_symbol (globalenv p) id = Some b ->
    find_funct_ptr (globalenv p) b = Some f ->
    In (id, f) p.(prog_funct).

  Hypothesis find_funct_ptr_prop:
    forall (F V: Type) (P: F -> Prop) (p: program F V) (b: block) (f: F),
    (forall id f, In (id, f) (prog_funct p) -> P f) ->
    find_funct_ptr (globalenv p) b = Some f ->
    P f.
  Hypothesis find_funct_prop:
    forall (F V: Type) (P: F -> Prop) (p: program F V) (v: val) (f: F),
    (forall id f, In (id, f) (prog_funct p) -> P f) ->
    find_funct (globalenv p) v = Some f ->
    P f.

  Hypothesis initmem_nullptr:
    forall (F V: Type) (p: program F V),
    let m := init_mem p in
    valid_block m nullptr /\
    m.(blocks) nullptr = empty_block 0 0.
  Hypothesis initmem_inject_neutral:
    forall (F V: Type) (p: program F V),
    mem_inject_neutral (init_mem p).
  Hypothesis find_funct_ptr_negative:
    forall (F V: Type) (p: program F V) (b: block) (f: F),
    find_funct_ptr (globalenv p) b = Some f -> b < 0.
  Hypothesis find_symbol_not_fresh:
    forall (F V: Type) (p: program F V) (id: ident) (b: block),
    find_symbol (globalenv p) id = Some b -> b < nextblock (init_mem p).
  Hypothesis find_symbol_not_nullptr:
    forall (F V: Type) (p: program F V) (id: ident) (b: block),
    find_symbol (globalenv p) id = Some b -> b <> nullptr.
  Hypothesis global_addresses_distinct:
    forall (F V: Type) (p: program F V) id1 id2 b1 b2,
    id1<>id2 ->
    find_symbol (globalenv p) id1 = Some b1 ->
    find_symbol (globalenv p) id2 = Some b2 ->
    b1<>b2.

(** Commutation properties between program transformations
  and operations over global environments. *)

  Hypothesis find_funct_ptr_transf:
    forall (A B V: Type) (transf: A -> B) (p: program A V),
    forall (b: block) (f: A),
    find_funct_ptr (globalenv p) b = Some f ->
    find_funct_ptr (globalenv (transform_program transf p)) b = Some (transf f).
  Hypothesis find_funct_transf:
    forall (A B V: Type) (transf: A -> B) (p: program A V),
    forall (v: val) (f: A),
    find_funct (globalenv p) v = Some f ->
    find_funct (globalenv (transform_program transf p)) v = Some (transf f).
  Hypothesis find_symbol_transf:
    forall (A B V: Type) (transf: A -> B) (p: program A V),
    forall (s: ident),
    find_symbol (globalenv (transform_program transf p)) s =
    find_symbol (globalenv p) s.
  Hypothesis init_mem_transf:
    forall (A B V: Type) (transf: A -> B) (p: program A V),
    init_mem (transform_program transf p) = init_mem p.
  Hypothesis find_funct_ptr_rev_transf:
    forall (A B V: Type) (transf: A -> B) (p: program A V),
    forall (b : block) (tf : B),
    find_funct_ptr (globalenv (transform_program transf p)) b = Some tf ->
    exists f : A, find_funct_ptr (globalenv p) b = Some f /\ transf f = tf.
  Hypothesis find_funct_rev_transf:
    forall (A B V: Type) (transf: A -> B) (p: program A V),
    forall (v : val) (tf : B),
    find_funct (globalenv (transform_program transf p)) v = Some tf ->
    exists f : A, find_funct (globalenv p) v = Some f /\ transf f = tf.

(** Commutation properties between partial program transformations
  and operations over global environments. *)

  Hypothesis find_funct_ptr_transf_partial:
    forall (A B V: Type) (transf: A -> res B) (p: program A V) (p': program B V),
    transform_partial_program transf p = OK p' ->
    forall (b: block) (f: A),
    find_funct_ptr (globalenv p) b = Some f ->
    exists f',
    find_funct_ptr (globalenv p') b = Some f' /\ transf f = OK f'.
  Hypothesis find_funct_transf_partial:
    forall (A B V: Type) (transf: A -> res B) (p: program A V) (p': program B V),
    transform_partial_program transf p = OK p' ->
    forall (v: val) (f: A),
    find_funct (globalenv p) v = Some f ->
    exists f',
    find_funct (globalenv p') v = Some f' /\ transf f = OK f'.
  Hypothesis find_symbol_transf_partial:
    forall (A B V: Type) (transf: A -> res B) (p: program A V) (p': program B V),
    transform_partial_program transf p = OK p' ->
    forall (s: ident),
    find_symbol (globalenv p') s = find_symbol (globalenv p) s.
  Hypothesis init_mem_transf_partial:
    forall (A B V: Type) (transf: A -> res B) (p: program A V) (p': program B V),
    transform_partial_program transf p = OK p' ->
    init_mem p' = init_mem p.
  Hypothesis find_funct_ptr_rev_transf_partial:
    forall (A B V: Type) (transf: A -> res B) (p: program A V) (p': program B V),
    transform_partial_program transf p = OK p' ->
    forall (b : block) (tf : B),
    find_funct_ptr (globalenv p') b = Some tf ->
    exists f : A,
      find_funct_ptr (globalenv p) b = Some f /\ transf f = OK tf.
  Hypothesis find_funct_rev_transf_partial:
    forall (A B V: Type) (transf: A -> res B) (p: program A V) (p': program B V),
    transform_partial_program transf p = OK p' ->
    forall (v : val) (tf : B),
    find_funct (globalenv p') v = Some tf ->
    exists f : A,
      find_funct (globalenv p) v = Some f /\ transf f = OK tf.

