summaryrefslogtreecommitdiff
path: root/common/Globalenvs.v
blob: e4772e255328502e74f465dfea6a637a78ff7709 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
(* *********************************************************************)
(*                                                                     *)
(*              The Compcert verified compiler                         *)
(*                                                                     *)
(*          Xavier Leroy, INRIA Paris-Rocquencourt                     *)
(*  with contributions from Andrew Tolmach (Portland State University) *)
(*                                                                     *)
(*  Copyright Institut National de Recherche en Informatique et en     *)
(*  Automatique.  All rights reserved.  This file is distributed       *)
(*  under the terms of the GNU General Public License as published by  *)
(*  the Free Software Foundation, either version 2 of the License, or  *)
(*  (at your option) any later version.  This file is also distributed *)
(*  under the terms of the INRIA Non-Commercial License Agreement.     *)
(*                                                                     *)
(* *********************************************************************)

(** Global environments are a component of the dynamic semantics of 
  all languages involved in the compiler.  A global environment
  maps symbol names (names of functions and of global variables)
  to the corresponding memory addresses.  It also maps memory addresses
  of functions to the corresponding function descriptions.  

  Global environments, along with the initial memory state at the beginning
  of program execution, are built from the program of interest, as follows:
- A distinct memory address is assigned to each function of the program.
  These function addresses use negative numbers to distinguish them from
  addresses of memory blocks.  The associations of function name to function
  address and function address to function description are recorded in
  the global environment.
- For each global variable, a memory block is allocated and associated to
  the name of the variable.

  These operations reflect (at a high level of abstraction) what takes
  place during program linking and program loading in a real operating
  system. *)

Require Recdef.
Require Import Zwf.
Require Import Coqlib.
Require Import Errors.
Require Import Maps.
Require Import AST.
Require Import Integers.
Require Import Floats.
Require Import Values.
Require Import Memory.

Notation "s #1" := (fst s) (at level 9, format "s '#1'") : pair_scope.
Notation "s #2" := (snd s) (at level 9, format "s '#2'") : pair_scope.

Local Open Scope pair_scope.
Local Open Scope error_monad_scope.

Set Implicit Arguments.

(** Auxiliary function for initialization of global variables. *)

Function store_zeros (m: mem) (b: block) (p: Z) (n: Z) {wf (Zwf 0) n}: option mem :=
  if zle n 0 then Some m else
    match Mem.store Mint8unsigned m b p Vzero with
    | Some m' => store_zeros m' b (p + 1) (n - 1)
    | None => None
    end.
Proof.
  intros. red. omega.
  apply Zwf_well_founded.
Qed.

(* To avoid useless definitions of inductors in extracted code. *)
Local Unset Elimination Schemes.
Local Unset Case Analysis Schemes.

Module Genv.

(** * Global environments *)

Section GENV.

Variable F: Type.  (**r The type of function descriptions *)
Variable V: Type.  (**r The type of information attached to variables *)

(** The type of global environments. *)

Record t: Type := mkgenv {
  genv_symb: PTree.t block;             (**r mapping symbol -> block *)
  genv_funs: PTree.t F;                 (**r mapping function pointer -> definition *)
  genv_vars: PTree.t (globvar V);       (**r mapping variable pointer -> info *)
  genv_next: block;                     (**r next symbol pointer *)
  genv_symb_range: forall id b, PTree.get id genv_symb = Some b -> Plt b genv_next;
  genv_funs_range: forall b f, PTree.get b genv_funs = Some f -> Plt b genv_next;
  genv_vars_range: forall b v, PTree.get b genv_vars = Some v -> Plt b genv_next;
  genv_funs_vars: forall b1 b2 f v,
    PTree.get b1 genv_funs = Some f -> PTree.get b2 genv_vars = Some v -> b1 <> b2;
  genv_vars_inj: forall id1 id2 b, 
    PTree.get id1 genv_symb = Some b -> PTree.get id2 genv_symb = Some b -> id1 = id2
}.

(** ** Lookup functions *)

(** [find_symbol ge id] returns the block associated with the given name, if any *)

Definition find_symbol (ge: t) (id: ident) : option block :=
  PTree.get id ge.(genv_symb).

(** [symbol_address ge id ofs] returns a pointer into the block associated
  with [id], at byte offset [ofs].  [Vundef] is returned if no block is associated
  to [id]. *)

Definition symbol_address (ge: t) (id: ident) (ofs: int) : val :=
  match find_symbol ge id with
  | Some b => Vptr b ofs
  | None => Vundef
  end.

(** [find_funct_ptr ge b] returns the function description associated with
    the given address. *)

Definition find_funct_ptr (ge: t) (b: block) : option F :=
  PTree.get b ge.(genv_funs).

(** [find_funct] is similar to [find_funct_ptr], but the function address
    is given as a value, which must be a pointer with offset 0. *)

Definition find_funct (ge: t) (v: val) : option F :=
  match v with
  | Vptr b ofs => if Int.eq_dec ofs Int.zero then find_funct_ptr ge b else None
  | _ => None
  end.

(** [invert_symbol ge b] returns the name associated with the given block, if any *)

Definition invert_symbol (ge: t) (b: block) : option ident :=
  PTree.fold
    (fun res id b' => if eq_block b b' then Some id else res)
    ge.(genv_symb) None.

(** [find_var_info ge b] returns the information attached to the variable
   at address [b]. *)

Definition find_var_info (ge: t) (b: block) : option (globvar V) :=
  PTree.get b ge.(genv_vars).

(** ** Constructing the global environment *)

Program Definition add_global (ge: t) (idg: ident * globdef F V) : t :=
  @mkgenv
    (PTree.set idg#1 ge.(genv_next) ge.(genv_symb))
    (match idg#2 with
     | Gfun f => PTree.set ge.(genv_next) f ge.(genv_funs)
     | Gvar v => ge.(genv_funs)
     end)
    (match idg#2 with
     | Gfun f => ge.(genv_vars)
     | Gvar v => PTree.set ge.(genv_next) v ge.(genv_vars)
     end)
    (Psucc ge.(genv_next))
    _ _ _ _ _.
Next Obligation.
  destruct ge; simpl in *.
  rewrite PTree.gsspec in H. destruct (peq id i). inv H. apply Plt_succ.
  apply Plt_trans_succ; eauto.
Qed.
Next Obligation.
  destruct ge; simpl in *. 
  destruct g. 
  rewrite PTree.gsspec in H. 
  destruct (peq b genv_next0). inv H. apply Plt_succ.
  apply Plt_trans_succ; eauto.
  apply Plt_trans_succ; eauto.
Qed.
Next Obligation.
  destruct ge; simpl in *. 
  destruct g.
  apply Plt_trans_succ; eauto.
  rewrite PTree.gsspec in H. 
  destruct (peq b genv_next0). inv H. apply Plt_succ.
  apply Plt_trans_succ; eauto.
Qed.
Next Obligation.
  destruct ge; simpl in *.
  destruct g.
  rewrite PTree.gsspec in H.
  destruct (peq b1 genv_next0). inv H.
  apply sym_not_equal; apply Plt_ne; eauto.
  eauto.
  rewrite PTree.gsspec in H0.
  destruct (peq b2 genv_next0). inv H0.
  apply Plt_ne; eauto.
  eauto.
Qed.
Next Obligation.
  destruct ge; simpl in *. 
  rewrite PTree.gsspec in H. rewrite PTree.gsspec in H0. 
  destruct (peq id1 i); destruct (peq id2 i).
  congruence.
  inv H. eelim Plt_strict. eapply genv_symb_range0; eauto.
  inv H0. eelim Plt_strict. eapply genv_symb_range0; eauto.
  eauto.
Qed.

Definition add_globals (ge: t) (gl: list (ident * globdef F V)) : t :=
  List.fold_left add_global gl ge.

Lemma add_globals_app:
  forall gl2 gl1 ge,
  add_globals ge (gl1 ++ gl2) = add_globals (add_globals ge gl1) gl2.
Proof.
  induction gl1; simpl; intros. auto. rewrite IHgl1; auto.
Qed.

Program Definition empty_genv : t :=
  @mkgenv (PTree.empty _) (PTree.empty _) (PTree.empty _) 1%positive _ _ _ _ _.
Next Obligation.
  rewrite PTree.gempty in H. discriminate.
Qed.
Next Obligation.
  rewrite PTree.gempty in H. discriminate.
Qed.
Next Obligation.
  rewrite PTree.gempty in H. discriminate.
Qed.
Next Obligation.
  rewrite PTree.gempty in H. discriminate.
Qed.
Next Obligation.
  rewrite PTree.gempty in H. discriminate.
Qed.

Definition globalenv (p: program F V) :=
  add_globals empty_genv p.(prog_defs).

(** Proof principles *)

Section GLOBALENV_PRINCIPLES.

Variable P: t -> Prop.

Lemma add_globals_preserves:
  forall gl ge,
  (forall ge id g, P ge -> In (id, g) gl -> P (add_global ge (id, g))) ->
  P ge -> P (add_globals ge gl).
Proof.
  induction gl; simpl; intros. 
  auto.
  destruct a. apply IHgl; auto. 
Qed.

Lemma add_globals_ensures:
  forall id g gl ge,
  (forall ge id g, P ge -> In (id, g) gl -> P (add_global ge (id, g))) ->
  (forall ge, P (add_global ge (id, g))) ->
  In (id, g) gl -> P (add_globals ge gl).
Proof.
  induction gl; simpl; intros.
  contradiction.
  destruct H1. subst a. apply add_globals_preserves; auto. 
  apply IHgl; auto. 
Qed.

Lemma add_globals_norepet_ensures:
  forall id g gl ge,
  (forall ge id1 g1, P ge -> In (id1, g1) gl -> id1 <> id -> P (add_global ge (id1, g1))) ->
  (forall ge, P (add_global ge (id, g))) ->
  In (id, g) gl -> list_norepet (map fst gl) -> P (add_globals ge gl).
Proof.
  induction gl; simpl; intros.
  contradiction.
  inv H2. 
  destruct H1. subst a. simpl in H5. 
  apply add_globals_preserves; auto.
  intros. apply H. auto. auto. red; intros; subst id0. elim H5. 
  change id with (fst (id, g0)). apply List.in_map; auto. 
  apply IHgl; auto. 
Qed.

End GLOBALENV_PRINCIPLES.

(** ** Properties of the operations over global environments *)

Theorem shift_symbol_address:
  forall ge id ofs n,
  symbol_address ge id (Int.add ofs n) = Val.add (symbol_address ge id ofs) (Vint n).
Proof.
  intros. unfold symbol_address. destruct (find_symbol ge id); auto. 
Qed.

Theorem find_funct_inv:
  forall ge v f,
  find_funct ge v = Some f -> exists b, v = Vptr b Int.zero.
Proof.
  intros until f; unfold find_funct. 
  destruct v; try congruence. 
  destruct (Int.eq_dec i Int.zero); try congruence.
  intros. exists b; congruence.
Qed.

