1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861
2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
2889
2890
2891
2892
2893
2894
2895
2896
2897
2898
2899
2900
2901
2902
2903
2904
2905
2906
2907
2908
2909
2910
2911
2912
2913
2914
2915
2916
2917
2918
2919
2920
2921
2922
2923
2924
2925
2926
2927
2928
2929
2930
2931
2932
2933
2934
2935
2936
2937
2938
2939
2940
2941
2942
2943
2944
2945
2946
2947
2948
2949
2950
2951
2952
2953
2954
2955
2956
2957
2958
2959
2960
2961
2962
2963
2964
2965
2966
2967
2968
2969
2970
2971
2972
2973
2974
2975
2976
2977
2978
2979
2980
2981
2982
2983
2984
2985
2986
2987
2988
2989
2990
2991
2992
2993
2994
2995
2996
2997
2998
2999
3000
3001
3002
3003
3004
3005
3006
3007
3008
3009
3010
3011
3012
3013
3014
3015
3016
3017
3018
3019
3020
3021
3022
3023
3024
3025
3026
3027
3028
3029
3030
3031
3032
3033
3034
3035
3036
3037
3038
3039
3040
3041
3042
3043
3044
3045
3046
3047
3048
3049
3050
3051
3052
3053
3054
3055
3056
3057
3058
3059
3060
3061
3062
3063
3064
3065
3066
3067
3068
3069
3070
3071
3072
3073
3074
3075
3076
3077
3078
3079
3080
3081
3082
3083
3084
3085
3086
3087
3088
3089
3090
3091
3092
3093
3094
3095
3096
3097
3098
3099
3100
3101
3102
3103
3104
3105
3106
3107
3108
3109
3110
3111
3112
3113
3114
3115
3116
3117
3118
3119
3120
3121
3122
3123
3124
3125
3126
3127
3128
3129
3130
3131
3132
3133
3134
3135
3136
3137
3138
3139
3140
3141
3142
3143
3144
3145
3146
3147
3148
3149
3150
3151
3152
3153
3154
3155
3156
3157
3158
3159
3160
3161
3162
3163
3164
3165
3166
3167
3168
3169
3170
3171
3172
3173
3174
3175
3176
3177
3178
3179
3180
3181
3182
3183
3184
3185
3186
3187
3188
3189
3190
3191
3192
3193
3194
3195
3196
3197
3198
3199
3200
3201
3202
3203
3204
3205
3206
3207
3208
3209
3210
3211
3212
3213
3214
3215
3216
3217
3218
3219
3220
3221
3222
3223
3224
3225
3226
3227
3228
3229
3230
3231
3232
3233
3234
3235
3236
3237
3238
3239
3240
3241
3242
3243
3244
3245
3246
3247
3248
3249
3250
3251
3252
3253
3254
3255
3256
3257
3258
3259
3260
3261
3262
3263
3264
3265
3266
3267
3268
3269
3270
3271
3272
3273
3274
3275
3276
3277
3278
3279
3280
3281
3282
3283
3284
3285
3286
3287
3288
3289
3290
3291
3292
3293
3294
3295
3296
3297
3298
3299
3300
3301
3302
3303
3304
3305
3306
3307
3308
3309
3310
3311
3312
3313
3314
3315
3316
3317
3318
3319
3320
3321
3322
3323
3324
3325
3326
3327
3328
3329
3330
3331
3332
3333
3334
3335
3336
3337
3338
3339
3340
3341
3342
3343
3344
3345
3346
3347
3348
3349
3350
3351
3352
3353
3354
3355
3356
3357
3358
3359
3360
3361
3362
3363
3364
3365
3366
3367
3368
3369
3370
3371
3372
3373
3374
3375
3376
3377
3378
3379
3380
3381
3382
3383
3384
3385
3386
3387
3388
3389
3390
3391
3392
3393
3394
3395
3396
3397
3398
3399
3400
3401
3402
3403
3404
3405
3406
3407
3408
3409
3410
3411
3412
3413
3414
3415
3416
3417
3418
3419
3420
3421
3422
3423
3424
3425
3426
3427
3428
3429
3430
3431
3432
3433
3434
3435
3436
3437
3438
3439
3440
3441
3442
3443
3444
3445
3446
3447
3448
3449
3450
3451
3452
3453
3454
3455
3456
3457
3458
3459
3460
3461
3462
3463
3464
3465
3466
3467
3468
3469
3470
3471
3472
3473
3474
3475
3476
3477
3478
3479
3480
3481
3482
3483
3484
3485
3486
3487
3488
3489
3490
3491
3492
3493
3494
3495
3496
3497
3498
3499
3500
3501
3502
3503
3504
3505
3506
3507
3508
3509
3510
3511
3512
3513
3514
3515
3516
3517
3518
3519
3520
3521
3522
3523
3524
3525
3526
3527
3528
3529
3530
3531
3532
3533
3534
3535
3536
3537
3538
3539
3540
3541
3542
3543
3544
3545
3546
3547
3548
3549
3550
3551
3552
3553
3554
3555
3556
3557
3558
3559
3560
3561
3562
3563
3564
3565
3566
3567
3568
3569
3570
3571
3572
3573
3574
3575
3576
3577
3578
3579
3580
3581
3582
3583
3584
3585
3586
3587
3588
3589
3590
3591
3592
3593
3594
3595
3596
3597
3598
3599
3600
3601
3602
3603
3604
3605
3606
3607
3608
3609
3610
3611
3612
3613
3614
|
open Camlcoq
open Asm
open Asm_printers
open AST
open Bitstring_utils
open C2C
open Camlcoq
open ELF_parsers
open ELF_printers
open ELF_types
open ELF_utils
open Frameworks
open Lens
open Library
open PPC_parsers
open PPC_printers
open PPC_types
open PPC_utils
open Sections
(** Enables immediate printing of log information to stdout.
Warning: will print out everything even when backtracking.