  Hypothesis find_funct_ptr_transf_partial2:
    forall (A B V W: Type) (transf_fun: A -> res B) (transf_var: V -> res W)
           (p: program A V) (p': program B W),
    transform_partial_program2 transf_fun transf_var p = OK p' ->
    forall (b: block) (f: A),
    find_funct_ptr (globalenv p) b = Some f ->
    exists f',
    find_funct_ptr (globalenv p') b = Some f' /\ transf_fun f = OK f'.
  Hypothesis find_funct_transf_partial2:
    forall (A B V W: Type) (transf_fun: A -> res B) (transf_var: V -> res W)
           (p: program A V) (p': program B W),
    transform_partial_program2 transf_fun transf_var p = OK p' ->
    forall (v: val) (f: A),
    find_funct (globalenv p) v = Some f ->
    exists f',
    find_funct (globalenv p') v = Some f' /\ transf_fun f = OK f'.
  Hypothesis find_symbol_transf_partial2:
    forall (A B V W: Type) (transf_fun: A -> res B) (transf_var: V -> res W)
           (p: program A V) (p': program B W),
    transform_partial_program2 transf_fun transf_var p = OK p' ->
    forall (s: ident),
    find_symbol (globalenv p') s = find_symbol (globalenv p) s.
  Hypothesis init_mem_transf_partial2:
    forall (A B V W: Type) (transf_fun: A -> res B) (transf_var: V -> res W)
           (p: program A V) (p': program B W),
    transform_partial_program2 transf_fun transf_var p = OK p' ->
    init_mem p' = init_mem p.
  Hypothesis find_funct_ptr_rev_transf_partial2:
    forall (A B V W: Type) (transf_fun: A -> res B) (transf_var: V -> res W)
           (p: program A V) (p': program B W),
    transform_partial_program2 transf_fun transf_var p = OK p' ->
    forall (b : block) (tf : B),
    find_funct_ptr (globalenv p') b = Some tf ->
    exists f : A,
      find_funct_ptr (globalenv p) b = Some f /\ transf_fun f = OK tf.
  Hypothesis find_funct_rev_transf_partial2:
    forall (A B V W: Type) (transf_fun: A -> res B) (transf_var: V -> res W)
           (p: program A V) (p': program B W),
    transform_partial_program2 transf_fun transf_var p = OK p' ->
    forall (v : val) (tf : B),
    find_funct (globalenv p') v = Some tf ->
    exists f : A,
      find_funct (globalenv p) v = Some f /\ transf_fun f = OK tf.

(** Commutation properties between matching between programs
  and operations over global environments. *)

  Hypothesis find_funct_ptr_match:
    forall (A B V W: Type) (match_fun: A -> B -> Prop)
           (match_var: V -> W -> Prop) (p: program A V) (p': program B W),
    match_program match_fun match_var p p' ->
    forall (b : block) (f : A),
    find_funct_ptr (globalenv p) b = Some f ->
    exists tf : B,
    find_funct_ptr (globalenv p') b = Some tf /\ match_fun f tf.
  Hypothesis find_funct_ptr_rev_match:
    forall (A B V W: Type) (match_fun: A -> B -> Prop)
           (match_var: V -> W -> Prop) (p: program A V) (p': program B W),
    match_program match_fun match_var p p' ->
    forall (b : block) (tf : B),
    find_funct_ptr (globalenv p') b = Some tf ->
    exists f : A,
    find_funct_ptr (globalenv p) b = Some f /\ match_fun f tf.
  Hypothesis find_funct_match:
    forall (A B V W: Type) (match_fun: A -> B -> Prop)
           (match_var: V -> W -> Prop) (p: program A V) (p': program B W),
    match_program match_fun match_var p p' ->
    forall (v : val) (f : A),
    find_funct (globalenv p) v = Some f ->
    exists tf : B, find_funct (globalenv p') v = Some tf /\ match_fun f tf.
  Hypothesis find_funct_rev_match:
    forall (A B V W: Type) (match_fun: A -> B -> Prop)
           (match_var: V -> W -> Prop) (p: program A V) (p': program B W),
    match_program match_fun match_var p p' ->
    forall (v : val) (tf : B),
    find_funct (globalenv p') v = Some tf ->
    exists f : A, find_funct (globalenv p) v = Some f /\ match_fun f tf.
  Hypothesis find_symbol_match:
    forall (A B V W: Type) (match_fun: A -> B -> Prop)
           (match_var: V -> W -> Prop) (p: program A V) (p': program B W),
    match_program match_fun match_var p p' ->
    forall (s : ident),
    find_symbol (globalenv p') s = find_symbol (globalenv p) s.
  Hypothesis init_mem_match:
    forall (A B V W: Type) (match_fun: A -> B -> Prop)
           (match_var: V -> W -> Prop) (p: program A V) (p': program B W),
    match_program match_fun match_var p p' ->
    init_mem p' = init_mem p.

End GENV.

(** The rest of this library is a straightforward implementation of
  the module signature above. *)

Module Genv: GENV.

Section GENV.

Variable F: Type.                    (* The type of functions *)
Variable V: Type.                    (* The type of information over variables *)

Record genv : Type := mkgenv {
  functions: ZMap.t (option F);     (* mapping function ptr -> function *)
  nextfunction: Z;
  symbols: PTree.t block                (* mapping symbol -> block *)
}.

Definition t := genv.

Definition add_funct (name_fun: (ident * F)) (g: genv) : genv :=
  let b := g.(nextfunction) in
  mkgenv (ZMap.set b (Some (snd name_fun)) g.(functions))
         (Zpred b)
         (PTree.set (fst name_fun) b g.(symbols)).

Definition add_symbol (name: ident) (b: block) (g: genv) : genv :=
  mkgenv g.(functions)
         g.(nextfunction)
         (PTree.set name b g.(symbols)).

