1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
|
(* *********************************************************************)
(* *)
(* The Compcert verified compiler *)
(* *)
(* Xavier Leroy, INRIA Paris-Rocquencourt *)
(* *)
(* Copyright Institut National de Recherche en Informatique et en *)
(* Automatique. All rights reserved. This file is distributed *)
(* under the terms of the GNU General Public License as published by *)
(* the Free Software Foundation, either version 2 of the License, or *)
(* (at your option) any later version. This file is also distributed *)
(* under the terms of the INRIA Non-Commercial License Agreement. *)
(* *)
(* *********************************************************************)
(** This file defines a number of data types and operations used in
the abstract syntax trees of many of the intermediate languages. *)
Require Import Coqlib.
Require String.
Require Import Errors.
Require Import Integers.
Require Import Floats.
Set Implicit Arguments.
(** * Syntactic elements *)
(** Identifiers (names of local variables, of global symbols and functions,
etc) are represented by the type [positive] of positive integers. *)
Definition ident := positive.
Definition ident_eq := peq.
Parameter ident_of_string : String.string -> ident.
(** The intermediate languages are weakly typed, using the following types: *)
Inductive typ : Type :=
| Tint (**r 32-bit integers or pointers *)
| Tfloat (**r 64-bit double-precision floats *)
| Tlong (**r 64-bit integers *)
| Tsingle (**r 32-bit single-precision floats *)
| Tany32 (**r any 32-bit value *)
| Tany64. (**r any 64-bit value, i.e. any value *)
Lemma typ_eq: forall (t1 t2: typ), {t1=t2} + {t1<>t2}.
Proof. decide equality. Defined.
Global Opaque typ_eq.
Definition opt_typ_eq: forall (t1 t2: option typ), {t1=t2} + {t1<>t2}
:= option_eq typ_eq.
Definition list_typ_eq: forall (l1 l2: list typ), {l1=l2} + {l1<>l2}
:= list_eq_dec typ_eq.
Definition typesize (ty: typ) : Z :=
match ty with
| Tint => 4
| Tfloat => 8
| Tlong => 8
| Tsingle => 4
| Tany32 => 4
| Tany64 => 8
end.
Lemma typesize_pos: forall ty, typesize ty > 0.
Proof. destruct ty; simpl; omega. Qed.
(** All values of size 32 bits are also of type [Tany32]. All values
are of type [Tany64]. This corresponds to the following subtyping
relation over types. *)
Definition subtype (ty1 ty2: typ) : bool :=
match ty1, ty2 with
| Tint, Tint => true
| Tlong, Tlong => true
| Tfloat, Tfloat => true
| Tsingle, Tsingle => true
| (Tint | Tsingle | Tany32), Tany32 => true
| _, Tany64 => true
| _, _ => false
end.
Fixpoint subtype_list (tyl1 tyl2: list typ) : bool :=
match tyl1, tyl2 with
| nil, nil => true
| ty1::tys1, ty2::tys2 => subtype ty1 ty2 && subtype_list tys1 tys2
| _, _ => false
end.
(** Additionally, function definitions and function calls are annotated
by function signatures indicating:
- the number and types of arguments;
- the type of the returned value, if any;
- additional information on which calling convention to use.
These signatures are used in particular to determine appropriate
calling conventions for the function. *)
Record calling_convention : Type := mkcallconv {
cc_vararg: bool;
cc_structret: bool
}.
Definition cc_default :=
{| cc_vararg := false; cc_structret := false |}.
Record signature : Type := mksignature {
sig_args: list typ;
sig_res: option typ;
sig_cc: calling_convention
}.
Definition proj_sig_res (s: signature) : typ :=
match s.(sig_res) with
| None => Tint
| Some t => t
end.
Definition signature_eq: forall (s1 s2: signature), {s1=s2} + {s1<>s2}.
Proof.
generalize opt_typ_eq, list_typ_eq; intros; decide equality.
generalize bool_dec; intros. decide equality.
Defined.
Global Opaque signature_eq.