Theorem find_funct_find_funct_ptr:
  forall ge b,
  find_funct ge (Vptr b Int.zero) = find_funct_ptr ge b.
Proof.
  intros; simpl. apply dec_eq_true.
Qed.

Theorem find_symbol_exists:
  forall p id g,
  In (id, g) (prog_defs p) ->
  exists b, find_symbol (globalenv p) id = Some b.
Proof.
  intros. unfold globalenv. eapply add_globals_ensures; eauto.
(* preserves *)
  intros. unfold find_symbol; simpl. rewrite PTree.gsspec. destruct (peq id id0).
  econstructor; eauto.
  auto.
(* ensures *)
  intros. unfold find_symbol; simpl. rewrite PTree.gss. econstructor; eauto.
Qed.

Theorem find_funct_ptr_exists:
  forall p id f,
  list_norepet (prog_defs_names p) ->
  In (id, Gfun f) (prog_defs p) ->
  exists b,
     find_symbol (globalenv p) id = Some b
  /\ find_funct_ptr (globalenv p) b = Some f.
Proof.
  intros; unfold globalenv. eapply add_globals_norepet_ensures; eauto.
(* preserves *)
  intros. unfold find_symbol, find_funct_ptr in *; simpl.
  destruct H1 as [b [A B]]. exists b; split.
  rewrite PTree.gso; auto.
  destruct g1 as [f1 | v1]. rewrite PTree.gso. auto.
  apply Plt_ne. eapply genv_funs_range; eauto.
  auto. 
(* ensures *)
  intros. unfold find_symbol, find_funct_ptr in *; simpl.
  exists (genv_next ge); split. apply PTree.gss. apply PTree.gss.
Qed.

Theorem find_var_exists:
  forall p id v,
  list_norepet (prog_defs_names p) ->
  In (id, Gvar v) (prog_defs p) ->
  exists b,
     find_symbol (globalenv p) id = Some b
  /\ find_var_info (globalenv p) b = Some v.
Proof.
  intros; unfold globalenv. eapply add_globals_norepet_ensures; eauto.
(* preserves *)
  intros. unfold find_symbol, find_var_info in *; simpl.
  destruct H1 as [b [A B]]. exists b; split.
  rewrite PTree.gso; auto.
  destruct g1 as [f1 | v1]. auto. rewrite PTree.gso. auto.
  apply Plt_ne. eapply genv_vars_range; eauto.
(* ensures *)
  intros. unfold find_symbol, find_var_info in *; simpl.
  exists (genv_next ge); split. apply PTree.gss. apply PTree.gss. 
Qed.

Lemma find_symbol_inversion : forall p x b,
  find_symbol (globalenv p) x = Some b ->
  In x (prog_defs_names p).
Proof.
  intros until b; unfold globalenv. eapply add_globals_preserves.
(* preserves *)
  unfold find_symbol; simpl; intros. rewrite PTree.gsspec in H1. 
  destruct (peq x id). subst x. change id with (fst (id, g)). apply List.in_map; auto.
  auto.
(* base *)
  unfold find_symbol; simpl; intros. rewrite PTree.gempty in H. discriminate.
Qed.

Theorem find_funct_ptr_inversion:
  forall p b f,
  find_funct_ptr (globalenv p) b = Some f ->
  exists id, In (id, Gfun f) (prog_defs p).
Proof.
  intros until f. unfold globalenv. apply add_globals_preserves. 
(* preserves *)
  unfold find_funct_ptr; simpl; intros. destruct g; auto. 
  rewrite PTree.gsspec in H1. destruct (peq b (genv_next ge)).
  inv H1. exists id; auto.
  auto.
(* base *)
  unfold find_funct_ptr; simpl; intros. rewrite PTree.gempty in H. discriminate.
Qed.

Theorem find_funct_inversion:
  forall p v f,
  find_funct (globalenv p) v = Some f ->
  exists id, In (id, Gfun f) (prog_defs p).
Proof.
  intros. exploit find_funct_inv; eauto. intros [b EQ]. subst v. 
  rewrite find_funct_find_funct_ptr in H.
  eapply find_funct_ptr_inversion; eauto.
Qed.

Theorem find_funct_ptr_prop:
  forall (P: F -> Prop) p b f,
  (forall id f, In (id, Gfun f) (prog_defs p) -> P f) ->
  find_funct_ptr (globalenv p) b = Some f ->
  P f.
Proof.
  intros. exploit find_funct_ptr_inversion; eauto. intros [id IN]. eauto.
Qed.

Theorem find_funct_prop:
  forall (P: F -> Prop) p v f,
  (forall id f, In (id, Gfun f) (prog_defs p) -> P f) ->
  find_funct (globalenv p) v = Some f ->
  P f.
Proof.
  intros. exploit find_funct_inversion; eauto. intros [id IN]. eauto.
Qed.

Theorem find_funct_ptr_symbol_inversion:
  forall p id b f,
  find_symbol (globalenv p) id = Some b ->
  find_funct_ptr (globalenv p) b = Some f ->
  In (id, Gfun f) p.(prog_defs).
Proof.
  intros until f. unfold globalenv, find_symbol, find_funct_ptr. apply add_globals_preserves. 
(* preserves *)
  intros. simpl in *. rewrite PTree.gsspec in H1. destruct (peq id id0). 
  inv H1. destruct g as [f1|v1]. rewrite PTree.gss in H2. inv H2. auto.
  eelim Plt_strict. eapply genv_funs_range; eauto.
  destruct g as [f1|v1]. rewrite PTree.gso in H2. auto.
  apply Plt_ne. eapply genv_symb_range; eauto.
  auto.
(* initial *)
  intros. simpl in *. rewrite PTree.gempty in H. discriminate.
Qed.


Theorem global_addresses_distinct:
  forall ge id1 id2 b1 b2,
  id1 <> id2 ->
  find_symbol ge id1 = Some b1 ->
  find_symbol ge id2 = Some b2 ->
  b1 <> b2.
Proof.
  intros. red; intros; subst. elim H. destruct ge. eauto. 
Qed.

Theorem invert_find_symbol:
  forall ge id b,
  invert_symbol ge b = Some id -> find_symbol ge id = Some b.
Proof.
  intros until b; unfold find_symbol, invert_symbol.
  apply PTree_Properties.fold_rec.
  intros. rewrite H in H0; auto. 
  congruence.
  intros. destruct (eq_block b v). inv H2. apply PTree.gss. 
  rewrite PTree.gsspec. destruct (peq id k).
  subst. assert (m!k = Some b) by auto. congruence.
  auto.
Qed.

Theorem find_invert_symbol:
  forall ge id b,
  find_symbol ge id = Some b -> invert_symbol ge b = Some id.
Proof.
  intros until b.
  assert (find_symbol ge id = Some b -> exists id', invert_symbol ge b = Some id').
  unfold find_symbol, invert_symbol.
  apply PTree_Properties.fold_rec.
  intros. rewrite H in H0; auto.
  rewrite PTree.gempty; congruence.
  intros. destruct (eq_block b v). exists k; auto.
  rewrite PTree.gsspec in H2. destruct (peq id k).
  inv H2. congruence. auto. 

  intros; exploit H; eauto. intros [id' A]. 
  assert (id = id'). eapply genv_vars_inj; eauto. apply invert_find_symbol; auto.
  congruence.
Qed.

Definition advance_next (gl: list (ident * globdef F V)) (x: positive) :=
  List.fold_left (fun n g => Psucc n) gl x.

Remark genv_next_add_globals:
  forall gl ge,
  genv_next (add_globals ge gl) = advance_next gl (genv_next ge).
Proof.
  induction gl; simpl; intros.
  auto.
  rewrite IHgl. auto. 
Qed.

(** * Construction of the initial memory state *)

Section INITMEM.

Variable ge: t.

Definition init_data_size (i: init_data) : Z :=
  match i with
  | Init_int8 _ => 1
  | Init_int16 _ => 2
  | Init_int32 _ => 4
  | Init_int64 _ => 8
  | Init_float32 _ => 4
  | Init_float64 _ => 8
  | Init_addrof _ _ => 4
  | Init_space n => Zmax n 0
  end.

Lemma init_data_size_pos:
  forall i, init_data_size i >= 0.
Proof.
  destruct i; simpl; try omega. generalize (Zle_max_r z 0). omega.
Qed.

Definition store_init_data (m: mem) (b: block) (p: Z) (id: init_data) : option mem :=
  match id with
  | Init_int8 n => Mem.store Mint8unsigned m b p (Vint n)
  | Init_int16 n => Mem.store Mint16unsigned m b p (Vint n)
  | Init_int32 n => Mem.store Mint32 m b p (Vint n)
  | Init_int64 n => Mem.store Mint64 m b p (Vlong n)
  | Init_float32 n => Mem.store Mfloat32 m b p (Vsingle n)
  | Init_float64 n => Mem.store Mfloat64 m b p (Vfloat n)
  | Init_addrof symb ofs =>
      match find_symbol ge symb with
      | None => None
      | Some b' => Mem.store Mint32 m b p (Vptr b' ofs)
      end
  | Init_space n => Some m
  end.

Fixpoint store_init_data_list (m: mem) (b: block) (p: Z) (idl: list init_data)
                              {struct idl}: option mem :=
  match idl with
  | nil => Some m
  | id :: idl' =>
      match store_init_data m b p id with
      | None => None
      | Some m' => store_init_data_list m' b (p + init_data_size id) idl'
      end
  end.

Fixpoint init_data_list_size (il: list init_data) {struct il} : Z :=
  match il with
  | nil => 0
  | i :: il' => init_data_size i + init_data_list_size il'
  end.

Definition perm_globvar (gv: globvar V) : permission :=
  if gv.(gvar_volatile) then Nonempty
  else if gv.(gvar_readonly) then Readable
  else Writable.

Definition alloc_global (m: mem) (idg: ident * globdef F V): option mem :=
  match idg with
  | (id, Gfun f) =>
      let (m1, b) := Mem.alloc m 0 1 in
      Mem.drop_perm m1 b 0 1 Nonempty
  | (id, Gvar v) =>
      let init := v.(gvar_init) in
      let sz := init_data_list_size init in
      let (m1, b) := Mem.alloc m 0 sz in
      match store_zeros m1 b 0 sz with
      | None => None
      | Some m2 =>
          match store_init_data_list m2 b 0 init with
          | None => None
          | Some m3 => Mem.drop_perm m3 b 0 sz (perm_globvar v)
          end
      end
  end.

Fixpoint alloc_globals (m: mem) (gl: list (ident * globdef F V))
                       {struct gl} : option mem :=
  match gl with
  | nil => Some m
  | g :: gl' =>
      match alloc_global m g with
      | None => None
      | Some m' => alloc_globals m' gl'
      end
  end.

Lemma alloc_globals_app : forall gl1 gl2 m m1,
  alloc_globals m gl1 = Some m1 ->
  alloc_globals m1 gl2 = alloc_globals m (gl1 ++ gl2).
Proof.
  induction gl1.
  simpl. intros.  inversion H; subst. auto.
  simpl. intros. destruct (alloc_global m a); eauto. inversion H.
Qed.