Definition find_funct_ptr (g: genv) (b: block) : option F :=
  ZMap.get b g.(functions).

Definition find_funct (g: genv) (v: val) : option F :=
  match v with
  | Vptr b ofs =>
      if Int.eq ofs Int.zero then find_funct_ptr g b else None
  | _ =>
      None
  end.

Definition find_symbol (g: genv) (symb: ident) : option block :=
  PTree.get symb g.(symbols).

Lemma find_funct_inv:
  forall (ge: t) (v: val) (f: F),
  find_funct ge v = Some f -> exists b, v = Vptr b Int.zero.
Proof.
  intros until f. unfold find_funct. destruct v; try (intros; discriminate).
  generalize (Int.eq_spec i Int.zero). case (Int.eq i Int.zero); intros.
  exists b. congruence.
  discriminate.
Qed.

Lemma find_funct_find_funct_ptr:
  forall (ge: t) (b: block),
  find_funct ge (Vptr b Int.zero) = find_funct_ptr ge b. 
Proof.
  intros. simpl. 
  generalize (Int.eq_spec Int.zero Int.zero).
  case (Int.eq Int.zero Int.zero); intros.
  auto. tauto.
Qed.

(* Construct environment and initial memory store *)

Definition empty : genv :=
  mkgenv (ZMap.init None) (-1) (PTree.empty block).

Definition add_functs (init: genv) (fns: list (ident * F)) : genv :=
  List.fold_right add_funct init fns.

Definition add_globals 
       (init: genv * mem) (vars: list (ident * list init_data * V))
       : genv * mem :=
  List.fold_right
    (fun (id_init: ident * list init_data * V) (g_st: genv * mem) =>
       match id_init, g_st with
       | ((id, init), info), (g, st) =>
           let (st', b) := Mem.alloc_init_data st init in
           (add_symbol id b g, st')
       end)
    init vars.

Definition globalenv_initmem (p: program F V) : (genv * mem) :=
  add_globals
    (add_functs empty p.(prog_funct), Mem.empty)
    p.(prog_vars).

Definition globalenv (p: program F V) : genv :=
  fst (globalenv_initmem p).
Definition init_mem  (p: program F V) : mem :=
  snd (globalenv_initmem p).

Lemma functions_globalenv:
  forall (p: program F V),
  functions (globalenv p) = functions (add_functs empty p.(prog_funct)).
Proof.
  assert (forall init vars,
     functions (fst (add_globals init vars)) = functions (fst init)).
  induction vars; simpl.
  reflexivity.
  destruct a as [[id1 init1] info1]. destruct (add_globals init vars).
  simpl. exact IHvars. 

  unfold add_globals; simpl. 
  intros. unfold globalenv; unfold globalenv_initmem.
  rewrite H. reflexivity.
Qed.

Lemma initmem_nullptr:
  forall (p: program F V),
  let m := init_mem p in
  valid_block m nullptr /\
  m.(blocks) nullptr = mkblock 0 0 (fun y => Undef).
Proof.
  pose (P := fun m => valid_block m nullptr /\
        m.(blocks) nullptr = mkblock 0 0 (fun y => Undef)).
  assert (forall init, P (snd init) -> forall vars, P (snd (add_globals init vars))).
  induction vars; simpl; intros.
  auto.
  destruct a as [[id1 in1] inf1]. 
  destruct (add_globals init vars) as [g st]. 
  simpl in *. destruct IHvars. split.
  red; simpl. red in H0. omega.
  simpl. rewrite update_o. auto. unfold block. red in H0. omega. 

  intro. unfold init_mem, globalenv_initmem. apply H. 
  red; simpl. split. compute. auto. reflexivity.
Qed. 

Lemma initmem_inject_neutral:
  forall (p: program F V),
  mem_inject_neutral (init_mem p).
Proof.
  assert (forall g0 vars g1 m,
      add_globals (g0, Mem.empty) vars = (g1, m) ->
      mem_inject_neutral m).
  Opaque alloc_init_data.
  induction vars; simpl. 
  intros. inv H. red; intros. destruct (load_inv _ _ _ _ _ H).
  simpl in H1. rewrite Mem.getN_init in H1. 
  replace v with Vundef. auto. destruct chunk; simpl in H1; auto.
  destruct a as [[id1 init1] info1]. 
  caseEq (add_globals (g0, Mem.empty) vars). intros g1 m1 EQ.
  caseEq (alloc_init_data m1 init1). intros m2 b ALLOC.
  intros. inv H. 
  eapply Mem.alloc_init_data_neutral; eauto.
  intros. caseEq (globalenv_initmem p). intros g m EQ.
  unfold init_mem; rewrite EQ; simpl. 
  unfold globalenv_initmem in EQ. eauto.
Qed.      

Remark nextfunction_add_functs_neg:
  forall fns, nextfunction (add_functs empty fns) < 0.
Proof.
  induction fns; simpl; intros. omega. unfold Zpred. omega.
Qed.

Theorem find_funct_ptr_negative:
  forall (p: program F V) (b: block) (f: F),
  find_funct_ptr (globalenv p) b = Some f -> b < 0.
Proof.
  intros until f.
  assert (forall fns, ZMap.get b (functions (add_functs empty fns)) = Some f -> b < 0).
    induction fns; simpl.
    rewrite ZMap.gi. congruence.
    rewrite ZMap.gsspec. case (ZIndexed.eq b (nextfunction (add_functs empty fns))); intro.
    intro. rewrite e. apply nextfunction_add_functs_neg.
    auto. 
  unfold find_funct_ptr. rewrite functions_globalenv. 
  intros. eauto.
Qed.