Definition signature_main :=
{| sig_args := nil; sig_res := Some Tint; sig_cc := cc_default |}.
(** Memory accesses (load and store instructions) are annotated by
a ``memory chunk'' indicating the type, size and signedness of the
chunk of memory being accessed. *)
Inductive memory_chunk : Type :=
| Mint8signed (**r 8-bit signed integer *)
| Mint8unsigned (**r 8-bit unsigned integer *)
| Mint16signed (**r 16-bit signed integer *)
| Mint16unsigned (**r 16-bit unsigned integer *)
| Mint32 (**r 32-bit integer, or pointer *)
| Mint64 (**r 64-bit integer *)
| Mfloat32 (**r 32-bit single-precision float *)
| Mfloat64 (**r 64-bit double-precision float *)
| Many32 (**r any value that fits in 32 bits *)
| Many64. (**r any value *)
Definition chunk_eq: forall (c1 c2: memory_chunk), {c1=c2} + {c1<>c2}.
Proof. decide equality. Defined.
Global Opaque chunk_eq.
(** The type (integer/pointer or float) of a chunk. *)
Definition type_of_chunk (c: memory_chunk) : typ :=
match c with
| Mint8signed => Tint
| Mint8unsigned => Tint
| Mint16signed => Tint
| Mint16unsigned => Tint
| Mint32 => Tint
| Mint64 => Tlong
| Mfloat32 => Tsingle
| Mfloat64 => Tfloat
| Many32 => Tany32
| Many64 => Tany64
end.
(** The chunk that is appropriate to store and reload a value of
the given type, without losing information. *)
Definition chunk_of_type (ty: typ) :=
match ty with
| Tint => Mint32
| Tfloat => Mfloat64
| Tlong => Mint64
| Tsingle => Mfloat32
| Tany32 => Many32
| Tany64 => Many64
end.
(** Initialization data for global variables. *)
Inductive init_data: Type :=
| Init_int8: int -> init_data
| Init_int16: int -> init_data
| Init_int32: int -> init_data
| Init_int64: int64 -> init_data
| Init_float32: float32 -> init_data
| Init_float64: float -> init_data
| Init_space: Z -> init_data
| Init_addrof: ident -> int -> init_data. (**r address of symbol + offset *)
(** Information attached to global variables. *)
Record globvar (V: Type) : Type := mkglobvar {
gvar_info: V; (**r language-dependent info, e.g. a type *)
gvar_init: list init_data; (**r initialization data *)
gvar_readonly: bool; (**r read-only variable? (const) *)
gvar_volatile: bool (**r volatile variable? *)
}.
(** Whole programs consist of:
- a collection of global definitions (name and description);
- the name of the ``main'' function that serves as entry point in the program.
A global definition is either a global function or a global variable.
The type of function descriptions and that of additional information
for variables vary among the various intermediate languages and are
taken as parameters to the [program] type. The other parts of whole
programs are common to all languages. *)
Inductive globdef (F V: Type) : Type :=
| Gfun (f: F)
| Gvar (v: globvar V).
Implicit Arguments Gfun [F V].
Implicit Arguments Gvar [F V].
Record program (F V: Type) : Type := mkprogram {
prog_defs: list (ident * globdef F V);
prog_main: ident
}.
Definition prog_defs_names (F V: Type) (p: program F V) : list ident :=
List.map fst p.(prog_defs).
(** * Generic transformations over programs *)
(** We now define a general iterator over programs that applies a given
code transformation function to all function descriptions and leaves
the other parts of the program unchanged. *)
Section TRANSF_PROGRAM.
Variable A B V: Type.
Variable transf: A -> B.
Definition transform_program_globdef (idg: ident * globdef A V) : ident * globdef B V :=
match idg with
| (id, Gfun f) => (id, Gfun (transf f))
| (id, Gvar v) => (id, Gvar v)
end.
Definition transform_program (p: program A V) : program B V :=
mkprogram
(List.map transform_program_globdef p.(prog_defs))
p.(prog_main).
