summaryrefslogtreecommitdiff
path: root/cil/src/ext/pta/ptranal.ml
blob: c91bda81f841dbd49d78d3a3c4bab29080036d11 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
(* MODIF: Loop constructor replaced by 3 constructors: While, DoWhile, For. *)

(*
 *
 * Copyright (c) 2001-2002,
 *  John Kodumal        <jkodumal@eecs.berkeley.edu>
 * All rights reserved.
 *
 * Redistribution and use in source and binary forms, with or without
 * modification, are permitted provided that the following conditions are
 * met:
 *
 * 1. Redistributions of source code must retain the above copyright
 * notice, this list of conditions and the following disclaimer.
 *
 * 2. Redistributions in binary form must reproduce the above copyright
 * notice, this list of conditions and the following disclaimer in the
 * documentation and/or other materials provided with the distribution.
 *
 * 3. The names of the contributors may not be used to endorse or promote
 * products derived from this software without specific prior written
 * permission.
 *
 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS
 * IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A
 * PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER
 * OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
 * EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
 * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
 * PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
 * LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
 * NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
 * SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
 *
 *)

exception Bad_return
exception Bad_function


open Cil

module H = Hashtbl

module A = Olf
exception UnknownLocation = A.UnknownLocation

type access = A.lvalue * bool

type access_map = (lval, access) H.t

(** a mapping from varinfo's back to fundecs *)
module VarInfoKey =
struct
  type t = varinfo
  let compare v1 v2 = v1.vid - v2.vid
end

module F = Map.Make (VarInfoKey)


(***********************************************************************)
(*                                                                     *)
(* Global Variables                                                    *)
(*                                                                     *)
(***********************************************************************)

let model_strings = ref false
let print_constraints = A.print_constraints
let debug_constraints = A.debug_constraints
let debug_aliases = A.debug_aliases
let smart_aliases = A.smart_aliases
let debug = A.debug
let analyze_mono = A.analyze_mono
let no_flow = A.no_flow
let no_sub = A.no_sub
let fun_ptrs_as_funs = ref false
let show_progress = ref false
let debug_may_aliases = ref false

let found_undefined = ref false

let conservative_undefineds = ref false

let current_fundec : fundec option ref = ref None

let fun_access_map : (fundec, access_map) H.t = H.create 64

(* A mapping from varinfos to fundecs *)
let fun_varinfo_map = ref F.empty

let current_ret : A.tau option ref = ref None

let lvalue_hash : (varinfo,A.lvalue) H.t = H.create 64

let expressions : (exp,A.tau) H.t = H.create 64

let lvalues : (lval,A.lvalue) H.t = H.create 64

let fresh_index : (unit -> int) =
  let count = ref 0 in
    fun () ->
      incr count;
      !count

let alloc_names = [
  "malloc";
  "calloc";
  "realloc";
  "xmalloc";
  "__builtin_alloca";
  "alloca";
  "kmalloc"
]

let all_globals : varinfo list ref = ref []
let all_functions : fundec list ref = ref []


(***********************************************************************)
(*                                                                     *)
(* Utility Functions                                                   *)
(*                                                                     *)
(***********************************************************************)

let is_undefined_fun = function
    Lval (lh, o) ->
      if isFunctionType (typeOfLval (lh, o))  then
        match lh with
            Var v -> v.vstorage = Extern
          | _ -> false
      else false
  | _ -> false

let is_alloc_fun = function
    Lval (lh, o) ->
      if isFunctionType (typeOfLval (lh, o)) then
        match lh with
            Var v -> List.mem v.vname alloc_names
          | _ -> false
      else false
  | _ -> false

let next_alloc = function
    Lval (Var v, o) ->
      let name = Printf.sprintf "%s@%d" v.vname (fresh_index ())
      in
        A.address (A.make_lvalue false name (Some v)) (* check *)
  | _ -> raise Bad_return

let is_effect_free_fun = function
    Lval (lh, o) when isFunctionType (typeOfLval (lh, o)) ->
      begin
        match lh with
            Var v ->
              begin
                try ("CHECK_" = String.sub v.vname 0 6)
                with Invalid_argument _ -> false
              end
          | _ -> false
      end
  | _ -> false


(***********************************************************************)
(*                                                                     *)
(* AST Traversal Functions                                             *)
(*                                                                     *)
(***********************************************************************)