Remark find_symbol_add_functs_negative:
  forall (fns: list (ident * F)) s b,
  (symbols (add_functs empty fns)) ! s = Some b -> b < 0.
Proof.
  induction fns; simpl; intros until b.
  rewrite PTree.gempty. congruence.
  rewrite PTree.gsspec. destruct a; simpl. case (peq s i); intro.
  intro EQ; inversion EQ. apply nextfunction_add_functs_neg.
  eauto.
Qed.

Remark find_symbol_add_symbols_not_fresh:
  forall fns vars g m s b,
  add_globals (add_functs empty fns, Mem.empty) vars = (g, m) ->
  (symbols g)!s = Some b ->
  b < nextblock m.
Proof.
  induction vars; simpl; intros until b.
  intros. inversion H. subst g m. simpl. 
  generalize (find_symbol_add_functs_negative fns s H0). omega.
  Transparent alloc_init_data.
  destruct a as [[id1 init1] info1]. 
  caseEq (add_globals (add_functs empty fns, Mem.empty) vars).
  intros g1 m1 ADG EQ. inversion EQ; subst g m; clear EQ.
  unfold add_symbol; simpl. rewrite PTree.gsspec. case (peq s id1); intro.
  intro EQ; inversion EQ. omega.
  intro. generalize (IHvars _ _ _ _ ADG H). omega.
Qed.

Theorem find_symbol_not_fresh:
  forall (p: program F V) (id: ident) (b: block),
  find_symbol (globalenv p) id = Some b -> b < nextblock (init_mem p).
Proof.
  intros until b. unfold find_symbol, globalenv, init_mem, globalenv_initmem; simpl.
  caseEq (add_globals (add_functs empty (prog_funct p), Mem.empty)
                      (prog_vars p)); intros g m EQ.
  simpl; intros. eapply find_symbol_add_symbols_not_fresh; eauto. 
Qed.

Lemma find_symbol_exists:
  forall (p: program F V)
         (id: ident) (init: list init_data) (v: V),
  In (id, init, v) (prog_vars p) ->
  exists b, find_symbol (globalenv p) id = Some b.
Proof.
  intros until v.
  assert (forall initm vl, In (id, init, v) vl ->
           exists b, PTree.get id (symbols (fst (add_globals initm vl))) = Some b).
  induction vl; simpl; intros.
  elim H.
  destruct a as [[id0 init0] v0]. 
  caseEq (add_globals initm vl). intros g1 m1 EQ. simpl. 
  rewrite PTree.gsspec. destruct (peq id id0). econstructor; eauto.
  elim H; intro. congruence. generalize (IHvl H0). rewrite EQ. auto. 
  intros. unfold globalenv, find_symbol, globalenv_initmem. auto.
Qed.

Remark find_symbol_above_nextfunction:
  forall (id: ident) (b: block) (fns: list (ident * F)),
  let g := add_functs empty fns in
  PTree.get id g.(symbols) = Some b ->
  b > g.(nextfunction).
Proof.
  induction fns; simpl.
  rewrite PTree.gempty. congruence.
  rewrite PTree.gsspec. case (peq id (fst a)); intro.
  intro EQ. inversion EQ. unfold Zpred. omega.
  intros. generalize (IHfns H). unfold Zpred; omega.
Qed.

Remark find_symbol_add_globals:
  forall (id: ident) (ge_m: t * mem) (vars: list (ident * list init_data * V)),
  ~In id (map (fun x: ident * list init_data * V => fst(fst x)) vars) ->
  find_symbol (fst (add_globals ge_m vars)) id =
  find_symbol (fst ge_m) id.
Proof.
  unfold find_symbol; induction vars; simpl; intros.
  auto.
  destruct a as [[id0 init0] var0]. simpl in *.
  caseEq (add_globals ge_m vars); intros ge' m' EQ.
  simpl. rewrite PTree.gso. rewrite EQ in IHvars. simpl in IHvars. 
  apply IHvars. tauto. intuition congruence.
Qed.

Lemma find_funct_ptr_exists:
  forall (p: program F V) (id: ident) (f: F),
  list_norepet (prog_funct_names p) ->
  list_disjoint (prog_funct_names p) (prog_var_names p) ->
  In (id, f) (prog_funct p) ->
  exists b, find_symbol (globalenv p) id = Some b
         /\ find_funct_ptr (globalenv p) b = Some f.
Proof.
  intros until f.
  assert (forall (fns: list (ident * F)),
           list_norepet (map (@fst ident F) fns) ->
           In (id, f) fns ->
           exists b, find_symbol (add_functs empty fns) id = Some b
                   /\ find_funct_ptr (add_functs empty fns) b = Some f).
  unfold find_symbol, find_funct_ptr. induction fns; intros.
  elim H0.
  destruct a as [id0 f0]; simpl in *. inv H. 
  unfold add_funct; simpl.
  rewrite PTree.gsspec. destruct (peq id id0). 
  subst id0. econstructor; split. eauto.
  replace f0 with f. apply ZMap.gss. 
  elim H0; intro. congruence. elim H3. 
  change id with (@fst ident F (id, f)). apply List.in_map. auto.
  exploit IHfns; eauto. elim H0; intro. congruence. auto.
  intros [b [X Y]]. exists b; split. auto. rewrite ZMap.gso. auto.
  generalize (find_symbol_above_nextfunction _ _ X).
  unfold block; unfold ZIndexed.t; intro; omega.

  intros. exploit H; eauto. intros [b [X Y]].
  exists b; split.
  unfold globalenv, globalenv_initmem. rewrite find_symbol_add_globals. 
  assumption. apply list_disjoint_notin with (prog_funct_names p). assumption. 
  unfold prog_funct_names. change id with (fst (id, f)). 
  apply List.in_map; auto.
  unfold find_funct_ptr. rewrite functions_globalenv. 
  assumption. 
Qed.