(** Next-block properties *)

Remark store_zeros_nextblock:
  forall m b p n m', store_zeros m b p n = Some m' -> Mem.nextblock m' = Mem.nextblock m.
Proof.
  intros until n. functional induction (store_zeros m b p n); intros.
  inv H; auto.
  rewrite IHo; eauto with mem.
  congruence.
Qed.

Remark store_init_data_list_nextblock:
  forall idl b m p m',
  store_init_data_list m b p idl = Some m' ->
  Mem.nextblock m' = Mem.nextblock m.
Proof.
  induction idl; simpl; intros until m'.
  intros. congruence.
  caseEq (store_init_data m b p a); try congruence. intros. 
  transitivity (Mem.nextblock m0). eauto. 
  destruct a; simpl in H; try (eapply Mem.nextblock_store; eauto; fail).
  congruence.
  destruct (find_symbol ge i); try congruence. eapply Mem.nextblock_store; eauto. 
Qed.

Remark alloc_global_nextblock:
  forall g m m',
  alloc_global m g = Some m' ->
  Mem.nextblock m' = Psucc(Mem.nextblock m).
Proof.
  unfold alloc_global. intros.
  destruct g as [id [f|v]]. 
  (* function *)
  destruct (Mem.alloc m 0 1) as [m1 b] eqn:?.
  erewrite Mem.nextblock_drop; eauto. erewrite Mem.nextblock_alloc; eauto. 
  (* variable *)
  set (init := gvar_init v) in *.
  set (sz := init_data_list_size init) in *.
  destruct (Mem.alloc m 0 sz) as [m1 b] eqn:?.
  destruct (store_zeros m1 b 0 sz) as [m2|] eqn:?; try discriminate.
  destruct (store_init_data_list m2 b 0 init) as [m3|] eqn:?; try discriminate.
  erewrite Mem.nextblock_drop; eauto.
  erewrite store_init_data_list_nextblock; eauto.
  erewrite store_zeros_nextblock; eauto.
  erewrite Mem.nextblock_alloc; eauto.
Qed.

Remark alloc_globals_nextblock:
  forall gl m m',
  alloc_globals m gl = Some m' ->
  Mem.nextblock m' = advance_next gl (Mem.nextblock m).
Proof.
  induction gl; simpl; intros.
  congruence.
  destruct (alloc_global m a) as [m1|] eqn:?; try discriminate.
  erewrite IHgl; eauto. erewrite alloc_global_nextblock; eauto.
Qed.

(** Permissions *)

Remark store_zeros_perm:
  forall k prm b' q m b p n m',
  store_zeros m b p n = Some m' ->
  (Mem.perm m b' q k prm <-> Mem.perm m' b' q k prm).
Proof.
  intros until n. functional induction (store_zeros m b p n); intros.
  inv H; tauto.
  destruct (IHo _ H); intros. split; eauto with mem.
  congruence.
Qed.

Remark store_init_data_list_perm:
  forall k prm b' q idl b m p m',
  store_init_data_list m b p idl = Some m' ->
  (Mem.perm m b' q k prm <-> Mem.perm m' b' q k prm).
Proof.
  induction idl; simpl; intros until m'.
  intros. inv H. tauto. 
  caseEq (store_init_data m b p a); try congruence. intros.
  rewrite <- (IHidl _ _ _ _ H0).
  assert (forall chunk v,
          Mem.store chunk m b p v = Some m0 ->
          (Mem.perm m b' q k prm <-> Mem.perm m0 b' q k prm)).
    intros; split; eauto with mem. 
  destruct a; simpl in H; eauto.
  inv H; tauto.
  destruct (find_symbol ge i). eauto. discriminate.
Qed.

Remark alloc_global_perm:
  forall k prm b' q idg m m',
  alloc_global m idg = Some m' ->
  Mem.valid_block m b' ->
  (Mem.perm m b' q k prm <-> Mem.perm m' b' q k prm).
Proof.
  intros. destruct idg as [id [f|v]]; simpl in H. 
  (* function *)
  destruct (Mem.alloc m 0 1) as [m1 b] eqn:?. 
  assert (b' <> b). apply Mem.valid_not_valid_diff with m; eauto with mem.
  split; intros.
  eapply Mem.perm_drop_3; eauto. eapply Mem.perm_alloc_1; eauto. 
  eapply Mem.perm_alloc_4; eauto. eapply Mem.perm_drop_4; eauto. 
  (* variable *)
  set (init := gvar_init v) in *.
  set (sz := init_data_list_size init) in *.
  destruct (Mem.alloc m 0 sz) as [m1 b] eqn:?.
  destruct (store_zeros m1 b 0 sz) as [m2|] eqn:?; try discriminate.
  destruct (store_init_data_list m2 b 0 init) as [m3|] eqn:?; try discriminate.
  assert (b' <> b). apply Mem.valid_not_valid_diff with m; eauto with mem.
  split; intros.
  eapply Mem.perm_drop_3; eauto.
  erewrite <- store_init_data_list_perm; [idtac|eauto].
  erewrite <- store_zeros_perm; [idtac|eauto].
  eapply Mem.perm_alloc_1; eauto. 
  eapply Mem.perm_alloc_4; eauto.
  erewrite store_zeros_perm; [idtac|eauto].
  erewrite store_init_data_list_perm; [idtac|eauto]. 
  eapply Mem.perm_drop_4; eauto. 
Qed.

Remark alloc_globals_perm:
  forall k prm b' q gl m m',
  alloc_globals m gl = Some m' ->
  Mem.valid_block m b' ->
  (Mem.perm m b' q k prm <-> Mem.perm m' b' q k prm).
Proof.
  induction gl.
  simpl; intros. inv H. tauto.
  simpl; intros. destruct (alloc_global m a) as [m1|] eqn:?; try discriminate.
  erewrite alloc_global_perm; eauto. eapply IHgl; eauto. 
  unfold Mem.valid_block in *. erewrite alloc_global_nextblock; eauto.
  apply Plt_trans_succ; auto.
Qed.

(** Data preservation properties *)

Remark store_zeros_load_outside:
  forall m b p n m',
  store_zeros m b p n = Some m' ->
  forall chunk b' p',
  b' <> b \/ p' + size_chunk chunk <= p \/ p + n <= p' ->
  Mem.load chunk m' b' p' = Mem.load chunk m b' p'.
Proof.
  intros until n. functional induction (store_zeros m b p n); intros.
  inv H; auto.
  transitivity (Mem.load chunk m' b' p'). 
  apply IHo. auto. intuition omega. 
  eapply Mem.load_store_other; eauto. simpl. intuition omega. 
  discriminate.
Qed.

Remark store_zeros_loadbytes_outside:
  forall m b p n m',
  store_zeros m b p n = Some m' ->
  forall b' p' n',
  b' <> b \/ p' + n' <= p \/ p + n <= p' ->
  Mem.loadbytes m' b' p' n' = Mem.loadbytes m b' p' n'.
Proof.
  intros until n. functional induction (store_zeros m b p n); intros.
  inv H; auto.
  transitivity (Mem.loadbytes m' b' p' n'). 
  apply IHo. auto. intuition omega.
  eapply Mem.loadbytes_store_other; eauto. simpl. intuition omega. 
  discriminate.
Qed.

Definition read_as_zero (m: mem) (b: block) (ofs len: Z) : Prop :=
  forall chunk p,
  ofs <= p -> p + size_chunk chunk <= ofs + len -> 
  (align_chunk chunk | p) ->
  Mem.load chunk m b p =
  Some (match chunk with
        | Mint8unsigned | Mint8signed | Mint16unsigned | Mint16signed | Mint32 => Vint Int.zero
        | Mint64 => Vlong Int64.zero
        | Mfloat32 => Vsingle Float32.zero
        | Mfloat64 => Vfloat Float.zero
        | Many32 | Many64 => Vundef
        end).

Remark store_zeros_loadbytes:
  forall m b p n m',
  store_zeros m b p n = Some m' ->
  forall p' n',
  p <= p' -> p' + Z.of_nat n' <= p + n ->
  Mem.loadbytes m' b p' (Z.of_nat n') = Some (list_repeat n' (Byte Byte.zero)).
Proof.
  intros until n; functional induction (store_zeros m b p n); intros.
- destruct n'. simpl. apply Mem.loadbytes_empty. omega.
  rewrite inj_S in H1. omegaContradiction.
- destruct (zeq p' p).
  + subst p'. destruct n'. simpl. apply Mem.loadbytes_empty. omega.
    rewrite inj_S in H1. rewrite inj_S. 
    replace (Z.succ (Z.of_nat n')) with (1 + Z.of_nat n') by omega.
    change (list_repeat (S n') (Byte Byte.zero))
      with ((Byte Byte.zero :: nil) ++ list_repeat n' (Byte Byte.zero)).
    apply Mem.loadbytes_concat. 
    erewrite store_zeros_loadbytes_outside; eauto.
    change (Byte Byte.zero :: nil) with (encode_val Mint8unsigned Vzero).
    change 1 with (size_chunk Mint8unsigned).
    eapply Mem.loadbytes_store_same; eauto. 
    right; omega.
    eapply IHo; eauto. omega. omega. omega. omega. 
  + eapply IHo; eauto. omega. omega. 
- discriminate.
Qed.

Lemma store_zeros_read_as_zero:
  forall m b p n m',
  store_zeros m b p n = Some m' ->
  read_as_zero m' b p n.
Proof.
  intros; red; intros.
  transitivity (Some(decode_val chunk (list_repeat (size_chunk_nat chunk) (Byte Byte.zero)))).
  apply Mem.loadbytes_load; auto. rewrite size_chunk_conv. 
  eapply store_zeros_loadbytes; eauto. rewrite <- size_chunk_conv; auto. 
  f_equal. destruct chunk; reflexivity. 
Qed.

Remark store_init_data_outside:
  forall b i m p m',
  store_init_data m b p i = Some m' ->
  forall chunk b' q,
  b' <> b \/ q + size_chunk chunk <= p \/ p + init_data_size i <= q ->
  Mem.load chunk m' b' q = Mem.load chunk m b' q.
Proof.
  intros. destruct i; simpl in *;
  try (eapply Mem.load_store_other; eauto; fail).
  inv H; auto. 
  destruct (find_symbol ge i); try congruence. 
  eapply Mem.load_store_other; eauto; intuition.
Qed.

Remark store_init_data_list_outside:
  forall b il m p m',
  store_init_data_list m b p il = Some m' ->
  forall chunk b' q,
  b' <> b \/ q + size_chunk chunk <= p ->
  Mem.load chunk m' b' q = Mem.load chunk m b' q.
Proof.
  induction il; simpl.
  intros; congruence.
  intros. destruct (store_init_data m b p a) as [m1|] eqn:?; try congruence.
  transitivity (Mem.load chunk m1 b' q).
  eapply IHil; eauto. generalize (init_data_size_pos a). intuition omega.
  eapply store_init_data_outside; eauto. tauto. 
Qed.