(* should do nothing, might need to worry about Index case *)
(* let analyzeOffset (o : offset ) : A.tau = A.bottom () *)

let analyze_var_decl (v : varinfo ) : A.lvalue =
  try H.find lvalue_hash v
  with Not_found ->
    let lv = A.make_lvalue false v.vname (Some v)
    in
      H.add lvalue_hash v lv;
      lv

let isFunPtrType (t : typ) : bool =
  match t with
      TPtr (t, _) -> isFunctionType t
    | _ -> false

let rec analyze_lval (lv : lval ) : A.lvalue =
  let find_access (l : A.lvalue) (is_var : bool) : A.lvalue =
    match !current_fundec with
        None -> l
      | Some f ->
          let accesses = H.find fun_access_map f in
            if H.mem accesses lv then l
            else
              begin
                H.add accesses lv (l, is_var);
                l
              end in
  let result =
    match lv with
        Var v, _ -> (* instantiate every syntactic occurrence of a function *)
          let alv =
            if isFunctionType (typeOfLval lv) then
              A.instantiate (analyze_var_decl v) (fresh_index ())
            else analyze_var_decl v
          in
            find_access alv true
      | Mem e, _ ->
          (* assert (not (isFunctionType(typeOf(e))) ); *)
          let alv =
            if !fun_ptrs_as_funs && isFunPtrType (typeOf e) then
              analyze_expr_as_lval e
            else A.deref (analyze_expr e)
          in
            find_access alv false
  in
    H.replace lvalues lv result;
    result
and analyze_expr_as_lval (e : exp) : A.lvalue =
  match e with
      Lval l ->  analyze_lval l
    | _ -> assert false (* todo -- other kinds of expressions? *)
and analyze_expr (e : exp ) : A.tau =
  let result =
    match e with
        Const (CStr s) ->
          if !model_strings then
            A.address (A.make_lvalue
                         false
                         s
                         (Some (makeVarinfo false s charConstPtrType)))
          else A.bottom ()
      | Const c -> A.bottom ()
      | Lval l -> A.rvalue (analyze_lval l)
      | SizeOf _ -> A.bottom ()
      | SizeOfStr _ -> A.bottom ()
      | AlignOf _ -> A.bottom ()
      | UnOp (op, e, t) -> analyze_expr e
      | BinOp (op, e, e', t) -> A.join (analyze_expr e) (analyze_expr e')
      | CastE (t, e) -> analyze_expr e
      | AddrOf l ->
          if !fun_ptrs_as_funs && isFunctionType (typeOfLval l) then
            A.rvalue (analyze_lval l)
          else A.address (analyze_lval l)
      | StartOf l -> A.address (analyze_lval l)
      | AlignOfE _ -> A.bottom ()
      | SizeOfE _ -> A.bottom ()
 in
  H.add expressions e result;
  result


(* check *)
let rec analyze_init (i : init ) : A.tau =
  match i with
      SingleInit e -> analyze_expr e
    | CompoundInit (t, oi) ->
        A.join_inits (List.map (function (_, i) -> analyze_init i) oi)

let analyze_instr (i : instr ) : unit =
  match i with
      Set (lval, rhs, l) ->
        A.assign (analyze_lval lval) (analyze_expr rhs)
    | Call (res, fexpr, actuals, l) ->
        if not (isFunctionType (typeOf fexpr)) then
          () (* todo : is this a varargs? *)
        else if is_alloc_fun fexpr then
          begin
            if !debug then print_string "Found allocation function...\n";
            match res with
                Some r -> A.assign (analyze_lval r) (next_alloc fexpr)
              | None -> ()
          end
        else if is_effect_free_fun fexpr then
          List.iter (fun e -> ignore (analyze_expr e)) actuals
        else (* todo : check to see if the thing is an undefined function *)
          let fnres, site =
            if is_undefined_fun fexpr & !conservative_undefineds then
              A.apply_undefined (List.map analyze_expr actuals)
            else
              A.apply (analyze_expr fexpr) (List.map analyze_expr actuals)
          in
            begin
              match res with
                  Some r ->
                    begin
                      A.assign_ret site (analyze_lval r) fnres;
                      found_undefined := true;
                    end
                | None -> ()
            end
    | Asm _ -> ()

let rec analyze_stmt (s : stmt ) : unit =
  match s.skind with
      Instr il -> List.iter analyze_instr il
    | Return (eo, l) ->
        begin
          match eo with
              Some e ->
                begin
                  match !current_ret with
                      Some ret -> A.return ret (analyze_expr e)
                    | None -> raise Bad_return
                end
            | None -> ()
        end
    | Goto (s', l) -> () (* analyze_stmt(!s') *)
    | If (e, b, b', l) ->
        (* ignore the expression e; expressions can't be side-effecting *)
        analyze_block b;
        analyze_block b'
    | Switch (e, b, sl, l) ->
        analyze_block b;
        List.iter analyze_stmt sl
(*
    | Loop (b, l, _, _) -> analyze_block b
*)
    | While (_, b, _) -> analyze_block b
    | DoWhile (_, b, _) -> analyze_block b
    | For (bInit, _, bIter, b, _) ->
	analyze_block bInit;
	analyze_block bIter;
	analyze_block b
    | Block b -> analyze_block b
    | TryFinally (b, h, _) ->
        analyze_block b;
        analyze_block h
    | TryExcept (b, (il, _), h, _) ->
        analyze_block b;
        List.iter analyze_instr il;
        analyze_block h
    | Break l -> ()
    | Continue l -> ()