Lemma find_funct_ptr_inversion:
  forall (P: F -> Prop) (p: program F V) (b: block) (f: F),
  find_funct_ptr (globalenv p) b = Some f ->
  exists id, In (id, f) (prog_funct p).
Proof.
  intros until f.
  assert (forall fns: list (ident * F),
    find_funct_ptr (add_functs empty fns) b = Some f ->
    exists id, In (id, f) fns).
  unfold find_funct_ptr. induction fns; simpl.
  rewrite ZMap.gi. congruence.
  destruct a as [id0 f0]; simpl. 
  rewrite ZMap.gsspec. destruct (ZIndexed.eq b (nextfunction (add_functs empty fns))).
  intro. inv H. exists id0; auto.
  intro. exploit IHfns; eauto. intros [id A]. exists id; auto.
  unfold find_funct_ptr; rewrite functions_globalenv. intros; apply H; auto.
Qed.

Lemma find_funct_ptr_prop:
  forall (P: F -> Prop) (p: program F V) (b: block) (f: F),
  (forall id f, In (id, f) (prog_funct p) -> P f) ->
  find_funct_ptr (globalenv p) b = Some f ->
  P f.
Proof.
  intros. exploit find_funct_ptr_inversion; eauto. intros [id A]. eauto.
Qed.

Lemma find_funct_inversion:
  forall (P: F -> Prop) (p: program F V) (v: val) (f: F),
  find_funct (globalenv p) v = Some f ->
  exists id, In (id, f) (prog_funct p).
Proof.
  intros. exploit find_funct_inv; eauto. intros [b EQ]. rewrite EQ in H.
  rewrite find_funct_find_funct_ptr in H. 
  eapply find_funct_ptr_inversion; eauto.
Qed.

Lemma find_funct_prop:
  forall (P: F -> Prop) (p: program F V) (v: val) (f: F),
  (forall id f, In (id, f) (prog_funct p) -> P f) ->
  find_funct (globalenv p) v = Some f ->
  P f.
Proof.
  intros. exploit find_funct_inversion; eauto. intros [id A]. eauto.
Qed.

Lemma find_funct_ptr_symbol_inversion:
  forall (p: program F V) (id: ident) (b: block) (f: F),
  find_symbol (globalenv p) id = Some b ->
  find_funct_ptr (globalenv p) b = Some f ->
  In (id, f) p.(prog_funct).
Proof.
  intros until f.
  assert (forall fns,
           let g := add_functs empty fns in
           PTree.get id g.(symbols) = Some b ->
           ZMap.get b g.(functions) = Some f ->
           In (id, f) fns).
    induction fns; simpl.
    rewrite ZMap.gi. congruence.
    set (g := add_functs empty fns). 
    rewrite PTree.gsspec. rewrite ZMap.gsspec. 
    case (peq id (fst a)); intro.
    intro EQ. inversion EQ. unfold ZIndexed.eq. rewrite zeq_true. 
    intro EQ2. left. destruct a. simpl in *. congruence. 
    intro. unfold ZIndexed.eq. rewrite zeq_false. intro. eauto.
    generalize (find_symbol_above_nextfunction _ _ H). fold g. unfold block. omega.
  assert (forall g0 m0, b < 0 ->
          forall vars g m,
          add_globals (g0, m0) vars = (g, m) ->
          PTree.get id g.(symbols) = Some b ->
          PTree.get id g0.(symbols) = Some b).
    induction vars; simpl.
    intros. inv H1. auto.
    destruct a as [[id1 init1] info1]. caseEq (add_globals (g0, m0) vars). 
    intros g1 m1 EQ g m EQ1. injection EQ1; simpl; clear EQ1.
    unfold add_symbol; intros A B. rewrite <- B. simpl. 
    rewrite PTree.gsspec. case (peq id id1); intros.
    assert (b > 0). inv H1. apply nextblock_pos. 
    omegaContradiction.
    eauto. 
  intros. 
  generalize (find_funct_ptr_negative _ _ H2). intro.
  pose (g := add_functs empty (prog_funct p)). 
  apply H.  
  apply H0 with Mem.empty (prog_vars p) (globalenv p) (init_mem p).
  auto. unfold globalenv, init_mem. rewrite <- surjective_pairing.
  reflexivity. assumption. rewrite <- functions_globalenv. assumption.
Qed.

Theorem find_symbol_not_nullptr:
  forall (p: program F V) (id: ident) (b: block),
  find_symbol (globalenv p) id = Some b -> b <> nullptr.
Proof.
  intros until b.
  assert (forall fns, 
          find_symbol (add_functs empty fns) id = Some b ->
          b <> nullptr).
    unfold find_symbol; induction fns; simpl.
    rewrite PTree.gempty. congruence.
    destruct a as [id1 f1]. simpl. rewrite PTree.gsspec.
    destruct (peq id id1); intros. 
    inversion H. generalize (nextfunction_add_functs_neg fns).
    unfold block, nullptr; omega.
    auto.
  set (g0 := add_functs empty p.(prog_funct)).
  assert (forall vars g m,
          add_globals (g0, Mem.empty) vars = (g, m) ->
          find_symbol g id = Some b ->
          b <> nullptr).
    induction vars; simpl; intros until m.
    intros. inversion H0. subst g. apply H with (prog_funct p). auto.
    destruct a as [[id1 init1] info1]. 
    caseEq (add_globals (g0, Mem.empty) vars); intros g1 m1 EQ1 EQ2.
    inv EQ2. unfold find_symbol, add_symbol; simpl. rewrite PTree.gsspec. 
    destruct (peq id id1); intros. 
    inv H0. generalize (nextblock_pos m1). unfold nullptr, block; omega.
    eauto.
  intros. eapply H0 with (vars := prog_vars p). apply surjective_pairing. auto.
Qed. 