Fixpoint load_store_init_data (m: mem) (b: block) (p: Z) (il: list init_data) {struct il} : Prop :=
  match il with
  | nil => True
  | Init_int8 n :: il' =>
      Mem.load Mint8unsigned m b p = Some(Vint(Int.zero_ext 8 n))
      /\ load_store_init_data m b (p + 1) il'
  | Init_int16 n :: il' =>
      Mem.load Mint16unsigned m b p = Some(Vint(Int.zero_ext 16 n))
      /\ load_store_init_data m b (p + 2) il'
  | Init_int32 n :: il' =>
      Mem.load Mint32 m b p = Some(Vint n)
      /\ load_store_init_data m b (p + 4) il'
  | Init_int64 n :: il' =>
      Mem.load Mint64 m b p = Some(Vlong n)
      /\ load_store_init_data m b (p + 8) il'
  | Init_float32 n :: il' =>
      Mem.load Mfloat32 m b p = Some(Vsingle n)
      /\ load_store_init_data m b (p + 4) il'
  | Init_float64 n :: il' =>
      Mem.load Mfloat64 m b p = Some(Vfloat n)
      /\ load_store_init_data m b (p + 8) il'
  | Init_addrof symb ofs :: il' =>
      (exists b', find_symbol ge symb = Some b' /\ Mem.load Mint32 m b p = Some(Vptr b' ofs))
      /\ load_store_init_data m b (p + 4) il'
  | Init_space n :: il' =>
      read_as_zero m b p n
      /\ load_store_init_data m b (p + Zmax n 0) il'
  end.

Remark init_data_list_size_pos:
  forall il, init_data_list_size il >= 0.
Proof.
  induction il; simpl. omega. generalize (init_data_size_pos a); omega.
Qed.

Lemma store_init_data_list_charact:
  forall b il m p m',
  store_init_data_list m b p il = Some m' ->
  read_as_zero m b p (init_data_list_size il) ->
  load_store_init_data m' b p il.
Proof.
  assert (A: forall chunk v m b p m1 il m',
    Mem.store chunk m b p v = Some m1 ->
    store_init_data_list m1 b (p + size_chunk chunk) il = Some m' ->
    Mem.load chunk m' b p = Some(Val.load_result chunk v)).
  {
    intros. transitivity (Mem.load chunk m1 b p).
    eapply store_init_data_list_outside; eauto. right. omega. 
    eapply Mem.load_store_same; eauto. 
  }
  induction il; simpl.
  auto.
  intros. destruct (store_init_data m b p a) as [m1|] eqn:?; try congruence.
  exploit IHil; eauto.
  red; intros. transitivity (Mem.load chunk m b p0). 
  eapply store_init_data_outside. eauto. auto. 
  apply H0. generalize (init_data_size_pos a); omega. omega. auto.  
  intro D. 
  destruct a; simpl in Heqo; intuition.
  eapply (A Mint8unsigned (Vint i)); eauto.
  eapply (A Mint16unsigned (Vint i)); eauto.
  eapply (A Mint32 (Vint i)); eauto.
  eapply (A Mint64 (Vlong i)); eauto.
  eapply (A Mfloat32 (Vsingle f)); eauto.
  eapply (A Mfloat64 (Vfloat f)); eauto.
  inv Heqo. red; intros. transitivity (Mem.load chunk m1 b p0). 
  eapply store_init_data_list_outside; eauto. right. simpl. xomega. 
  apply H0; auto. simpl. generalize (init_data_list_size_pos il); xomega.
  destruct (find_symbol ge i); try congruence. exists b0; split; auto. 
  eapply (A Mint32 (Vptr b0 i0)); eauto. 
Qed.

Remark load_alloc_global:
  forall chunk b p id g m m',
  alloc_global m (id, g) = Some m' ->
  Mem.valid_block m b ->
  Mem.load chunk m' b p = Mem.load chunk m b p.
Proof.
  intros. destruct g as [f|v]; simpl in H.
  (* function *)
  destruct (Mem.alloc m 0 1) as [m1 b'] eqn:?. 
  assert (b <> b'). apply Mem.valid_not_valid_diff with m; eauto with mem.
  transitivity (Mem.load chunk m1 b p). 
  eapply Mem.load_drop; eauto. 
  eapply Mem.load_alloc_unchanged; eauto.
  (* variable *)
  set (init := gvar_init v) in *.
  set (sz := init_data_list_size init) in *.
  destruct (Mem.alloc m 0 sz) as [m1 b'] eqn:?.
  destruct (store_zeros m1 b' 0 sz) as [m2|] eqn:?; try discriminate.
  destruct (store_init_data_list m2 b' 0 init) as [m3|] eqn:?; try discriminate.
  assert (b <> b'). apply Mem.valid_not_valid_diff with m; eauto with mem.
  transitivity (Mem.load chunk m3 b p). 
  eapply Mem.load_drop; eauto.
  transitivity (Mem.load chunk m2 b p).
  eapply store_init_data_list_outside; eauto. 
  transitivity (Mem.load chunk m1 b p).
  eapply store_zeros_load_outside; eauto.
  eapply Mem.load_alloc_unchanged; eauto.
Qed.

Remark load_alloc_globals:
  forall chunk b p gl m m',
  alloc_globals m gl = Some m' ->
  Mem.valid_block m b ->
  Mem.load chunk m' b p = Mem.load chunk m b p.
Proof.
  induction gl; simpl; intros.
  congruence.
  destruct (alloc_global m a) as [m''|] eqn:?; try discriminate.
  transitivity (Mem.load chunk m'' b p). 
  apply IHgl; auto. unfold Mem.valid_block in *. 
  erewrite alloc_global_nextblock; eauto. 
  apply Plt_trans with (Mem.nextblock m); auto. apply Plt_succ.
  destruct a as [id g]. eapply load_alloc_global; eauto. 
Qed.

Remark load_store_init_data_invariant:
  forall m m' b,
  (forall chunk ofs, Mem.load chunk m' b ofs = Mem.load chunk m b ofs) ->
  forall il p,
  load_store_init_data m b p il -> load_store_init_data m' b p il.
Proof.
  induction il; intro p; simpl.
  auto.
  repeat rewrite H. destruct a; intuition. red; intros; rewrite H; auto. 
Qed.

Definition variables_initialized (g: t) (m: mem) :=
  forall b gv,
  find_var_info g b = Some gv ->
  Mem.range_perm m b 0 (init_data_list_size gv.(gvar_init)) Cur (perm_globvar gv)
  /\ (forall ofs k p, Mem.perm m b ofs k p ->
        0 <= ofs < init_data_list_size gv.(gvar_init) /\ perm_order (perm_globvar gv) p)
  /\ (gv.(gvar_volatile) = false -> load_store_init_data m b 0 gv.(gvar_init)).

Definition functions_initialized (g: t) (m: mem) :=
  forall b fd,
  find_funct_ptr g b = Some fd ->
  Mem.perm m b 0 Cur Nonempty
  /\ (forall ofs k p, Mem.perm m b ofs k p -> ofs = 0 /\ perm_order Nonempty p).

Lemma alloc_global_initialized:
  forall ge m id g m',
  genv_next ge = Mem.nextblock m ->
  alloc_global m (id, g) = Some m' ->
  variables_initialized ge m ->
  functions_initialized ge m ->
  variables_initialized (add_global ge (id, g)) m'
  /\ functions_initialized (add_global ge (id, g)) m'
  /\ genv_next (add_global ge (id, g)) = Mem.nextblock m'.
Proof.
  intros. 
  exploit alloc_global_nextblock; eauto. intros NB. split.
(* variables-initialized *)
  destruct g as [f|v].
(* function *)
  red; intros. unfold find_var_info in H3. simpl in H3. 
  exploit H1; eauto. intros [A [B C]].
  assert (D: Mem.valid_block m b). 
    red. exploit genv_vars_range; eauto. rewrite H; auto.
  split. red; intros. erewrite <- alloc_global_perm; eauto. 
  split. intros. eapply B. erewrite alloc_global_perm; eauto. 
  intros. apply load_store_init_data_invariant with m; auto. 
  intros. eapply load_alloc_global; eauto. 
(* variable *)
  red; intros. unfold find_var_info in H3. simpl in H3. rewrite PTree.gsspec in H3.
  destruct (peq b (genv_next ge0)).
  (* same *)
  inv H3. simpl in H0.
  set (init := gvar_init gv) in *.
  set (sz := init_data_list_size init) in *.
  destruct (Mem.alloc m 0 sz) as [m1 b'] eqn:?.
  destruct (store_zeros m1 b' 0 sz) as [m2|] eqn:?; try discriminate.
  destruct (store_init_data_list m2 b' 0 init) as [m3|] eqn:?; try discriminate.
  exploit Mem.alloc_result; eauto. intro RES. 
  replace (genv_next ge0) with b' by congruence.
  split. red; intros. eapply Mem.perm_drop_1; eauto.
  split. intros.
  assert (0 <= ofs < sz).
    eapply Mem.perm_alloc_3; eauto.
    erewrite store_zeros_perm; [idtac|eauto].
    erewrite store_init_data_list_perm; [idtac|eauto]. 
    eapply Mem.perm_drop_4; eauto.
  split. auto. eapply Mem.perm_drop_2; eauto.
  intros. apply load_store_init_data_invariant with m3. 
  intros. eapply Mem.load_drop; eauto. 
  right; right; right. unfold perm_globvar. rewrite H3. 
  destruct (gvar_readonly gv); auto with mem.
  eapply store_init_data_list_charact; eauto.
  eapply store_zeros_read_as_zero; eauto. 
  (* older var *)
  exploit H1; eauto. intros [A [B C]].
  assert (D: Mem.valid_block m b). 
    red. exploit genv_vars_range; eauto. rewrite H; auto. 
  split. red; intros. erewrite <- alloc_global_perm; eauto. 
  split. intros. eapply B. erewrite alloc_global_perm; eauto. 
  intros. apply load_store_init_data_invariant with m; auto. 
  intros. eapply load_alloc_global; eauto.
(* functions-initialized *)
  split. destruct g as [f|v].
(* function *)
  red; intros. unfold find_funct_ptr in H3. simpl in H3. rewrite PTree.gsspec in H3.
  destruct (peq b (genv_next ge0)).
  (* same *)
  inv H3. simpl in H0. 
  destruct (Mem.alloc m 0 1) as [m1 b'] eqn:?. 
  exploit Mem.alloc_result; eauto. intro RES. 
  replace (genv_next ge0) with b' by congruence.
  split. eapply Mem.perm_drop_1; eauto. omega. 
  intros.
  assert (0 <= ofs < 1).
    eapply Mem.perm_alloc_3; eauto.
    eapply Mem.perm_drop_4; eauto.
  split. omega. eapply Mem.perm_drop_2; eauto.
  (* older function *)
  exploit H2; eauto. intros [A B].
  assert (D: Mem.valid_block m b). 
    red. exploit genv_funs_range; eauto. rewrite H; auto.
  split. erewrite <- alloc_global_perm; eauto. 
  intros. eapply B. erewrite alloc_global_perm; eauto.
(* variables *)
  red; intros. unfold find_funct_ptr in H3. simpl in H3. 
  exploit H2; eauto. intros [A B].
  assert (D: Mem.valid_block m b). 
    red. exploit genv_funs_range; eauto. rewrite H; auto.
  split. erewrite <- alloc_global_perm; eauto. 
  intros. eapply B. erewrite alloc_global_perm; eauto.
(* nextblock *)
  rewrite NB. simpl. rewrite H. auto.
Qed.

