summaryrefslogtreecommitdiff
path: root/common/Complements.v
blob: 2263f4ece81b640c13cbd122dfa038be489225d4 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
(** Corollaries of the main semantic preservation theorem. *)

Require Import Classical.
Require Import Coqlib.
Require Import AST.
Require Import Integers.
Require Import Values.
Require Import Events.
Require Import Globalenvs.
Require Import Smallstep.
Require Import Csyntax.
Require Import Csem.
Require Import PPC.
Require Import Main.
Require Import Errors.

(** * Determinism of PPC semantics *)

(** In this section, we show that the semantics for the PPC language
  are deterministic, in a sense to be made precise later.
  There are two sources of apparent non-determinism:
- The semantics leaves unspecified the results of calls to external 
  functions.  Different results to e.g. a "read" operation can of
  course lead to different behaviors for the program.
  We address this issue by modeling a notion of deterministic
  external world that uniquely determines the results of external calls.
- For diverging executions, the trace of I/O events is not uniquely
  determined: it can contain events that will never be performed
  because the program diverges earlier.  We address this issue
  by showing the existence of a minimal trace for diverging executions.

*)

(** ** Deterministic worlds *)

(** An external world is a function that, given the name of an
  external call and its arguments, returns either [None], meaning
  that this external call gets stuck, or [Some(r,w)], meaning
  that this external call succeeds, has result [r], and changes
  the world to [w]. *)

Inductive world: Set :=
  World: (ident -> list eventval -> option (eventval * world)) -> world.

Definition nextworld (w: world) (evname: ident) (evargs: list eventval) :
                     option (eventval * world) :=
  match w with World f => f evname evargs end.

(** A trace is possible in a given world if all events correspond
  to non-stuck external calls according to the given world.
  Two predicates are defined, for finite and infinite traces respectively:
- [possible_trace w t w'], where [w] is the initial state of the
  world, [t] the finite trace of interest, and [w'] the state of the
  world after performing trace [t].
- [possible_traceinf w T], where [w] is the initial state of the
  world and [T] the possibly infinite trace of interest.
*)

Inductive possible_trace: world -> trace -> world -> Prop :=
  | possible_trace_nil: forall w,
      possible_trace w E0 w
  | possible_trace_cons: forall w0 evname evargs evres w1 t w2,
      nextworld w0 evname evargs = Some (evres, w1) ->
      possible_trace w1 t w2 ->
      possible_trace w0 (mkevent evname evargs evres :: t) w2.

Lemma possible_trace_app:
  forall t2 w2 w0 t1 w1,
  possible_trace w0 t1 w1 -> possible_trace w1 t2 w2 ->
  possible_trace w0 (t1 ** t2) w2.
Proof.
  induction 1; simpl; intros.
  auto.
  econstructor; eauto.
Qed.

Lemma possible_trace_app_inv:
  forall t2 w2 t1 w0,
  possible_trace w0 (t1 ** t2) w2 ->
  exists w1, possible_trace w0 t1 w1 /\ possible_trace w1 t2 w2.
Proof.
  induction t1; simpl; intros.
  exists w0; split. constructor. auto.
  inv H. exploit IHt1; eauto. intros [w1 [A B]]. 
  exists w1; split. econstructor; eauto. auto.
Qed.

CoInductive possible_traceinf: world -> traceinf -> Prop :=
  | possible_traceinf_nil: forall w0,
      possible_traceinf w0 Enilinf
  | possible_traceinf_cons: forall w0 evname evargs evres w1 T,
      nextworld w0 evname evargs = Some (evres, w1) ->
      possible_traceinf w1 T ->
      possible_traceinf w0 (Econsinf (mkevent evname evargs evres) T).

Lemma possible_traceinf_app:
  forall t2 w0 t1 w1,
  possible_trace w0 t1 w1 -> possible_traceinf w1 t2 ->
  possible_traceinf w0 (t1 *** t2).
Proof.
  induction 1; simpl; intros.
  auto.
  econstructor; eauto.
Qed.

Lemma possible_traceinf_app_inv:
  forall t2 t1 w0,
  possible_traceinf w0 (t1 *** t2) ->
  exists w1, possible_trace w0 t1 w1 /\ possible_traceinf w1 t2.
Proof.
  induction t1; simpl; intros.
  exists w0; split. constructor. auto.
  inv H. exploit IHt1; eauto. intros [w1 [A B]]. 
  exists w1; split. econstructor; eauto. auto.
Qed.

