summaryrefslogtreecommitdiff
path: root/common/Globalenvs.v
blob: 539bb77c3f66992684296099a9aede7d9daa48a3 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
(* *********************************************************************)
(*                                                                     *)
(*              The Compcert verified compiler                         *)
(*                                                                     *)
(*          Xavier Leroy, INRIA Paris-Rocquencourt                     *)
(*  with contributions from Andrew Tolmach (Portland State University) *)
(*                                                                     *)
(*  Copyright Institut National de Recherche en Informatique et en     *)
(*  Automatique.  All rights reserved.  This file is distributed       *)
(*  under the terms of the GNU General Public License as published by  *)
(*  the Free Software Foundation, either version 2 of the License, or  *)
(*  (at your option) any later version.  This file is also distributed *)
(*  under the terms of the INRIA Non-Commercial License Agreement.     *)
(*                                                                     *)
(* *********************************************************************)

(** Global environments are a component of the dynamic semantics of 
  all languages involved in the compiler.  A global environment
  maps symbol names (names of functions and of global variables)
  to the corresponding memory addresses.  It also maps memory addresses
  of functions to the corresponding function descriptions.  

  Global environments, along with the initial memory state at the beginning
  of program execution, are built from the program of interest, as follows:
- A distinct memory address is assigned to each function of the program.
  These function addresses use negative numbers to distinguish them from
  addresses of memory blocks.  The associations of function name to function
  address and function address to function description are recorded in
  the global environment.
- For each global variable, a memory block is allocated and associated to
  the name of the variable.

  These operations reflect (at a high level of abstraction) what takes
  place during program linking and program loading in a real operating
  system. *)

Require Recdef.
Require Import Zwf.
Require Import Axioms.
Require Import Coqlib.
Require Import Errors.
Require Import Maps.
Require Import AST.
Require Import Integers.
Require Import Floats.
Require Import Values.
Require Import Memory.

Notation "s #1" := (fst s) (at level 9, format "s '#1'") : pair_scope.
Notation "s #2" := (snd s) (at level 9, format "s '#2'") : pair_scope.

Local Open Scope pair_scope.
Local Open Scope error_monad_scope.

Set Implicit Arguments.

Module Genv.

(** * Global environments *)

Section GENV.

Variable F: Type.  (**r The type of function descriptions *)
Variable V: Type.  (**r The type of information attached to variables *)

(** The type of global environments. *)

Record t: Type := mkgenv {
  genv_symb: PTree.t block;             (**r mapping symbol -> block *)
  genv_funs: ZMap.t (option F);         (**r mapping function pointer -> definition *)
  genv_vars: ZMap.t (option (globvar V)); (**r mapping variable pointer -> info *)
  genv_nextfun: block;                  (**r next function pointer *)
  genv_nextvar: block;                  (**r next variable pointer *)
  genv_nextfun_neg: genv_nextfun < 0;
  genv_nextvar_pos: genv_nextvar > 0;
  genv_symb_range: forall id b, PTree.get id genv_symb = Some b -> b <> 0 /\ genv_nextfun < b /\ b < genv_nextvar;
  genv_funs_range: forall b f, ZMap.get b genv_funs = Some f -> genv_nextfun < b < 0;
  genv_vars_range: forall b v, ZMap.get b genv_vars = Some v -> 0 < b < genv_nextvar;
  genv_vars_inj: forall id1 id2 b, 
    PTree.get id1 genv_symb = Some b -> PTree.get id2 genv_symb = Some b -> id1 = id2
}.

(** ** Lookup functions *)

(** [find_symbol ge id] returns the block associated with the given name, if any *)

Definition find_symbol (ge: t) (id: ident) : option block :=
  PTree.get id ge.(genv_symb).

(** [find_funct_ptr ge b] returns the function description associated with
    the given address. *)

Definition find_funct_ptr (ge: t) (b: block) : option F :=
  ZMap.get b ge.(genv_funs).

(** [find_funct] is similar to [find_funct_ptr], but the function address
    is given as a value, which must be a pointer with offset 0. *)

Definition find_funct (ge: t) (v: val) : option F :=
  match v with
  | Vptr b ofs => if Int.eq_dec ofs Int.zero then find_funct_ptr ge b else None
  | _ => None
  end.

(** [invert_symbol ge b] returns the name associated with the given block, if any *)

Definition invert_symbol (ge: t) (b: block) : option ident :=
  PTree.fold
    (fun res id b' => if eq_block b b' then Some id else res)
    ge.(genv_symb) None.

(** [find_var_info ge b] returns the information attached to the variable
   at address [b]. *)

Definition find_var_info (ge: t) (b: block) : option (globvar V) :=
  ZMap.get b ge.(genv_vars).

(** ** Constructing the global environment *)

Program Definition add_function (ge: t) (idf: ident * F) : t :=
  @mkgenv
    (PTree.set idf#1 ge.(genv_nextfun) ge.(genv_symb))
    (ZMap.set ge.(genv_nextfun) (Some idf#2) ge.(genv_funs))
    ge.(genv_vars)
    (ge.(genv_nextfun) - 1)
    ge.(genv_nextvar)
    _ _ _ _ _ _.
Next Obligation.
  destruct ge; simpl; omega.
Qed.
Next Obligation.
  destruct ge; auto.
Qed.
Next Obligation.
  destruct ge; simpl in *.
  rewrite PTree.gsspec in H. destruct (peq id i). inv H. unfold block; omega.
  exploit genv_symb_range0; eauto. unfold block; omega.
Qed.
Next Obligation.
  destruct ge; simpl in *. rewrite ZMap.gsspec in H. 
  destruct (ZIndexed.eq b genv_nextfun0). subst; omega. 
  exploit genv_funs_range0; eauto. omega.
Qed.
Next Obligation.
  destruct ge; eauto. 
Qed.
Next Obligation.
  destruct ge; simpl in *. 
  rewrite PTree.gsspec in H. rewrite PTree.gsspec in H0. 
  destruct (peq id1 i); destruct (peq id2 i).
  congruence.
  exploit genv_symb_range0; eauto. intros [A B]. inv H. omegaContradiction.
  exploit genv_symb_range0; eauto. intros [A B]. inv H0. omegaContradiction.
  eauto.
Qed.

Program Definition add_variable (ge: t) (idv: ident * globvar V) : t :=
  @mkgenv
    (PTree.set idv#1 ge.(genv_nextvar) ge.(genv_symb))
    ge.(genv_funs)
    (ZMap.set ge.(genv_nextvar) (Some idv#2) ge.(genv_vars))
    ge.(genv_nextfun)
    (ge.(genv_nextvar) + 1)
    _ _ _ _ _ _.
Next Obligation.
  destruct ge; auto.
Qed.
Next Obligation.
  destruct ge; simpl; omega.
Qed.
Next Obligation.
  destruct ge; simpl in *.
  rewrite PTree.gsspec in H. destruct (peq id i). inv H. unfold block; omega.
  exploit genv_symb_range0; eauto. unfold block; omega.
Qed.
Next Obligation.
  destruct ge; eauto. 
Qed.
Next Obligation.
  destruct ge; simpl in *. rewrite ZMap.gsspec in H. 
  destruct (ZIndexed.eq b genv_nextvar0). subst; omega. 
  exploit genv_vars_range0; eauto. omega.
Qed.
Next Obligation.
  destruct ge; simpl in *. 
  rewrite PTree.gsspec in H. rewrite PTree.gsspec in H0. 
  destruct (peq id1 i); destruct (peq id2 i).
  congruence.
  exploit genv_symb_range0; eauto. intros [A B]. inv H. omegaContradiction.
  exploit genv_symb_range0; eauto. intros [A B]. inv H0. omegaContradiction.
  eauto.
Qed.

Program Definition empty_genv : t :=
  @mkgenv (PTree.empty block) (ZMap.init None) (ZMap.init None) (-1) 1 _ _ _ _ _ _.
Next Obligation.
  omega.
Qed.
Next Obligation.
  omega.
Qed.
Next Obligation.
  rewrite PTree.gempty in H. discriminate.
Qed.
Next Obligation.
  rewrite ZMap.gi in H. discriminate.
Qed.
Next Obligation.
  rewrite ZMap.gi in H. discriminate.
Qed.
Next Obligation.
  rewrite PTree.gempty in H. discriminate.
Qed.

Definition add_functions (ge: t) (fl: list (ident * F)) : t :=
  List.fold_left add_function fl ge.

Lemma add_functions_app : forall ge fl1 fl2,
  add_functions ge (fl1 ++ fl2) = add_functions (add_functions ge fl1) fl2.
Proof. 
  intros. unfold add_functions. rewrite fold_left_app. auto.
Qed.


Definition add_variables (ge: t) (vl: list (ident * globvar V)) : t :=
  List.fold_left add_variable vl ge.

Lemma add_variables_app : forall ge vl1 vl2 ,
  add_variables ge (vl1 ++ vl2) = add_variables (add_variables ge vl1) vl2.
Proof. 
  intros. unfold add_variables. rewrite fold_left_app. auto.
Qed.

Definition globalenv (p: program F V) :=
  add_variables (add_functions empty_genv p.(prog_funct)) p.(prog_vars).

(** ** Properties of the operations over global environments *)

Theorem find_funct_inv:
  forall ge v f,
  find_funct ge v = Some f -> exists b, v = Vptr b Int.zero.
Proof.
  intros until f; unfold find_funct. 
  destruct v; try congruence. 
  destruct (Int.eq_dec i Int.zero); try congruence.
  intros. exists b; congruence.
Qed.

Theorem find_funct_find_funct_ptr:
  forall ge b,
  find_funct ge (Vptr b Int.zero) = find_funct_ptr ge b.
Proof.
  intros; simpl. apply dec_eq_true.
Qed.

Theorem find_symbol_exists:
  forall p id gv,
  In (id, gv) (prog_vars p) ->
  exists b, find_symbol (globalenv p) id = Some b.
Proof.
  intros until gv.
  assert (forall vl ge,
          (exists b, find_symbol ge id = Some b) ->
          exists b, find_symbol (add_variables ge vl) id = Some b).
  unfold find_symbol; induction vl; simpl; intros. auto. apply IHvl.
  simpl. rewrite PTree.gsspec. fold ident. destruct (peq id a#1).
  exists (genv_nextvar ge); auto. auto.

  assert (forall vl ge, In (id, gv) vl ->
          exists b, find_symbol (add_variables ge vl) id = Some b).
  unfold find_symbol; induction vl; simpl; intros. contradiction.
  destruct H0. apply H. subst; unfold find_symbol; simpl.
  rewrite PTree.gss. exists (genv_nextvar ge); auto.
  eauto.

  intros. unfold globalenv; eauto. 
Qed.