Lemma alloc_globals_initialized:
  forall gl ge m m',
  genv_next ge = Mem.nextblock m ->
  alloc_globals m gl = Some m' ->
  variables_initialized ge m ->
  functions_initialized ge m ->
  variables_initialized (add_globals ge gl) m' /\ functions_initialized (add_globals ge gl) m'.
Proof.
  induction gl; simpl; intros.
  inv H0; auto.
  destruct a as [id g]. destruct (alloc_global m (id, g)) as [m1|] eqn:?; try discriminate.
  exploit alloc_global_initialized; eauto. intros [P [Q R]].
  eapply IHgl; eauto. 
Qed.

End INITMEM.

Definition init_mem (p: program F V) :=
  alloc_globals (globalenv p) Mem.empty p.(prog_defs).

Lemma init_mem_genv_next: forall p m,
  init_mem p = Some m -> 
  genv_next (globalenv p) = Mem.nextblock m.
Proof.
  unfold init_mem; intros.
  exploit alloc_globals_nextblock; eauto. rewrite Mem.nextblock_empty. intro.
  generalize (genv_next_add_globals (prog_defs p) empty_genv). 
  fold (globalenv p). simpl genv_next. intros. congruence.
Qed.

Theorem find_symbol_not_fresh:
  forall p id b m,
  init_mem p = Some m ->
  find_symbol (globalenv p) id = Some b -> Mem.valid_block m b.
Proof.
  intros. red. erewrite <- init_mem_genv_next; eauto. 
  eapply genv_symb_range; eauto.
Qed.

Theorem find_funct_ptr_not_fresh:
  forall p b f m,
  init_mem p = Some m ->
  find_funct_ptr (globalenv p) b = Some f -> Mem.valid_block m b.
Proof.
  intros. red. erewrite <- init_mem_genv_next; eauto. 
  eapply genv_funs_range; eauto.
Qed.

Theorem find_var_info_not_fresh:
  forall p b gv m,
  init_mem p = Some m ->
  find_var_info (globalenv p) b = Some gv -> Mem.valid_block m b.
Proof.
  intros. red. erewrite <- init_mem_genv_next; eauto. 
  eapply genv_vars_range; eauto.
Qed.

Theorem init_mem_characterization:
  forall p b gv m,
  find_var_info (globalenv p) b = Some gv ->
  init_mem p = Some m ->
  Mem.range_perm m b 0 (init_data_list_size gv.(gvar_init)) Cur (perm_globvar gv)
  /\ (forall ofs k p, Mem.perm m b ofs k p ->
        0 <= ofs < init_data_list_size gv.(gvar_init) /\ perm_order (perm_globvar gv) p)
  /\ (gv.(gvar_volatile) = false -> load_store_init_data (globalenv p) m b 0 gv.(gvar_init)).
Proof.
  intros. eapply alloc_globals_initialized; eauto.
  rewrite Mem.nextblock_empty. auto. 
  red; intros. unfold find_var_info in H1. simpl in H1. rewrite PTree.gempty in H1. congruence.
  red; intros. unfold find_funct_ptr in H1. simpl in H1. rewrite PTree.gempty in H1. congruence.
Qed.

Theorem init_mem_characterization_2:
  forall p b fd m,
  find_funct_ptr (globalenv p) b = Some fd ->
  init_mem p = Some m ->
  Mem.perm m b 0 Cur Nonempty
  /\ (forall ofs k p, Mem.perm m b ofs k p -> ofs = 0 /\ perm_order Nonempty p).
Proof.
  intros. unfold init_mem in H0. eapply alloc_globals_initialized; eauto.
  rewrite Mem.nextblock_empty. auto.
  red; intros. unfold find_var_info in H1. simpl in H1. rewrite PTree.gempty in H1. congruence.
  red; intros. unfold find_funct_ptr in H1. simpl in H1. rewrite PTree.gempty in H1. congruence.
Qed.

(** ** Compatibility with memory injections *)

Section INITMEM_INJ.

Variable ge: t.
Variable thr: block.
Hypothesis symb_inject: forall id b, find_symbol ge id = Some b -> Plt b thr.

Lemma store_zeros_neutral:
  forall m b p n m',
  Mem.inject_neutral thr m ->
  Plt b thr ->
  store_zeros m b p n = Some m' ->
  Mem.inject_neutral thr m'.
Proof.
  intros until n. functional induction (store_zeros m b p n); intros.
  inv H1; auto.
  apply IHo; auto. eapply Mem.store_inject_neutral; eauto. constructor.  
  inv H1.
Qed.

Lemma store_init_data_neutral:
  forall m b p id m',
  Mem.inject_neutral thr m ->
  Plt b thr ->
  store_init_data ge m b p id = Some m' ->
  Mem.inject_neutral thr m'.
Proof.
  intros.
  destruct id; simpl in H1; try (eapply Mem.store_inject_neutral; eauto; fail).
  congruence.
  destruct (find_symbol ge i) as [b'|] eqn:E; try discriminate.
  eapply Mem.store_inject_neutral; eauto. 
  econstructor. unfold Mem.flat_inj. apply pred_dec_true; auto. eauto.  
  rewrite Int.add_zero. auto. 
Qed.

Lemma store_init_data_list_neutral:
  forall b idl m p m',
  Mem.inject_neutral thr m ->
  Plt b thr ->
  store_init_data_list ge m b p idl = Some m' ->
  Mem.inject_neutral thr m'.
Proof.
  induction idl; simpl; intros.
  congruence.
  destruct (store_init_data ge m b p a) as [m1|] eqn:E; try discriminate.
  eapply IHidl. eapply store_init_data_neutral; eauto. auto. eauto. 
Qed.

Lemma alloc_global_neutral:
  forall idg m m',
  alloc_global ge m idg = Some m' ->
  Mem.inject_neutral thr m ->
  Plt (Mem.nextblock m) thr ->
  Mem.inject_neutral thr m'.
Proof.
  intros. destruct idg as [id [f|v]]; simpl in H.
  (* function *)
  destruct (Mem.alloc m 0 1) as [m1 b] eqn:?.
  assert (Plt b thr). rewrite (Mem.alloc_result _ _ _ _ _ Heqp). auto.
  eapply Mem.drop_inject_neutral; eauto. 
  eapply Mem.alloc_inject_neutral; eauto.
  (* variable *)
  set (init := gvar_init v) in *.
  set (sz := init_data_list_size init) in *.
  destruct (Mem.alloc m 0 sz) as [m1 b] eqn:?.
  destruct (store_zeros m1 b 0 sz) as [m2|] eqn:?; try discriminate.
  destruct (store_init_data_list ge m2 b 0 init) as [m3|] eqn:?; try discriminate.
  assert (Plt b thr). rewrite (Mem.alloc_result _ _ _ _ _ Heqp). auto.
  eapply Mem.drop_inject_neutral; eauto. 
  eapply store_init_data_list_neutral with (m := m2) (b := b); eauto.
  eapply store_zeros_neutral with (m := m1); eauto. 
  eapply Mem.alloc_inject_neutral; eauto.
Qed.

Remark advance_next_le: forall gl x, Ple x (advance_next gl x).
Proof.
  induction gl; simpl; intros.
  apply Ple_refl.
  apply Ple_trans with (Psucc x). apply Ple_succ. eauto.
Qed.

Lemma alloc_globals_neutral:
  forall gl m m',
  alloc_globals ge m gl = Some m' ->
  Mem.inject_neutral thr m ->
  Ple (Mem.nextblock m') thr ->
  Mem.inject_neutral thr m'.
Proof.
  induction gl; intros.
  simpl in *. congruence.
  exploit alloc_globals_nextblock; eauto. intros EQ. 
  simpl in *. destruct (alloc_global ge m a) as [m1|] eqn:E; try discriminate.
  exploit alloc_global_neutral; eauto.
  assert (Ple (Psucc (Mem.nextblock m)) (Mem.nextblock m')).
  { rewrite EQ. apply advance_next_le. }
  unfold Plt, Ple in *; zify; omega.
Qed.

End INITMEM_INJ.

Theorem initmem_inject:
  forall p m,
  init_mem p = Some m ->
  Mem.inject (Mem.flat_inj (Mem.nextblock m)) m m.
Proof.
  unfold init_mem; intros.
  apply Mem.neutral_inject. 
  eapply alloc_globals_neutral; eauto. 
  intros. exploit find_symbol_not_fresh; eauto.
  apply Mem.empty_inject_neutral.
  apply Ple_refl.
Qed.

Section INITMEM_AUGMENT_INJ. 

Variable ge: t.
Variable thr: block.

Lemma store_zeros_augment:
  forall m1 m2 b p n m2',
  Mem.inject (Mem.flat_inj thr) m1 m2 ->
  Ple thr b ->
  store_zeros m2 b p n = Some m2' ->
  Mem.inject (Mem.flat_inj thr) m1 m2'.
Proof.
  intros until n. functional induction (store_zeros m2 b p n); intros.
  inv H1; auto.
  apply IHo; auto. exploit Mem.store_outside_inject; eauto. simpl. 
  intros. exfalso. unfold Mem.flat_inj in H2. destruct (plt b' thr). 
  inv H2. unfold Plt, Ple in *. zify; omega.
  discriminate.
  discriminate.
Qed.

Lemma store_init_data_augment: 
  forall m1 m2 b p id m2', 
  Mem.inject (Mem.flat_inj thr) m1 m2 -> 
  Ple thr b -> 
  store_init_data ge m2 b p id = Some m2' ->
  Mem.inject (Mem.flat_inj thr) m1 m2'.
Proof. 
  intros until m2'. intros INJ BND ST. 
  assert (P: forall chunk ofs v m2', 
             Mem.store chunk m2 b ofs v = Some m2' -> 
             Mem.inject (Mem.flat_inj thr) m1 m2'). 
    intros. eapply Mem.store_outside_inject; eauto. 
    intros. unfold Mem.flat_inj in H0.
    destruct (plt b' thr); inv H0. unfold Plt, Ple in *. zify; omega.
  destruct id; simpl in ST; try (eapply P; eauto; fail).
  congruence.
  revert ST.  caseEq (find_symbol ge i); try congruence. intros; eapply P; eauto. 
Qed.