Theorem global_addresses_distinct:
  forall (p: program F V) id1 id2 b1 b2,
  id1<>id2 ->
  find_symbol (globalenv p) id1 = Some b1 ->
  find_symbol (globalenv p) id2 = Some b2 ->
  b1<>b2.
Proof.
  intros.
  assert (forall fns,
    find_symbol (add_functs empty fns) id1 = Some b1 ->
    find_symbol (add_functs empty fns) id2 = Some b2 ->
    b1 <> b2).
  unfold find_symbol. induction fns; simpl; intros.
  rewrite PTree.gempty in H2. discriminate.
  destruct a as [id f]; simpl in *. 
  rewrite PTree.gsspec in H2.
  destruct (peq id1 id). subst id. inv H2.
  rewrite PTree.gso in H3; auto. 
  generalize (find_symbol_above_nextfunction _ _ H3). unfold block. omega.
  rewrite PTree.gsspec in H3. 
  destruct (peq id2 id). subst id. inv H3.
  generalize (find_symbol_above_nextfunction _ _ H2). unfold block. omega.
  eauto.
  set (ge0 := add_functs empty p.(prog_funct)).
  assert (forall (vars: list (ident * list init_data * V)) ge m,
    add_globals (ge0, Mem.empty) vars = (ge, m) ->
    find_symbol ge id1 = Some b1 ->
    find_symbol ge id2 = Some b2 ->
    b1 <> b2).
  unfold find_symbol. induction vars; simpl. 
  intros. inv H3. subst ge. apply H2 with (p.(prog_funct)); auto. 
  intros ge m. destruct a as [[id init] info]. 
  caseEq (add_globals (ge0, Mem.empty) vars). intros ge1 m1 A B. inv B.
  unfold add_symbol. simpl. intros.
  rewrite PTree.gsspec in H3; destruct (peq id1 id). subst id. inv H3.
  rewrite PTree.gso in H4; auto. 
  generalize (find_symbol_add_symbols_not_fresh _ _ _ A H4). unfold block; omega.
  rewrite PTree.gsspec in H4; destruct (peq id2 id). subst id. inv H4.
  generalize (find_symbol_add_symbols_not_fresh _ _ _ A H3). unfold block; omega.
  eauto.
  set (ge_m := add_globals (ge0, Mem.empty) p.(prog_vars)).
  apply H3 with (p.(prog_vars)) (fst ge_m) (snd ge_m).
  fold ge_m. apply surjective_pairing. auto. auto.
Qed.

End GENV.

(* Global environments and program transformations. *)

Section MATCH_PROGRAM.

Variable A B V W: Type.
Variable match_fun: A -> B -> Prop.
Variable match_var: V -> W -> Prop.
Variable p: program A V.
Variable p': program B W.
Hypothesis match_prog:
  match_program match_fun match_var p p'.

Lemma add_functs_match:
  forall (fns: list (ident * A)) (tfns: list (ident * B)),
  list_forall2 (match_funct_entry match_fun) fns tfns ->
  let r := add_functs (empty A) fns in
  let tr := add_functs (empty B) tfns in
  nextfunction tr = nextfunction r /\
  symbols tr = symbols r /\
  forall (b: block) (f: A),
  ZMap.get b (functions r) = Some f ->
  exists tf, ZMap.get b (functions tr) = Some tf /\ match_fun f tf.
Proof.
  induction 1; simpl.

  split. reflexivity. split. reflexivity.
  intros b f; repeat (rewrite ZMap.gi). intros; discriminate.

  destruct a1 as [id1 fn1]. destruct b1 as [id2 fn2]. 
  simpl. red in H. destruct H. 
  destruct IHlist_forall2 as [X [Y Z]].
  rewrite X. rewrite Y.  
  split. auto.
  split. congruence.
  intros b f.
  repeat (rewrite ZMap.gsspec). 
  destruct (ZIndexed.eq b (nextfunction (add_functs (empty A) al))).
  intro EQ; inv EQ. exists fn2; auto.
  auto.
Qed.

Lemma add_functs_rev_match:
  forall (fns: list (ident * A)) (tfns: list (ident * B)),
  list_forall2 (match_funct_entry match_fun) fns tfns ->
  let r := add_functs (empty A) fns in
  let tr := add_functs (empty B) tfns in
  nextfunction tr = nextfunction r /\
  symbols tr = symbols r /\
  forall (b: block) (tf: B),
  ZMap.get b (functions tr) = Some tf ->
  exists f, ZMap.get b (functions r) = Some f /\ match_fun f tf.
Proof.
  induction 1; simpl.

  split. reflexivity. split. reflexivity.
  intros b f; repeat (rewrite ZMap.gi). intros; discriminate.

  destruct a1 as [id1 fn1]. destruct b1 as [id2 fn2]. 
  simpl. red in H. destruct H. 
  destruct IHlist_forall2 as [X [Y Z]].
  rewrite X. rewrite Y.  
  split. auto.
  split. congruence.
  intros b f.
  repeat (rewrite ZMap.gsspec). 
  destruct (ZIndexed.eq b (nextfunction (add_functs (empty A) al))).
  intro EQ; inv EQ. exists fn1; auto.
  auto.
Qed.

Lemma mem_add_globals_match:
  forall (g1: genv A) (g2: genv B) (m: mem) 
         (vars: list (ident * list init_data * V))
         (tvars: list (ident * list init_data * W)),
  list_forall2 (match_var_entry match_var) vars tvars ->
  snd (add_globals (g1, m) vars) = snd (add_globals (g2, m) tvars).
Proof.
  induction 1; simpl.
  auto.
  destruct a1 as [[id1 init1] info1].
  destruct b1 as [[id2 init2] info2].
  red in H. destruct H as [X [Y Z]]. subst id2 init2. 
  generalize IHlist_forall2. 
  destruct (add_globals (g1, m) al).
  destruct (add_globals (g2, m) bl).
  simpl. intro. subst m1. auto.
Qed.