and analyze_block (b : block ) : unit =
  List.iter analyze_stmt b.bstmts

let analyze_function (f : fundec ) : unit =
  let oldlv = analyze_var_decl f.svar in
  let ret = A.make_fresh (f.svar.vname ^ "_ret") in
  let formals = List.map analyze_var_decl f.sformals in
  let newf = A.make_function f.svar.vname formals ret in
    if !show_progress then
      Printf.printf "Analyzing function %s\n" f.svar.vname;
    fun_varinfo_map := F.add f.svar f (!fun_varinfo_map);
    current_fundec := Some f;
    H.add fun_access_map f (H.create 8);
    A.assign oldlv newf;
    current_ret := Some ret;
    analyze_block f.sbody

let analyze_global (g : global ) : unit =
  match g with
      GVarDecl (v, l) -> () (* ignore (analyze_var_decl(v)) -- no need *)
    | GVar (v, init, l) ->
        all_globals := v :: !all_globals;
        begin
          match init.init with
              Some i -> A.assign (analyze_var_decl v) (analyze_init i)
            | None -> ignore (analyze_var_decl v)
        end
    | GFun (f, l) ->
        all_functions := f :: !all_functions;
        analyze_function f
    | _ -> ()

let analyze_file (f : file) : unit =
  iterGlobals f analyze_global


(***********************************************************************)
(*                                                                     *)
(* High-level Query Interface                                          *)
(*                                                                     *)
(***********************************************************************)

(* Same as analyze_expr, but no constraints. *)
let rec traverse_expr (e : exp) : A.tau =
  H.find expressions e

and traverse_expr_as_lval (e : exp) : A.lvalue =
  match e with
    | Lval l -> traverse_lval l
    | _ -> assert false (* todo -- other kinds of expressions? *)

and traverse_lval (lv : lval ) : A.lvalue =
  H.find lvalues lv

let may_alias (e1 : exp) (e2 : exp) : bool =
  let tau1,tau2 = traverse_expr e1, traverse_expr e2 in
  let result = A.may_alias tau1 tau2 in
    if !debug_may_aliases then
      begin
        let doc1 = d_exp () e1 in
        let doc2 = d_exp () e2 in
        let s1 = Pretty.sprint ~width:30 doc1 in
        let s2 = Pretty.sprint ~width:30 doc2 in
          Printf.printf
            "%s and %s may alias? %s\n"
            s1
            s2
            (if result then "yes" else "no")
      end;
    result

let resolve_lval (lv : lval) : varinfo list =
  A.points_to (traverse_lval lv)

let resolve_exp (e : exp) : varinfo list =
  A.epoints_to (traverse_expr e)

let resolve_funptr (e : exp) : fundec list =
  let varinfos = A.epoints_to (traverse_expr e) in
    List.fold_left
      (fun fdecs -> fun vinf ->
         try F.find vinf !fun_varinfo_map :: fdecs
         with Not_found -> fdecs)
      []
      varinfos

let count_hash_elts h =
  let result = ref 0 in
    H.iter (fun _ -> fun _ -> incr result) lvalue_hash;
    !result

let compute_may_aliases (b : bool) : unit =
  let rec compute_may_aliases_aux (exps : exp list) =
    match exps with
        [] -> ()
      | h :: t ->
          ignore (List.map (may_alias h) t);
          compute_may_aliases_aux t
  and exprs : exp list ref = ref [] in
    H.iter (fun e -> fun _ -> exprs := e :: !exprs) expressions;
    compute_may_aliases_aux !exprs