Lemma store_init_data_list_augment:
  forall b idl m1 m2 p m2', 
  Mem.inject (Mem.flat_inj thr) m1 m2 -> 
  Ple thr b -> 
  store_init_data_list ge m2 b p idl = Some m2' ->
  Mem.inject (Mem.flat_inj thr) m1 m2'.
Proof. 
  induction idl; simpl.
  intros; congruence.
  intros until m2'; intros INJ FB.
  caseEq (store_init_data ge m2 b p a); try congruence. intros. 
  eapply IHidl. eapply store_init_data_augment; eauto. auto. eauto. 
Qed.

Lemma alloc_global_augment:
  forall idg m1 m2 m2',
  alloc_global ge m2 idg = Some m2' ->
  Mem.inject (Mem.flat_inj thr) m1 m2 -> 
  Ple thr (Mem.nextblock m2) -> 
  Mem.inject (Mem.flat_inj thr) m1 m2'.
Proof.
  intros. destruct idg as [id [f|v]]; simpl in H.
  (* function *)
  destruct (Mem.alloc m2 0 1) as [m3 b] eqn:?.
  assert (Ple thr b). rewrite (Mem.alloc_result _ _ _ _ _ Heqp). auto.
  eapply Mem.drop_outside_inject. 2: eauto. 
  eapply Mem.alloc_right_inject; eauto.
  intros. unfold Mem.flat_inj in H3. destruct (plt b' thr); inv H3.
  unfold Plt, Ple in *. zify; omega.
  (* variable *)
  set (init := gvar_init v) in *.
  set (sz := init_data_list_size init) in *.
  destruct (Mem.alloc m2 0 sz) as [m3 b] eqn:?.
  destruct (store_zeros m3 b 0 sz) as [m4|] eqn:?; try discriminate.
  destruct (store_init_data_list ge m4 b 0 init) as [m5|] eqn:?; try discriminate.
  assert (Ple thr b). rewrite (Mem.alloc_result _ _ _ _ _ Heqp). auto.
  eapply Mem.drop_outside_inject. 2: eauto. 
  eapply store_init_data_list_augment. 3: eauto. 2: eauto.
  eapply store_zeros_augment. 3: eauto. 2: eauto.
  eapply Mem.alloc_right_inject; eauto.
  intros. unfold Mem.flat_inj in H3. destruct (plt b' thr); inv H3.
  unfold Plt, Ple in *. zify; omega.
Qed.

Lemma alloc_globals_augment:
  forall gl m1 m2 m2',
  alloc_globals ge m2 gl = Some m2' ->
  Mem.inject (Mem.flat_inj thr) m1 m2 ->
  Ple thr (Mem.nextblock m2) ->
  Mem.inject (Mem.flat_inj thr) m1 m2'.
Proof.
  induction gl; simpl.
  intros. congruence.
  intros until m2'. caseEq (alloc_global ge m2 a); try congruence. intros.
  eapply IHgl with (m2 := m); eauto.  
    eapply alloc_global_augment; eauto. 
    rewrite (alloc_global_nextblock _ _ _ H). 
    apply Ple_trans with (Mem.nextblock m2); auto. apply Ple_succ.
Qed.

End INITMEM_AUGMENT_INJ. 

End GENV.

(** * Commutation with program transformations *)

(** ** Commutation with matching between programs. *)

Section MATCH_PROGRAMS.

Variables A B V W: Type.
Variable match_fun: A -> B -> Prop.
Variable match_varinfo: V -> W -> Prop.

Inductive match_globvar: globvar V -> globvar W -> Prop :=
  | match_globvar_intro: forall info1 info2 init ro vo,
      match_varinfo info1 info2 ->
      match_globvar (mkglobvar info1 init ro vo) (mkglobvar info2 init ro vo).

Record match_genvs (new_globs : list (ident * globdef B W)) 
                   (ge1: t A V) (ge2: t B W): Prop := {
  mge_next:
    genv_next ge2 = advance_next new_globs (genv_next ge1);
  mge_symb:
    forall id, ~ In id (map fst new_globs) ->
                   PTree.get id (genv_symb ge2) = PTree.get id (genv_symb ge1);
  mge_funs:
    forall b f, PTree.get b (genv_funs ge1) = Some f ->
    exists tf, PTree.get b (genv_funs ge2) = Some tf /\ match_fun f tf;
  mge_rev_funs:
    forall b tf, PTree.get b (genv_funs ge2) = Some tf ->
    if plt b (genv_next ge1) then 
      exists f, PTree.get b (genv_funs ge1) = Some f /\ match_fun f tf
    else 
      In (Gfun tf) (map snd new_globs);
  mge_vars:
    forall b v, PTree.get b (genv_vars ge1) = Some v ->
    exists tv, PTree.get b (genv_vars ge2) = Some tv /\ match_globvar v tv;
  mge_rev_vars:
    forall b tv, PTree.get b (genv_vars ge2) = Some tv ->
    if plt b (genv_next ge1) then
      exists v, PTree.get b (genv_vars ge1) = Some v /\ match_globvar v tv
    else
      In (Gvar tv) (map snd new_globs)
}.

Lemma add_global_match:
  forall ge1 ge2 idg1 idg2,
  match_genvs nil ge1 ge2 ->
  match_globdef match_fun match_varinfo idg1 idg2 ->
  match_genvs nil (add_global ge1 idg1) (add_global ge2 idg2).
Proof.
  intros. destruct H. simpl in mge_next0.
  inv H0.
(* two functions *)
  constructor; simpl.
  congruence.
  intros. rewrite mge_next0. 
    repeat rewrite PTree.gsspec. destruct (peq id0 id); auto.
  rewrite mge_next0. intros. rewrite PTree.gsspec in H0. rewrite PTree.gsspec. 
    destruct (peq b (genv_next ge1)). 
     exists f2; split; congruence.
     eauto.
  rewrite mge_next0. intros. rewrite PTree.gsspec in H0. rewrite PTree.gsspec. 
   destruct (peq b (genv_next ge1)). 
    subst b. rewrite pred_dec_true. exists f1; split; congruence. apply Plt_succ.
    pose proof (mge_rev_funs0 b tf H0). 
    destruct (plt b (genv_next ge1)). rewrite pred_dec_true. auto. apply Plt_trans_succ; auto.
    contradiction.
  eauto.
  intros.
    pose proof (mge_rev_vars0 b tv H0). 
    destruct (plt b (genv_next ge1)). rewrite pred_dec_true. auto.
    apply Plt_trans with (genv_next ge1); auto. apply Plt_succ.
    contradiction.
(* two variables *)
  constructor; simpl.
  congruence.
  intros. rewrite mge_next0. 
    repeat rewrite PTree.gsspec. destruct (peq id0 id); auto.
  eauto.
  intros.
    pose proof (mge_rev_funs0 b tf H0). 
    destruct (plt b (genv_next ge1)). rewrite pred_dec_true. auto. apply Plt_trans_succ; auto.
    contradiction.
  rewrite mge_next0. intros. rewrite PTree.gsspec in H0. rewrite PTree.gsspec. 
    destruct (peq b (genv_next ge1)).
    econstructor; split. eauto. inv H0. constructor; auto. 
    eauto.
  rewrite mge_next0. intros. rewrite PTree.gsspec in H0. rewrite PTree.gsspec. 
   destruct (peq b (genv_next ge1)). 
    subst b. rewrite pred_dec_true.
    econstructor; split. eauto. inv H0. constructor; auto. apply Plt_succ.
    pose proof (mge_rev_vars0 b tv H0). 
    destruct (plt b (genv_next ge1)). rewrite pred_dec_true. auto. apply Plt_trans_succ; auto.
    contradiction.
Qed.

Lemma add_globals_match:
  forall gl1 gl2, list_forall2 (match_globdef match_fun match_varinfo) gl1 gl2 ->
  forall ge1 ge2, match_genvs nil ge1 ge2 ->
  match_genvs nil (add_globals ge1 gl1) (add_globals ge2 gl2).
Proof.
  induction 1; intros; simpl. 
  auto.
  apply IHlist_forall2. apply add_global_match; auto.
Qed.

Lemma add_global_augment_match: 
  forall new_globs ge1 ge2 idg,
  match_genvs new_globs ge1 ge2 ->
  match_genvs (new_globs ++ (idg :: nil)) ge1 (add_global ge2 idg).
Proof.
  intros. destruct H. 
  assert (LE: Ple (genv_next ge1) (genv_next ge2)).
  { rewrite mge_next0; apply advance_next_le. }
  constructor; simpl.
  rewrite mge_next0. unfold advance_next. rewrite fold_left_app. simpl. auto.
  intros. rewrite map_app in H. rewrite in_app in H. simpl in H. 
    destruct (peq id idg#1). subst. intuition. rewrite PTree.gso. 
    apply mge_symb0. intuition. auto. 
  intros. destruct idg as [id1 [f1|v1]]; simpl; eauto.
    rewrite PTree.gso. eauto.
    exploit genv_funs_range; eauto. intros.
    unfold Plt, Ple in *; zify; omega.
  intros. rewrite map_app. destruct idg as [id1 [f1|v1]]; simpl in H.
    rewrite PTree.gsspec in H. destruct (peq b (genv_next ge2)). 
    rewrite pred_dec_false. rewrite in_app. simpl; right; left. congruence.
    subst b. unfold Plt, Ple in *; zify; omega.
    exploit mge_rev_funs0; eauto. destruct (plt b (genv_next ge1)); auto. 
    rewrite in_app. tauto.
    exploit mge_rev_funs0; eauto. destruct (plt b (genv_next ge1)); auto. 
    rewrite in_app. tauto.
  intros. destruct idg as [id1 [f1|v1]]; simpl; eauto.
    rewrite PTree.gso. eauto. exploit genv_vars_range; eauto. 
    unfold Plt, Ple in *; zify; omega.
  intros. rewrite map_app. destruct idg as [id1 [f1|v1]]; simpl in H.
    exploit mge_rev_vars0; eauto. destruct (plt b (genv_next ge1)); auto. 
    rewrite in_app. tauto.
    rewrite PTree.gsspec in H. destruct (peq b (genv_next ge2)). 
    rewrite pred_dec_false. rewrite in_app. simpl; right; left. congruence.
    subst b. unfold Plt, Ple in *; zify; omega.
    exploit mge_rev_vars0; eauto. destruct (plt b (genv_next ge1)); auto. 
    rewrite in_app. tauto.
Qed.

Lemma add_globals_augment_match: 
  forall gl new_globs ge1 ge2,
  match_genvs new_globs ge1 ge2 ->
  match_genvs (new_globs ++ gl) ge1 (add_globals ge2 gl).
Proof.
  induction gl; simpl. 
    intros. rewrite app_nil_r. auto. 
    intros. change (a :: gl) with ((a :: nil) ++ gl). rewrite <- app_ass.
      apply IHgl. apply add_global_augment_match. auto.
Qed.

Variable new_globs : list (ident * globdef B W).
Variable new_main : ident.