Lemma transform_program_function:
forall p i tf,
In (i, Gfun tf) (transform_program p).(prog_defs) ->
exists f, In (i, Gfun f) p.(prog_defs) /\ transf f = tf.
Proof.
simpl. unfold transform_program. intros.
exploit list_in_map_inv; eauto.
intros [[i' gd] [EQ IN]]. simpl in EQ. destruct gd; inv EQ.
exists f; auto.
Qed.
End TRANSF_PROGRAM.
(** The following is a more general presentation of [transform_program] where
global variable information can be transformed, in addition to function
definitions. Moreover, the transformation functions can fail and
return an error message. *)
Open Local Scope error_monad_scope.
Open Local Scope string_scope.
Section TRANSF_PROGRAM_GEN.
Variables A B V W: Type.
Variable transf_fun: A -> res B.
Variable transf_var: V -> res W.
Definition transf_globvar (g: globvar V) : res (globvar W) :=
do info' <- transf_var g.(gvar_info);
OK (mkglobvar info' g.(gvar_init) g.(gvar_readonly) g.(gvar_volatile)).
Fixpoint transf_globdefs (l: list (ident * globdef A V)) : res (list (ident * globdef B W)) :=
match l with
| nil => OK nil
| (id, Gfun f) :: l' =>
match transf_fun f with
| Error msg => Error (MSG "In function " :: CTX id :: MSG ": " :: msg)
| OK tf =>
do tl' <- transf_globdefs l'; OK ((id, Gfun tf) :: tl')
end
| (id, Gvar v) :: l' =>
match transf_globvar v with
| Error msg => Error (MSG "In variable " :: CTX id :: MSG ": " :: msg)
| OK tv =>
do tl' <- transf_globdefs l'; OK ((id, Gvar tv) :: tl')
end
end.
Definition transform_partial_program2 (p: program A V) : res (program B W) :=
do gl' <- transf_globdefs p.(prog_defs); OK(mkprogram gl' p.(prog_main)).
Lemma transform_partial_program2_function:
forall p tp i tf,
transform_partial_program2 p = OK tp ->
In (i, Gfun tf) tp.(prog_defs) ->
exists f, In (i, Gfun f) p.(prog_defs) /\ transf_fun f = OK tf.
Proof.
intros. monadInv H. simpl in H0.
revert x EQ H0. induction (prog_defs p); simpl; intros.
inv EQ. contradiction.
destruct a as [id [f|v]].
destruct (transf_fun f) as [tf1|msg] eqn:?; monadInv EQ.
simpl in H0; destruct H0. inv H. exists f; auto.
exploit IHl; eauto. intros [f' [P Q]]; exists f'; auto.
destruct (transf_globvar v) as [tv1|msg] eqn:?; monadInv EQ.
simpl in H0; destruct H0. inv H.
exploit IHl; eauto. intros [f' [P Q]]; exists f'; auto.
Qed.
Lemma transform_partial_program2_variable:
forall p tp i tv,
transform_partial_program2 p = OK tp ->
In (i, Gvar tv) tp.(prog_defs) ->
exists v,
In (i, Gvar(mkglobvar v tv.(gvar_init) tv.(gvar_readonly) tv.(gvar_volatile))) p.(prog_defs)
/\ transf_var v = OK tv.(gvar_info).
Proof.
intros. monadInv H. simpl in H0.
revert x EQ H0. induction (prog_defs p); simpl; intros.
inv EQ. contradiction.
destruct a as [id [f|v]].
destruct (transf_fun f) as [tf1|msg] eqn:?; monadInv EQ.
simpl in H0; destruct H0. inv H.
exploit IHl; eauto. intros [v' [P Q]]; exists v'; auto.
destruct (transf_globvar v) as [tv1|msg] eqn:?; monadInv EQ.
simpl in H0; destruct H0. inv H.
monadInv Heqr. simpl. exists (gvar_info v). split. left. destruct v; auto. auto.
exploit IHl; eauto. intros [v' [P Q]]; exists v'; auto.
Qed.