Remark add_variables_inversion : forall vs e x b,
  find_symbol (add_variables e vs) x = Some b ->
  In x (var_names vs) \/ find_symbol e x = Some b. 
Proof.
  induction vs; intros. 
    simpl in H.  intuition.
    simpl in H. destruct (IHvs _ _ _ H).
       left. simpl. intuition.
       destruct a as [y ?]. 
       unfold add_variable, find_symbol in H0. simpl in H0. 
       rewrite PTree.gsspec in H0. destruct (peq x y); subst; simpl; intuition.
Qed.

Remark add_functions_inversion : forall fs e x b,
  find_symbol (add_functions e fs) x = Some b -> 
  In x (funct_names fs) \/ find_symbol e x = Some b. 
Proof.
  induction fs; intros. 
    simpl in H.  intuition.
    simpl in H. destruct (IHfs _ _ _ H).
       left. simpl. intuition.
       destruct a as [y ?]. 
       unfold add_variable, find_symbol in H0. simpl in H0. 
       rewrite PTree.gsspec in H0. destruct (peq x y); subst; simpl; intuition.
Qed.

Lemma find_symbol_inversion : forall p x b,
  find_symbol (globalenv p) x = Some b ->
  In x (prog_var_names p ++ prog_funct_names p). 
Proof.
 unfold prog_var_names, prog_funct_names, globalenv. 
 intros.
 apply in_app.
 apply add_variables_inversion in H. intuition.
 apply add_functions_inversion in H0. inversion H0. intuition. 
 unfold find_symbol in H. 
 rewrite PTree.gempty in H. inversion H.
Qed.
 

Remark add_functions_same_symb:
  forall id fl ge, 
  ~In id (funct_names fl) ->
  find_symbol (add_functions ge fl) id = find_symbol ge id.
Proof.
  induction fl; simpl; intros. auto. 
  rewrite IHfl. unfold find_symbol; simpl. apply PTree.gso. intuition. intuition.
Qed.

Remark add_functions_same_address:
  forall b fl ge,
  b > ge.(genv_nextfun) ->
  find_funct_ptr (add_functions ge fl) b = find_funct_ptr ge b.
Proof.
  induction fl; simpl; intros. auto. 
  rewrite IHfl. unfold find_funct_ptr; simpl. apply ZMap.gso. 
  red; intros; subst b; omegaContradiction.
  simpl. omega. 
Qed.

Remark add_variables_same_symb:
  forall id vl ge, 
  ~In id (var_names vl) -> 
  find_symbol (add_variables ge vl) id = find_symbol ge id.
Proof.
  induction vl; simpl; intros. auto. 
  rewrite IHvl. unfold find_symbol; simpl. apply PTree.gso. intuition. intuition.
Qed.

Remark add_variables_same_address:
  forall b vl ge,
  b < ge.(genv_nextvar) ->
  find_var_info (add_variables ge vl) b = find_var_info ge b.
Proof.
  induction vl; simpl; intros. auto. 
  rewrite IHvl. unfold find_var_info; simpl. apply ZMap.gso. 
  red; intros; subst b; omegaContradiction.
  simpl. omega. 
Qed.

Remark add_variables_same_funs:
  forall b vl ge, find_funct_ptr (add_variables ge vl) b = find_funct_ptr ge b.
Proof.
  induction vl; simpl; intros. auto. rewrite IHvl. auto.
Qed.

Remark add_functions_nextvar:
  forall fl ge, genv_nextvar (add_functions ge fl) = genv_nextvar ge.
Proof.
  induction fl; simpl; intros. auto. rewrite IHfl. auto. 
Qed.

Remark add_variables_nextvar:
  forall vl ge, genv_nextvar (add_variables ge vl) = genv_nextvar ge + Z_of_nat(List.length vl).
Proof.
  induction vl; intros.
  simpl. unfold block; omega.
  simpl length; rewrite inj_S; simpl. rewrite IHvl. simpl. unfold block; omega.
Qed.

Theorem find_funct_ptr_exists:
  forall p id f,
  list_norepet (prog_funct_names p) ->
  list_disjoint (prog_funct_names p) (prog_var_names p) ->
  In (id, f) (prog_funct p) ->
  exists b, find_symbol (globalenv p) id = Some b
         /\ find_funct_ptr (globalenv p) b = Some f.
Proof.
  intros until f.

  assert (forall fl ge, In (id, f) fl -> list_norepet (funct_names fl) ->
          exists b, find_symbol (add_functions ge fl) id = Some b
                 /\ find_funct_ptr (add_functions ge fl) b = Some f).
  induction fl; simpl; intros. contradiction. inv H0. 
  destruct H. subst a. exists (genv_nextfun ge); split.
  rewrite add_functions_same_symb; auto. unfold find_symbol; simpl. apply PTree.gss.
  rewrite add_functions_same_address. unfold find_funct_ptr; simpl. apply ZMap.gss. 
  simpl; omega.
  apply IHfl; auto. 

  intros. exploit (H p.(prog_funct) empty_genv); eauto. intros [b [A B]].
  unfold globalenv; exists b; split.
  rewrite add_variables_same_symb. auto. eapply list_disjoint_notin; eauto. 
  unfold prog_funct_names. change id with (fst (id, f)). apply in_map; auto. 
  rewrite add_variables_same_funs. auto.
Qed.

Theorem find_funct_ptr_prop:
  forall (P: F -> Prop) p b f,
  (forall id f, In (id, f) (prog_funct p) -> P f) ->
  find_funct_ptr (globalenv p) b = Some f ->
  P f.
Proof.
  intros until f. intros PROP.
  assert (forall fl ge,
          List.incl fl (prog_funct p) ->
          match find_funct_ptr ge b with None => True | Some f => P f end ->
          match find_funct_ptr (add_functions ge fl) b with None => True | Some f => P f end).
  induction fl; simpl; intros. auto.
  apply IHfl. eauto with coqlib. unfold find_funct_ptr; simpl.
  destruct a as [id' f']; simpl. 
  rewrite ZMap.gsspec. destruct (ZIndexed.eq b (genv_nextfun ge)). 
  apply PROP with id'. apply H. auto with coqlib. 
  assumption.

  unfold globalenv. rewrite add_variables_same_funs. intro. 
  exploit (H p.(prog_funct) empty_genv). auto with coqlib. 
  unfold find_funct_ptr; simpl. rewrite ZMap.gi. auto.
  rewrite H0. auto.
Qed.

Theorem find_funct_prop:
  forall (P: F -> Prop) p v f,
  (forall id f, In (id, f) (prog_funct p) -> P f) ->
  find_funct (globalenv p) v = Some f ->
  P f.
Proof.
  intros. exploit find_funct_inv; eauto. intros [b EQ]. subst v. 
  rewrite find_funct_find_funct_ptr in H0. 
  eapply find_funct_ptr_prop; eauto.
Qed.

Theorem find_funct_ptr_inversion:
  forall p b f,
  find_funct_ptr (globalenv p) b = Some f ->
  exists id, In (id, f) (prog_funct p).
Proof.
  intros. pattern f. apply find_funct_ptr_prop with p b; auto.
  intros. exists id; auto.
Qed.

Theorem find_funct_inversion:
  forall p v f,
  find_funct (globalenv p) v = Some f ->
  exists id, In (id, f) (prog_funct p).
Proof.
  intros. pattern f. apply find_funct_prop with p v; auto.
  intros. exists id; auto.
Qed.

Theorem find_funct_ptr_negative:
  forall p b f,
  find_funct_ptr (globalenv p) b = Some f -> b < 0.
Proof.
  unfold find_funct_ptr. intros. destruct (globalenv p). simpl in H. 
  exploit genv_funs_range0; eauto. omega. 
Qed.

Theorem find_var_info_positive:
  forall p b v,
  find_var_info (globalenv p) b = Some v -> b > 0.
Proof.
  unfold find_var_info. intros. destruct (globalenv p). simpl in H. 
  exploit genv_vars_range0; eauto. omega. 
Qed.

Remark add_variables_symb_neg:
  forall id b vl ge,
  find_symbol (add_variables ge vl) id = Some b -> b < 0 ->
  find_symbol ge id = Some b.
Proof.
  induction vl; simpl; intros. auto.
  exploit IHvl; eauto. unfold find_symbol; simpl. rewrite PTree.gsspec. 
  fold ident. destruct (peq id (a#1)); auto. intros. inv H1. 
  generalize (genv_nextvar_pos ge). intros. omegaContradiction.
Qed.

Theorem find_funct_ptr_symbol_inversion:
  forall p id b f,
  find_symbol (globalenv p) id = Some b ->
  find_funct_ptr (globalenv p) b = Some f ->
  In (id, f) p.(prog_funct).
Proof.
  intros until f.

  assert (forall fl ge,
          find_symbol (add_functions ge fl) id = Some b ->
          find_funct_ptr (add_functions ge fl) b = Some f ->
          In (id, f) fl \/ (find_symbol ge id = Some b /\ find_funct_ptr ge b = Some f)).
  induction fl; simpl; intros.
  auto.
  exploit IHfl; eauto. intros [A | [A B]]. auto.
  destruct a as [id' f'].
  unfold find_symbol in A; simpl in A.
  unfold find_funct_ptr in B; simpl in B.
  rewrite PTree.gsspec in A. destruct (peq id id'). inv A. 
  rewrite ZMap.gss in B. inv B. auto.
  rewrite ZMap.gso in B. right; auto. 
  exploit genv_symb_range; eauto. unfold block, ZIndexed.t; omega.

  intros. assert (b < 0) by (eapply find_funct_ptr_negative; eauto). 
  unfold globalenv in *. rewrite add_variables_same_funs in H1.
  exploit (H (prog_funct p) empty_genv). 
  eapply add_variables_symb_neg; eauto. auto. 
  intuition. unfold find_symbol in H3; simpl in H3. rewrite PTree.gempty in H3. discriminate.
Qed.

Theorem find_symbol_not_nullptr:
  forall p id b,
  find_symbol (globalenv p) id = Some b -> b <> Mem.nullptr.
Proof.
  intros until b. unfold find_symbol. destruct (globalenv p); simpl. 
  intros. exploit genv_symb_range0; eauto. intuition.
Qed.

Theorem global_addresses_distinct:
  forall ge id1 id2 b1 b2,
  id1 <> id2 ->
  find_symbol ge id1 = Some b1 ->
  find_symbol ge id2 = Some b2 ->
  b1 <> b2.
Proof.
  intros. red; intros; subst. elim H. destruct ge. eauto. 
Qed.

Theorem invert_find_symbol:
  forall ge id b,
  invert_symbol ge b = Some id -> find_symbol ge id = Some b.
Proof.
  intros until b; unfold find_symbol, invert_symbol.
  apply PTree_Properties.fold_rec.
  intros. rewrite H in H0; auto. 
  congruence.
  intros. destruct (eq_block b v). inv H2. apply PTree.gss. 
  rewrite PTree.gsspec. destruct (peq id k).
  subst. assert (m!k = Some b) by auto. congruence.
  auto.
Qed.