*)
let debug = ref false
(** Whether to print the ELF map. *)
let print_elfmap = ref false
(** Whether to dump the ELF map. *)
let dump_elfmap = ref false
(** Whether to check that all ELF function/data symbols have been matched
against CompCert idents. *)
let exhaustivity = ref true
(** Whether to print the list of all symbols (function and data) that were not
found in .sdump files. *)
let list_missing = ref false
(** CompCert Asm *)
type ccode = Asm.instruction list
let print_debug s =
if !debug then print_endline (string_of_log_entry true (DEBUG(s)))
(** Adds a log entry into the framework. *)
let add_log (entry: log_entry) (efw: e_framework): e_framework =
if !debug then print_endline ("--DEBUG-- " ^ string_of_log_entry true entry);
{efw with log = entry :: efw.log}
(** [flag] should have only one bit set. *)
let is_set_flag (flag: int32) (bitset: int32): bool =
Int32.logand bitset flag <> 0l
(** Checks that [atom]'s binding matches [sym]'s. *)
let check_st_bind atom (sym: elf32_sym): s_framework -> s_framework =
let static = atom.a_storage = C.Storage_static || atom.a_inline in
match static, sym.st_bind with
| true, STB_LOCAL -> id
| false, STB_GLOBAL -> id
| _ -> (
sf_ef ^%=
add_log (ERROR(
"Symbol: " ^ sym.st_name ^ " has a wrong binding (local vs. global)"
))
)
(** Adapted from CompCert *)
let name_of_section_Linux: section_name -> string = function
| Section_text -> ".text"
| Section_data i -> if i then ".data" else ".bss"
| Section_small_data i -> if i then ".sdata" else ".sbss"
| Section_const -> ".rodata"
| Section_small_const -> ".sdata2"
| Section_string -> ".rodata"
| Section_literal -> ".rodata.cst8"
| Section_jumptable -> ".text"
| Section_user(s, wr, ex) -> s
(** Adapted from CompCert *)
let name_of_section_Diab: section_name -> string = function
| Section_text -> ".text"
| Section_data i -> if i then ".data" else ".bss"
| Section_small_data i -> if i then ".sdata" else ".sbss"
| Section_const -> ".text"
| Section_small_const -> ".sdata2"
| Section_string -> ".text"
| Section_literal -> ".text"
| Section_jumptable -> ".text"
| Section_user(s, wr, ex) -> s
(** Taken from CompCert *)
let name_of_section: section_name -> string =
begin match Configuration.system with
| "macosx" -> fatal "Unsupported CompCert configuration: macosx"
| "linux" -> name_of_section_Linux
| "diab" -> name_of_section_Diab
| _ -> fatal "Unsupported CompCert configuration"
end
(** Compares a CompCert section name with an ELF section name. *)
let match_sections_name
(c_section: section_name) (e_name: string) (sfw: s_framework):
s_framework
=
let c_name = name_of_section c_section in
try
let (value, conflicts) = StringMap.find c_name sfw.ef.section_map in
let expected = from_inferrable value in
if e_name = expected
then sfw
else (
sfw
>>> (sf_ef |-- section_map) ^%=
StringMap.add c_name (value, StringSet.add e_name conflicts)
)
with Not_found -> (
sfw
>>> (sf_ef |-- section_map) ^%=
StringMap.add c_name (Inferred(e_name), StringSet.empty)
)
(** Checks the symbol table entry of the function symbol number [sym_ndx],
according to CompCert's [ident].
*)
let check_fun_symtab
(ident: ident) (sym_ndx: int) (sfw: s_framework):
s_framework
=
let elf = sfw.ef.elf in
let symtab_sndx = from_some (section_ndx_by_name elf ".symtab") in
let symtab_ent_start =
Int32.(add
elf.e_shdra.(symtab_sndx).sh_offset
(Safe32.of_int (16 * sym_ndx))) in
let sym = sfw.ef.elf.e_symtab.(sym_ndx) in
let atom = Hashtbl.find sfw.atoms ident in
let section =
match atom.a_sections with
| [t; _; _] -> t
| _ -> Section_text
in
sfw
>>> check_st_bind atom sym
>>> (
if sym.st_type = STT_FUNC
then id
else (sf_ef ^%=
add_log (ERROR("Symbol should have type STT_FUNC"))
)
)
>>> (
if sym.st_other = 0
then id
else (sf_ef ^%=
add_log (ERROR("Symbol should have st_other set to 0"))
)
)
>>> match_sections_name section elf.e_shdra.(sym.st_shndx).sh_name
>>> sf_ef ^%=
add_range symtab_ent_start 16l 4 (Symtab_function(sym))
(** Checks that the offset [ofs] is well aligned with regards to [al], expressed
in bytes. *)
let is_well_aligned (ofs: int32) (al: int): bool =
al = 0 || Int32.rem ofs (Safe32.of_int al) = 0l
(** Adds a function symbol to the set of covered symbols. *)
let mark_covered_fun_sym_ndx (ndx: int) ffw: f_framework =
let elf = ffw.sf.ef.elf in
let sym = elf.e_symtab.(ndx) in
let sym_sndx = sym.st_shndx in
let sym_size = sym.st_size in
let sym_shdr = elf.e_shdra.(sym_sndx) in
let sym_vaddr = sym.st_value in
let sym_ofs_local = Int32.sub sym_vaddr sym_shdr.sh_addr in
let sxn_ofs = sym_shdr.sh_offset in
let sym_begin = Int32.add sxn_ofs sym_ofs_local in
let atom = Hashtbl.find ffw.sf.atoms ffw.this_ident in
let align =
match atom.a_alignment with
| Some(a) -> a
| None -> 0
in
ffw.sf.ef.chkd_fun_syms.(ndx) <- true;
ffw
>>> (ff_ef ^%= add_range sym_begin sym_size align (Function_symbol(sym)))
>>> (ff_sf ^%=
if not (is_well_aligned sym_ofs_local align)
then (
sf_ef ^%=
add_log (ERROR("Symbol not correctly aligned in the ELF file"))
)
else id
)
>>> (ff_sf ^%= check_fun_symtab ffw.this_ident ndx)
(** Taken from CompCert *)
let re_variadic_stub: Str.regexp = Str.regexp "\\(.*\\)\\$[if]*$"
(** Tries to refine the mapping for key [k] in [ident_to_sym_ndx] so that it is
mapped to [vaddr]. Fails if no symbol in [k]'s mapping has that virtual
address, unless the symbol is a stub from CompCert. Otherwise, it filters
out all symbols whose virtual address does not match [vaddr].
*)
let idmap_unify (k: P.t) (vaddr: int32) (sfw: s_framework)
: s_framework or_err =
try (
(* get the list of possible symbols for ident [k] *)
let id_ndxes = PosMap.find k sfw.ident_to_sym_ndx in
(* consider only the ones at the correct virtual address *)
match List.filter
(fun ndx -> sfw.ef.elf.e_symtab.(ndx).st_value = vaddr)
id_ndxes
with
| [] ->
(* no symbol has that virtual address *)
let ident_name = Hashtbl.find sfw.ident_to_name k in
if Str.string_match re_variadic_stub ident_name 0
then (* this ident needs a stub, whose address is [vaddr] *)
try (
(* fetch the registered virtual address for this stub *)
let v = PosMap.find k sfw.stub_ident_to_vaddr in
(* if there is one, we're good if it's the same as [vaddr] *)
if vaddr = v
then OK(sfw)
else ERR(
Printf.sprintf
"Incoherent constraints for stub: %s"
(Hashtbl.find sfw.ident_to_name k)
)
)
with Not_found ->
(* if the stub has no previously registered virtual address,
register [vaddr] *)
OK(
sfw
>>> (stub_ident_to_vaddr ^%= PosMap.add k vaddr)
)
else (* not a stub, so this is a real error *)
ERR(
Printf.sprintf
"Incoherent constraints for ident %s with value %s and candidates [%s]"
(Hashtbl.find sfw.ident_to_name k)
(string_of_int32 vaddr)
(string_of_list
(fun ndx -> string_of_int32 sfw.ef.elf.e_symtab.(ndx).st_value)
", " id_ndxes
)
)
| ndxes ->
if id_ndxes = ndxes
then OK(sfw)
else OK((ident_to_sym_ndx ^%= (PosMap.add k ndxes)) sfw)
)
with
| Not_found ->
ERR(
Printf.sprintf
"Missing ident: %s should be at vaddr: %s"
(Hashtbl.find sfw.ident_to_name k)
(string_of_int32 vaddr)
)
(** Checks whether the label [k] points to [v] in [label_to_vaddr]. If it points
to another virtual address, this returns an ERR. If it points to nothing,
the mapping [k] -> [v] is added. Thus, the first time a label is
encountered determines the expected virtual address of its destination.
