summaryrefslogtreecommitdiff
path: root/common/Determinism.v
blob: 862d5a58c89b8a902fb70b931046799a8231d2bd (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
(* *********************************************************************)
(*                                                                     *)
(*              The Compcert verified compiler                         *)
(*                                                                     *)
(*          Xavier Leroy, INRIA Paris-Rocquencourt                     *)
(*                                                                     *)
(*  Copyright Institut National de Recherche en Informatique et en     *)
(*  Automatique.  All rights reserved.  This file is distributed       *)
(*  under the terms of the INRIA Non-Commercial License Agreement.     *)
(*                                                                     *)
(* *********************************************************************)

(** Characterization and properties of deterministic semantics *)

Require Import Classical.
Require Import Coqlib.
Require Import AST.
Require Import Integers.
Require Import Values.
Require Import Events.
Require Import Globalenvs.
Require Import Smallstep.

(** This file uses classical logic (the axiom of excluded middle), as
  well as the following extensionality property over infinite
  sequences of events.  All these axioms are sound in a set-theoretic
  model of Coq's logic. *)

Axiom traceinf_extensionality:
  forall T T', traceinf_sim T T' -> T = T'.

(** * Deterministic worlds *)

(** One source of possible nondeterminism is that our semantics leave
  unspecified the results of system calls.
  Different results to e.g. a "read" operation can of
  course lead to different behaviors for the program.
  We address this issue by modeling a notion of deterministic
  external world that uniquely determines the results of external calls. *)

(** An external world is a function that, given the name of an
  external call and its arguments, returns either [None], meaning
  that this external call gets stuck, or [Some(r,w)], meaning
  that this external call succeeds, has result [r], and changes
  the world to [w]. *)

Inductive world: Type :=
  World: (ident -> list eventval -> option (eventval * world)) -> world.

Definition nextworld (w: world) (evname: ident) (evargs: list eventval) :
                     option (eventval * world) :=
  match w with World f => f evname evargs end.

(** A trace is possible in a given world if all events correspond
  to non-stuck external calls according to the given world.
  Two predicates are defined, for finite and infinite traces respectively:
- [possible_trace w t w'], where [w] is the initial state of the
  world, [t] the finite trace of interest, and [w'] the state of the
  world after performing trace [t].
- [possible_traceinf w T], where [w] is the initial state of the
  world and [T] the infinite trace of interest.
*)

Inductive possible_event: world -> event -> world -> Prop :=
  | possible_event_syscall: forall w1 evname evargs evres w2,
      nextworld w1 evname evargs = Some (evres, w2) ->
      possible_event w1 (Event_syscall evname evargs evres) w2
  | possible_event_load: forall w label,
      possible_event w (Event_load label) w
  | possible_event_store: forall w label,
      possible_event w (Event_store label) w.

Inductive possible_trace: world -> trace -> world -> Prop :=
  | possible_trace_nil: forall w,
      possible_trace w E0 w
  | possible_trace_cons: forall w1 ev w2 t w3,
      possible_event w1 ev w2 -> possible_trace w2 t w3 ->
      possible_trace w1 (ev :: t) w3.

Lemma possible_trace_app:
  forall t2 w2 w0 t1 w1,
  possible_trace w0 t1 w1 -> possible_trace w1 t2 w2 ->
  possible_trace w0 (t1 ** t2) w2.
Proof.
  induction 1; simpl; intros.
  auto.
  econstructor; eauto.
Qed.

Lemma possible_trace_app_inv:
  forall t2 w2 t1 w0,
  possible_trace w0 (t1 ** t2) w2 ->
  exists w1, possible_trace w0 t1 w1 /\ possible_trace w1 t2 w2.
Proof.
  induction t1; simpl; intros.
  exists w0; split. constructor. auto.
  inv H. exploit IHt1; eauto. intros [w1 [A B]]. 
  exists w1; split. econstructor; eauto. auto.
Qed.

Lemma possible_event_final_world:
  forall w ev w1 w2,
  possible_event w ev w1 -> possible_event w ev w2 -> w1 = w2.
Proof.
  intros. inv H; inv H0; congruence.
Qed.

Lemma possible_trace_final_world:
  forall w0 t w1, possible_trace w0 t w1 ->
  forall w2, possible_trace w0 t w2 -> w1 = w2.
Proof.
  induction 1; intros.
  inv H. auto.
  inv H1. assert (w2 = w5) by (eapply possible_event_final_world; eauto). 
  subst; eauto.
Qed.