Theorem find_invert_symbol:
  forall ge id b,
  find_symbol ge id = Some b -> invert_symbol ge b = Some id.
Proof.
  intros until b.
  assert (find_symbol ge id = Some b -> exists id', invert_symbol ge b = Some id').
  unfold find_symbol, invert_symbol.
  apply PTree_Properties.fold_rec.
  intros. rewrite H in H0; auto.
  rewrite PTree.gempty; congruence.
  intros. destruct (eq_block b v). exists k; auto.
  rewrite PTree.gsspec in H2. destruct (peq id k).
  inv H2. congruence. auto. 

  intros; exploit H; eauto. intros [id' A]. 
  assert (id = id'). eapply genv_vars_inj; eauto. apply invert_find_symbol; auto.
  congruence.
Qed.

(** * Construction of the initial memory state *)

Section INITMEM.

Variable ge: t.

Definition init_data_size (i: init_data) : Z :=
  match i with
  | Init_int8 _ => 1
  | Init_int16 _ => 2
  | Init_int32 _ => 4
  | Init_float32 _ => 4
  | Init_float64 _ => 8
  | Init_addrof _ _ => 4
  | Init_space n => Zmax n 0
  end.

Lemma init_data_size_pos:
  forall i, init_data_size i >= 0.
Proof.
  destruct i; simpl; try omega. generalize (Zle_max_r z 0). omega.
Qed.

Definition store_init_data (m: mem) (b: block) (p: Z) (id: init_data) : option mem :=
  match id with
  | Init_int8 n => Mem.store Mint8unsigned m b p (Vint n)
  | Init_int16 n => Mem.store Mint16unsigned m b p (Vint n)
  | Init_int32 n => Mem.store Mint32 m b p (Vint n)
  | Init_float32 n => Mem.store Mfloat32 m b p (Vfloat n)
  | Init_float64 n => Mem.store Mfloat64 m b p (Vfloat n)
  | Init_addrof symb ofs =>
      match find_symbol ge symb with
      | None => None
      | Some b' => Mem.store Mint32 m b p (Vptr b' ofs)
      end
  | Init_space n => Some m
  end.

Fixpoint store_init_data_list (m: mem) (b: block) (p: Z) (idl: list init_data)
                              {struct idl}: option mem :=
  match idl with
  | nil => Some m
  | id :: idl' =>
      match store_init_data m b p id with
      | None => None
      | Some m' => store_init_data_list m' b (p + init_data_size id) idl'
      end
  end.

Function store_zeros (m: mem) (b: block) (n: Z) {wf (Zwf 0) n}: option mem :=
  if zle n 0 then Some m else
    let n' := n - 1 in
    match Mem.store Mint8unsigned m b n' Vzero with
    | Some m' => store_zeros m' b n'
    | None => None
    end.
Proof.
  intros. red. omega.
  apply Zwf_well_founded.
Qed.

Fixpoint init_data_list_size (il: list init_data) {struct il} : Z :=
  match il with
  | nil => 0
  | i :: il' => init_data_size i + init_data_list_size il'
  end.

Definition perm_globvar (gv: globvar V) : permission :=
  if gv.(gvar_volatile) then Nonempty
  else if gv.(gvar_readonly) then Readable
  else Writable.

Definition alloc_variable (m: mem) (idv: ident * globvar V) : option mem :=
  let init := idv#2.(gvar_init) in
  let sz := init_data_list_size init in
  let (m1, b) := Mem.alloc m 0 sz in
  match store_zeros m1 b sz with
  | None => None
  | Some m2 =>
      match store_init_data_list m2 b 0 init with
      | None => None
      | Some m3 => Mem.drop_perm m3 b 0 sz (perm_globvar idv#2)
      end
  end.

Fixpoint alloc_variables (m: mem) (vl: list (ident * globvar V))
                         {struct vl} : option mem :=
  match vl with
  | nil => Some m
  | v :: vl' =>
      match alloc_variable m v with
      | None => None
      | Some m' => alloc_variables m' vl'
      end
  end.

Lemma alloc_variables_app : forall vl1 vl2 m m1,
  alloc_variables m vl1 = Some m1 ->
  alloc_variables m1 vl2 = alloc_variables m (vl1 ++ vl2).
Proof.
  induction vl1.
    simpl. intros.  inversion H; subst. auto.
    simpl. intros. destruct (alloc_variable m a); eauto. inversion H.
Qed.

Remark store_init_data_list_nextblock:
  forall idl b m p m',
  store_init_data_list m b p idl = Some m' ->
  Mem.nextblock m' = Mem.nextblock m.
Proof.
  induction idl; simpl; intros until m'.
  intros. congruence.
  caseEq (store_init_data m b p a); try congruence. intros. 
  transitivity (Mem.nextblock m0). eauto. 
  destruct a; simpl in H; try (eapply Mem.nextblock_store; eauto; fail).
  congruence. 
  destruct (find_symbol ge i); try congruence. eapply Mem.nextblock_store; eauto. 
Qed.

Remark store_zeros_nextblock:
  forall m b n m', store_zeros m b n = Some m' -> Mem.nextblock m' = Mem.nextblock m.
Proof.
  intros until n. functional induction (store_zeros m b n); intros.
  inv H; auto.
  rewrite IHo; eauto with mem.
  congruence.
Qed.

Remark alloc_variable_nextblock:
  forall v m m',
  alloc_variable m v = Some m' ->
  Mem.nextblock m' = Zsucc(Mem.nextblock m).
Proof.
  unfold alloc_variable.
  intros until m'.   
  set (init := gvar_init v#2).
  set (sz := init_data_list_size init).
  caseEq (Mem.alloc m 0 sz). intros m1 b ALLOC.
  caseEq (store_zeros m1 b sz); try congruence. intros m2 STZ.
  caseEq (store_init_data_list m2 b 0 init); try congruence. intros m3 STORE.
  caseEq (Mem.drop_perm m3 b 0 sz (perm_globvar v#2)); try congruence. intros m4 DROP REC. 
  inv REC; subst.
  rewrite (Mem.nextblock_drop _ _ _ _ _ _ DROP). 
  rewrite (store_init_data_list_nextblock _ _ _ _ STORE).
  rewrite (store_zeros_nextblock _ _ _ STZ). 
  rewrite (Mem.nextblock_alloc _ _ _ _ _ ALLOC). 
  auto.
Qed.


Remark alloc_variables_nextblock:
  forall vl m m',
  alloc_variables m vl = Some m' ->
  Mem.nextblock m' = Mem.nextblock m + Z_of_nat(List.length vl).
Proof.
  induction vl.
  simpl; intros. inv H; unfold block; omega.
  simpl length; rewrite inj_S; simpl. intros m m'. 
  unfold alloc_variable. 
  set (init := gvar_init a#2).
  set (sz := init_data_list_size init).
  caseEq (Mem.alloc m 0 sz). intros m1 b ALLOC.
  caseEq (store_zeros m1 b sz); try congruence. intros m2 STZ.
  caseEq (store_init_data_list m2 b 0 init); try congruence. intros m3 STORE.
  caseEq (Mem.drop_perm m3 b 0 sz (perm_globvar a#2)); try congruence. intros m4 DROP REC.
  rewrite (IHvl _ _ REC).
  rewrite (Mem.nextblock_drop _ _ _ _ _ _ DROP). 
  rewrite (store_init_data_list_nextblock _ _ _ _ STORE).
  rewrite (store_zeros_nextblock _ _ _ STZ).
  rewrite (Mem.nextblock_alloc _ _ _ _ _ ALLOC).
  unfold block in *; omega.
Qed.


Remark store_zeros_perm:
  forall prm b' q m b n m',
  store_zeros m b n = Some m' ->
  Mem.perm m b' q prm -> Mem.perm m' b' q prm.
Proof.
  intros until n. functional induction (store_zeros m b n); intros.
  inv H; auto.
  eauto with mem.
  congruence.
Qed.

Remark store_init_data_list_perm:
  forall prm b' q idl b m p m',
  store_init_data_list m b p idl = Some m' ->
  Mem.perm m b' q prm -> Mem.perm m' b' q prm.
Proof.
  induction idl; simpl; intros until m'.
  intros. congruence.
  caseEq (store_init_data m b p a); try congruence. intros. 
  eapply IHidl; eauto. 
  destruct a; simpl in H; eauto with mem.
  congruence.
  destruct (find_symbol ge i); try congruence. eauto with mem.
Qed.

Remark alloc_variables_perm:
  forall prm b' q vl m m',
  alloc_variables m vl = Some m' ->
  Mem.perm m b' q prm -> Mem.perm m' b' q prm.
Proof.
  induction vl.
  simpl; intros. congruence.
  intros until m'. simpl. unfold alloc_variable. 
  set (init := gvar_init a#2).
  set (sz := init_data_list_size init).
  caseEq (Mem.alloc m 0 sz). intros m1 b ALLOC.
  caseEq (store_zeros m1 b sz); try congruence. intros m2 STZ.
  caseEq (store_init_data_list m2 b 0 init); try congruence. intros m3 STORE.
  caseEq (Mem.drop_perm m3 b 0 sz (perm_globvar a#2)); try congruence. intros m4 DROP REC PERM.
  assert (b' <> b). apply Mem.valid_not_valid_diff with m; eauto with mem.
  eapply IHvl; eauto.
  eapply Mem.perm_drop_3; eauto. 
  eapply store_init_data_list_perm; eauto.
  eapply store_zeros_perm; eauto.
  eauto with mem.
Qed.

Remark store_zeros_outside:
  forall m b n m',
  store_zeros m b n = Some m' ->
  forall chunk b' p,
  b' <> b -> Mem.load chunk m' b' p = Mem.load chunk m b' p.
Proof.
  intros until n. functional induction (store_zeros m b n); intros.
  inv H; auto.
  rewrite IHo; auto. eapply Mem.load_store_other; eauto. 
  inv H.
Qed.

Remark store_init_data_list_outside:
  forall b il m p m',
  store_init_data_list m b p il = Some m' ->
  forall chunk b' q,
  b' <> b \/ q + size_chunk chunk <= p ->
  Mem.load chunk m' b' q = Mem.load chunk m b' q.
Proof.
  induction il; simpl.
  intros; congruence.
  intros until m'. caseEq (store_init_data m b p a); try congruence. 
  intros m1 A B chunk b' q C. transitivity (Mem.load chunk m1 b' q).
  eapply IHil; eauto. generalize (init_data_size_pos a). intuition omega.
  destruct a; simpl in A;
  try (eapply Mem.load_store_other; eauto; intuition; fail).
  congruence.
  destruct (find_symbol ge i); try congruence. 
  eapply Mem.load_store_other; eauto; intuition.
Qed.