Subsequent references to the label will have to conform.
*)
let lblmap_unify (k: label) (v: int32) (ffw: f_framework)
: f_framework or_err =
try (
let v' = PosMap.find k ffw.label_to_vaddr in
if v = v'
then OK ffw
else (
ERR(
"Incoherent constraints for label " ^
string_of_positive k ^ " with values " ^
string_of_int32 v ^ " and " ^ string_of_int32 v'
)
)
)
with
| Not_found ->
OK {
ffw with
label_to_vaddr = PosMap.add k v ffw.label_to_vaddr
}
let ireg_arr: ireg array =
[|
GPR0; GPR1; GPR2; GPR3; GPR4; GPR5; GPR6; GPR7; GPR8; GPR9; GPR10; GPR11;
GPR12; GPR13; GPR14; GPR15; GPR16; GPR17; GPR18; GPR19; GPR20; GPR21; GPR22;
GPR23; GPR24; GPR25; GPR26; GPR27; GPR28; GPR29; GPR30; GPR31
|]
let freg_arr: freg array =
[|
FPR0; FPR1; FPR2; FPR3; FPR4; FPR5; FPR6; FPR7; FPR8; FPR9; FPR10; FPR11;
FPR12; FPR13; FPR14; FPR15; FPR16; FPR17; FPR18; FPR19; FPR20; FPR21; FPR22;
FPR23; FPR24; FPR25; FPR26; FPR27; FPR28; FPR29; FPR30; FPR31
|]
let crbit_arr: crbit array =
[|
CRbit_0; CRbit_1; CRbit_2; CRbit_3
|]
type checker = f_framework -> f_framework or_err
let check (cond: bool) (msg: string): checker =
fun ffw -> if cond then OK(ffw) else ERR(msg)
let check_eq (msg: string) (a: 'a) (b: 'a): checker =
check (a = b) msg
let match_bools a b =
check_eq (
Printf.sprintf "match_bools %s %s" (string_of_bool a) (string_of_bool b)
) a b
let match_ints a b =
check_eq (
Printf.sprintf "match_ints %s %s" (string_of_int a) (string_of_int b)
) a b
let match_int32s a b: checker =
check_eq (
Printf.sprintf "match_int32s %s %s" (string_of_int32 a) (string_of_int32 b)
) a b
(** We compare floats by their bit representation, so that 0.0 and -0.0 are
different. *)
let match_floats (a: Floats.float) (b: float): checker =
let a = Int64.bits_of_float (camlfloat_of_coqfloat a) in
let b = Int64.bits_of_float b in
check_eq (
Printf.sprintf "match_floats %s %s" (string_of_int64 a) (string_of_int64 b)
) a b
let match_crbits cb eb =
let eb = crbit_arr.(eb) in
check_eq (
Printf.sprintf "match_crbits %s %s" (string_of_crbit cb) (string_of_crbit eb)
) cb eb
let match_iregs cr er =
let er = ireg_arr.(er) in
check_eq (
Printf.sprintf "match_iregs %s %s" (string_of_ireg cr) (string_of_ireg er)
) cr er
let match_fregs cr er =
let er = freg_arr.(er) in
check_eq (
Printf.sprintf "match_fregs %s %s" (string_of_freg cr) (string_of_freg er)
) cr er
let name_of_ndx (efw: e_framework) (ndx: int): string =
let st = efw.elf.e_symtab.(ndx) in
st.st_name ^ " at address " ^ (string_of_int32 st.st_value)
(** Filters the lower 16 bits of an int32. *)
let low: int32 -> int32 = Int32.logand 0x0000ffffl
(** high_exts x is equal to:
- the 16 high bits of x if its lower 16 bits form a positive 16 bit integer
- the 16 high bits of x plus one otherwise
This is so that: x == high_exts x + exts (low x)
*)
let high_exts (x: int32): int32 = Int32.(
if logand x 0x00008000l = 0l
then logand x 0xffff0000l
else add 0x00010000l (logand x 0xffff0000l)
)
(** Matches a CompCert constant against an [int32]. *)
let match_csts (cc: constant) (ec: int32): checker = fun ffw ->
let sfw = ffw |. ff_sf in
let efw = ffw |. ff_ef in
match cc with
| Cint (i) ->
let i = z_int32_lax i in
let msg =
Printf.sprintf "match_csts Cint %s %s"
(string_of_int32 i)
(string_of_int32 ec)
in
check_eq msg ec i ffw
| Csymbol_low (ident, i) ->
let candidates =
try PosMap.find ident sfw.ident_to_sym_ndx
with Not_found -> []
in
let vaddrs =
List.filter
(fun ndx ->
let ident_vaddr = efw.elf.e_symtab.(ndx).st_value in
Int32.(low (add ident_vaddr (z_int32_lax i)) = low ec)
)
candidates
in
begin match vaddrs with
| [] ->
let sym_names = List.map (name_of_ndx efw) candidates in
ERR("Csymbol_low " ^ string_of_list id ", " sym_names)
| _ ->
if candidates = vaddrs
then OK(ffw)
else OK(
ffw
>>> ((ff_sf |-- ident_to_sym_ndx) ^%= (PosMap.add ident vaddrs))
)
end
| Csymbol_high (ident, i) ->
(* In this case, ec is 0x0000XXXX standing for XXXX0000 *)
let candidates =
try PosMap.find ident sfw.ident_to_sym_ndx
with Not_found -> []
in
let vaddrs =
List.filter
(fun ndx ->
let ident_vaddr = efw.elf.e_symtab.(ndx).st_value in
Int32.(high_exts (add ident_vaddr (z_int32_lax i))
= shift_left ec 16))
candidates in
begin match vaddrs with
| [] ->
let sym_names = List.map (name_of_ndx efw) candidates in
ERR("Csymbol_high " ^ string_of_list id ", " sym_names)
| _ ->
if candidates = vaddrs
then OK(ffw)
else OK(
ffw
>>> ((ff_sf |-- ident_to_sym_ndx) ^%= (PosMap.add ident vaddrs))
)
end
| Csymbol_sda (ident, i) ->
(* sda should be handled separately in places it occurs *)
fatal "Unhandled Csymbol_sda, please report."
let match_z_int32 (cz: Z.t) (ei: int32) =
let cz = z_int32 cz in
check_eq (
Printf.sprintf "match_z_int32 %s %s" (string_of_int32 cz) (string_of_int32 ei)
) cz ei
let match_z_int (cz: Z.t) (ei: int) =
let cz = z_int32 cz in
let ei = Safe32.of_int ei in
check_eq (
Printf.sprintf "match_z_int %s %s" (string_of_int32i cz) (string_of_int32i ei)
) cz ei
(* [m] is interpreted as a bitmask, and checked against [ei]. *)
let match_mask (m: Z.t) (ei: int32) =
let m = z_int32_lax m in
check_eq (
Printf.sprintf "match_mask %s %s"
(string_of_int32 m)
(string_of_int32 ei)
) m ei
(** Checks that the special register referred to in [spr] is [r]. *)
let match_spr (str: string) (r: int) (spr: bitstring): checker = fun ffw ->
bitmatch spr with
| { v:5; 0:5 } when v = r -> OK(ffw)
| { _ } -> ERR(str)
let match_xer = match_spr "match_xer" 1
let match_lr = match_spr "match_lr" 8
let match_ctr = match_spr "match_ctr" 9
(** Read a n-bits bitstring as a signed integer, two's complement representation
(n < 32).