CoInductive possible_traceinf: world -> traceinf -> Prop :=
  | possible_traceinf_cons: forall w1 ev w2 T,
      possible_event w1 ev w2 ->
      possible_traceinf w2 T ->
      possible_traceinf w1 (Econsinf ev T).

Lemma possible_traceinf_app:
  forall t2 w0 t1 w1,
  possible_trace w0 t1 w1 -> possible_traceinf w1 t2 ->
  possible_traceinf w0 (t1 *** t2).
Proof.
  induction 1; simpl; intros.
  auto.
  econstructor; eauto.
Qed.

Lemma possible_traceinf_app_inv:
  forall t2 t1 w0,
  possible_traceinf w0 (t1 *** t2) ->
  exists w1, possible_trace w0 t1 w1 /\ possible_traceinf w1 t2.
Proof.
  induction t1; simpl; intros.
  exists w0; split. constructor. auto.
  inv H. exploit IHt1; eauto. intros [w1 [A B]]. 
  exists w1; split. econstructor; eauto. auto.
Qed.

Ltac possibleTraceInv :=
  match goal with
  | [H: possible_trace _ E0 _ |- _] =>
      inversion H; clear H; subst; possibleTraceInv
  | [H: possible_trace _ (_ ** _) _ |- _] =>
      let P1 := fresh "P" in
      let w := fresh "w" in
      let P2 := fresh "P" in
      elim (possible_trace_app_inv _ _ _ _ H); clear H;
      intros w [P1 P2];
      possibleTraceInv
  | [H: possible_traceinf _ (_ *** _) |- _] =>
      let P1 := fresh "P" in
      let w := fresh "w" in
      let P2 := fresh "P" in
      elim (possible_traceinf_app_inv _ _ _ H); clear H;
      intros w [P1 P2];
      possibleTraceInv
  | [H: exists w, possible_trace _ _ w |- _] =>
      let P := fresh "P" in let w := fresh "w" in 
      destruct H as [w P]; possibleTraceInv
  | _ => idtac
  end.

Definition possible_behavior (w: world) (b: program_behavior) : Prop :=
  match b with
  | Terminates t r => exists w', possible_trace w t w'
  | Diverges t => exists w', possible_trace w t w'
  | Reacts T => possible_traceinf w T
  | Goes_wrong t => exists w', possible_trace w t w'
  end.

(** * Deterministic semantics *)

Section DETERM_SEM.

(** We assume given a transition semantics that is internally
  deterministic: the only source of non-determinism is the return
  value of system calls. *)

Variable genv: Type.
Variable state: Type.
Variable step: genv -> state -> trace -> state -> Prop.
Variable initial_state: state -> Prop.
Variable final_state: state -> int -> Prop.

Hypothesis step_internal_deterministic:
  forall ge s t1 s1 t2 s2,
  step ge s t1 s1 -> step ge s t2 s2 -> matching_traces t1 t2 -> s1 = s2 /\ t1 = t2.

Hypothesis initial_state_determ:
  forall s1 s2, initial_state s1 -> initial_state s2 -> s1 = s2.

Hypothesis final_state_determ:
  forall st r1 r2, final_state st r1 -> final_state st r2 -> r1 = r2.

Hypothesis final_state_nostep:
  forall ge st r, final_state st r -> nostep step ge st.

(** Consequently, the [step] relation is deterministic if restricted
    to traces that are possible in a deterministic world. *)

Remark matching_possible_traces:
  forall w0 t1 w1, possible_trace w0 t1 w1 ->
  forall t2 w2, possible_trace w0 t2 w2 ->
  matching_traces t1 t2.
Proof.
  induction 1; intros.
  destruct t2; simpl; auto.
  destruct t2; simpl. destruct ev; auto. inv H1.
  inv H; inv H5; auto; intros.
  subst. rewrite H in H1; inv H1. split; eauto.
  eauto.
  eauto.
Qed.

Lemma step_deterministic:
  forall ge s0 t1 s1 t2 s2 w0 w1 w2,
  step ge s0 t1 s1 -> step ge s0 t2 s2 ->
  possible_trace w0 t1 w1 -> possible_trace w0 t2 w2 ->
  s1 = s2 /\ t1 = t2 /\ w1 = w2.
Proof.
  intros. exploit step_internal_deterministic. eexact H. eexact H0.
  eapply matching_possible_traces; eauto. intuition.
  subst. eapply possible_trace_final_world; eauto. 
Qed.

Ltac use_step_deterministic :=
  match goal with
  | [ S1: step _ _ ?t1 _, P1: possible_trace _ ?t1 _,
      S2: step _ _ ?t2 _, P2: possible_trace _ ?t2 _ |- _ ] =>
    destruct (step_deterministic _ _ _ _ _ _ _ _ _ S1 S2 P1 P2)
    as [EQ1 [EQ2 EQ3]]; subst
  end.