Fixpoint load_store_init_data (m: mem) (b: block) (p: Z) (il: list init_data) {struct il} : Prop :=
  match il with
  | nil => True
  | Init_int8 n :: il' =>
      Mem.load Mint8unsigned m b p = Some(Vint(Int.zero_ext 8 n))
      /\ load_store_init_data m b (p + 1) il'
  | Init_int16 n :: il' =>
      Mem.load Mint16unsigned m b p = Some(Vint(Int.zero_ext 16 n))
      /\ load_store_init_data m b (p + 2) il'
  | Init_int32 n :: il' =>
      Mem.load Mint32 m b p = Some(Vint n)
      /\ load_store_init_data m b (p + 4) il'
  | Init_float32 n :: il' =>
      Mem.load Mfloat32 m b p = Some(Vfloat(Float.singleoffloat n))
      /\ load_store_init_data m b (p + 4) il'
  | Init_float64 n :: il' =>
      Mem.load Mfloat64 m b p = Some(Vfloat n)
      /\ load_store_init_data m b (p + 8) il'
  | Init_addrof symb ofs :: il' =>
      (exists b', find_symbol ge symb = Some b' /\ Mem.load Mint32 m b p = Some(Vptr b' ofs))
      /\ load_store_init_data m b (p + 4) il'
  | Init_space n :: il' =>
      load_store_init_data m b (p + Zmax n 0) il'
  end.

Lemma store_init_data_list_charact:
  forall b il m p m',
  store_init_data_list m b p il = Some m' ->
  load_store_init_data m' b p il.
Proof.
  assert (A: forall chunk v m b p m1 il m',
    Mem.store chunk m b p v = Some m1 ->
    store_init_data_list m1 b (p + size_chunk chunk) il = Some m' ->
    Val.has_type v (type_of_chunk chunk) ->
    Mem.load chunk m' b p = Some(Val.load_result chunk v)).
  intros. transitivity (Mem.load chunk m1 b p).
  eapply store_init_data_list_outside; eauto. right. omega. 
  eapply Mem.load_store_same; eauto. 

  induction il; simpl.
  auto.
  intros until m'. caseEq (store_init_data m b p a); try congruence. 
  intros m1 B C.
  exploit IHil; eauto. intro D. 
  destruct a; simpl in B; intuition.
  eapply (A Mint8unsigned (Vint i)); eauto. simpl; auto.
  eapply (A Mint16unsigned (Vint i)); eauto. simpl; auto.
  eapply (A Mint32 (Vint i)); eauto. simpl; auto.
  eapply (A Mfloat32 (Vfloat f)); eauto. simpl; auto.
  eapply (A Mfloat64 (Vfloat f)); eauto. simpl; auto.
  destruct (find_symbol ge i); try congruence. exists b0; split; auto. 
  eapply (A Mint32 (Vptr b0 i0)); eauto. simpl; auto. 
Qed.

Remark load_alloc_variables:
  forall chunk b p vl m m',
  alloc_variables m vl = Some m' ->
  Mem.valid_block m b ->
  Mem.load chunk m' b p = Mem.load chunk m b p.
Proof.
  induction vl; simpl; intros until m'.
  congruence.
  unfold alloc_variable. 
  set (init := gvar_init a#2).
  set (sz := init_data_list_size init).
  caseEq (Mem.alloc m 0 sz). intros m1 b1 ALLOC.
  caseEq (store_zeros m1 b1 sz); try congruence. intros m2 STZ.
  caseEq (store_init_data_list m2 b1 0 init); try congruence. intros m3 STORE.
  caseEq (Mem.drop_perm m3 b1 0 sz (perm_globvar a#2)); try congruence. intros m4 DROP REC VALID.
  assert (b <> b1). apply Mem.valid_not_valid_diff with m; eauto with mem.
  transitivity (Mem.load chunk m4 b p).
  apply IHvl; auto. red.
  rewrite (Mem.nextblock_drop _ _ _ _ _ _ DROP). 
  rewrite (store_init_data_list_nextblock _ _ _ _ STORE).
  rewrite (store_zeros_nextblock _ _ _ STZ).
  change (Mem.valid_block m1 b). eauto with mem.
  transitivity (Mem.load chunk m3 b p). 
  eapply Mem.load_drop; eauto. 
  transitivity (Mem.load chunk m2 b p).
  eapply store_init_data_list_outside; eauto.
  transitivity (Mem.load chunk m1 b p).
  eapply store_zeros_outside; eauto.
  eapply Mem.load_alloc_unchanged; eauto.
Qed. 

Remark load_store_init_data_invariant:
  forall m m' b,
  (forall chunk ofs, Mem.load chunk m' b ofs = Mem.load chunk m b ofs) ->
  forall il p,
  load_store_init_data m b p il -> load_store_init_data m' b p il.
Proof.
  induction il; intro p; simpl.
  auto.
  repeat rewrite H. destruct a; intuition. 
Qed.

Lemma alloc_variables_charact:
  forall id gv vl g m m',
  genv_nextvar g = Mem.nextblock m ->
  alloc_variables m vl = Some m' ->
  list_norepet (map (@fst ident (globvar V)) vl) ->
  In (id, gv) vl ->
  exists b, find_symbol (add_variables g vl) id = Some b 
         /\ find_var_info (add_variables g vl) b = Some gv
         /\ Mem.range_perm m' b 0 (init_data_list_size gv.(gvar_init)) (perm_globvar gv)
         /\ (gv.(gvar_volatile) = false -> load_store_init_data m' b 0 gv.(gvar_init)).
Proof.
  induction vl; simpl.
  contradiction.
  intros until m'; intro NEXT.
  unfold alloc_variable. destruct a as [id' gv']. simpl.
  set (init := gvar_init gv').
  set (sz := init_data_list_size init).
  caseEq (Mem.alloc m 0 sz); try congruence. intros m1 b ALLOC.
  caseEq (store_zeros m1 b sz); try congruence. intros m2 STZ.
  caseEq (store_init_data_list m2 b 0 init); try congruence. intros m3 STORE.
  caseEq (Mem.drop_perm m3 b 0 sz (perm_globvar gv')); try congruence.
  intros m4 DROP REC NOREPET IN. inv NOREPET.
  exploit Mem.alloc_result; eauto. intro BEQ. 
  destruct IN. inversion H; subst id gv.
  exists (Mem.nextblock m); split. 
  rewrite add_variables_same_symb; auto. unfold find_symbol; simpl. 
  rewrite PTree.gss. congruence. 
  split. rewrite add_variables_same_address. unfold find_var_info; simpl.
  rewrite NEXT. apply ZMap.gss.
  simpl. rewrite <- NEXT; omega.
  split. red; intros.
  rewrite <- BEQ. eapply alloc_variables_perm; eauto. eapply Mem.perm_drop_1; eauto. 
  intros NOVOL. 
  apply load_store_init_data_invariant with m3.
  intros. transitivity (Mem.load chunk m4 (Mem.nextblock m) ofs).
  eapply load_alloc_variables; eauto. 
  red. rewrite (Mem.nextblock_drop _ _ _ _ _ _ DROP). 
  rewrite (store_init_data_list_nextblock _ _ _ _ STORE).
  rewrite (store_zeros_nextblock _ _ _ STZ).
  change (Mem.valid_block m1 (Mem.nextblock m)). rewrite <- BEQ. eauto with mem.
  eapply Mem.load_drop; eauto. repeat right. 
  unfold perm_globvar. rewrite NOVOL. destruct (gvar_readonly gv'); auto with mem.
  rewrite <- BEQ. eapply store_init_data_list_charact; eauto. 

  apply IHvl with m4; auto.
  simpl.
  rewrite (Mem.nextblock_drop _ _ _ _ _ _ DROP). 
  rewrite (store_init_data_list_nextblock _ _ _ _ STORE).
  rewrite (store_zeros_nextblock _ _ _ STZ).
  rewrite (Mem.nextblock_alloc _ _ _ _ _ ALLOC). unfold block in *; omega.
Qed.

End INITMEM.

Definition init_mem (p: program F V) :=
  alloc_variables (globalenv p) Mem.empty p.(prog_vars).

Theorem find_symbol_not_fresh:
  forall p id b m,
  init_mem p = Some m ->
  find_symbol (globalenv p) id = Some b -> Mem.valid_block m b.
Proof.
  unfold init_mem; intros.
  exploit alloc_variables_nextblock; eauto. rewrite Mem.nextblock_empty. intro.
  exploit genv_symb_range; eauto. intros.
  generalize (add_variables_nextvar (prog_vars p) (add_functions empty_genv (prog_funct p))).
  rewrite add_functions_nextvar. simpl genv_nextvar. intro.
  red. rewrite H1. rewrite <- H3. intuition.
Qed.

Lemma init_mem_genv_vars : forall p m,
    init_mem p = Some m -> 
    genv_nextvar (globalenv p) = Mem.nextblock m.
Proof.
    clear. unfold globalenv, init_mem.  intros.
    exploit alloc_variables_nextblock; eauto.
    simpl (Mem.nextblock Mem.empty). 
    rewrite add_variables_nextvar.  rewrite add_functions_nextvar.
    simpl (genv_nextvar empty_genv).  auto.
Qed.

Theorem find_var_info_not_fresh:
  forall p b gv m,
  init_mem p = Some m ->
  find_var_info (globalenv p) b = Some gv -> Mem.valid_block m b.
Proof.
  unfold init_mem; intros.
  exploit alloc_variables_nextblock; eauto. rewrite Mem.nextblock_empty. intro.
  exploit genv_vars_range; eauto. intros.
  generalize (add_variables_nextvar (prog_vars p) (add_functions empty_genv (prog_funct p))).
  rewrite add_functions_nextvar. simpl genv_nextvar. intro.
  red. rewrite H1. rewrite <- H3. intuition.
Qed.

Theorem find_var_exists:
  forall p id gv m,
  list_norepet (prog_var_names p) ->
  In (id, gv) (prog_vars p) ->
  init_mem p = Some m ->
  exists b, find_symbol (globalenv p) id = Some b
         /\ find_var_info (globalenv p) b = Some gv
         /\ Mem.range_perm m b 0 (init_data_list_size gv.(gvar_init)) (perm_globvar gv)
         /\ (gv.(gvar_volatile) = false -> load_store_init_data (globalenv p) m b 0 gv.(gvar_init)).
Proof.
  intros. exploit alloc_variables_charact; eauto. 
  instantiate (1 := Mem.empty). rewrite add_functions_nextvar. rewrite Mem.nextblock_empty; auto.
  assumption.
Qed.

(** ** Compatibility with memory injections *)

Section INITMEM_INJ.

Variable ge: t.
Variable thr: block.
Hypothesis symb_inject: forall id b, find_symbol ge id = Some b -> b < thr.