Ltac possibleTraceInv :=
  match goal with
  | [H: possible_trace _ (_ ** _) _ |- _] =>
      let P1 := fresh "P" in
      let w := fresh "w" in
      let P2 := fresh "P" in
      elim (possible_trace_app_inv _ _ _ _ H); clear H;
      intros w [P1 P2];
      possibleTraceInv
  | [H: possible_traceinf _ (_ *** _) |- _] =>
      let P1 := fresh "P" in
      let w := fresh "w" in
      let P2 := fresh "P" in
      elim (possible_traceinf_app_inv _ _ _ H); clear H;
      intros w [P1 P2];
      possibleTraceInv
  | _ => idtac
  end.

(** Determinism properties of [event_match]. *)

Remark eventval_match_deterministic:
  forall ev1 ev2 ty v1 v2,
  eventval_match ev1 ty v1 -> eventval_match ev2 ty v2 ->
  (ev1 = ev2 <-> v1 = v2).
Proof.
  intros. inv H; inv H0; intuition congruence.
Qed.

Remark eventval_list_match_deterministic:
  forall ev1 ty v, eventval_list_match ev1 ty v ->
  forall ev2, eventval_list_match ev2 ty v -> ev1 = ev2.
Proof.
  induction 1; intros.
  inv H. auto.
  inv H1. decEq.
  rewrite (eventval_match_deterministic _ _ _ _ _ H H6). auto.
  eauto.
Qed.

Lemma event_match_deterministic:
  forall w0 t1 w1 t2 w2 ef vargs vres1 vres2,
  possible_trace w0 t1 w1 ->
  possible_trace w0 t2 w2 ->
  event_match ef vargs t1 vres1 ->
  event_match ef vargs t2 vres2 ->
  vres1 = vres2 /\ t1 = t2 /\ w1 = w2.
Proof.
  intros. inv H1. inv H2. 
  assert (eargs = eargs0). eapply eventval_list_match_deterministic; eauto. subst eargs0.
  inv H. inv H12. inv H0. inv H12.
  rewrite H11 in H10. inv H10. intuition. 
  rewrite <- (eventval_match_deterministic _ _ _ _ _ H4 H5). auto.
Qed.

(** ** Determinism of PPC transitions. *)

Remark extcall_arguments_deterministic:
  forall rs m sg args args',
  extcall_arguments rs m sg args ->
  extcall_arguments rs m sg args' -> args = args'.
Proof.
  assert (
    forall rs m tyl iregl fregl ofs args,
    extcall_args rs m tyl iregl fregl ofs args ->
    forall args', extcall_args rs m tyl iregl fregl ofs args' -> args = args').
  induction 1; intros.
  inv H. auto.
  inv H1. decEq; eauto.  
  inv H1. decEq. congruence. eauto.
  inv H1. decEq; eauto.  
  inv H1. decEq. congruence. eauto.

  unfold extcall_arguments; intros; eauto.
Qed.

Lemma step_deterministic:
  forall ge s0 t1 s1 t2 s2 w0 w1 w2,
  step ge s0 t1 s1 -> step ge s0 t2 s2 ->
  possible_trace w0 t1 w1 -> possible_trace w0 t2 w2 ->
  s1 = s2 /\ t1 = t2 /\ w1 = w2.
Proof.
  intros. inv H; inv H0.
  assert (c0 = c) by congruence. subst c0.
  assert (i0 = i) by congruence. subst i0.
  split. congruence. split. auto. inv H1; inv H2; auto.
  congruence.
  congruence.
  assert (ef0 = ef) by congruence. subst ef0.
  assert (args0 = args). eapply extcall_arguments_deterministic; eauto. subst args0.
  exploit event_match_deterministic. eexact H1. eexact H2. eauto. eauto.
  intros [A [B C]]. intuition congruence.
Qed.

Lemma initial_state_deterministic:
  forall p s1 s2,
  initial_state p s1 -> initial_state p s2 -> s1 = s2.
Proof.
  intros. inv H; inv H0. reflexivity. 
Qed.