Lemma symbols_add_globals_match:
  forall (g1: genv A) (g2: genv B) (m: mem),
  symbols g1 = symbols g2 ->
  forall (vars: list (ident * list init_data * V))
         (tvars: list (ident * list init_data * W)),
  list_forall2 (match_var_entry match_var) vars tvars ->
  symbols (fst (add_globals (g1, m) vars)) =
  symbols (fst (add_globals (g2, m) tvars)).
Proof.
  induction 2; simpl.
  auto.
  destruct a1 as [[id1 init1] info1].
  destruct b1 as [[id2 init2] info2].
  red in H0. destruct H0 as [X [Y Z]]. subst id2 init2. 
  generalize IHlist_forall2.
  generalize (mem_add_globals_match g1 g2 m H1).
  destruct (add_globals (g1, m) al).
  destruct (add_globals (g2, m) bl).
  simpl. intros. congruence.
Qed.

Theorem find_funct_ptr_match:
  forall (b: block) (f: A),
  find_funct_ptr (globalenv p) b = Some f ->
  exists tf, find_funct_ptr (globalenv p') b = Some tf /\ match_fun f tf.
Proof.
  intros until f. destruct match_prog as [X [Y Z]]. 
  destruct (add_functs_match X) as [P [Q R]]. 
  unfold find_funct_ptr. repeat rewrite functions_globalenv.
  auto.
Qed.

Theorem find_funct_ptr_rev_match:
  forall (b: block) (tf: B),
  find_funct_ptr (globalenv p') b = Some tf ->
  exists f, find_funct_ptr (globalenv p) b = Some f /\ match_fun f tf.
Proof.
  intros until tf. destruct match_prog as [X [Y Z]]. 
  destruct (add_functs_rev_match X) as [P [Q R]]. 
  unfold find_funct_ptr. repeat rewrite functions_globalenv.
  auto.
Qed.

Theorem find_funct_match:
  forall (v: val) (f: A),
  find_funct (globalenv p) v = Some f ->
  exists tf, find_funct (globalenv p') v = Some tf /\ match_fun f tf.
Proof.
  intros until f. unfold find_funct. 
  case v; try (intros; discriminate).
  intros b ofs.
  case (Int.eq ofs Int.zero); try (intros; discriminate).
  apply find_funct_ptr_match.
Qed.

Theorem find_funct_rev_match:
  forall (v: val) (tf: B),
  find_funct (globalenv p') v = Some tf ->
  exists f, find_funct (globalenv p) v = Some f /\ match_fun f tf.
Proof.
  intros until tf. unfold find_funct. 
  case v; try (intros; discriminate).
  intros b ofs.
  case (Int.eq ofs Int.zero); try (intros; discriminate).
  apply find_funct_ptr_rev_match.
Qed.

Lemma symbols_init_match:
  symbols (globalenv p') = symbols (globalenv p).
Proof.
  unfold globalenv. unfold globalenv_initmem.
  destruct match_prog as [X [Y Z]].
  destruct (add_functs_match X) as [P [Q R]]. 
  simpl. symmetry. apply symbols_add_globals_match. auto. auto.
Qed.

Theorem find_symbol_match:
  forall (s: ident),
  find_symbol (globalenv p') s = find_symbol (globalenv p) s.
Proof.
  intros. unfold find_symbol. 
  rewrite symbols_init_match. auto.
Qed.

Theorem init_mem_match:
  init_mem p' = init_mem p.
Proof.
  unfold init_mem. unfold globalenv_initmem.
  destruct match_prog as [X [Y Z]]. 
  symmetry. apply mem_add_globals_match. auto.
Qed.

End MATCH_PROGRAM.

Section TRANSF_PROGRAM_PARTIAL2.

Variable A B V W: Type.
Variable transf_fun: A -> res B.
Variable transf_var: V -> res W.
Variable p: program A V.
Variable p': program B W.
Hypothesis transf_OK:
  transform_partial_program2 transf_fun transf_var p = OK p'.

Remark prog_match:
  match_program
    (fun fd tfd => transf_fun fd = OK tfd)
    (fun info tinfo => transf_var info = OK tinfo)
    p p'.
Proof.
  apply transform_partial_program2_match; auto.
Qed.

Theorem find_funct_ptr_transf_partial2:
  forall (b: block) (f: A),
  find_funct_ptr (globalenv p) b = Some f ->
  exists f',
  find_funct_ptr (globalenv p') b = Some f' /\ transf_fun f = OK f'.
Proof.
  intros. 
  exploit find_funct_ptr_match. eexact prog_match. eauto. 
  intros [tf [X Y]]. exists tf; auto.
Qed.

Theorem find_funct_ptr_rev_transf_partial2:
  forall (b: block) (tf: B),
  find_funct_ptr (globalenv p') b = Some tf ->
  exists f, find_funct_ptr (globalenv p) b = Some f /\ transf_fun f = OK tf.
Proof.
  intros. 
  exploit find_funct_ptr_rev_match. eexact prog_match. eauto. auto. 
Qed.

Theorem find_funct_transf_partial2:
  forall (v: val) (f: A),
  find_funct (globalenv p) v = Some f ->
  exists f',
  find_funct (globalenv p') v = Some f' /\ transf_fun f = OK f'.
Proof.
  intros. 
  exploit find_funct_match. eexact prog_match. eauto. 
  intros [tf [X Y]]. exists tf; auto.
Qed.