(** Determinism for finite transition sequences. *)

Lemma star_step_diamond:
  forall ge s0 t1 s1, star step ge s0 t1 s1 -> 
  forall t2 s2 w0 w1 w2, star step ge s0 t2 s2 -> 
  possible_trace w0 t1 w1 -> possible_trace w0 t2 w2 ->
  exists t,
     (star step ge s1 t s2 /\ possible_trace w1 t w2 /\ t2 = t1 ** t)
  \/ (star step ge s2 t s1 /\ possible_trace w2 t w1 /\ t1 = t2 ** t).
Proof.
  induction 1; intros. 
  inv H0. exists t2; auto. 
  inv H2. inv H4. exists (t1 ** t2); right. 
    split. econstructor; eauto. auto.
  possibleTraceInv. use_step_deterministic.  
  exploit IHstar. eexact H6. eauto. eauto. 
  intros [t A]. exists t.
  destruct A. left; intuition. traceEq. right; intuition. traceEq. 
Qed.

Ltac use_star_step_diamond :=
  match goal with
  | [ S1: star step _ _ ?t1 _, P1: possible_trace _ ?t1 _,
      S2: star step _ _ ?t2 _, P2: possible_trace _ ?t2 _ |- _ ] =>
    let t := fresh "t" in let P := fresh "P" in let Q := fresh "Q" in let EQ := fresh "EQ" in
    destruct (star_step_diamond _ _ _ _ S1 _ _ _ _ _ S2 P1 P2)
    as [t [ [P [Q EQ]] | [P [Q EQ]] ]]; subst
  end.

Ltac use_nostep :=
  match goal with
  | [ S: step _ ?s _ _, NO: nostep step _ ?s |- _ ] => elim (NO _ _ S)
  end.

Lemma star_step_triangle:
  forall ge s0 t1 s1 t2 s2 w0 w1 w2,
  star step ge s0 t1 s1 -> 
  star step ge s0 t2 s2 -> 
  possible_trace w0 t1 w1 -> possible_trace w0 t2 w2 ->
  nostep step ge s2 ->
  exists t,
  star step ge s1 t s2 /\ possible_trace w1 t w2 /\ t2 = t1 ** t.
Proof.
  intros. use_star_step_diamond; possibleTraceInv. 
  exists t; auto.
  inv P. inv Q. exists E0. split. constructor. split. constructor. traceEq.
  use_nostep.
Qed.

Ltac use_star_step_triangle :=
  match goal with
  | [ S1: star step _ _ ?t1 _, P1: possible_trace _ ?t1 _,
      S2: star step _ _ ?t2 ?s2, P2: possible_trace _ ?t2 _,
      NO: nostep step _ ?s2 |- _ ] =>
    let t := fresh "t" in let P := fresh "P" in let Q := fresh "Q" in let EQ := fresh "EQ" in
    destruct (star_step_triangle _ _ _ _ _ _ _ _ _ S1 S2 P1 P2 NO)
    as [t [P [Q EQ]]]; subst
  end.

Lemma steps_deterministic:
  forall ge s0 t1 s1 t2 s2 w0 w1 w2,
  star step ge s0 t1 s1 -> star step ge s0 t2 s2 -> 
  nostep step ge s1 -> nostep step ge s2 ->
  possible_trace w0 t1 w1 -> possible_trace w0 t2 w2 ->
  t1 = t2 /\ s1 = s2.
Proof.
  intros. use_star_step_triangle. inv P.
  inv Q. split; auto; traceEq. use_nostep.
Qed.

Lemma terminates_not_goes_wrong:
  forall ge s t1 s1 r w w1 t2 s2 w2,
  star step ge s t1 s1 -> final_state s1 r -> possible_trace w t1 w1 ->
  star step ge s t2 s2 -> nostep step ge s2 -> possible_trace w t2 w2 ->
  (forall r, ~final_state s2 r) -> False.
Proof.
  intros.
  assert (t1 = t2 /\ s1 = s2). 
    eapply steps_deterministic; eauto. 
  destruct H6; subst. elim (H5 _ H0).
Qed.

(** Determinism for infinite transition sequences. *)

Lemma star_final_not_forever_silent:
  forall ge s t s', star step ge s t s' ->
  forall w w', possible_trace w t w' -> nostep step ge s' ->
  forever_silent step ge s -> False.
Proof.
  induction 1; intros. 
  inv H1. use_nostep. 
  inv H4. possibleTraceInv. assert (possible_trace w E0 w) by constructor. 
  use_step_deterministic. eauto.
Qed.