Variable p: program A V.
Variable p': program B W.
Hypothesis progmatch: 
  match_program match_fun match_varinfo new_globs new_main p p'.

Lemma globalenvs_match:
  match_genvs new_globs (globalenv p) (globalenv p').
Proof.
  unfold globalenv. destruct progmatch as [[tglob [P Q]] R].
  rewrite Q. rewrite add_globals_app. 
  change new_globs with (nil ++ new_globs) at 1. 
  apply add_globals_augment_match.
  apply add_globals_match; auto.
  constructor; simpl; auto; intros; rewrite PTree.gempty in H; congruence.
Qed.

Theorem find_funct_ptr_match:
  forall (b : block) (f : A),
  find_funct_ptr (globalenv p) b = Some f ->
  exists tf : B,
  find_funct_ptr (globalenv p') b = Some tf /\ match_fun f tf.
Proof (mge_funs globalenvs_match).

Theorem find_funct_ptr_rev_match:
  forall (b : block) (tf : B),
  find_funct_ptr (globalenv p') b = Some tf ->
  if plt b (genv_next (globalenv p)) then 
      exists f, find_funct_ptr (globalenv p) b = Some f /\ match_fun f tf
  else 
      In (Gfun tf) (map snd new_globs).
Proof (mge_rev_funs globalenvs_match).

Theorem find_funct_match:
  forall (v : val) (f : A),
  find_funct (globalenv p) v = Some f ->
  exists tf : B, find_funct (globalenv p') v = Some tf /\ match_fun f tf.
Proof.
  intros. exploit find_funct_inv; eauto. intros [b EQ]. subst v. 
  rewrite find_funct_find_funct_ptr in H. 
  rewrite find_funct_find_funct_ptr.
  apply find_funct_ptr_match. auto.
Qed.

Theorem find_funct_rev_match:
  forall (v : val) (tf : B),
  find_funct (globalenv p') v = Some tf ->
  (exists f, find_funct (globalenv p) v = Some f /\ match_fun f tf) 
  \/ (In (Gfun tf) (map snd new_globs)).
Proof.
  intros. exploit find_funct_inv; eauto. intros [b EQ]. subst v. 
  rewrite find_funct_find_funct_ptr in H. 
  rewrite find_funct_find_funct_ptr.
  apply find_funct_ptr_rev_match in H. 
   destruct (plt b (genv_next (globalenv p))); auto.
Qed.

Theorem find_var_info_match:
  forall (b : block) (v : globvar V),
  find_var_info (globalenv p) b = Some v ->
  exists tv,
  find_var_info (globalenv p') b = Some tv /\ match_globvar v tv.
Proof (mge_vars globalenvs_match).

Theorem find_var_info_rev_match:
  forall (b : block) (tv : globvar W),
  find_var_info (globalenv p') b = Some tv ->
  if plt b (genv_next (globalenv p)) then 
    exists v, find_var_info (globalenv p) b = Some v /\ match_globvar v tv
  else
    In (Gvar tv) (map snd new_globs).
Proof (mge_rev_vars globalenvs_match).

Theorem find_symbol_match:
  forall (s : ident),
  ~In s (map fst new_globs) ->
  find_symbol (globalenv p') s = find_symbol (globalenv p) s.
Proof.
  intros. destruct globalenvs_match. unfold find_symbol.  auto. 
Qed.

Hypothesis new_ids_fresh : 
  forall s', find_symbol (globalenv p) s' <> None  -> 
             ~In s' (map fst new_globs).

Lemma store_init_data_list_match:
  forall idl m b ofs m',
  store_init_data_list (globalenv p) m b ofs idl = Some m' ->
  store_init_data_list (globalenv p') m b ofs idl = Some m'.
Proof.
  induction idl; simpl; intros. 
  auto.
  assert (forall m', store_init_data (globalenv p) m b ofs a = Some m' ->
          store_init_data (globalenv p') m b ofs a = Some m').
   destruct a; simpl; auto. rewrite find_symbol_match. auto.
   simpl in H. destruct (find_symbol (globalenv p) i) as [b'|] eqn:?; try discriminate.
   apply new_ids_fresh. congruence.
  case_eq (store_init_data (globalenv p) m b ofs a); intros. 
    rewrite H1 in H. 
    pose proof (H0 _ H1). rewrite H2. auto. 
    rewrite H1 in H. inversion H. 
Qed.

Lemma alloc_globals_match:
  forall gl1 gl2, list_forall2 (match_globdef match_fun match_varinfo) gl1 gl2 ->
  forall m m',
  alloc_globals (globalenv p) m gl1 = Some m' -> 
  alloc_globals (globalenv p') m gl2 = Some m'.
Proof.
  induction 1; simpl; intros.
  auto.
  destruct (alloc_global (globalenv p) m a1) as [m1|] eqn:?; try discriminate.
  assert (alloc_global (globalenv p') m b1 = Some m1).
    inv H; simpl in *. 
    auto.
    set (sz := init_data_list_size init) in *.
    destruct (Mem.alloc m 0 sz) as [m2 b] eqn:?.
    destruct (store_zeros m2 b 0 sz) as [m3|] eqn:?; try discriminate.
    destruct (store_init_data_list (globalenv p) m3 b 0 init) as [m4|] eqn:?; try discriminate.
    erewrite store_init_data_list_match; eauto. 
  rewrite H2. eauto.
Qed.

Theorem init_mem_match:
  forall m, init_mem p = Some m -> 
  init_mem p' = alloc_globals (globalenv p') m new_globs.
Proof.
  unfold init_mem; intros.
  destruct progmatch as [[tglob [P Q]] R].
  rewrite Q. erewrite <- alloc_globals_app; eauto. 
  eapply alloc_globals_match; eauto. 
Qed.

End MATCH_PROGRAMS.

Section TRANSF_PROGRAM_AUGMENT.

Variable A B V W: Type.
Variable transf_fun: A -> res B.
Variable transf_var: V -> res W.

Variable new_globs : list (ident * globdef B W).
Variable new_main : ident.

Variable p: program A V.
Variable p': program B W.

Hypothesis transf_OK:
  transform_partial_augment_program transf_fun transf_var new_globs new_main p = OK p'.

Remark prog_match:
  match_program
    (fun fd tfd => transf_fun fd = OK tfd)
    (fun info tinfo => transf_var info = OK tinfo)
    new_globs new_main
    p p'.
Proof.
  apply transform_partial_augment_program_match; auto.
Qed.

Theorem find_funct_ptr_transf_augment:
  forall (b: block) (f: A),
  find_funct_ptr (globalenv p) b = Some f ->
  exists f',
  find_funct_ptr (globalenv p') b = Some f' /\ transf_fun f = OK f'.
Proof.
  intros. 
  exploit find_funct_ptr_match. eexact prog_match. eauto. 
  intros [tf [X Y]]. exists tf; auto.
Qed.

Theorem find_new_funct_ptr_exists: 
  list_norepet (List.map fst new_globs) ->
  forall id f, In (id, Gfun f) new_globs -> 
  exists b, find_symbol (globalenv p') id = Some b
         /\ find_funct_ptr (globalenv p') b = Some f.
Proof.
  intros. destruct prog_match as [[tglob [P Q]] R]. 
  unfold globalenv. rewrite Q. rewrite add_globals_app. 
  eapply add_globals_norepet_ensures; eauto.
(* preserves *)
  intros. unfold find_symbol, find_funct_ptr in *; simpl.
  destruct H1 as [b [X Y]]. exists b; split.
  rewrite PTree.gso; auto.
  destruct g1 as [f1 | v1]. rewrite PTree.gso. auto.
  apply Plt_ne. eapply genv_funs_range; eauto.
  auto. 
(* ensures *)
  intros. unfold find_symbol, find_funct_ptr in *; simpl.
  exists (genv_next ge); split. apply PTree.gss. apply PTree.gss. 
Qed.

Theorem find_funct_ptr_rev_transf_augment:
  forall (b: block) (tf: B),
  find_funct_ptr (globalenv p') b = Some tf ->
  if plt b (genv_next (globalenv p)) then
   (exists f, find_funct_ptr (globalenv p) b = Some f /\ transf_fun f = OK tf)
  else 
   In (Gfun tf) (map snd new_globs).
Proof.
  intros. 
  exploit find_funct_ptr_rev_match; eauto. eexact prog_match; eauto. auto. 
Qed.

Theorem find_funct_transf_augment:
  forall (v: val) (f: A),
  find_funct (globalenv p) v = Some f ->
  exists f',
  find_funct (globalenv p') v = Some f' /\ transf_fun f = OK f'.
Proof.
  intros. 
  exploit find_funct_match. eexact prog_match. eauto. auto. 
Qed.

Theorem find_funct_rev_transf_augment: 
  forall (v: val) (tf: B),
  find_funct (globalenv p') v = Some tf ->
  (exists f, find_funct (globalenv p) v = Some f /\ transf_fun f = OK tf) \/
  In (Gfun tf) (map snd new_globs).
Proof.
  intros. 
  exploit find_funct_rev_match. eexact prog_match. eauto. auto. 
Qed.

Theorem find_var_info_transf_augment:
  forall (b: block) (v: globvar V),
  find_var_info (globalenv p) b = Some v ->
  exists v',
  find_var_info (globalenv p') b = Some v' /\ transf_globvar transf_var v = OK v'.
Proof.
  intros. 
  exploit find_var_info_match. eexact prog_match. eauto. intros [tv [X Y]]. 
  exists tv; split; auto. inv Y. unfold transf_globvar; simpl.
  rewrite H0; simpl. auto.
Qed.

Theorem find_new_var_exists:
  list_norepet (List.map fst new_globs) ->
  forall id gv, In (id, Gvar gv) new_globs -> 
  exists b, find_symbol (globalenv p') id = Some b
         /\ find_var_info (globalenv p') b = Some gv.
Proof.
  intros. destruct prog_match as [[tglob [P Q]] R]. 
  unfold globalenv. rewrite Q. rewrite add_globals_app. 
  eapply add_globals_norepet_ensures; eauto.
(* preserves *)
  intros. unfold find_symbol, find_var_info in *; simpl.
  destruct H1 as [b [X Y]]. exists b; split.
  rewrite PTree.gso; auto.
  destruct g1 as [f1 | v1]. auto. rewrite PTree.gso. auto.
  red; intros; subst b. eelim Plt_strict. eapply genv_vars_range; eauto.
(* ensures *)
  intros. unfold find_symbol, find_var_info in *; simpl.
  exists (genv_next ge); split. apply PTree.gss. apply PTree.gss. 
Qed.

Theorem find_var_info_rev_transf_augment:
  forall (b: block) (v': globvar W),
  find_var_info (globalenv p') b = Some v' ->
  if plt b (genv_next (globalenv p)) then
    (exists v, find_var_info (globalenv p) b = Some v /\ transf_globvar transf_var v = OK v')
  else
    (In (Gvar v') (map snd new_globs)).
Proof.
  intros. 
  exploit find_var_info_rev_match. eexact prog_match. eauto.
  destruct (plt b (genv_next (globalenv p))); auto.
  intros [v [X Y]]. exists v; split; auto. inv Y. unfold transf_globvar; simpl. 
  rewrite H0; simpl. auto.
Qed.