Lemma transform_partial_program2_succeeds:
forall p tp i g,
transform_partial_program2 p = OK tp ->
In (i, g) p.(prog_defs) ->
match g with
| Gfun fd => exists tfd, transf_fun fd = OK tfd
| Gvar gv => exists tv, transf_var gv.(gvar_info) = OK tv
end.
Proof.
intros. monadInv H.
revert x EQ H0. induction (prog_defs p); simpl; intros.
contradiction.
destruct a as [id1 g1]. destruct g1.
destruct (transf_fun f) eqn:TF; try discriminate. monadInv EQ.
destruct H0. inv H. econstructor; eauto. eapply IHl; eauto.
destruct (transf_globvar v) eqn:TV; try discriminate. monadInv EQ.
destruct H0. inv H. monadInv TV. econstructor; eauto. eapply IHl; eauto.
Qed.
Lemma transform_partial_program2_main:
forall p tp,
transform_partial_program2 p = OK tp ->
tp.(prog_main) = p.(prog_main).
Proof.
intros. monadInv H. reflexivity.
Qed.
(** Additionally, we can also "augment" the program with new global definitions
and a different "main" function. *)
Section AUGMENT.
Variable new_globs: list(ident * globdef B W).
Variable new_main: ident.
Definition transform_partial_augment_program (p: program A V) : res (program B W) :=
do gl' <- transf_globdefs p.(prog_defs);
OK(mkprogram (gl' ++ new_globs) new_main).
Lemma transform_partial_augment_program_main:
forall p tp,
transform_partial_augment_program p = OK tp ->
tp.(prog_main) = new_main.
Proof.
intros. monadInv H. reflexivity.
Qed.
End AUGMENT.
Remark transform_partial_program2_augment:
forall p,
transform_partial_program2 p =
transform_partial_augment_program nil p.(prog_main) p.
Proof.
unfold transform_partial_program2, transform_partial_augment_program; intros.
destruct (transf_globdefs (prog_defs p)); auto.
simpl. f_equal. f_equal. rewrite <- app_nil_end. auto.
Qed.
End TRANSF_PROGRAM_GEN.
(** The following is a special case of [transform_partial_program2],
where only function definitions are transformed, but not variable definitions. *)
Section TRANSF_PARTIAL_PROGRAM.
Variable A B V: Type.
Variable transf_partial: A -> res B.
Definition transform_partial_program (p: program A V) : res (program B V) :=
transform_partial_program2 transf_partial (fun v => OK v) p.
Lemma transform_partial_program_main:
forall p tp,
transform_partial_program p = OK tp ->
tp.(prog_main) = p.(prog_main).
Proof.
apply transform_partial_program2_main.
Qed.
Lemma transform_partial_program_function:
forall p tp i tf,
transform_partial_program p = OK tp ->
In (i, Gfun tf) tp.(prog_defs) ->
exists f, In (i, Gfun f) p.(prog_defs) /\ transf_partial f = OK tf.
Proof.
apply transform_partial_program2_function.
Qed.
Lemma transform_partial_program_succeeds:
forall p tp i fd,
transform_partial_program p = OK tp ->
In (i, Gfun fd) p.(prog_defs) ->
exists tfd, transf_partial fd = OK tfd.
Proof.
unfold transform_partial_program; intros.
exploit transform_partial_program2_succeeds; eauto.
Qed.
End TRANSF_PARTIAL_PROGRAM.
Lemma transform_program_partial_program:
forall (A B V: Type) (transf: A -> B) (p: program A V),
transform_partial_program (fun f => OK(transf f)) p = OK(transform_program transf p).
Proof.
intros.
unfold transform_partial_program, transform_partial_program2, transform_program; intros.
replace (transf_globdefs (fun f => OK (transf f)) (fun v => OK v) p.(prog_defs))
with (OK (map (transform_program_globdef transf) p.(prog_defs))).
auto.
induction (prog_defs p); simpl.
auto.
destruct a as [id [f|v]]; rewrite <- IHl.
auto.
destruct v; auto.
Qed.