Lemma store_init_data_neutral:
  forall m b p id m',
  Mem.inject_neutral thr m ->
  b < thr ->
  store_init_data ge m b p id = Some m' ->
  Mem.inject_neutral thr m'.
Proof.
  intros.
  destruct id; simpl in H1; try (eapply Mem.store_inject_neutral; eauto; fail).
  inv H1; auto.
  revert H1. caseEq (find_symbol ge i); try congruence. intros b' FS ST. 
  eapply Mem.store_inject_neutral; eauto. 
  econstructor. unfold Mem.flat_inj. apply zlt_true; eauto. 
  rewrite Int.add_zero. auto. 
Qed.

Lemma store_init_data_list_neutral:
  forall b idl m p m',
  Mem.inject_neutral thr m ->
  b < thr ->
  store_init_data_list ge m b p idl = Some m' ->
  Mem.inject_neutral thr m'.
Proof.
  induction idl; simpl.
  intros; congruence.
  intros until m'; intros INJ FB.
  caseEq (store_init_data ge m b p a); try congruence. intros. 
  eapply IHidl. eapply store_init_data_neutral; eauto. auto. eauto. 
Qed.

Lemma store_zeros_neutral:
  forall m b n m',
  Mem.inject_neutral thr m ->
  b < thr ->
  store_zeros m b n = Some m' ->
  Mem.inject_neutral thr m'.
Proof.
  intros until n. functional induction (store_zeros m b n); intros.
  inv H1; auto.
  apply IHo; auto. eapply Mem.store_inject_neutral; eauto. constructor.  
  inv H1.
Qed.

Lemma alloc_variable_neutral:
  forall id m m',
  alloc_variable ge m id = Some m' ->
  Mem.inject_neutral thr m ->
  Mem.nextblock m < thr ->
  Mem.inject_neutral thr m'.
Proof.
  intros until m'. unfold alloc_variable.
  set (init := gvar_init id#2).
  set (sz := init_data_list_size init).
  caseEq (Mem.alloc m 0 sz); try congruence. intros m1 b ALLOC.
  caseEq (store_zeros m1 b sz); try congruence. intros m2 STZ.
  caseEq (store_init_data_list ge m2 b 0 init); try congruence.
  intros m3 STORE DROP NEUTRAL NEXT.
  assert (b < thr). rewrite (Mem.alloc_result _ _ _ _ _ ALLOC). auto.
  eapply Mem.drop_inject_neutral; eauto. 
  eapply store_init_data_list_neutral with (m := m2) (b := b); eauto.
  eapply store_zeros_neutral with (m := m1); eauto. 
  eapply Mem.alloc_inject_neutral; eauto.
Qed.

Lemma alloc_variables_neutral:
  forall idl m m',
  alloc_variables ge m idl = Some m' ->
  Mem.inject_neutral thr m ->
  Mem.nextblock m' <= thr ->
  Mem.inject_neutral thr m'.
Proof.
  induction idl; simpl.
  intros. congruence.
  intros until m'. caseEq (alloc_variable ge m a); try congruence. intros.
  assert (Mem.nextblock m' = Mem.nextblock m + Z_of_nat(length (a :: idl))).
  eapply alloc_variables_nextblock with ge. simpl. rewrite H. auto. 
  simpl length in H3. rewrite inj_S in H3. 
  exploit alloc_variable_neutral; eauto. unfold block in *; omega.
Qed.

End INITMEM_INJ.

Theorem initmem_inject:
  forall p m,
  init_mem p = Some m ->
  Mem.inject (Mem.flat_inj (Mem.nextblock m)) m m.
Proof.
  unfold init_mem; intros.
  apply Mem.neutral_inject. 
  eapply alloc_variables_neutral; eauto. 
  intros. exploit find_symbol_not_fresh; eauto.
  apply Mem.empty_inject_neutral.
  omega.
Qed.

Section INITMEM_AUGMENT_INJ. 

Variable ge: t.
Variable thr: block.

Lemma store_init_data_augment: 
  forall m1 m2 b p id m2', 
  Mem.inject (Mem.flat_inj thr) m1 m2 -> 
  b >= thr -> 
  store_init_data ge m2 b p id = Some m2' ->
  Mem.inject (Mem.flat_inj thr) m1 m2'.
Proof. 
  intros until m2'. intros INJ BND ST. 
  assert (P: forall chunk ofs v m2', 
             Mem.store chunk m2 b ofs v = Some m2' -> 
             Mem.inject (Mem.flat_inj thr) m1 m2'). 
    intros. eapply Mem.store_outside_inject; eauto. 
        intros b' ? INJ'. unfold Mem.flat_inj in INJ'. 
         destruct (zlt b' thr); inversion INJ'; subst. omega. 
  destruct id; simpl in ST; try (eapply P; eauto; fail).
  inv ST; auto. 
  revert ST.  caseEq (find_symbol ge i); try congruence. intros; eapply P; eauto. 
Qed.

Lemma store_init_data_list_augment:
  forall b idl m1 m2 p m2', 
  Mem.inject (Mem.flat_inj thr) m1 m2 -> 
  b >= thr -> 
  store_init_data_list ge m2 b p idl = Some m2' ->
  Mem.inject (Mem.flat_inj thr) m1 m2'.
Proof. 
  induction idl; simpl.
  intros; congruence.
  intros until m2'; intros INJ FB.
  caseEq (store_init_data ge m2 b p a); try congruence. intros. 
  eapply IHidl. eapply store_init_data_augment; eauto. auto. eauto. 
Qed.

Lemma store_zeros_augment:
  forall m1 m2 b n m2',
  Mem.inject (Mem.flat_inj thr) m1 m2 ->
  b >= thr ->
  store_zeros m2 b n = Some m2' ->
  Mem.inject (Mem.flat_inj thr) m1 m2'.
Proof.
  intros until n. functional induction (store_zeros m2 b n); intros.
  inv H1; auto.
  apply IHo; auto. exploit Mem.store_outside_inject; eauto. simpl. 
  intros. exfalso. unfold Mem.flat_inj in H2. destruct (zlt b' thr). 
    inversion H2; subst; omega.  
    discriminate.
  inv H1.
Qed.

Lemma alloc_variable_augment:
  forall id m1 m2 m2',
  alloc_variable ge m2 id = Some m2' ->
  Mem.inject (Mem.flat_inj thr) m1 m2 -> 
  Mem.nextblock m2 >= thr -> 
  Mem.inject (Mem.flat_inj thr) m1 m2'.
Proof.
  intros until m2'. unfold alloc_variable. 
  set (sz := init_data_list_size (gvar_init id#2)).
  caseEq (Mem.alloc m2 0 sz); try congruence. intros m3 b ALLOC.
  caseEq (store_zeros m3 b sz); try congruence. intros m4 STZ.
  caseEq (store_init_data_list ge m4 b 0 (gvar_init id#2)); try congruence.
  intros m5 STORE DROP INJ NEXT.
  assert (b >= thr). 
     pose proof (Mem.fresh_block_alloc _ _ _ _ _ ALLOC).  
     unfold Mem.valid_block in H.  unfold block in *; omega. 
  eapply Mem.drop_outside_inject. 2: eauto.  
  eapply store_init_data_list_augment. 2: eauto. 2: eauto. 
  eapply store_zeros_augment. 2: eauto. 2: eauto.
  eapply Mem.alloc_right_inject; eauto. 
  intros. unfold Mem.flat_inj in H0. destruct (zlt b' thr); inversion H0. 
     subst; exfalso; omega.
Qed.

Lemma alloc_variables_augment:
  forall idl m1 m2 m2',
  alloc_variables ge m2 idl = Some m2' ->
  Mem.inject (Mem.flat_inj thr) m1 m2 ->
  Mem.nextblock m2 >= thr ->
  Mem.inject (Mem.flat_inj thr) m1 m2'.
Proof.
  induction idl; simpl.
  intros. congruence.
  intros until m2'. caseEq (alloc_variable ge m2 a); try congruence. intros.
  eapply IHidl with (m2 := m); eauto.  
    eapply alloc_variable_augment; eauto. 
    rewrite (alloc_variable_nextblock _ _ _ H). 
    unfold block in *; omega. 
Qed.

End INITMEM_AUGMENT_INJ. 

End GENV.

(** * Commutation with program transformations *)

(** ** Commutation with matching between programs. *)

Section MATCH_PROGRAMS.

Variables A B V W: Type.
Variable match_fun: A -> B -> Prop.
Variable match_varinfo: V -> W -> Prop.

Inductive match_globvar: globvar V -> globvar W -> Prop :=
  | match_globvar_intro: forall info1 info2 init ro vo,
      match_varinfo info1 info2 ->
      match_globvar (mkglobvar info1 init ro vo) (mkglobvar info2 init ro vo).

Record match_genvs (new_functs : list (ident * B)) (new_vars : list (ident * globvar W)) 
                   (ge1: t A V) (ge2: t B W): Prop := {
  mge_nextfun: genv_nextfun ge2 = genv_nextfun ge1 - Z_of_nat(length new_functs);
  mge_nextvar: genv_nextvar ge2 = genv_nextvar ge1 + Z_of_nat(length new_vars);
  mge_symb:    forall id,  ~ In id ((funct_names new_functs) ++ (var_names new_vars)) -> 
                   PTree.get id (genv_symb ge2) = PTree.get id (genv_symb ge1);
  mge_funs:
    forall b f, ZMap.get b (genv_funs ge1) = Some f ->
    exists tf, ZMap.get b (genv_funs ge2) = Some tf /\ match_fun f tf;
  mge_rev_funs:
    forall b tf, ZMap.get b (genv_funs ge2) = Some tf ->
    if zlt (genv_nextfun ge1) b then 
      exists f, ZMap.get b (genv_funs ge1) = Some f /\ match_fun f tf
    else 
      In tf (map (@snd ident B) new_functs);
  mge_vars:
    forall b v, ZMap.get b (genv_vars ge1) = Some v ->
    exists tv, ZMap.get b (genv_vars ge2) = Some tv /\ match_globvar v tv;
  mge_rev_vars:
    forall b tv, ZMap.get b (genv_vars ge2) = Some tv ->
    if zlt b (genv_nextvar ge1) then
      exists v, ZMap.get b (genv_vars ge1) = Some v /\ match_globvar v tv
    else
      In tv (map (@snd ident (globvar W)) new_vars)
}.