*)
let exts (bs: bitstring): int32 =
let signif_bits = Bitstring.bitstring_length bs - 1 in
bitmatch bs with
| { sign : 1 ;
rest : signif_bits : int } ->
Int64.(
to_int32 (
if sign
then logor rest (lognot (sub (shift_left one signif_bits) one))
else rest
)
)
(** Creates a bitmask from bits mb to me, according to the specification in
"4.2.1.4 Integer Rotate and Shift Instructions" of the PowerPC manual.
*)
let rec bitmask mb me =
assert (0 <= mb); assert (0 <= me); assert (mb < 32); assert (me < 32);
if (mb, me) = (0, 31)
then -1l (* this case does not compute correctly otherwise *)
else if mb <= me
(* 0 ... mb ... me ... 31
0 0 0 1 1 1 1 1 0 0 0
*)
then Int32.(shift_left
(sub (shift_left 1l (me - mb + 1)) 1l)
(31 - me)
)
(*
0 ... me ... mb ... 31
1 1 1 1 0 0 0 1 1 1 1
==
1 1 1 1 1 1 1 1 1 1 1 -1l
-
0 0 0 0 1 1 1 0 0 0 0 bitmask (me + 1) (mb - 1)
*)
else if mb = me + 1
then (-1l) (* this needs special handling *)
else Int32.(sub (-1l) (bitmask (me + 1) (mb - 1)))
(** Checks that a label did not occur twice in the same function. *)
let check_label_unicity ffw =
let rec check_label_unicity_aux l ffw =
match l with
| [] -> ffw
| h::t ->
ffw
>>> (
if List.mem h t
then (
ff_ef ^%=
(add_log (ERROR("Duplicate label: " ^ string_of_positive h)))
)
else id
)
>>> check_label_unicity_aux t
in
check_label_unicity_aux ffw.label_list ffw
(** Checks that all the labels that have been referred to in instructions
actually appear in the code. *)
let check_label_existence ffw =
PosMap.fold
(fun k v ->
if List.mem k ffw.label_list
then id
else (
ff_ef ^%=
(add_log (ERROR("Missing label: " ^ string_of_positive k)))
)
)
ffw.label_to_vaddr
ffw
(** Matches the segment at virtual address [vaddr] with the jumptable expected
from label list [lbllist]. Then checks whether the matched chunk of the code
had the expected [size].
*)
let rec match_jmptbl lbllist vaddr size ffw =
let atom = Hashtbl.find ffw.sf.atoms ffw.this_ident in
let jmptbl_section =
match atom.a_sections with
| [_; _; j] -> j
| _ -> Section_jumptable
in
let rec match_jmptbl_aux lbllist bs ffw =
match lbllist with
| [] -> OK ffw
| lbl :: lbls -> (
bitmatch bs with
| { vaddr : 32 : int;
rest : -1 : bitstring } ->
ffw
>>> lblmap_unify lbl vaddr
>>= match_jmptbl_aux lbls rest
| { _ } ->
ERR("Ill-formed jump table")
)
in
let elf = ffw.sf.ef.elf in
begin match section_at_vaddr elf vaddr with
| None -> ERR("No section for the jumptable")
| Some(sndx) ->
begin match bitstring_at_vaddr elf vaddr size with
| None -> ERR("")
| Some(bs, pofs, psize) ->
ffw
>>> (ff_sf ^%=
match_sections_name jmptbl_section elf.e_shdra.(sndx).sh_name
)
>>> match_jmptbl_aux lbllist bs
>>^ (ff_ef ^%=
add_range pofs psize 0 Jumptable
)
end
end
(** Matches [ecode] agains the expected code for a small memory copy
pseudo-instruction. Returns a triple containing the updated framework,
the remaining ELF code, and the updated program counter.
*)
let match_memcpy_small ecode pc sz al src dst (fw: f_framework)
: (f_framework * ecode * int32) or_err =
let error = ERR("match_memcpy_small") in
let rec match_memcpy_small_aux ofs sz ecode pc (fw: f_framework) =
let ofs32 = Safe32.of_int ofs in
if sz >= 8 && al >= 4
then (
match ecode with
| LFD (frD0, rA0, d0) ::
STFD(frS1, rA1, d1) :: es ->
OK(fw)
>>= match_fregs FPR0 frD0
>>= match_iregs src rA0
>>= match_int32s ofs32 (exts d0)
>>= match_fregs FPR0 frS1
>>= match_iregs dst rA1
>>= match_int32s ofs32 (exts d1)
>>= match_memcpy_small_aux (ofs + 8) (sz - 8) es (Int32.add 8l pc)
| _ -> error
)
else if sz >= 4
then (
match ecode with
| LWZ(rD0, rA0, d0) ::
STW(rS1, rA1, d1) :: es ->
OK(fw)
>>= match_iregs GPR0 rD0
>>= match_iregs src rA0
>>= match_int32s ofs32 (exts d0)
>>= match_iregs GPR0 rS1
>>= match_iregs dst rA1
>>= match_int32s ofs32 (exts d0)
>>= match_memcpy_small_aux (ofs + 4) (sz - 4) es (Int32.add 8l pc)
| _ -> error
)
else if sz >= 2
then (
match ecode with
| LHZ(rD0, rA0, d0) ::
STH(rS1, rA1, d1) :: es ->
OK(fw)
>>= match_iregs GPR0 rD0
>>= match_iregs src rA0
>>= match_int32s ofs32 (exts d0)
>>= match_iregs GPR0 rS1
>>= match_iregs dst rA1
>>= match_int32s ofs32 (exts d0)
>>= match_memcpy_small_aux (ofs + 2) (sz - 2) es (Int32.add 8l pc)
| _ -> error
)
else if sz >= 1
then (
match ecode with
| LBZ(rD0, rA0, d0) ::
STB(rS1, rA1, d1) :: es ->
OK(fw)
>>= match_iregs GPR0 rD0
>>= match_iregs src rA0
>>= match_int32s ofs32 (exts d0)
>>= match_iregs GPR0 rS1
>>= match_iregs dst rA1
>>= match_int32s ofs32 (exts d0)
>>= match_memcpy_small_aux (ofs + 1) (sz - 1) es (Int32.add 8l pc)
| _ -> error
)
else OK(fw, ecode, pc)
in match_memcpy_small_aux 0 sz ecode pc fw
(** Matches [ecode] agains the expected code for a big memory copy
pseudo-instruction. Returns a triple containing the updated framework,
the remaining ELF code, and the updated program counter.