Lemma star2_final_not_forever_silent:
  forall ge s t1 s1 w w1 t2 s2 w2,
  star step ge s t1 s1 -> possible_trace w t1 w1 -> nostep step ge s1 ->
  star step ge s t2 s2 -> possible_trace w t2 w2 -> forever_silent step ge s2 ->
  False.
Proof.
  intros. use_star_step_triangle. possibleTraceInv. 
  eapply star_final_not_forever_silent. eexact P. eauto. auto. auto.
Qed.

Lemma star_final_not_forever_reactive:
  forall ge s t s', star step ge s t s' -> 
  forall w w' T, possible_trace w t w' -> possible_traceinf w T -> nostep step ge s' ->
  forever_reactive step ge s T -> False.
Proof.
  induction 1; intros.
  inv H2. inv H3. congruence. use_nostep. 
  inv H5. possibleTraceInv. inv H6. congruence. possibleTraceInv.
  use_step_deterministic.
  eapply IHstar with (T := t4 *** T0). eauto. 
  eapply possible_traceinf_app; eauto. auto. 
  eapply star_forever_reactive; eauto.  
Qed.

Lemma star_forever_silent_inv:
  forall ge s t s', star step ge s t s' ->
  forall w w', possible_trace w t w' ->
  forever_silent step ge s -> 
  t = E0 /\ forever_silent step ge s'.
Proof.
  induction 1; intros.
  auto.
  subst. possibleTraceInv. inv H3. assert (possible_trace w E0 w) by constructor.
  use_step_deterministic. eauto. 
Qed.

Lemma forever_silent_reactive_exclusive:
  forall ge s w T,
  forever_silent step ge s -> forever_reactive step ge s T -> 
  possible_traceinf w T -> False.
Proof.
  intros. inv H0. possibleTraceInv. exploit star_forever_silent_inv; eauto. 
  intros [A B]. contradiction.
Qed.

Lemma forever_reactive_inv2:
  forall ge s t1 s1, star step ge s t1 s1 ->
  forall t2 s2 T1 T2 w w1 w2,
  possible_trace w t1 w1 ->
  star step ge s t2 s2 -> possible_trace w t2 w2 ->
  t1 <> E0 -> t2 <> E0 ->
  forever_reactive step ge s1 T1 -> possible_traceinf w1 T1 ->
  forever_reactive step ge s2 T2 -> possible_traceinf w2 T2 ->
  exists s', exists t, exists T1', exists T2', exists w',
  t <> E0 /\
  forever_reactive step ge s' T1' /\ possible_traceinf w' T1' /\
  forever_reactive step ge s' T2' /\ possible_traceinf w' T2' /\
  t1 *** T1 = t *** T1' /\
  t2 *** T2 = t *** T2'.
Proof.
  induction 1; intros.
  congruence.
  inv H3. congruence. possibleTraceInv.
  use_step_deterministic. 
  destruct t3.
  (* inductive case *)
  simpl in *. inv P1; inv P. eapply IHstar; eauto. 
  (* base case *)
  exists s5; exists (e :: t3);
  exists (t2 *** T1); exists (t4 *** T2); exists w3.
  split. unfold E0; congruence.
  split. eapply star_forever_reactive; eauto. 
  split. eapply possible_traceinf_app; eauto. 
  split. eapply star_forever_reactive; eauto. 
  split. eapply possible_traceinf_app; eauto.
  split; traceEq. 
Qed.

Lemma forever_reactive_determ':
  forall ge s T1 T2 w,
  forever_reactive step ge s T1 -> possible_traceinf w T1 ->
  forever_reactive step ge s T2 -> possible_traceinf w T2 ->
  traceinf_sim' T1 T2.
Proof.
  cofix COINDHYP; intros.
  inv H. inv H1. possibleTraceInv.
  destruct (forever_reactive_inv2 _ _ _ _ H _ _ _ _ _ _ _ P H3 P1 H6 H4
                                  H7 P0 H5 P2)
  as [s' [t' [T1' [T2' [w' [A [B [C [D [E [G K]]]]]]]]]]].
  rewrite G; rewrite K. constructor. auto. 
  eapply COINDHYP; eauto. 
Qed.

Lemma forever_reactive_determ:
  forall ge s T1 T2 w,
  forever_reactive step ge s T1 -> possible_traceinf w T1 ->
  forever_reactive step ge s T2 -> possible_traceinf w T2 ->
  traceinf_sim T1 T2.
Proof.
  intros. apply traceinf_sim'_sim. eapply forever_reactive_determ'; eauto.
Qed.