(** The following is a relational presentation of
[transform_partial_augment_preogram]. Given relations between function
definitions and between variable information, it defines a relation
between programs stating that the two programs have appropriately related
shapes (global names are preserved and possibly augmented, etc)
and that identically-named function definitions
and variable information are related. *)
Section MATCH_PROGRAM.
Variable A B V W: Type.
Variable match_fundef: A -> B -> Prop.
Variable match_varinfo: V -> W -> Prop.
Inductive match_globdef: ident * globdef A V -> ident * globdef B W -> Prop :=
| match_glob_fun: forall id f1 f2,
match_fundef f1 f2 ->
match_globdef (id, Gfun f1) (id, Gfun f2)
| match_glob_var: forall id init ro vo info1 info2,
match_varinfo info1 info2 ->
match_globdef (id, Gvar (mkglobvar info1 init ro vo)) (id, Gvar (mkglobvar info2 init ro vo)).
Definition match_program (new_globs : list (ident * globdef B W))
(new_main : ident)
(p1: program A V) (p2: program B W) : Prop :=
(exists tglob, list_forall2 match_globdef p1.(prog_defs) tglob /\
p2.(prog_defs) = tglob ++ new_globs) /\
p2.(prog_main) = new_main.
End MATCH_PROGRAM.
Lemma transform_partial_augment_program_match:
forall (A B V W: Type)
(transf_fun: A -> res B)
(transf_var: V -> res W)
(p: program A V)
(new_globs : list (ident * globdef B W))
(new_main : ident)
(tp: program B W),
transform_partial_augment_program transf_fun transf_var new_globs new_main p = OK tp ->
match_program
(fun fd tfd => transf_fun fd = OK tfd)
(fun info tinfo => transf_var info = OK tinfo)
new_globs new_main
p tp.
Proof.
unfold transform_partial_augment_program; intros. monadInv H.
red; simpl. split; auto. exists x; split; auto.
revert x EQ. generalize (prog_defs p). induction l; simpl; intros.
monadInv EQ. constructor.
destruct a as [id [f|v]].
(* function *)
destruct (transf_fun f) as [tf|?] eqn:?; monadInv EQ.
constructor; auto. constructor; auto.
(* variable *)
unfold transf_globvar in EQ.
destruct (transf_var (gvar_info v)) as [tinfo|?] eqn:?; simpl in EQ; monadInv EQ.
constructor; auto. destruct v; simpl in *. constructor; auto.
Qed.
(** * External functions *)
(** For most languages, the functions composing the program are either
internal functions, defined within the language, or external functions,
defined outside. External functions include system calls but also
compiler built-in functions. We define a type for external functions
and associated operations. *)
Inductive external_function : Type :=
| EF_external (name: ident) (sg: signature)
(** A system call or library function. Produces an event
in the trace. *)
| EF_builtin (name: ident) (sg: signature)
(** A compiler built-in function. Behaves like an external, but
can be inlined by the compiler. *)
| EF_vload (chunk: memory_chunk)
(** A volatile read operation. If the adress given as first argument
points within a volatile global variable, generate an
event and return the value found in this event. Otherwise,
produce no event and behave like a regular memory load. *)
| EF_vstore (chunk: memory_chunk)
(** A volatile store operation. If the adress given as first argument
points within a volatile global variable, generate an event.
Otherwise, produce no event and behave like a regular memory store. *)
| EF_vload_global (chunk: memory_chunk) (id: ident) (ofs: int)
(** A volatile load operation from a global variable.
Specialized version of [EF_vload]. *)
| EF_vstore_global (chunk: memory_chunk) (id: ident) (ofs: int)
(** A volatile store operation in a global variable.
Specialized version of [EF_vstore]. *)
| EF_malloc
(** Dynamic memory allocation. Takes the requested size in bytes
as argument; returns a pointer to a fresh block of the given size.
Produces no observable event. *)
| EF_free
(** Dynamic memory deallocation. Takes a pointer to a block
allocated by an [EF_malloc] external call and frees the
corresponding block.