Lemma add_function_match:
  forall ge1 ge2 id f1 f2,
  match_genvs nil nil ge1 ge2 ->
  match_fun f1 f2 ->
  match_genvs nil nil (add_function ge1 (id, f1)) (add_function ge2 (id, f2)).
Proof.
  intros. destruct H. 
     simpl in mge_nextfun0. rewrite Zminus_0_r in mge_nextfun0. 
     simpl in mge_nextvar0. rewrite Zplus_0_r in mge_nextvar0. 
  constructor; simpl. 
  rewrite Zminus_0_r. congruence.
  rewrite Zplus_0_r. congruence.
  intros. rewrite mge_nextfun0. 
    repeat rewrite PTree.gsspec. destruct (peq id0 id); auto. 
    rewrite mge_nextfun0. intros. rewrite ZMap.gsspec in H. rewrite ZMap.gsspec. 
    destruct (ZIndexed.eq b (genv_nextfun ge1)). 
     exists f2; split; congruence.
     eauto.
  rewrite mge_nextfun0. intros. rewrite ZMap.gsspec in H. rewrite ZMap.gsspec. 
   destruct (ZIndexed.eq b (genv_nextfun ge1)). 
    subst b. destruct (zlt (genv_nextfun ge1 - 1) (genv_nextfun ge1)). 
      exists f1; split; congruence. omega. 
    pose proof (mge_rev_funs0 b tf H). 
    destruct (zlt (genv_nextfun ge1) b); 
      destruct (zlt (genv_nextfun ge1 - 1) b).  auto. omega. exfalso; omega. intuition.
  auto.
  auto.
Qed.

Lemma add_functions_match:
  forall fl1 fl2, list_forall2 (match_funct_entry match_fun) fl1 fl2 ->
  forall ge1 ge2, match_genvs nil nil ge1 ge2 ->
  match_genvs nil nil (add_functions ge1 fl1) (add_functions ge2 fl2).
Proof.
  induction 1; intros; simpl. 
  auto.
  destruct a1 as [id1 f1]; destruct b1 as [id2 f2].
  destruct H. subst. apply IHlist_forall2. apply add_function_match; auto.
Qed.

Lemma add_function_augment_match: 
  forall new_functs new_vars ge1 ge2 id f2,
  match_genvs new_functs new_vars ge1 ge2 ->
  match_genvs (new_functs++((id,f2)::nil)) new_vars ge1 (add_function ge2 (id, f2)).
Proof.
  intros. destruct H. constructor; simpl. 
  rewrite mge_nextfun0. rewrite app_length. 
       simpl. rewrite inj_plus. rewrite inj_S. rewrite inj_0. unfold block; omega. (* painful! *)
  auto.
  intros. unfold funct_names in H. rewrite map_app in H. rewrite in_app in H.  rewrite in_app in H. simpl in H. 
     destruct (peq id id0). subst. intuition. rewrite PTree.gso. 
     apply mge_symb0. intro.  apply H. rewrite in_app in H0. inversion H0; intuition. intuition. 
  intros. rewrite ZMap.gso. auto. 
     rewrite mge_nextfun0. pose proof (genv_funs_range ge1 b H). intro; subst; omega.
  intros. rewrite ZMap.gsspec in H. 
     destruct (ZIndexed.eq b (genv_nextfun ge2)). 
       destruct (zlt (genv_nextfun ge1) b). 
          exfalso.  rewrite mge_nextfun0 in e.  unfold block; omega. 
          rewrite map_app. rewrite in_app.  simpl.  inversion H; intuition.
       pose proof (mge_rev_funs0 b tf H). 
          destruct (zlt (genv_nextfun ge1) b). 
            auto.
            rewrite map_app. rewrite in_app. intuition. 
  auto.
  auto.
Qed.


Lemma add_functions_augment_match:
  forall fl new_functs new_vars ge1 ge2, 
    match_genvs new_functs new_vars ge1 ge2 ->
    match_genvs (new_functs++fl) new_vars ge1 (add_functions ge2 fl).
Proof.
  induction fl; simpl. 
    intros. rewrite app_nil_r. auto. 
    intros. replace (new_functs ++ a :: fl) with ((new_functs ++ (a::nil)) ++ fl) 
       by (rewrite app_ass; auto). 
     apply IHfl. destruct a. apply add_function_augment_match. auto.
Qed.


Lemma add_variable_match:
  forall new_functs ge1 ge2 id v1 v2,
  match_genvs new_functs nil ge1 ge2 ->
  match_globvar v1 v2 ->
  match_genvs new_functs nil (add_variable ge1 (id, v1)) (add_variable ge2 (id, v2)).
Proof.
  intros. destruct H. 
     simpl in mge_nextvar0. rewrite Zplus_0_r in mge_nextvar0. 
  constructor; simpl. 
  auto. 
    rewrite Zplus_0_r. rewrite mge_nextvar0. auto. 
  intros. rewrite mge_nextvar0. 
    repeat rewrite PTree.gsspec. destruct (peq id0 id); auto. 
  auto.
  auto.
  rewrite mge_nextvar0. intros. rewrite ZMap.gsspec in H. rewrite ZMap.gsspec. 
    destruct (ZIndexed.eq b (genv_nextvar ge1)). 
     exists v2; split; congruence.
     eauto.
  rewrite mge_nextvar0. intros. rewrite ZMap.gsspec in H. rewrite ZMap.gsspec. 
   destruct (ZIndexed.eq b (genv_nextvar ge1)). 
    subst b. inversion H; subst. 
      destruct (zlt (genv_nextvar ge1) (genv_nextvar ge1 + 1)). 
        exists v1; split; congruence. omega. 
      pose proof (mge_rev_vars0 _ _ H).
        destruct (zlt b (genv_nextvar ge1));
          destruct (zlt b (genv_nextvar ge1 + 1)).  auto. omega. exfalso; omega. intuition.
Qed.

Lemma add_variables_match:
  forall vl1 vl2, list_forall2 (match_var_entry match_varinfo) vl1 vl2 ->
  forall new_functs ge1 ge2, match_genvs new_functs nil ge1 ge2 ->
  match_genvs new_functs nil (add_variables ge1 vl1) (add_variables ge2 vl2).
Proof.
  induction 1; intros; simpl. 
  auto.
  inv H. apply IHlist_forall2. apply add_variable_match; auto. constructor; auto.
Qed.


Lemma add_variable_augment_match:
  forall ge1 new_functs new_vars ge2 id v2,
  match_genvs new_functs new_vars ge1 ge2 ->
  match_genvs new_functs (new_vars++((id,v2)::nil)) ge1 (add_variable ge2 (id, v2)).
Proof.
  intros. destruct H. constructor; simpl. 
  auto.
  rewrite mge_nextvar0. rewrite app_length. 
       simpl. rewrite inj_plus. rewrite inj_S. rewrite inj_0. unfold block; omega. (* painful! *)
  intros. unfold funct_names, var_names in H. rewrite map_app in H. rewrite in_app in H.  rewrite in_app in H. simpl in H. 
     destruct (peq id id0). subst. intuition. rewrite PTree.gso. 
     apply mge_symb0. intro.  apply H. rewrite in_app in H0. inversion H0; intuition. intuition. 
  auto.
  auto.
  intros. rewrite ZMap.gso. auto. 
     rewrite mge_nextvar0. pose proof (genv_vars_range ge1 b H). intro; subst; omega.
  intros. rewrite ZMap.gsspec in H. 
     destruct (ZIndexed.eq b (genv_nextvar ge2)). 
       destruct (zlt b (genv_nextvar ge1)). 
          exfalso.  rewrite mge_nextvar0 in e.  unfold block; omega. 
          rewrite map_app. rewrite in_app.  simpl.  inversion H; intuition.
       pose proof (mge_rev_vars0 b tv H). 
          destruct (zlt b (genv_nextvar ge1)). 
            auto.
            rewrite map_app. rewrite in_app. intuition. 

Qed.

Lemma add_variables_augment_match:
  forall vl ge1 new_functs new_vars ge2, 
    match_genvs new_functs new_vars ge1 ge2 ->
    match_genvs new_functs (new_vars++vl) ge1  (add_variables ge2 vl).
Proof.
  induction vl; simpl. 
    intros. rewrite app_nil_r. auto. 
    intros. replace (new_vars ++ a :: vl) with ((new_vars ++ (a::nil)) ++ vl) 
       by (rewrite app_ass; auto). 
     apply IHvl. destruct a. apply add_variable_augment_match. auto.
Qed.

Variable new_functs : list (ident * B).
Variable new_vars : list (ident * globvar W).
Variable new_main : ident.

Variable p: program A V.
Variable p': program B W.
Hypothesis progmatch: 
  match_program match_fun match_varinfo new_functs new_vars new_main p p'.

Lemma globalenvs_match:
  match_genvs new_functs new_vars (globalenv p) (globalenv p').
Proof.
  unfold globalenv. destruct progmatch. clear progmatch.
  destruct H as [tfuncts [P1 P2]]. destruct H0.  clear H0. destruct H as [tvars [Q1 Q2]]. 
  rewrite P2.  rewrite Q2. clear P2 Q2.
  rewrite add_variables_app. 
  rewrite add_functions_app. 
  pattern new_vars at 1. replace new_vars with (nil++new_vars) by auto.
  apply add_variables_augment_match.
  apply add_variables_match; auto. 
  pattern new_functs at 1. replace new_functs with (nil++new_functs) by auto. 
  apply add_functions_augment_match.
  apply add_functions_match; auto. 
  constructor; simpl; auto; intros; rewrite ZMap.gi in H; congruence.
Qed.

Theorem find_funct_ptr_match:
  forall (b : block) (f : A),
  find_funct_ptr (globalenv p) b = Some f ->
  exists tf : B,
  find_funct_ptr (globalenv p') b = Some tf /\ match_fun f tf.
Proof (mge_funs globalenvs_match).

Theorem find_funct_ptr_rev_match:
  forall (b : block) (tf : B),
  find_funct_ptr (globalenv p') b = Some tf ->
  if zlt (genv_nextfun (globalenv p)) b then 
      exists f, find_funct_ptr (globalenv p) b = Some f /\ match_fun f tf
  else 
      In tf (map (@snd ident B) new_functs).
Proof (mge_rev_funs globalenvs_match).

Theorem find_funct_match:
  forall (v : val) (f : A),
  find_funct (globalenv p) v = Some f ->
  exists tf : B, find_funct (globalenv p') v = Some tf /\ match_fun f tf.
Proof.
  intros. exploit find_funct_inv; eauto. intros [b EQ]. subst v. 
  rewrite find_funct_find_funct_ptr in H. 
  rewrite find_funct_find_funct_ptr.
  apply find_funct_ptr_match. auto.
Qed.

Theorem find_funct_rev_match:
  forall (v : val) (tf : B),
  find_funct (globalenv p') v = Some tf ->
  (exists f, find_funct (globalenv p) v = Some f /\ match_fun f tf) 
  \/ (In tf (map (@snd ident B) new_functs)).
Proof.
  intros. exploit find_funct_inv; eauto. intros [b EQ]. subst v. 
  rewrite find_funct_find_funct_ptr in H. 
  rewrite find_funct_find_funct_ptr.
  apply find_funct_ptr_rev_match in H. 
   destruct (zlt (genv_nextfun (globalenv p)) b); intuition. 
Qed.

Theorem find_var_info_match:
  forall (b : block) (v : globvar V),
  find_var_info (globalenv p) b = Some v ->
  exists tv,
  find_var_info (globalenv p') b = Some tv /\ match_globvar v tv.
Proof (mge_vars globalenvs_match).