let compute_results (show_sets : bool) : unit =
  let total_pointed_to = ref 0
  and total_lvalues = H.length lvalue_hash
  and counted_lvalues = ref 0
  and lval_elts : (string * (string list)) list ref = ref [] in
  let print_result (name, set) =
    let rec print_set s =
      match s with
          [] -> ()
        | h :: [] -> print_string h
        | h :: t ->
            print_string (h ^ ", ");
            print_set t
    and ptsize = List.length set in
      total_pointed_to := !total_pointed_to + ptsize;
      if ptsize > 0 then
        begin
          print_string (name ^ "(" ^ (string_of_int ptsize) ^ ") -> ");
          print_set set;
          print_newline ()
        end
  in
  (* Make the most pessimistic assumptions about globals if an
     undefined function is present. Such a function can write to every
     global variable *)
  let hose_globals () : unit =
    List.iter
      (fun vd -> A.assign_undefined (analyze_var_decl vd))
      !all_globals
  in
  let show_progress_fn (counted : int ref) (total : int) : unit =
    incr counted;
    if !show_progress then
      Printf.printf "Computed flow for %d of %d sets\n" !counted total
  in
    if !conservative_undefineds && !found_undefined then hose_globals ();
    A.finished_constraints ();
    if show_sets then
      begin
        print_endline "Computing points-to sets...";
        Hashtbl.iter
          (fun vinf -> fun lv ->
             show_progress_fn counted_lvalues total_lvalues;
             try lval_elts := (vinf.vname, A.points_to_names lv) :: !lval_elts
             with A.UnknownLocation -> ())
          lvalue_hash;
        List.iter print_result !lval_elts;
        Printf.printf
          "Total number of things pointed to: %d\n"
          !total_pointed_to
      end;
    if !debug_may_aliases then
      begin
        Printf.printf "Printing may alias relationships\n";
        compute_may_aliases true
      end

let print_types () : unit =
  print_string "Printing inferred types of lvalues...\n";
  Hashtbl.iter
    (fun vi -> fun lv ->
       Printf.printf "%s : %s\n" vi.vname (A.string_of_lvalue lv))
    lvalue_hash



(** Alias queries. For each function, gather sets of locals, formals, and
    globals. Do n^2 work for each of these functions, reporting whether or not
    each pair of values is aliased. Aliasing is determined by taking points-to
    set intersections.
*)
let compute_aliases = compute_may_aliases


(***********************************************************************)
(*                                                                     *)
(* Abstract Location Interface                                         *)
(*                                                                     *)
(***********************************************************************)

type absloc = A.absloc

let rec lvalue_of_varinfo (vi : varinfo) : A.lvalue =
  H.find lvalue_hash vi

let lvalue_of_lval = traverse_lval
let tau_of_expr = traverse_expr

(** return an abstract location for a varinfo, resp. lval *)
let absloc_of_varinfo vi =
  A.absloc_of_lvalue (lvalue_of_varinfo vi)

let absloc_of_lval lv =
  A.absloc_of_lvalue (lvalue_of_lval lv)

let absloc_e_points_to e =
  A.absloc_epoints_to (tau_of_expr e)

let absloc_lval_aliases lv =
  A.absloc_points_to (lvalue_of_lval lv)

(* all abslocs that e transitively points to *)
let absloc_e_transitive_points_to (e : Cil.exp) : absloc list =
  let rec lv_trans_ptsto (worklist : varinfo list) (acc : varinfo list) : absloc list =
    match worklist with
        [] -> List.map absloc_of_varinfo acc
      | vi :: wklst'' ->
          if List.mem vi acc then lv_trans_ptsto wklst'' acc
          else
            lv_trans_ptsto
              (List.rev_append
                 (A.points_to (lvalue_of_varinfo vi))
                 wklst'')
              (vi :: acc)
  in
    lv_trans_ptsto (A.epoints_to (tau_of_expr e)) []

let absloc_eq a b = A.absloc_eq (a, b)

let d_absloc: unit -> absloc -> Pretty.doc = A.d_absloc


let ptrAnalysis = ref false
let ptrResults = ref false
let ptrTypes = ref false



(** Turn this into a CIL feature *)
let feature : featureDescr = {
  fd_name = "ptranal";
  fd_enabled = ptrAnalysis;
  fd_description = "alias analysis";
  fd_extraopt = [
    ("--ptr_may_aliases",
     Arg.Unit (fun _ -> debug_may_aliases := true),
     "Print out results of may alias queries");
    ("--ptr_unify", Arg.Unit (fun _ -> no_sub := true),
     "Make the alias analysis unification-based");
    ("--ptr_model_strings", Arg.Unit (fun _ -> model_strings := true),
     "Make the alias analysis model string constants");
    ("--ptr_conservative",
     Arg.Unit (fun _ -> conservative_undefineds := true),
     "Treat undefineds conservatively in alias analysis");
    ("--ptr_results", Arg.Unit (fun _ -> ptrResults := true),
     "print the results of the alias analysis");
    ("--ptr_mono", Arg.Unit (fun _ -> analyze_mono := true),
     "run alias analysis monomorphically");
    ("--ptr_types",Arg.Unit (fun _ -> ptrTypes := true),
     "print inferred points-to analysis types")
  ];
  fd_doit = (function (f: file) ->
               analyze_file f;
               compute_results !ptrResults;
               if !ptrTypes then print_types ());
  fd_post_check = false (* No changes *)
}