Produces no observable event. *)
| EF_memcpy (sz: Z) (al: Z)
(** Block copy, of [sz] bytes, between addresses that are [al]-aligned. *)
| EF_annot (text: ident) (targs: list annot_arg)
(** A programmer-supplied annotation. Takes zero, one or several arguments,
produces an event carrying the text and the values of these arguments,
and returns no value. *)
| EF_annot_val (text: ident) (targ: typ)
(** Another form of annotation that takes one argument, produces
an event carrying the text and the value of this argument,
and returns the value of the argument. *)
| EF_inline_asm (text: ident)
(** Inline [asm] statements. Semantically, treated like an
annotation with no parameters ([EF_annot text nil]). To be
used with caution, as it can invalidate the semantic
preservation theorem. Generated only if [-finline-asm] is
given. *)
with annot_arg : Type :=
| AA_arg (ty: typ)
| AA_int (n: int)
| AA_float (n: float).
(** The type signature of an external function. *)
Fixpoint annot_args_typ (targs: list annot_arg) : list typ :=
match targs with
| nil => nil
| AA_arg ty :: targs' => ty :: annot_args_typ targs'
| _ :: targs' => annot_args_typ targs'
end.
Definition ef_sig (ef: external_function): signature :=
match ef with
| EF_external name sg => sg
| EF_builtin name sg => sg
| EF_vload chunk => mksignature (Tint :: nil) (Some (type_of_chunk chunk)) cc_default
| EF_vstore chunk => mksignature (Tint :: type_of_chunk chunk :: nil) None cc_default
| EF_vload_global chunk _ _ => mksignature nil (Some (type_of_chunk chunk)) cc_default
| EF_vstore_global chunk _ _ => mksignature (type_of_chunk chunk :: nil) None cc_default
| EF_malloc => mksignature (Tint :: nil) (Some Tint) cc_default
| EF_free => mksignature (Tint :: nil) None cc_default
| EF_memcpy sz al => mksignature (Tint :: Tint :: nil) None cc_default
| EF_annot text targs => mksignature (annot_args_typ targs) None cc_default
| EF_annot_val text targ => mksignature (targ :: nil) (Some targ) cc_default
| EF_inline_asm text => mksignature nil None cc_default
end.
(** Whether an external function should be inlined by the compiler. *)
Definition ef_inline (ef: external_function) : bool :=
match ef with
| EF_external name sg => false
| EF_builtin name sg => true
| EF_vload chunk => true
| EF_vstore chunk => true
| EF_vload_global chunk id ofs => true
| EF_vstore_global chunk id ofs => true
| EF_malloc => false
| EF_free => false
| EF_memcpy sz al => true
| EF_annot text targs => true
| EF_annot_val text targ => true
| EF_inline_asm text => true
end.
(** Whether an external function must reload its arguments. *)
Definition ef_reloads (ef: external_function) : bool :=
match ef with
| EF_annot text targs => false
| _ => true
end.
(** Equality between external functions. Used in module [Allocation]. *)
Definition external_function_eq: forall (ef1 ef2: external_function), {ef1=ef2} + {ef1<>ef2}.
Proof.
generalize ident_eq signature_eq chunk_eq typ_eq zeq Int.eq_dec; intros.
decide equality.
apply list_eq_dec. decide equality. apply Float.eq_dec.
Defined.
Global Opaque external_function_eq.
(** Function definitions are the union of internal and external functions. *)
Inductive fundef (F: Type): Type :=
| Internal: F -> fundef F
| External: external_function -> fundef F.
Implicit Arguments External [F].
Section TRANSF_FUNDEF.
Variable A B: Type.
Variable transf: A -> B.
Definition transf_fundef (fd: fundef A): fundef B :=
match fd with
| Internal f => Internal (transf f)
| External ef => External ef
end.
End TRANSF_FUNDEF.
Section TRANSF_PARTIAL_FUNDEF.
Variable A B: Type.
Variable transf_partial: A -> res B.
Definition transf_partial_fundef (fd: fundef A): res (fundef B) :=
match fd with
| Internal f => do f' <- transf_partial f; OK (Internal f')
| External ef => OK (External ef)
end.
End TRANSF_PARTIAL_FUNDEF.
|