Theorem find_var_info_rev_match:
  forall (b : block) (tv : globvar W),
  find_var_info (globalenv p') b = Some tv ->
  if zlt b (genv_nextvar (globalenv p)) then 
    exists v, find_var_info (globalenv p) b = Some v /\ match_globvar v tv
  else
    In tv (map (@snd ident (globvar W)) new_vars).  
Proof (mge_rev_vars globalenvs_match).

Theorem find_symbol_match:
  forall (s : ident),
  ~In s (funct_names new_functs ++ var_names new_vars) -> 
  find_symbol (globalenv p') s = find_symbol (globalenv p) s.
Proof.
  intros. destruct globalenvs_match. unfold find_symbol.  auto. 
Qed.

Hypothesis new_ids_fresh : 
  (forall s', find_symbol (globalenv p) s' <> None  -> 
             ~In s' (funct_names new_functs ++ var_names new_vars)).

Lemma store_init_data_list_match:
  forall idl m b ofs m',
  store_init_data_list (globalenv p) m b ofs idl = Some m' ->
  store_init_data_list (globalenv p') m b ofs idl = Some m'.
Proof.
  induction idl; simpl; intros. 
  auto.
  assert (forall m', store_init_data (globalenv p) m b ofs a = Some m' ->
          store_init_data (globalenv p') m b ofs a = Some m').
   destruct a; simpl; auto. rewrite find_symbol_match. auto. 
     inversion H.  case_eq (find_symbol (globalenv p) i). 
       intros. apply new_ids_fresh. intro. rewrite H0 in H2; inversion H2. 
       intro. rewrite H0 in H1. inversion H1. 
  case_eq (store_init_data (globalenv p) m b ofs a); intros. 
    rewrite H1 in H. 
    pose proof (H0 _ H1). rewrite H2. auto. 
    rewrite H1 in H. inversion H. 
Qed.

Lemma alloc_variables_match:
  forall vl1 vl2, list_forall2 (match_var_entry match_varinfo) vl1 vl2 ->
  forall m m',
  alloc_variables (globalenv p) m vl1 = Some m' -> 
  alloc_variables (globalenv p') m vl2 = Some m'.
Proof.
  induction 1; intros until m'; simpl.
  auto.
  inv H. 
  unfold alloc_variable; simpl. 
  destruct (Mem.alloc m 0 (init_data_list_size init)). 
  destruct (store_zeros m0 b (init_data_list_size init)); auto. 
  case_eq (store_init_data_list (globalenv p) m1 b 0 init); intros m2 P. 
  rewrite (store_init_data_list_match _ _ _ _ P). 
  change (perm_globvar (mkglobvar info2 init ro vo))
    with (perm_globvar (mkglobvar info1 init ro vo)).
  destruct (Mem.drop_perm m2 b 0 (init_data_list_size init)
    (perm_globvar (mkglobvar info1 init ro vo))); auto. 
  inversion P. 
Qed.

Theorem init_mem_match:
  forall m, init_mem p = Some m -> 
  init_mem p' = alloc_variables (globalenv p') m new_vars.
Proof.
  unfold init_mem. destruct progmatch. destruct H0.  destruct H0 as [tvars [P1 P2]].
  rewrite P2. 
  intros. 
  erewrite <- alloc_variables_app; eauto. 
  eapply alloc_variables_match; eauto. 
Qed.

End MATCH_PROGRAMS.

Section TRANSF_PROGRAM_AUGMENT.

Variable A B V W: Type.
Variable transf_fun: A -> res B.
Variable transf_var: V -> res W.

Variable new_functs : list (ident * B).
Variable new_vars : list (ident * globvar W).
Variable new_main : ident.

Variable p: program A V.
Variable p': program B W.

Hypothesis transf_OK:
  transform_partial_augment_program transf_fun transf_var new_functs new_vars new_main p = OK p'.

Remark prog_match:
  match_program
    (fun fd tfd => transf_fun fd = OK tfd)
    (fun info tinfo => transf_var info = OK tinfo)
    new_functs new_vars new_main
    p p'.
Proof.
  apply transform_partial_augment_program_match; auto.
Qed.

Theorem find_funct_ptr_transf_augment:
  forall (b: block) (f: A),
  find_funct_ptr (globalenv p) b = Some f ->
  exists f',
  find_funct_ptr (globalenv p') b = Some f' /\ transf_fun f = OK f'.
Proof.
  intros. 
  exploit find_funct_ptr_match. eexact prog_match. eauto. 
  intros [tf [X Y]]. exists tf; auto.
Qed.



(* This may not yet be in the ideal form for easy use .*)
Theorem find_new_funct_ptr_exists: 
  list_norepet (prog_funct_names p ++ funct_names new_functs) ->
  list_disjoint (prog_funct_names p ++ funct_names new_functs)  (prog_var_names p ++ var_names new_vars) ->
  forall id f, In (id, f) new_functs -> 
  exists b, find_symbol (globalenv p') id = Some b
         /\ find_funct_ptr (globalenv p') b = Some f.
Proof.
  intros. 
  destruct p. 
  unfold transform_partial_augment_program in transf_OK. 
  monadInv transf_OK. rename x into prog_funct'.  rename x0 into prog_vars'. simpl in *.
  assert (funct_names prog_funct = funct_names prog_funct').
   clear - EQ.  generalize dependent prog_funct'. induction prog_funct; intros.
      simpl in EQ. inversion EQ; subst; auto.
      simpl in EQ. destruct a. destruct (transf_fun a); try discriminate. monadInv EQ.
      simpl; f_equal; auto.
  assert (var_names prog_vars = var_names prog_vars').
   clear - EQ1.  generalize dependent prog_vars'. induction prog_vars; intros.
      simpl in EQ1. inversion EQ1; subst; auto.
      simpl in EQ1. destruct a. destruct (transf_globvar transf_var g); try discriminate. monadInv EQ1.
      simpl; f_equal; auto.
  apply find_funct_ptr_exists. 
  unfold prog_funct_names in *; simpl in *. 
  rewrite funct_names_app. rewrite <- H2. auto.
  unfold prog_funct_names, prog_var_names in *; simpl in *.  
  rewrite funct_names_app. rewrite var_names_app. rewrite <- H2. rewrite <- H3.  auto.
  simpl. intuition.
Qed.

Theorem find_funct_ptr_rev_transf_augment:
  forall (b: block) (tf: B),
  find_funct_ptr (globalenv p') b = Some tf ->
  if (zlt (genv_nextfun (globalenv p)) b) then
   (exists f, find_funct_ptr (globalenv p) b = Some f /\ transf_fun f = OK tf)
  else 
   In tf (map (@snd ident B) new_functs).
Proof.
  intros. 
  exploit find_funct_ptr_rev_match;eauto. eexact prog_match; eauto. auto. 
Qed.


Theorem find_funct_transf_augment:
  forall (v: val) (f: A),
  find_funct (globalenv p) v = Some f ->
  exists f',
  find_funct (globalenv p') v = Some f' /\ transf_fun f = OK f'.
Proof.
  intros. 
  exploit find_funct_match. eexact prog_match. eauto. 
  intros [tf [X Y]]. exists tf; auto.
Qed.

Theorem find_funct_rev_transf_augment: 
  forall (v: val) (tf: B),
  find_funct (globalenv p') v = Some tf ->
  (exists f, find_funct (globalenv p) v = Some f /\ transf_fun f = OK tf) \/
  In tf (map (@snd ident B) new_functs). 
Proof.
  intros. 
  exploit find_funct_rev_match. eexact prog_match. eauto. auto. 
Qed.

Theorem find_var_info_transf_augment:
  forall (b: block) (v: globvar V),
  find_var_info (globalenv p) b = Some v ->
  exists v',
  find_var_info (globalenv p') b = Some v' /\ transf_globvar transf_var v = OK v'.
Proof.
  intros. 
  exploit find_var_info_match. eexact prog_match. eauto. 
  intros [tv [X Y]]. exists tv; split; auto. inv Y. unfold transf_globvar; simpl.
  rewrite H0; simpl. auto.
Qed.


(* This may not yet be in the ideal form for easy use .*)
Theorem find_new_var_exists: 
  list_norepet (prog_var_names p ++ var_names new_vars) -> 
  forall id gv m, In (id, gv) new_vars -> 
  init_mem p' = Some m -> 
  exists b, find_symbol (globalenv p') id = Some b
         /\ find_var_info (globalenv p') b = Some gv
         /\ Mem.range_perm m b 0 (init_data_list_size gv.(gvar_init)) (perm_globvar gv)
         /\ (gv.(gvar_volatile) = false -> load_store_init_data (globalenv p') m b 0 gv.(gvar_init)).
Proof.
  intros. 
  destruct p. 
  unfold transform_partial_augment_program in transf_OK. 
  monadInv transf_OK. rename x into prog_funct'.  rename x0 into prog_vars'. simpl in *.
  assert (var_names prog_vars = var_names prog_vars').
   clear - EQ1.  generalize dependent prog_vars'. induction prog_vars; intros.
      simpl in EQ1. inversion EQ1; subst; auto.
      simpl in EQ1. destruct a. destruct (transf_globvar transf_var g); try discriminate. monadInv EQ1.
      simpl; f_equal; auto.
  apply find_var_exists. 
  unfold prog_var_names in *; simpl in *.  
  rewrite var_names_app. rewrite <- H2. auto.
  simpl. intuition.
  auto.
Qed.

Theorem find_var_info_rev_transf_augment:
  forall (b: block) (v': globvar W),
  find_var_info (globalenv p') b = Some v' ->
  if zlt b (genv_nextvar (globalenv p)) then
    (exists v, find_var_info (globalenv p) b = Some v /\ transf_globvar transf_var v = OK v')
  else
    (In v' (map (@snd ident (globvar W)) new_vars)).
Proof.
  intros. 
  exploit find_var_info_rev_match. eexact prog_match. eauto.
  destruct (zlt b (genv_nextvar (globalenv p))); auto.
  intros [v [X Y]]. exists v; split; auto. inv Y. unfold transf_globvar; simpl. 
  rewrite H0; simpl. auto.
Qed.

Theorem find_symbol_transf_augment:  
  forall (s: ident), 
  ~ In s (funct_names new_functs ++ var_names new_vars) -> 
  find_symbol (globalenv p') s = find_symbol (globalenv p) s.
Proof.
  intros. eapply find_symbol_match. eexact prog_match. auto.
Qed.

Theorem init_mem_transf_augment: 
   (forall s', find_symbol (globalenv p) s' <> None -> 
     ~ In s' (funct_names new_functs ++ var_names new_vars)) -> 
   forall m, init_mem p = Some m -> 
   init_mem p' = alloc_variables (globalenv p') m new_vars.
Proof.
  intros. eapply init_mem_match. eexact prog_match. auto. auto.
Qed.
 