Lemma final_state_not_step:
  forall ge st r t st', final_state st r -> step ge st t st' -> False.
Proof.
  intros. inv H. inv H0.
  unfold Vzero in H1. congruence.
  unfold Vzero in H1. congruence. 
Qed.

Lemma final_state_deterministic:
  forall st r1 r2, final_state st r1 -> final_state st r2 -> r1 = r2.
Proof.
  intros. inv H; inv H0. congruence.
Qed.

(** ** Determinism for terminating executions. *)

(*
Lemma star_star_inv:
  forall ge s t1 s1, star step ge s t1 s1 ->
  forall t2 s2 w w1 w2, star step ge s t2 s2 ->
  possible_trace w t1 w1 -> possible_trace w t2 w2 ->
  exists t, (star step ge s1 t s2 /\ t2 = t1 ** t)
        \/  (star step ge s2 t s1 /\ t1 = t2 ** t).
Proof.
  induction 1; intros.
  exists t2; left; split; auto.
  inv H2. exists (t1 ** t2); right; split. econstructor; eauto. auto.
  possibleTraceInv. 
  exploit step_deterministic. eexact H. eexact H5. eauto. eauto. 
  intros [U [V W]]. subst s5 t3 w3. 
  exploit IHstar; eauto. intros [t [ [Q R] | [Q R] ]].
  subst t4. exists t; left; split. auto. traceEq.
  subst t2. exists t; right; split. auto. traceEq.
Qed.
*)

Lemma steps_deterministic:
  forall ge s0 t1 s1, star step ge s0 t1 s1 -> 
  forall r1 r2 t2 s2 w0 w1 w2, star step ge s0 t2 s2 -> 
  final_state s1 r1 -> final_state s2 r2 ->
  possible_trace w0 t1 w1 -> possible_trace w0 t2 w2 ->
  t1 = t2 /\ r1 = r2.
Proof.
  induction 1; intros. 
  inv H. split. auto. eapply final_state_deterministic; eauto.
  byContradiction. eapply final_state_not_step with (st := s); eauto.
  inv H2. byContradiction. eapply final_state_not_step with (st := s0); eauto.
  possibleTraceInv.
  exploit step_deterministic. eexact H. eexact H7. eauto. eauto. 
  intros [A [B C]]. subst s5 t3 w3.
  exploit IHstar. eexact H8. eauto. eauto. eauto. eauto. 
  intros [A B]. subst t4 r2. 
  auto.
Qed.

(** ** Determinism for infinite transition sequences. *)

Lemma forever_star_inv:
  forall ge s t s', star step ge s t s' ->
  forall T w w', forever step ge s T ->
  possible_trace w t w' -> possible_traceinf w T ->
  exists T',
  forever step ge s' T' /\ possible_traceinf w' T' /\ T = t *** T'.
Proof.
  induction 1; intros.
  inv H0. exists T; auto.
  subst t. possibleTraceInv. 
  inv H2. possibleTraceInv. 
  exploit step_deterministic.
    eexact H. eexact H1. eauto. eauto. intros [A [B C]]; subst s4 t1 w1.
  exploit IHstar; eauto. intros [T' [A [B C]]]. 
  exists T'; split. auto.
  split. auto.
  rewrite C. rewrite Eappinf_assoc; auto.
Qed.

Lemma star_final_not_forever:
  forall ge s1 t s2 r T w1 w2,
  star step ge s1 t s2 ->
  final_state s2 r -> forever step ge s1 T ->
  possible_trace w1 t w2 -> possible_traceinf w1 T ->
  False.
Proof.
  intros. exploit forever_star_inv; eauto. intros [T' [A [B C]]]. 
  inv A. eapply final_state_not_step; eauto.
Qed.

(** ** Minimal traces for divergence. *)

(** There are two mutually exclusive way in which a program can diverge.
  It can diverge in a reactive fashion: it performs infinitely many
  external calls, and the internal computations between two external
  calls are always finite.  Or it can diverge silently: after a finite
  number of external calls, it enters an infinite sequence of internal
  computations. *)

Definition reactive (ge: genv) (s: state) (w: world) :=
  forall t s1 w1,
  star step ge s t s1 -> possible_trace w t w1 ->
  exists s2, exists t', exists s3, exists w2,
  star step ge s1 E0 s2 
  /\ step ge s2 t' s3
  /\ possible_trace w1 t' w2
  /\ t' <> E0.