*)
let match_memcpy_big ecode pc sz al src dst fw
: (f_framework * ecode * int32) or_err =
let error = ERR("match_memcpy_big") in
match ecode with
| ADDI (rD0, rA0, simm0) :: (* pc *)
MTSPR(rS1, spr1) ::
ADDI (rD2, rA2, simm2) ::
ADDI (rD3, rA3, simm3) ::
LWZU (rD4, rA4, d4) :: (* pc + 16 <- *)
STWU (rS5, rA5, d5) :: (* | *)
BCx (bo6, bi6, bd6, aa6, lk6) :: (* pc + 24 -- *)
es ->
let sz' = Safe32.of_int (sz / 4) in
let (s, d) = if dst <> GPR11 then (GPR11, GPR12) else (GPR12, GPR11) in
let target_vaddr = Int32.(add 16l pc) in
let dest_vaddr = Int32.(add (add 24l pc) (mul 4l (exts bd6))) in
OK(fw)
>>= match_iregs GPR0 rD0
>>= match_iregs GPR0 rA0
>>= match_int32s sz' (exts simm0)
>>= match_iregs GPR0 rS1
>>= match_ctr spr1
>>= match_iregs s rD2
>>= match_iregs src rA2
>>= match_int32s (-4l) (exts simm2)
>>= match_iregs d rD3
>>= match_iregs dst rA3
>>= match_int32s (-4l) (exts simm3)
>>= match_iregs GPR0 rD4
>>= match_iregs s rA4
>>= match_int32s 4l (exts d4)
>>= match_iregs GPR0 rS5
>>= match_iregs d rA5
>>= match_int32s 4l (exts d5)
>>= (fun ffw ->
bitmatch bo6 with
| { 16:5:int } -> OK(ffw)
| { _ } -> ERR("bitmatch bo")
)
>>= match_ints bi6 0
>>= match_int32s dest_vaddr target_vaddr
>>= match_bools false aa6
>>= match_bools false lk6
>>= (fun fw ->
match sz land 3 with
| 1 ->
begin match es with
| LBZ(rD0, rA0, d0) ::
STB(rS1, rA1, d1) :: es ->
OK(fw)
>>= match_iregs GPR0 rD0
>>= match_iregs s rA0
>>= match_int32s 4l (exts d0)
>>= match_iregs GPR0 rS1
>>= match_iregs d rA1
>>= match_int32s 4l (exts d1)
>>= (fun fw -> OK(fw, es, Int32.add 36l pc))
| _ -> error
end
| 2 ->
begin match es with
| LHZ(rD0, rA0, d0) ::
STH(rS1, rA1, d1) :: es ->
OK(fw)
>>= match_iregs GPR0 rD0
>>= match_iregs s rA0
>>= match_int32s 4l (exts d0)
>>= match_iregs GPR0 rS1
>>= match_iregs d rA1
>>= match_int32s 4l (exts d1)
>>= (fun fw -> OK(fw, es , Int32.add 36l pc))
| _ -> error
end
| 3 ->
begin match es with
| LHZ(rD0, rA0, d0) ::
STH(rS1, rA1, d1) ::
LBZ(rD2, rA2, d2) ::
STB(rS3, rA3, d3) :: es ->
OK(fw)
>>= match_iregs GPR0 rD0
>>= match_iregs s rA0
>>= match_int32s 4l (exts d0)
>>= match_iregs GPR0 rS1
>>= match_iregs d rA1
>>= match_int32s 4l (exts d1)
>>= match_iregs GPR0 rD2
>>= match_iregs s rA2
>>= match_int32s 6l (exts d2)
>>= match_iregs GPR0 rS3
>>= match_iregs d rA3
>>= match_int32s 6l (exts d3)
>>= (fun fw -> OK(fw, es, Int32.add 44l pc))
| _ -> error
end
| _ -> OK(fw, es, Int32.add 28l pc)
)
| _ -> error
let match_bo_bt_bool bo =
bitmatch bo with
| { false:1; true:1; true:1; false:1; false:1 } -> true
| { _ } -> false
let match_bo_bf_bool bo =
bitmatch bo with
| { false:1; false:1; true:1; false:1; false:1 } -> true
| { _ } -> false
let match_bo_bt bo: checker = fun ffw ->
bitmatch bo with
| { false:1; true:1; true:1; false:1; false:1 } -> OK(ffw)
| { _ } -> ERR("match_bo_bt")
let match_bo_bf bo: checker = fun ffw ->
if match_bo_bf_bool bo
then OK(ffw)
else ERR("match_bo_bf")
let match_bo_ctr bo: checker = fun ffw ->
bitmatch bo with
| { true:1; false:1; true:1; false:1; false:1 } -> OK(ffw)
| { _ } -> ERR("match_bo_ctr")
(** Checks whether it is feasible that the position at offset [ofs] from the
CompCert symbol [ident] is situated at a relative address [addr] from
the SDA register [r]. This means that the following equation must hold:
[r] + addr = @ident + ofs
This allows us to determine what address [r] has to contain. If it is the
first such guess or if it matches previous expectations, it's fine.
Otherwise, there is a conflict that is reported in sda_map.
*)
let check_sda ident ofs r addr ffw: f_framework or_err =
let ofs = z_int32 ofs in
let check_sda_aux ndx: (int * f_framework) or_err =
let elf = ffw.sf.ef.elf in
let sym = elf.e_symtab.(ndx) in
let expected_addr = Safe32.(sym.st_value + ofs - addr) in
try
let r_addr = from_inferrable (IntMap.find r ffw.sf.ef.sda_map) in
if r_addr = expected_addr
then OK(ndx, ffw)
else ERR(
Printf.sprintf
"SDA register %d is expected to point both at 0x%lx and 0x%lx"
r r_addr expected_addr
)
with Not_found ->
OK(ndx,
ffw >>> (ff_ef |-- sda_map) ^%= IntMap.add r (Inferred(expected_addr))
)
in
(* We might not know yet what symbols is the one for that ident *)
let sym_list = PosMap.find ident ffw.sf.ident_to_sym_ndx in
(* So we test all the candidates *)
let res = List.map check_sda_aux sym_list in
(* For now, we hope at most one matches *)
match filter_ok res with
| [] -> ERR("No satisfying SDA mapping, errors were: " ^
string_of_list id ", " (filter_err res))
| [(ndx, ffw)] -> OK(
ffw
(* We instantiate the relationship for that ident to the matching symbol *)
>>> (ff_sf |-- ident_to_sym_ndx) ^%= PosMap.add ident [ndx]
)
| _ -> fatal "Multiple possible SDA mappings, please report."
(** Compares a whole CompCert function code against an ELF code, starting at
program counter [pc].