Theorem find_funct_rev_transf_partial2:
  forall (v: val) (tf: B),
  find_funct (globalenv p') v = Some tf ->
  exists f, find_funct (globalenv p) v = Some f /\ transf_fun f = OK tf.
Proof.
  intros. 
  exploit find_funct_rev_match. eexact prog_match. eauto. auto. 
Qed.

Theorem find_symbol_transf_partial2:
  forall (s: ident),
  find_symbol (globalenv p') s = find_symbol (globalenv p) s.
Proof.
  intros. eapply find_symbol_match. eexact prog_match.
Qed.

Theorem init_mem_transf_partial2:
  init_mem p' = init_mem p.
Proof.
  intros. eapply init_mem_match. eexact prog_match.
Qed.

End TRANSF_PROGRAM_PARTIAL2.

Section TRANSF_PROGRAM_PARTIAL.

Variable A B V: Type.
Variable transf: A -> res B.
Variable p: program A V.
Variable p': program B V.
Hypothesis transf_OK: transform_partial_program transf p = OK p'.

Remark transf2_OK:
  transform_partial_program2 transf (fun x => OK x) p = OK p'.
Proof.
  rewrite <- transf_OK. unfold transform_partial_program2, transform_partial_program.
  destruct (map_partial prefix_funct_name transf (prog_funct p)); auto.
  rewrite map_partial_identity; auto. 
Qed.

Theorem find_funct_ptr_transf_partial:
  forall (b: block) (f: A),
  find_funct_ptr (globalenv p) b = Some f ->
  exists f',
  find_funct_ptr (globalenv p') b = Some f' /\ transf f = OK f'.
Proof.
  exact (@find_funct_ptr_transf_partial2 _ _ _ _ _ _ _ _ transf2_OK).
Qed.

Theorem find_funct_ptr_rev_transf_partial:
  forall (b: block) (tf: B),
  find_funct_ptr (globalenv p') b = Some tf ->
  exists f, find_funct_ptr (globalenv p) b = Some f /\ transf f = OK tf.
Proof.
  exact (@find_funct_ptr_rev_transf_partial2 _ _ _ _ _ _ _ _ transf2_OK).
Qed.

Theorem find_funct_transf_partial:
  forall (v: val) (f: A),
  find_funct (globalenv p) v = Some f ->
  exists f',
  find_funct (globalenv p') v = Some f' /\ transf f = OK f'.
Proof.
  exact (@find_funct_transf_partial2 _ _ _ _ _ _ _ _ transf2_OK).
Qed.

Theorem find_funct_rev_transf_partial:
  forall (v: val) (tf: B),
  find_funct (globalenv p') v = Some tf ->
  exists f, find_funct (globalenv p) v = Some f /\ transf f = OK tf.
Proof.
  exact (@find_funct_rev_transf_partial2 _ _ _ _ _ _ _ _ transf2_OK).
Qed.

Theorem find_symbol_transf_partial:
  forall (s: ident),
  find_symbol (globalenv p') s = find_symbol (globalenv p) s.
Proof.
  exact (@find_symbol_transf_partial2 _ _ _ _ _ _ _ _ transf2_OK).
Qed.

Theorem init_mem_transf_partial:
  init_mem p' = init_mem p.
Proof.
  exact (@init_mem_transf_partial2 _ _ _ _ _ _ _ _ transf2_OK).
Qed.

End TRANSF_PROGRAM_PARTIAL.

Section TRANSF_PROGRAM.

Variable A B V: Type.
Variable transf: A -> B.
Variable p: program A V.
Let tp := transform_program transf p.

Remark transf_OK:
  transform_partial_program (fun x => OK (transf x)) p = OK tp.
Proof.
  unfold tp, transform_program, transform_partial_program.
  rewrite map_partial_total. reflexivity.
Qed.

Theorem find_funct_ptr_transf:
  forall (b: block) (f: A),
  find_funct_ptr (globalenv p) b = Some f ->
  find_funct_ptr (globalenv tp) b = Some (transf f).
Proof.
  intros. 
  destruct (@find_funct_ptr_transf_partial _ _ _ _ _ _ transf_OK _ _ H)
  as [f' [X Y]]. congruence.
Qed.

Theorem find_funct_ptr_rev_transf:
  forall (b: block) (tf: B),
  find_funct_ptr (globalenv tp) b = Some tf ->
  exists f, find_funct_ptr (globalenv p) b = Some f /\ transf f = tf.
Proof.
  intros. exploit find_funct_ptr_rev_transf_partial. eexact transf_OK. eauto.
  intros [f [X Y]]. exists f; split. auto. congruence.
Qed.

Theorem find_funct_transf:
  forall (v: val) (f: A),
  find_funct (globalenv p) v = Some f ->
  find_funct (globalenv tp) v = Some (transf f).
Proof.
  intros. 
  destruct (@find_funct_transf_partial _ _ _ _ _ _ transf_OK _ _ H)
  as [f' [X Y]]. congruence.
Qed.

Theorem find_funct_rev_transf:
  forall (v: val) (tf: B),
  find_funct (globalenv tp) v = Some tf ->
  exists f, find_funct (globalenv p) v = Some f /\ transf f = tf.
Proof.
  intros. exploit find_funct_rev_transf_partial. eexact transf_OK. eauto.
  intros [f [X Y]]. exists f; split. auto. congruence.
Qed.

Theorem find_symbol_transf:
  forall (s: ident),
  find_symbol (globalenv tp) s = find_symbol (globalenv p) s.
Proof.
  exact (@find_symbol_transf_partial _ _ _ _ _ _ transf_OK).
Qed.

Theorem init_mem_transf:
  init_mem tp = init_mem p.
Proof.
  exact (@init_mem_transf_partial _ _ _ _ _ _ transf_OK).
Qed.

End TRANSF_PROGRAM.

End Genv.