Definition diverges_silently (ge: genv) (s: state) :=
  forall s2, star step ge s E0 s2 -> exists s3, step ge s2 E0 s3.

Definition diverges_eventually (ge: genv) (s: state) (w: world) :=
  exists t, exists s1, exists w1,
  star step ge s t s1 /\ possible_trace w t w1 /\ diverges_silently ge s1.

(** Using classical logic, we show that any infinite sequence of transitions
  that is possible in a deterministic world is of one of the two forms 
  described above. *)

Lemma reactive_or_diverges:
  forall ge s T w,
  forever step ge s T -> possible_traceinf w T ->
  reactive ge s w \/ diverges_eventually ge s w.
Proof.
  intros. elim (classic (diverges_eventually ge s w)); intro.
  right; auto.
  left. red; intros.
  generalize (not_ex_all_not trace _ H1 t).
  intro. clear H1.
  generalize (not_ex_all_not state _ H4 s1).
  intro. clear H4.
  generalize (not_ex_all_not world _ H1 w1).
  intro. clear H1.
  elim (not_and_or _ _ H4); clear H4; intro.
  contradiction.
  elim (not_and_or _ _ H1); clear H1; intro.
  contradiction.
  generalize (not_all_ex_not state _ H1). intros [s2 A]. clear H1.
  destruct (imply_to_and _ _ A). clear A.
  exploit forever_star_inv.
    eapply star_trans. eexact H2. eexact H1. reflexivity.
    eauto. rewrite E0_right. eauto. eauto. 
  intros [T' [A [B C]]]. 
  inv A. possibleTraceInv. 
  exists s2; exists t0; exists s3; exists w4. intuition.
  subst t0. apply H4. exists s3; auto.
Qed.

(** Moreover, a program cannot be both reactive and silently diverging. *)

Lemma reactive_not_diverges:
  forall ge s w,
  reactive ge s w -> diverges_eventually ge s w -> False.
Proof.
  intros. destruct H0 as [t [s1 [w1 [A [B C]]]]]. 
  destruct (H _ _ _ A B) as [s2 [t' [s3 [w2 [P [Q [R S]]]]]]].
  destruct (C _ P) as [s4 T].
  assert (s3 = s4 /\ t' = E0 /\ w2 = w1).
    eapply step_deterministic; eauto. constructor.
  intuition congruence.
Qed.

(** A program that silently diverges can be given any finite or
  infinite trace of events.  In particular, taking [T' = Enilinf],
  it can be given the empty trace of events. *)

Lemma diverges_forever:
  forall ge s1 T w T',
  diverges_silently ge s1 ->
  forever step ge s1 T ->
  possible_traceinf w T ->
  forever step ge s1 T'.
Proof.
  cofix COINDHYP; intros. inv H0. possibleTraceInv. 
  assert (exists s3, step ge s1 E0 s3). apply H. constructor.
  destruct H0 as [s3 C]. 
  assert (s2 = s3 /\ t = E0 /\ w0 = w). eapply step_deterministic; eauto. constructor.
  destruct H0 as [Q [R S]]. subst s3 t w0. 
  change T' with (E0 *** T'). econstructor. eassumption. 
  eapply COINDHYP; eauto. 
  red; intros. apply H. eapply star_left; eauto. 
Qed.

(** The trace of I/O events generated by a reactive diverging program
  is uniquely determined up to bisimilarity. *)

Lemma reactive_sim:
  forall ge s w T1 T2,
  reactive ge s w ->
  forever step ge s T1 ->
  forever step ge s T2 ->
  possible_traceinf w T1 ->
  possible_traceinf w T2 ->
  traceinf_sim T1 T2.
Proof.
  cofix COINDHYP; intros.
  elim (H E0 s w); try constructor. 
  intros s2 [t' [s3 [w2 [A [B [C D]]]]]].
  assert (star step ge s t' s3). eapply star_right; eauto. 
  destruct (forever_star_inv _ _ _ _ H4 _ _ _ H0 C H2)
  as [T1' [P [Q R]]].
  destruct (forever_star_inv _ _ _ _ H4 _ _ _ H1 C H3)
  as [T2' [S [T U]]].
  destruct t'. unfold E0 in D. congruence.
  assert (t' = nil). inversion B. inversion H7. auto. subst t'.
  subst T1 T2. simpl. constructor.
  apply COINDHYP with ge s3 w2; auto.
  red; intros. eapply H. eapply star_trans; eauto.
  eapply possible_trace_app; eauto. 
Qed.