*)
let rec compare_code ccode ecode pc: checker = fun fw ->
match ccode, ecode with
| [], [] -> OK(fw)
| [], e_rest ->
let rest_str = String.concat "\n" (List.map string_of_instr e_rest) in
ERR("CompCert code exhausted before the end of ELF code, remaining:\n"
^ rest_str)
| c_rest, [] ->
let rest_str = String.concat "\n" (List.map string_of_instruction c_rest) in
ERR("ELF code exhausted before the end of CompCert code, remaining:\n"
^ rest_str)
| c::cs, e::es ->
let recur_simpl = compare_code cs es (Int32.add 4l pc) in
let current_instr =
"[" ^ string_of_int32 pc ^ "] " ^ string_of_instruction c ^ " - " ^ string_of_instr e in
let error = ERR("Non-matching instructions: " ^ current_instr) in
let fw =
if !debug
then (ff_ef ^%= add_log (DEBUG(current_instr))) fw
else fw
in
match c with
| Padd(rd, r1, r2) ->
begin match ecode with
| ADDx(rD, rA, rB, oe, rc) :: es ->
OK(fw)
>>= match_iregs rd rD
>>= match_iregs r1 rA
>>= match_iregs r2 rB
>>= match_bools false oe
>>= match_bools false rc
>>= recur_simpl
| _ -> error
end
| Padde(rd, r1, r2) ->
begin match ecode with
| ADDEx(rD, rA, rB, oe, rc) :: es ->
OK(fw)
>>= match_iregs rd rD
>>= match_iregs r1 rA
>>= match_iregs r2 rB
>>= match_bools false oe
>>= match_bools false rc
>>= recur_simpl
| _ -> error
end
| Paddi(rd, r1, Csymbol_sda(ident, ofs)) ->
begin match ecode with
| ADDI(rD, rA, simm) :: es ->
OK(fw)
>>= match_iregs rd rD
>>= check_sda ident ofs rA (exts simm)
>>= recur_simpl
| _ -> error
end
| Paddi(rd, r1, cst) ->
begin match ecode with
| ADDI(rD, rA, simm) :: es ->
OK(fw)
>>= match_iregs rd rD
>>= match_iregs r1 rA
>>= match_csts cst (exts simm)
>>= recur_simpl
| _ -> error
end
| Paddic(rd, r1, cst) ->
begin match ecode with
| ADDIC(rD, rA, simm) :: es ->
OK(fw)
>>= match_iregs rd rD
>>= match_iregs r1 rA
>>= match_csts cst (exts simm)
>>= recur_simpl
| _ -> error
end
| Paddis(rd, r1, cst) ->
begin match ecode with
| ADDIS(rD, rA, simm) :: es ->
OK(fw)
>>= match_iregs rd rD
>>= match_iregs r1 rA
>>= match_csts cst (Safe32.of_int simm)
>>= recur_simpl
| _ -> error
end
| Paddze(rd, r1) ->
begin match ecode with
| ADDZEx(rD, rA, oe, rc) :: es ->
OK(fw)
>>= match_iregs rd rD
>>= match_iregs r1 rA
>>= match_bools false oe
>>= match_bools false rc
>>= recur_simpl
| _ -> error
end
| Pallocframe(sz, ofs) ->
begin match ecode with
| STWU(rS, rA, d) :: es ->
OK(fw)
>>= match_iregs GPR1 rS
>>= match_iregs GPR1 rA
>>= match_z_int32 sz (Int32.neg (exts d))
>>= match_z_int32 ofs 0l
>>= recur_simpl
| ADDIS (rD0, rA0, simm0) ::
ORI (rS1, rA1, uimm1) ::
STWUX (rS2, rA2, rB2) :: es ->
let sz32 = Int32.neg (z_int32 sz) in
let sz_hi = Int32.shift_right_logical sz32 16 in
let sz_lo = Int32.logand sz32 0xFFFFl in
OK(fw)
>>= match_iregs GPR12 rD0
>>= match_iregs GPR0 rA0
>>= match_int32s sz_hi (Safe32.of_int simm0)
>>= match_iregs GPR12 rS1
>>= match_iregs GPR12 rA1
>>= match_int32s sz_lo (Safe32.of_int uimm1)
>>= match_iregs GPR1 rS2
>>= match_iregs GPR1 rA2
>>= match_iregs GPR12 rB2
>>= compare_code cs es (Int32.add 12l pc)
| _ -> error
end
| Pandc(rd, r1, r2) ->
begin match ecode with
| ANDCx(rS, rA, rB, rc) :: es ->
OK(fw)
>>= match_iregs rd rA
>>= match_iregs r1 rS
>>= match_iregs r2 rB
>>= match_bools false rc
>>= recur_simpl
| _ -> error
end
| Pand_(rd, r1, r2) ->
begin match ecode with
| ANDx(rS, rA, rB, rc) :: es ->
OK(fw)
>>= match_iregs rd rA
>>= match_iregs r1 rS
>>= match_iregs r2 rB
>>= match_bools true rc
>>= recur_simpl
| _ -> error
end
| Pandis_(rd, r1, cst) ->
begin match ecode with
| ANDIS_(rS, rA, uimm) :: es ->
OK(fw)
>>= match_iregs rd rA
>>= match_iregs r1 rS
>>= match_csts cst (Safe32.of_int uimm)
>>= recur_simpl
| _ -> error
end
| Pandi_(rd, r1, cst) ->
begin match ecode with
| ANDI_(rS, rA, uimm) :: es ->
OK(fw)
>>= match_iregs rd rA
>>= match_iregs r1 rS
>>= match_csts cst (Safe32.of_int uimm)
>>= recur_simpl
| _ -> error
end
| Pannot(ef, args) ->
OK(fw)
>>= compare_code cs ecode pc
| Pb(lbl) ->
begin match ecode with
| Bx(li, aa, lk) :: es ->
let lblvaddr = Int32.(add pc (mul 4l (exts li))) in
OK(fw)
>>= lblmap_unify lbl lblvaddr
>>= match_bools false aa
>>= match_bools false lk
>>= recur_simpl
| _ -> error
end
| Pbctr ->
begin match ecode with
| BCCTRx(bo, bi, lk) :: es ->
OK(fw)
>>= match_bo_ctr bo
>>= match_ints 0 bi
>>= match_bools false lk
>>= recur_simpl
| _ -> error
end
| Pbctrl ->
begin match ecode with
| BCCTRx(bo, bi, lk) :: es ->
OK(fw)
>>= match_bo_ctr bo
>>= match_ints 0 bi
>>= match_bools true lk
>>= recur_simpl
| _ -> error
end
| Pbf(bit, lbl) ->
begin match ecode with
| BCx(bo, bi, bd, aa, lk) :: es when match_bo_bf_bool bo ->
let lblvaddr = Int32.(add pc (mul 4l (exts bd))) in
OK(fw)
(*>>= match_bo_bf bo already done in pattern match *)
>>= match_crbits bit bi
>>= lblmap_unify lbl lblvaddr
>>= match_bools false aa
>>= match_bools false lk
>>= recur_simpl
| BCx(bo0, bi0, bd0, aa0, lk0) ::
Bx (li1, aa1, lk1) :: es ->
let cnext = Int32.add pc 8l in
let enext = Int32.(add pc (mul 4l (exts bd0))) in
let lblvaddr = Int32.(add pc (mul 4l (exts bd0))) in
OK(fw)
>>= match_bo_bt bo0
>>= match_crbits bit bi0
>>= match_int32s cnext enext
>>= match_bools false aa0
>>= match_bools false lk0
>>= lblmap_unify lbl lblvaddr