Theorem find_symbol_transf_augment:  
  forall (s: ident), 
  ~ In s (map fst new_globs) ->
  find_symbol (globalenv p') s = find_symbol (globalenv p) s.
Proof.
  intros. eapply find_symbol_match. eexact prog_match. auto.
Qed.

Theorem init_mem_transf_augment: 
   (forall s', find_symbol (globalenv p) s' <> None -> 
     ~ In s' (map fst new_globs)) ->
   forall m, init_mem p = Some m -> 
   init_mem p' = alloc_globals (globalenv p') m new_globs.
Proof.
  intros. eapply init_mem_match. eexact prog_match. auto. auto.
Qed.
 
Theorem init_mem_inject_transf_augment:
   (forall s', find_symbol (globalenv p) s' <> None -> 
     ~ In s' (map fst new_globs)) ->
  forall m, init_mem p = Some m ->
  forall m', init_mem p' = Some m' -> 
  Mem.inject (Mem.flat_inj (Mem.nextblock m)) m m'.
Proof.
  intros. 
  pose proof (initmem_inject p H0). 
  erewrite init_mem_transf_augment in H1; eauto. 
  eapply alloc_globals_augment; eauto. apply Ple_refl. 
Qed.

End TRANSF_PROGRAM_AUGMENT.

Section TRANSF_PROGRAM_PARTIAL2.

Variable A B V W: Type.
Variable transf_fun: A -> res B.
Variable transf_var: V -> res W.
Variable p: program A V.
Variable p': program B W.
Hypothesis transf_OK:
  transform_partial_program2 transf_fun transf_var p = OK p'.

Remark transf_augment_OK:
  transform_partial_augment_program transf_fun transf_var nil p.(prog_main) p = OK p'.
Proof.
  rewrite <- transf_OK. symmetry. apply transform_partial_program2_augment.
Qed.

Theorem find_funct_ptr_transf_partial2:
  forall (b: block) (f: A),
  find_funct_ptr (globalenv p) b = Some f ->
  exists f',
  find_funct_ptr (globalenv p') b = Some f' /\ transf_fun f = OK f'.
Proof.
  exact (@find_funct_ptr_transf_augment _ _ _ _ _ _ _ _ _ _ transf_augment_OK).
Qed.

Theorem find_funct_ptr_rev_transf_partial2:
  forall (b: block) (tf: B),
  find_funct_ptr (globalenv p') b = Some tf ->
  exists f, find_funct_ptr (globalenv p) b = Some f /\ transf_fun f = OK tf.
Proof.
  pose proof (@find_funct_ptr_rev_transf_augment _ _ _ _ _ _ _ _ _ _ transf_augment_OK).
  intros.  pose proof (H b tf H0). 
  destruct (plt b (genv_next (globalenv p))).  auto. contradiction.
Qed.

Theorem find_funct_transf_partial2:
  forall (v: val) (f: A),
  find_funct (globalenv p) v = Some f ->
  exists f',
  find_funct (globalenv p') v = Some f' /\ transf_fun f = OK f'.
Proof.
  exact (@find_funct_transf_augment _ _ _ _ _ _ _ _ _ _ transf_augment_OK).
Qed.

Theorem find_funct_rev_transf_partial2:
  forall (v: val) (tf: B),
  find_funct (globalenv p') v = Some tf ->
  exists f, find_funct (globalenv p) v = Some f /\ transf_fun f = OK tf.
Proof.
  pose proof (@find_funct_rev_transf_augment _ _ _ _ _ _ _ _ _ _ transf_augment_OK).
  intros. pose proof (H v tf H0). 
  destruct H1. auto. contradiction.
Qed.

Theorem find_var_info_transf_partial2:
  forall (b: block) (v: globvar V),
  find_var_info (globalenv p) b = Some v ->
  exists v',
  find_var_info (globalenv p') b = Some v' /\ transf_globvar transf_var v = OK v'.
Proof.
  exact (@find_var_info_transf_augment _ _ _ _ _ _ _ _ _ _ transf_augment_OK).
Qed.

Theorem find_var_info_rev_transf_partial2:
  forall (b: block) (v': globvar W),
  find_var_info (globalenv p') b = Some v' ->
  exists v,
  find_var_info (globalenv p) b = Some v /\ transf_globvar transf_var v = OK v'.
Proof.
  pose proof (@find_var_info_rev_transf_augment _ _ _ _ _ _ _ _ _ _ transf_augment_OK).
  intros.  pose proof (H b v' H0). 
  destruct (plt b (genv_next (globalenv p))).  auto. contradiction.
Qed.

Theorem find_symbol_transf_partial2:
  forall (s: ident),
  find_symbol (globalenv p') s = find_symbol (globalenv p) s.
Proof.
  pose proof (@find_symbol_transf_augment _ _ _ _ _ _ _ _ _ _ transf_augment_OK).
  auto.
Qed.

Theorem init_mem_transf_partial2:
  forall m, init_mem p = Some m -> init_mem p' = Some m.
Proof.
  pose proof (@init_mem_transf_augment _ _ _ _ _ _ _ _ _ _ transf_augment_OK).
  intros. simpl in H. apply H; auto.  
Qed.

End TRANSF_PROGRAM_PARTIAL2.

Section TRANSF_PROGRAM_PARTIAL.

Variable A B V: Type.
Variable transf: A -> res B.
Variable p: program A V.
Variable p': program B V.
Hypothesis transf_OK: transform_partial_program transf p = OK p'.

Theorem find_funct_ptr_transf_partial:
  forall (b: block) (f: A),
  find_funct_ptr (globalenv p) b = Some f ->
  exists f',
  find_funct_ptr (globalenv p') b = Some f' /\ transf f = OK f'.
Proof.
  exact (@find_funct_ptr_transf_partial2 _ _ _ _ _ _ _ _ transf_OK).
Qed.

Theorem find_funct_ptr_rev_transf_partial:
  forall (b: block) (tf: B),
  find_funct_ptr (globalenv p') b = Some tf ->
  exists f, find_funct_ptr (globalenv p) b = Some f /\ transf f = OK tf.
Proof.
  exact (@find_funct_ptr_rev_transf_partial2 _ _ _ _ _ _ _ _ transf_OK).
Qed.

Theorem find_funct_transf_partial:
  forall (v: val) (f: A),
  find_funct (globalenv p) v = Some f ->
  exists f',
  find_funct (globalenv p') v = Some f' /\ transf f = OK f'.
Proof.
  exact (@find_funct_transf_partial2 _ _ _ _ _ _ _ _ transf_OK).
Qed.

Theorem find_funct_rev_transf_partial:
  forall (v: val) (tf: B),
  find_funct (globalenv p') v = Some tf ->
  exists f, find_funct (globalenv p) v = Some f /\ transf f = OK tf.
Proof.
  exact (@find_funct_rev_transf_partial2 _ _ _ _ _ _ _ _ transf_OK).
Qed.

Theorem find_symbol_transf_partial:
  forall (s: ident),
  find_symbol (globalenv p') s = find_symbol (globalenv p) s.
Proof.
  exact (@find_symbol_transf_partial2 _ _ _ _ _ _ _ _ transf_OK).
Qed.

Theorem find_var_info_transf_partial:
  forall (b: block),
  find_var_info (globalenv p') b = find_var_info (globalenv p) b.
Proof.
  intros. case_eq (find_var_info (globalenv p) b); intros.
  exploit find_var_info_transf_partial2. eexact transf_OK. eauto. 
  intros [v' [P Q]]. monadInv Q. rewrite P. inv EQ. destruct g; auto. 
  case_eq (find_var_info (globalenv p') b); intros.
  exploit find_var_info_rev_transf_partial2. eexact transf_OK. eauto.
  intros [v' [P Q]]. monadInv Q. inv EQ. congruence. 
  auto.
Qed.

Theorem init_mem_transf_partial:
  forall m, init_mem p = Some m -> init_mem p' = Some m.
Proof.
  exact (@init_mem_transf_partial2 _ _ _ _ _ _ _ _ transf_OK).
Qed.

End TRANSF_PROGRAM_PARTIAL.

Section TRANSF_PROGRAM.

Variable A B V: Type.
Variable transf: A -> B.
Variable p: program A V.
Let tp := transform_program transf p.

Remark transf_OK:
  transform_partial_program (fun x => OK (transf x)) p = OK tp.
Proof.
  unfold tp. apply transform_program_partial_program. 
Qed.

Theorem find_funct_ptr_transf:
  forall (b: block) (f: A),
  find_funct_ptr (globalenv p) b = Some f ->
  find_funct_ptr (globalenv tp) b = Some (transf f).
Proof.
  intros. 
  destruct (@find_funct_ptr_transf_partial _ _ _ _ _ _ transf_OK _ _ H)
  as [f' [X Y]]. congruence.
Qed.

Theorem find_funct_ptr_rev_transf:
  forall (b: block) (tf: B),
  find_funct_ptr (globalenv tp) b = Some tf ->
  exists f, find_funct_ptr (globalenv p) b = Some f /\ transf f = tf.
Proof.
  intros. exploit find_funct_ptr_rev_transf_partial. eexact transf_OK. eauto.
  intros [f [X Y]]. exists f; split. auto. congruence.
Qed.

Theorem find_funct_transf:
  forall (v: val) (f: A),
  find_funct (globalenv p) v = Some f ->
  find_funct (globalenv tp) v = Some (transf f).
Proof.
  intros. 
  destruct (@find_funct_transf_partial _ _ _ _ _ _ transf_OK _ _ H)
  as [f' [X Y]]. congruence.
Qed.

Theorem find_funct_rev_transf:
  forall (v: val) (tf: B),
  find_funct (globalenv tp) v = Some tf ->
  exists f, find_funct (globalenv p) v = Some f /\ transf f = tf.
Proof.
  intros. exploit find_funct_rev_transf_partial. eexact transf_OK. eauto.
  intros [f [X Y]]. exists f; split. auto. congruence.
Qed.

Theorem find_symbol_transf:
  forall (s: ident),
  find_symbol (globalenv tp) s = find_symbol (globalenv p) s.
Proof.
  exact (@find_symbol_transf_partial _ _ _ _ _ _ transf_OK).
Qed.

Theorem find_var_info_transf:
  forall (b: block),
  find_var_info (globalenv tp) b = find_var_info (globalenv p) b.
Proof.
  exact (@find_var_info_transf_partial _ _ _ _ _ _ transf_OK).
Qed.

Theorem init_mem_transf:
  forall m, init_mem p = Some m -> init_mem tp = Some m.
Proof.
  exact (@init_mem_transf_partial _ _ _ _ _ _ transf_OK).
Qed.

End TRANSF_PROGRAM.

End Genv.