(** A trace is minimal for a program if it is a prefix of all possible
  traces. *)

Definition minimal_trace (ge: genv) (s: state) (w: world) (T: traceinf) :=
  forall T',
  forever step ge s T' -> possible_traceinf w T' ->
  traceinf_prefix T T'.

(** For any program that diverges with some possible trace [T1],
  the set of possible traces admits a minimal element [T].
  If the program is reactive, this trace is [T1]. 
  If the program silently diverges, this trace is the finite trace
  of events performed prior to silent divergence. *)

Lemma forever_minimal_trace:
  forall ge s T1 w,
  forever step ge s T1 -> possible_traceinf w T1 ->
  exists T,
     forever step ge s T
  /\ possible_traceinf w T
  /\ minimal_trace ge s w T.
Proof.
  intros. 
  destruct (reactive_or_diverges _ _ _ _ H H0).
  (* reactive *)
  exists T1; split. auto. split. auto. red; intros.
  elim (reactive_or_diverges _ _ _ _ H2 H3); intro.
  apply traceinf_sim_prefix. eapply reactive_sim; eauto. 
  elimtype False. eapply reactive_not_diverges; eauto.
  (* diverges *) 
  elim H1. intros t [s1 [w1 [A [B C]]]].
  exists (t *** Enilinf); split.
  exploit forever_star_inv; eauto. intros [T' [P [Q R]]]. 
  eapply star_forever. eauto. 
  eapply diverges_forever; eauto.
  split. eapply possible_traceinf_app. eauto. constructor. 
  red; intros. exploit forever_star_inv. eauto. eexact H2. eauto. eauto.
  intros [T2 [P [Q R]]].
  subst T'. apply traceinf_prefix_app. constructor.
Qed.

(** ** Refined semantics for program executions. *)

(** We now define the following variant [exec_program'] of the
  [exec_program] predicate defined in module [Smallstep].
  In the diverging case [Diverges T], the new predicate imposes that the
  finite or infinite trace [T] is minimal. *)

Inductive exec_program' (p: program) (w: world): program_behavior -> Prop :=
  | program_terminates': forall s t s' w' r,
      initial_state p s ->
      star step (Genv.globalenv p) s t s' ->
      possible_trace w t w' ->
      final_state s' r ->
      exec_program' p w (Terminates t r)
  | program_diverges': forall s T,
      initial_state p s ->
      forever step (Genv.globalenv p) s T ->
      possible_traceinf w T ->
      minimal_trace (Genv.globalenv p) s w T ->
      exec_program' p w (Diverges T).

(** We show that any [exec_program] execution corresponds to
  an [exec_program'] execution. *)

Definition possible_behavior (w: world) (b: program_behavior) : Prop :=
  match b with
  | Terminates t r => exists w', possible_trace w t w'
  | Diverges T => possible_traceinf w T
  end.

Inductive matching_behaviors: program_behavior -> program_behavior -> Prop :=
  | matching_behaviors_terminates: forall t r,
      matching_behaviors (Terminates t r) (Terminates t r)
  | matching_behaviors_diverges: forall T1 T2,
      traceinf_prefix T2 T1 ->
      matching_behaviors (Diverges T1) (Diverges T2).

Theorem exec_program_program':
  forall p b w,
  exec_program p b -> possible_behavior w b ->
  exists b', exec_program' p w b' /\ matching_behaviors b b'.
Proof.
  intros. inv H; simpl in H0.
  (* termination *)
  destruct H0 as [w' A].
  exists (Terminates t r).
  split. econstructor; eauto. constructor.
  (* divergence *)
  exploit forever_minimal_trace; eauto. intros [T0 [A [B C]]].
  exists (Diverges T0); split.
  econstructor; eauto.
  constructor. apply C; auto.
Qed.