Theorem init_mem_inject_transf_augment:
   (forall s', find_symbol (globalenv p) s' <> None -> 
     ~ In s' (funct_names new_functs ++ var_names new_vars)) -> 
  forall m, init_mem p = Some m ->
  forall m', init_mem p' = Some m' -> 
  Mem.inject (Mem.flat_inj (Mem.nextblock m)) m m'.
Proof.
  intros. 
  pose proof (initmem_inject p H0). 
  erewrite init_mem_transf_augment in H1; eauto. 
  eapply alloc_variables_augment; eauto. omega.
Qed.


End TRANSF_PROGRAM_AUGMENT.

Section TRANSF_PROGRAM_PARTIAL2.

Variable A B V W: Type.
Variable transf_fun: A -> res B.
Variable transf_var: V -> res W.
Variable p: program A V.
Variable p': program B W.
Hypothesis transf_OK:
  transform_partial_program2 transf_fun transf_var p = OK p'.

Remark transf_augment_OK:
  transform_partial_augment_program transf_fun transf_var nil nil p.(prog_main) p = OK p'.
Proof.
  rewrite <- transf_OK. 
  unfold transform_partial_augment_program, transform_partial_program2. 
  destruct (map_partial prefix_name transf_fun (prog_funct p)); auto. simpl. 
  destruct (map_partial prefix_name (transf_globvar transf_var) (prog_vars p)); simpl. 
  repeat rewrite app_nil_r. auto. auto.
Qed.

Theorem find_funct_ptr_transf_partial2:
  forall (b: block) (f: A),
  find_funct_ptr (globalenv p) b = Some f ->
  exists f',
  find_funct_ptr (globalenv p') b = Some f' /\ transf_fun f = OK f'.
Proof.
  exact (@find_funct_ptr_transf_augment _ _ _ _ _ _ _ _ _ _ _ transf_augment_OK).
Qed.

Theorem find_funct_ptr_rev_transf_partial2:
  forall (b: block) (tf: B),
  find_funct_ptr (globalenv p') b = Some tf ->
  exists f, find_funct_ptr (globalenv p) b = Some f /\ transf_fun f = OK tf.
Proof.
  pose proof (@find_funct_ptr_rev_transf_augment _ _ _ _ _ _ _ _ _ _ _ transf_augment_OK).
  intros.  pose proof (H b tf H0). 
  destruct (zlt (genv_nextfun (globalenv p)) b).  auto. inversion H1. 
Qed.

Theorem find_funct_transf_partial2:
  forall (v: val) (f: A),
  find_funct (globalenv p) v = Some f ->
  exists f',
  find_funct (globalenv p') v = Some f' /\ transf_fun f = OK f'.
Proof.
  exact (@find_funct_transf_augment _ _ _ _ _ _ _ _ _ _ _ transf_augment_OK).
Qed.

Theorem find_funct_rev_transf_partial2:
  forall (v: val) (tf: B),
  find_funct (globalenv p') v = Some tf ->
  exists f, find_funct (globalenv p) v = Some f /\ transf_fun f = OK tf.
Proof.
  pose proof (@find_funct_rev_transf_augment _ _ _ _ _ _ _ _ _ _ _ transf_augment_OK).
  intros. pose proof (H v tf H0). 
  destruct H1. auto. inversion H1. 
Qed.

Theorem find_var_info_transf_partial2:
  forall (b: block) (v: globvar V),
  find_var_info (globalenv p) b = Some v ->
  exists v',
  find_var_info (globalenv p') b = Some v' /\ transf_globvar transf_var v = OK v'.
Proof.
  exact (@find_var_info_transf_augment _ _ _ _ _ _ _ _ _ _ _ transf_augment_OK).
Qed.

Theorem find_var_info_rev_transf_partial2:
  forall (b: block) (v': globvar W),
  find_var_info (globalenv p') b = Some v' ->
  exists v,
  find_var_info (globalenv p) b = Some v /\ transf_globvar transf_var v = OK v'.
Proof.
  pose proof (@find_var_info_rev_transf_augment _ _ _ _ _ _ _ _ _ _ _ transf_augment_OK).
  intros.  pose proof (H b v' H0). 
  destruct (zlt b (genv_nextvar (globalenv p))).  auto. inversion H1. 
Qed.

Theorem find_symbol_transf_partial2:
  forall (s: ident),
  find_symbol (globalenv p') s = find_symbol (globalenv p) s.
Proof.
  pose proof (@find_symbol_transf_augment _ _ _ _ _ _ _ _ _ _ _ transf_augment_OK).
  auto.
Qed.

Theorem init_mem_transf_partial2:
  forall m, init_mem p = Some m -> init_mem p' = Some m.
Proof.
  pose proof (@init_mem_transf_augment _ _ _ _ _ _ _ _ _ _ _ transf_augment_OK).
  intros. simpl in H. apply H; auto.  
Qed.

End TRANSF_PROGRAM_PARTIAL2.

Section TRANSF_PROGRAM_PARTIAL.

Variable A B V: Type.
Variable transf: A -> res B.
Variable p: program A V.
Variable p': program B V.
Hypothesis transf_OK: transform_partial_program transf p = OK p'.

Remark transf2_OK:
  transform_partial_program2 transf (fun x => OK x) p = OK p'.
Proof.
  rewrite <- transf_OK. 
  unfold transform_partial_program2, transform_partial_program.
  destruct (map_partial prefix_name transf (prog_funct p)); auto.
  simpl. replace (transf_globvar (fun (x : V) => OK x)) with (fun (v: globvar V) => OK v).
  rewrite map_partial_identity; auto.
  apply extensionality; intros. destruct x; auto.
Qed.

Theorem find_funct_ptr_transf_partial:
  forall (b: block) (f: A),
  find_funct_ptr (globalenv p) b = Some f ->
  exists f',
  find_funct_ptr (globalenv p') b = Some f' /\ transf f = OK f'.
Proof.
  exact (@find_funct_ptr_transf_partial2 _ _ _ _ _ _ _ _ transf2_OK).
Qed.

Theorem find_funct_ptr_rev_transf_partial:
  forall (b: block) (tf: B),
  find_funct_ptr (globalenv p') b = Some tf ->
  exists f, find_funct_ptr (globalenv p) b = Some f /\ transf f = OK tf.
Proof.
  exact (@find_funct_ptr_rev_transf_partial2 _ _ _ _ _ _ _ _ transf2_OK).
Qed.

Theorem find_funct_transf_partial:
  forall (v: val) (f: A),
  find_funct (globalenv p) v = Some f ->
  exists f',
  find_funct (globalenv p') v = Some f' /\ transf f = OK f'.
Proof.
  exact (@find_funct_transf_partial2 _ _ _ _ _ _ _ _ transf2_OK).
Qed.

Theorem find_funct_rev_transf_partial:
  forall (v: val) (tf: B),
  find_funct (globalenv p') v = Some tf ->
  exists f, find_funct (globalenv p) v = Some f /\ transf f = OK tf.
Proof.
  exact (@find_funct_rev_transf_partial2 _ _ _ _ _ _ _ _ transf2_OK).
Qed.

Theorem find_symbol_transf_partial:
  forall (s: ident),
  find_symbol (globalenv p') s = find_symbol (globalenv p) s.
Proof.
  exact (@find_symbol_transf_partial2 _ _ _ _ _ _ _ _ transf2_OK).
Qed.

Theorem find_var_info_transf_partial:
  forall (b: block),
  find_var_info (globalenv p') b = find_var_info (globalenv p) b.
Proof.
  intros. case_eq (find_var_info (globalenv p) b); intros.
  exploit find_var_info_transf_partial2. eexact transf2_OK. eauto. 
  intros [v' [P Q]]. monadInv Q. rewrite P. inv EQ. destruct g; auto. 
  case_eq (find_var_info (globalenv p') b); intros.
  exploit find_var_info_rev_transf_partial2. eexact transf2_OK. eauto.
  intros [v' [P Q]]. monadInv Q. inv EQ. congruence. 
  auto.
Qed.

Theorem init_mem_transf_partial:
  forall m, init_mem p = Some m -> init_mem p' = Some m.
Proof.
  exact (@init_mem_transf_partial2 _ _ _ _ _ _ _ _ transf2_OK).
Qed.

End TRANSF_PROGRAM_PARTIAL.

Section TRANSF_PROGRAM.

Variable A B V: Type.
Variable transf: A -> B.
Variable p: program A V.
Let tp := transform_program transf p.

Remark transf_OK:
  transform_partial_program (fun x => OK (transf x)) p = OK tp.
Proof.
  unfold tp, transform_program, transform_partial_program.
  rewrite map_partial_total. reflexivity.
Qed.

Theorem find_funct_ptr_transf:
  forall (b: block) (f: A),
  find_funct_ptr (globalenv p) b = Some f ->
  find_funct_ptr (globalenv tp) b = Some (transf f).
Proof.
  intros. 
  destruct (@find_funct_ptr_transf_partial _ _ _ _ _ _ transf_OK _ _ H)
  as [f' [X Y]]. congruence.
Qed.

Theorem find_funct_ptr_rev_transf:
  forall (b: block) (tf: B),
  find_funct_ptr (globalenv tp) b = Some tf ->
  exists f, find_funct_ptr (globalenv p) b = Some f /\ transf f = tf.
Proof.
  intros. exploit find_funct_ptr_rev_transf_partial. eexact transf_OK. eauto.
  intros [f [X Y]]. exists f; split. auto. congruence.
Qed.

Theorem find_funct_transf:
  forall (v: val) (f: A),
  find_funct (globalenv p) v = Some f ->
  find_funct (globalenv tp) v = Some (transf f).
Proof.
  intros. 
  destruct (@find_funct_transf_partial _ _ _ _ _ _ transf_OK _ _ H)
  as [f' [X Y]]. congruence.
Qed.

Theorem find_funct_rev_transf:
  forall (v: val) (tf: B),
  find_funct (globalenv tp) v = Some tf ->
  exists f, find_funct (globalenv p) v = Some f /\ transf f = tf.
Proof.
  intros. exploit find_funct_rev_transf_partial. eexact transf_OK. eauto.
  intros [f [X Y]]. exists f; split. auto. congruence.
Qed.

Theorem find_symbol_transf:
  forall (s: ident),
  find_symbol (globalenv tp) s = find_symbol (globalenv p) s.
Proof.
  exact (@find_symbol_transf_partial _ _ _ _ _ _ transf_OK).
Qed.

Theorem find_var_info_transf:
  forall (b: block),
  find_var_info (globalenv tp) b = find_var_info (globalenv p) b.
Proof.
  exact (@find_var_info_transf_partial _ _ _ _ _ _ transf_OK).
Qed.

Theorem init_mem_transf:
  forall m, init_mem p = Some m -> init_mem tp = Some m.
Proof.
  exact (@init_mem_transf_partial _ _ _ _ _ _ transf_OK).
Qed.

End TRANSF_PROGRAM.

End Genv.