>>= match_bools false aa1
>>= match_bools false lk1
>>= compare_code cs es (Int32.add 8l pc)
| _ -> error
end
| Pbl(ident) ->
begin match ecode with
| Bx(li, aa, lk) :: es ->
let dest = Int32.(add pc (mul 4l (exts li))) in
OK(fw)
>>= (ff_sf ^%=? idmap_unify ident dest)
>>= match_bools false aa
>>= match_bools true lk
>>= recur_simpl
| _ -> error
end
| Pblr ->
begin match ecode with
| BCLRx(bo, bi, lk) :: es ->
OK(fw)
>>= match_bo_ctr bo
>>= match_ints 0 bi
>>= match_bools false lk
>>= recur_simpl
| _ -> error
end
| Pbs(ident) ->
begin match ecode with
| Bx(li, aa, lk) :: es ->
let dest = Int32.(add pc (mul 4l (exts li))) in
OK(fw)
>>= match_bools false aa
>>= match_bools false lk
>>= (ff_sf ^%=? idmap_unify ident dest)
>>= recur_simpl
| _ -> error
end
| Pbt(bit, lbl) ->
begin match ecode with
| BCx(bo, bi, bd, aa, lk) :: es when match_bo_bt_bool bo ->
let lblvaddr = Int32.(add pc (mul 4l (exts bd))) in
OK(fw)
(*>>= match_bo_bt bo already done in pattern match *)
>>= match_crbits bit bi
>>= lblmap_unify lbl lblvaddr
>>= match_bools false aa
>>= match_bools false lk
>>= recur_simpl
| BCx(bo0, bi0, bd0, aa0, lk0) ::
Bx (li1, aa1, lk1) :: es ->
let cnext = Int32.add pc 8l in
let enext = Int32.(add pc (mul 4l (exts bd0))) in
let lblvaddr = Int32.(add pc (mul 4l (exts bd0))) in
OK(fw)
>>= match_bo_bf bo0
>>= match_crbits bit bi0
>>= match_int32s cnext enext
>>= match_bools false aa0
>>= match_bools false lk0
>>= lblmap_unify lbl lblvaddr
>>= match_bools false aa1
>>= match_bools false lk1
>>= compare_code cs es (Int32.add 8l pc)
| _ -> error
end
| Pbtbl(reg, table) ->
begin match ecode with
| RLWINMx(rS0, rA0, sh, mb, me, rc0) ::
ADDIS (rD1, rA1, simm1) ::
LWZ (rD2, rA2, d2) ::
MTSPR (rS3, spr3) ::
BCCTRx(bo4, bi4, rc4) :: es ->
let tblvaddr = Int32.(
add (shift_left (Safe32.of_int simm1) 16) (exts d2)
) in
let tblsize = Safe32.of_int (32 * List.length table) in
OK(fw)
>>= match_iregs GPR12 rA0
>>= match_iregs reg rS0
>>= match_ints sh 2
>>= match_ints mb 0
>>= match_ints me 29
>>= match_bools false rc0
>>= match_iregs GPR12 rA1
>>= match_iregs GPR12 rD1
>>= match_iregs GPR12 rA2
>>= match_iregs GPR12 rD2
>>= match_iregs GPR12 rS3
>>= match_ctr spr3
>>= match_bo_ctr bo4
>>= match_ints 0 bi4
>>= match_bools false rc4
>>= match_jmptbl table tblvaddr tblsize
>>= compare_code cs es (Int32.add 20l pc)
| _ -> error
end
| Pbuiltin(ef, args, res) ->
begin match ef with
| EF_builtin(name, sg) ->
begin match Hashtbl.find
(fw |. ff_sf).ident_to_name name, args, res with
| "__builtin_mulhw", [IR a1; IR a2], [IR res] ->
begin match ecode with
| MULHWx(rD, rA, rB, rc) :: es ->
OK(fw)
>>= match_iregs res rD
>>= match_iregs a1 rA
>>= match_iregs a2 rB
>>= match_bools false rc
>>= recur_simpl
| _ -> error
end
| "__builtin_mulhwu", [IR a1; IR a2], [IR res] ->
begin match ecode with
| MULHWUx(rD, rA, rB, rc) :: es ->
OK(fw)
>>= match_iregs res rD
>>= match_iregs a1 rA
>>= match_iregs a2 rB
>>= match_bools false rc
>>= recur_simpl
| _ -> error
end
| "__builtin_cntlz", [IR a1], [IR res] ->
begin match ecode with
| CNTLZWx(rS, rA, rc) :: es ->
OK(fw)
>>= match_iregs a1 rS
>>= match_iregs res rA
>>= match_bools false rc
>>= recur_simpl
| _ -> error
end
| ("__builtin_bswap"|"__builtin_bswap32"), [IR a1], [IR res] ->
begin match ecode with
| STWU (rS0, rA0, d0) ::
LWBRX(rD1, rA1, rB1) ::
ADDI (rD2, rA2, simm2) :: es ->
OK(fw)
>>= match_iregs a1 rS0
>>= match_iregs GPR1 rA0
>>= match_int32s (-8l) (exts d0)
>>= match_iregs res rD1
>>= match_iregs GPR0 rA1
>>= match_iregs GPR1 rB1
>>= match_iregs GPR1 rD2
>>= match_iregs GPR1 rA2
>>= match_int32s 8l (exts simm2)
>>= compare_code cs es (Int32.add 12l pc)
| _ -> error
end
| "__builtin_bswap16", [IR a1], [IR res] ->
begin match ecode with
| RLWINMx(rS1, rA1, sh1, mb1, me1, rc1) ::
RLWINMx(rS2, rA2, sh2, mb2, me2, rc2) ::
ORx(rS3, rA3, rB3, rc3) :: es ->
OK(fw)
>>= match_iregs GPR0 rS1
>>= match_iregs a1 rA1
>>= check_eq "bswap16-1" sh1 8
>>= check_eq "bswap16-2" mb1 16
>>= check_eq "bswap16-3" me1 23
>>= match_iregs res rS2
>>= match_iregs a1 rA2
>>= check_eq "bswap16-4" sh2 24
>>= check_eq "bswap16-5" mb2 24
>>= check_eq "bswap16-6" me2 31
>>= match_iregs res rS3
>>= match_iregs GPR0 rA3
>>= match_iregs res rB3
>>= compare_code cs es (Int32.add 12l pc)
| _ -> error
end
| "__builtin_fmadd", [FR a1; FR a2; FR a3], [FR res] ->
begin match ecode with
| FMADDx(frD, frA, frB, frC, rc) :: es ->
OK(fw)
>>= match_fregs res frD
>>= match_fregs a1 frA
>>= match_fregs a3 frB
>>= match_fregs a2 frC
>>= match_bools false rc
>>= recur_simpl
| _ -> error
end
| "__builtin_fmsub", [FR a1; FR a2; FR a3], [FR res] ->
begin match ecode with
| FMSUBx(frD, frA, frB, frC, rc) :: es ->
OK(fw)
>>= match_fregs res frD
>>= match_fregs a1 frA
>>= match_fregs a3 frB
>>= match_fregs a2 frC
>>= match_bools false rc
>>= recur_simpl
| _ -> error
end
| "__builtin_fnmadd", [FR a1; FR a2; FR a3], [FR res] ->
begin match ecode with
| FNMADDx(frD, frA, frB, frC, rc) :: es ->
OK(fw)
>>= match_fregs res frD
>>= match_fregs a1 frA
>>= match_fregs a3 frB
>>= match_fregs a2 frC
>>= match_bools false rc
>>= recur_simpl
| _ -> error
end
| "__builtin_fnmsub", [FR a1; FR a2; FR a3], [FR res] ->
begin match ecode with