(** Moreover, [exec_program'] is deterministic, in that the behavior
  associated with a given program and external world is uniquely
  defined up to bisimilarity between infinite traces. *)

Inductive same_behaviors: program_behavior -> program_behavior -> Prop :=
  | same_behaviors_terminates: forall t r,
      same_behaviors (Terminates t r) (Terminates t r)
  | same_behaviors_diverges: forall T1 T2,
      traceinf_sim T2 T1 ->
      same_behaviors (Diverges T1) (Diverges T2).

Theorem exec_program'_deterministic:
  forall p b1 b2 w,
  exec_program' p w b1 -> exec_program' p w b2 ->
  same_behaviors b1 b2.
Proof.
  intros. inv H; inv H0;
  assert (s0 = s) by (eapply initial_state_deterministic; eauto); subst s0.
  (* terminates, terminates *)
  exploit steps_deterministic. eexact H2. eexact H5. eauto. eauto. eauto. eauto.
  intros [A B]. subst. constructor.
  (* terminates, diverges *)
  byContradiction. eapply star_final_not_forever; eauto.
  (* diverges, terminates *)
  byContradiction. eapply star_final_not_forever; eauto.
  (* diverges, diverges *)
  constructor. apply traceinf_prefix_2_sim; auto.
Qed.

Lemma matching_behaviors_same:
  forall b b1' b2',
  matching_behaviors b b1' -> same_behaviors b1' b2' ->
  matching_behaviors b b2'.
Proof.
  intros. inv H; inv H0. 
  constructor.
  constructor. apply traceinf_prefix_compat with T2 T1.
  auto. apply traceinf_sim_sym; auto. apply traceinf_sim_refl.
Qed.

(** * Additional semantic preservation property *)

(** Combining the semantic preservation theorem from module [Main]
  with the determinism of PPC executions, we easily obtain
  additional, stronger semantic preservation properties.
  The first property states that, when compiling a Clight
  program that has well-defined semantics, all possible executions
  of the resulting PPC code correspond to an execution of
  the source Clight program, in the sense of the [matching_behaviors]
  predicate. *)

Theorem transf_c_program_correct_strong:
  forall p tp b w,
  transf_c_program p = OK tp ->
  Csem.exec_program p b ->
  possible_behavior w b ->
  (exists b', exec_program' tp w b')
/\(forall b', exec_program' tp w b' ->
   exists b0, Csem.exec_program p b0 /\ matching_behaviors b0 b').
Proof.
  intros.
  assert (PPC.exec_program tp b).
    eapply transf_c_program_correct; eauto.
  exploit exec_program_program'; eauto. 
  intros [b' [A B]].
  split. exists b'; auto.
  intros. exists b. split. auto.
  apply matching_behaviors_same with b'. auto.
  eapply exec_program'_deterministic; eauto.
Qed.

Section SPECS_PRESERVED.

(** The second additional results shows that if one execution
  of the source Clight program satisfies a given specification
  (a predicate on the observable behavior of the program),
  then all executions of the produced PPC program satisfy
  this specification as well.  *) 

Variable spec: program_behavior -> Prop.

(* Since the execution trace for a diverging Clight program
   is not uniquely defined (the trace can contain events that
   the program will never perform because it loops earlier),
   this result holds only if the specification is closed under
   prefixes in the case of diverging executions.  This is the
   case for all safety properties (some undesirable event never
   occurs), but not for liveness properties (some desirable event
   always occurs). *)

Hypothesis spec_safety:
  forall T T', traceinf_prefix T T' -> spec (Diverges T') -> spec (Diverges T).

Theorem transf_c_program_preserves_spec:
  forall p tp b w,
  transf_c_program p = OK tp ->
  Csem.exec_program p b ->
  possible_behavior w b ->
  spec b ->
  (exists b', exec_program' tp w b')
/\(forall b', exec_program' tp w b' -> spec b').
Proof.
  intros.
  assert (PPC.exec_program tp b).
    eapply transf_c_program_correct; eauto.
  exploit exec_program_program'; eauto. 
  intros [b' [A B]].
  split. exists b'; auto.
  intros b'' EX.
  assert (same_behaviors b' b''). eapply exec_program'_deterministic; eauto.
  inv B; inv H4. 
  auto.
  apply spec_safety with T1. 
  eapply traceinf_prefix_compat with T2 T1. 
  auto. apply traceinf_sim_sym; auto. apply traceinf_sim_refl.
  auto.
Qed.

End SPECS_PRESERVED.