Lemma star_forever_reactive_inv:
  forall ge s t s', star step ge s t s' ->
  forall w w' T, possible_trace w t w' -> forever_reactive step ge s T ->
  possible_traceinf w T ->
  exists T', forever_reactive step ge s' T' /\ possible_traceinf w' T' /\ T = t *** T'.
Proof.
  induction 1; intros. 
  possibleTraceInv. exists T; auto.
  inv H3. possibleTraceInv. inv H5. congruence. possibleTraceInv.
  use_step_deterministic. 
  exploit IHstar. eauto. eapply star_forever_reactive. 2: eauto. eauto.
  eapply possible_traceinf_app; eauto. 
  intros [T' [A [B C]]]. exists T'; intuition. traceEq. congruence. 
Qed.

Lemma forever_silent_reactive_exclusive2:
  forall ge s t s' w w' T,
  star step ge s t s' -> possible_trace w t w' -> forever_silent step ge s' ->
  forever_reactive step ge s T -> possible_traceinf w T ->
  False.
Proof.
  intros. exploit star_forever_reactive_inv; eauto. 
  intros [T' [A [B C]]]. subst T.
  eapply forever_silent_reactive_exclusive; eauto.
Qed.

(** Determinism for program executions *)

Ltac use_init_state :=
  match goal with
  | [ H1: (initial_state _), H2: (initial_state _) |- _ ] =>
        generalize (initial_state_determ _ _ H1 H2); intro; subst; clear H2
  | [ H1: (initial_state _), H2: (forall s, ~initial_state s) |- _ ] =>
        elim (H2 _ H1)
  | _ => idtac
  end.

Theorem program_behaves_deterministic:
  forall ge w beh1 beh2,
  program_behaves step initial_state final_state ge beh1 -> possible_behavior w beh1 ->
  program_behaves step initial_state final_state ge beh2 -> possible_behavior w beh2 ->
  beh1 = beh2.
Proof.
  intros until beh2; intros BEH1 POS1 BEH2 POS2.
  inv BEH1; inv BEH2; simpl in POS1; simpl in POS2;
  possibleTraceInv; use_init_state.
(* terminates, terminates *)
  assert (t = t0 /\ s' = s'0). eapply steps_deterministic; eauto.
  destruct H2. f_equal; auto. subst. eauto. 
(* terminates, diverges *)
  byContradiction. eapply star2_final_not_forever_silent with (s1 := s') (s2 := s'0); eauto.
(* terminates, reacts *)
  byContradiction. eapply star_final_not_forever_reactive; eauto.
(* terminates, goes_wrong *)
  byContradiction. eapply terminates_not_goes_wrong with (s1 := s') (s2 := s'0); eauto.
(* diverges, terminates *)
  byContradiction. eapply star2_final_not_forever_silent with (s2 := s') (s1 := s'0); eauto.
(* diverges, diverges *)
  f_equal. use_star_step_diamond.
  exploit star_forever_silent_inv. eexact P1. eauto. eauto.
  intros [A B]. subst; traceEq.
  exploit star_forever_silent_inv. eexact P1. eauto. eauto.
  intros [A B]. subst; traceEq.
(* diverges, reacts *)
  byContradiction. eapply forever_silent_reactive_exclusive2; eauto.
(* diverges, goes wrong *)
  byContradiction. eapply star2_final_not_forever_silent with (s1 := s'0) (s2 := s'); eauto.
(* reacts, terminates *)
  byContradiction. eapply star_final_not_forever_reactive; eauto.
(* reacts, diverges *) 
  byContradiction. eapply forever_silent_reactive_exclusive2; eauto.
(* reacts, reacts *)
  f_equal. apply traceinf_extensionality. 
  eapply forever_reactive_determ; eauto. 
(* reacts, goes wrong *)
  byContradiction. eapply star_final_not_forever_reactive; eauto.
(* goes wrong, terminate *)
  byContradiction. eapply terminates_not_goes_wrong with (s1 := s'0) (s2 := s'); eauto.
(* goes wrong, diverges *)
  byContradiction. eapply star2_final_not_forever_silent with (s1 := s') (s2 := s'0); eauto.
(* goes wrong, reacts *)
  byContradiction. eapply star_final_not_forever_reactive; eauto.
(* goes wrong, goes wrong *)
  assert (t = t0 /\ s' = s'0). eapply steps_deterministic; eauto.
  destruct H3. congruence.
(* goes initially wrong, goes initially wrong *)
  reflexivity.
Qed.

End DETERM_SEM.