| FNMSUBx(frD, frA, frB, frC, rc) :: es ->
OK(fw)
>>= match_fregs res frD
>>= match_fregs a1 frA
>>= match_fregs a3 frB
>>= match_fregs a2 frC
>>= match_bools false rc
>>= recur_simpl
| _ -> error
end
| "__builtin_fabs", [FR a1], [FR res] ->
begin match ecode with
| FABSx(frD, frB, rc) :: es ->
OK(fw)
>>= match_fregs res frD
>>= match_fregs a1 frB
>>= match_bools false rc
>>= recur_simpl
| _ -> error
end
| "__builtin_fsqrt", [FR a1], [FR res] ->
begin match ecode with
| FSQRTx(frD, frB, rc) :: es ->
OK(fw)
>>= match_fregs res frD
>>= match_fregs a1 frB
>>= match_bools false rc
>>= recur_simpl
| _ -> error
end
| "__builtin_frsqrte", [FR a1], [FR res] ->
begin match ecode with
| FRSQRTEx(frD, frB, rc) :: es ->
OK(fw)
>>= match_fregs res frD
>>= match_fregs a1 frB
>>= match_bools false rc
>>= recur_simpl
| _ -> error
end
| "__builtin_fres", [FR a1], [FR res] ->
begin match ecode with
| FRESx(frD, frB, rc) :: es ->
OK(fw)
>>= match_fregs res frD
>>= match_fregs a1 frB
>>= match_bools false rc
>>= recur_simpl
| _ -> error
end
| "__builtin_fsel", [FR a1; FR a2; FR a3], [FR res] ->
begin match ecode with
| FSELx(frD, frA, frB, frC, rc) :: es ->
OK(fw)
>>= match_fregs res frD
>>= match_fregs a1 frA
>>= match_fregs a3 frB
>>= match_fregs a2 frC
>>= match_bools false rc
>>= recur_simpl
| _ -> error
end
| "__builtin_fcti", [FR r1], [IR rd] ->
begin match ecode with
| FCTIWx(frD0, frB0, rc0) ::
STFDU (frS1, rA1, d1) ::
LWZ (rD2, rA2, d2) ::
ADDI (rD3, rA3, simm3) :: es ->
OK(fw)
>>= match_fregs FPR13 frD0
>>= match_fregs r1 frB0
>>= match_bools false rc0
>>= match_fregs FPR13 frS1
>>= match_iregs GPR1 rA1
>>= match_int32s (-8l) (exts d1)
>>= match_iregs rd rD2
>>= match_iregs GPR1 rA2
>>= match_int32s 4l (exts d2)
>>= match_iregs GPR1 rD3
>>= match_iregs GPR1 rA3
>>= match_int32s 8l (exts simm3)
>>= compare_code cs es (Int32.add 16l pc)
| _ -> error
end
| "__builtin_read16_reversed", [IR a1], [IR res] ->
begin match ecode with
| LHBRX(rD, rA, rB):: es ->
OK(fw)
>>= match_iregs res rD
>>= match_iregs GPR0 rA
>>= match_iregs a1 rB
>>= recur_simpl
| _ -> error
end
| "__builtin_read32_reversed", [IR a1], [IR res] ->
begin match ecode with
| LWBRX(rD, rA, rB) :: es ->
OK(fw)
>>= match_iregs res rD
>>= match_iregs GPR0 rA
>>= match_iregs a1 rB
>>= recur_simpl
| _ -> error
end
| "__builtin_write16_reversed", [IR a1; IR a2], _ ->
begin match ecode with
| STHBRX(rS, rA, rB) :: es ->
OK(fw)
>>= match_iregs a2 rS
>>= match_iregs GPR0 rA
>>= match_iregs a1 rB
>>= recur_simpl
| _ -> error
end
| "__builtin_write32_reversed", [IR a1; IR a2], _ ->
begin match ecode with
| STWBRX(rS, rA, rB) :: es ->
OK(fw)
>>= match_iregs a2 rS
>>= match_iregs GPR0 rA
>>= match_iregs a1 rB
>>= recur_simpl
| _ -> error
end
| "__builtin_eieio", [], _ ->
begin match ecode with
| EIEIO :: es ->
OK(fw)
>>= recur_simpl
| _ -> error
end
| "__builtin_sync", [], _ ->
begin match ecode with
| SYNC :: es ->
OK(fw)
>>= recur_simpl
| _ -> error
end
| "__builtin_isync", [], _ ->
begin match ecode with
| ISYNC :: es ->
OK(fw)
>>= recur_simpl
| _ -> error
end
| "__builtin_trap", [], _ ->
begin match ecode with
| TW(tO, rA, rB) :: es ->
OK(fw)
>>= (fun ffw ->
bitmatch tO with
| { 31 : 5 : int } -> OK(ffw)
| { _ } -> ERR("bitmatch")
)
>>= match_iregs GPR0 rA
>>= match_iregs GPR0 rB
>>= recur_simpl
| _ -> error
end
| _ -> error
end
| EF_vload(chunk) ->
begin match args with
| [IR addr] ->
OK(fw)
>>= check_builtin_vload_common
cs ecode pc chunk addr (Cint Integers.Int.zero) res
| _ -> fatal "Unexpected args in EF_vload, please report."
end
| EF_vstore(chunk) ->
begin match args with
| [IR addr; src] ->
OK(fw)
>>= check_builtin_vstore_common
cs ecode pc chunk addr (Cint Integers.Int.zero) src
| _ -> fatal "Unexpected args in EF_vstore, please report."
end
| EF_vload_global(chunk, ident, ofs) ->
begin match ecode with
| ADDIS(rD, rA, simm) :: es ->
let high = Csymbol_high(ident, ofs) in
OK(fw)
>>= match_iregs GPR11 rD
>>= match_iregs GPR0 rA
>>= match_csts high (Safe32.of_int simm)
>>= check_builtin_vload_common
cs es (Int32.add pc 4l) chunk GPR11
(Csymbol_low(ident, ofs)) res
| _ -> error
end
| EF_vstore_global(chunk, ident, ofs) ->
begin match args with
| [src] ->
begin match ecode with
| ADDIS(rD, rA, simm) :: es ->
let tmp =
if src = IR GPR11
then GPR12
else GPR11
in
let high = Csymbol_high(ident, ofs) in
OK(fw)
>>= match_iregs tmp rD
>>= match_iregs GPR0 rA
>>= match_csts high (Safe32.of_int simm)
>>= check_builtin_vstore_common
cs es (Int32.add pc 4l) chunk tmp
(Csymbol_low(ident, ofs)) src
| _ -> error
end
| _ -> fatal "Unexpected args in EF_vstore_global, please report."
end
| EF_memcpy(sz, al) ->
let sz = z_int sz in
let al = z_int al in
begin match args with
| [IR dst; IR src] ->
if sz <= 64
then (
match match_memcpy_small ecode pc sz al src dst fw with
| ERR(s) -> ERR(s)
| OK(fw, es, pc) -> compare_code cs es pc fw
)
else (
match match_memcpy_big ecode pc sz al src dst fw with
| ERR(s) -> ERR(s)
| OK(fw, es, pc) -> compare_code cs es pc fw
)
| _ -> error
end
| EF_annot_val(text, targ) ->
begin match args, res with
| IR src :: _, [IR dst] ->
if dst <> src
then (
match ecode with
| ORx(rS, rA, rB, rc) :: es ->
OK(fw)
>>= match_iregs src rS
>>= match_iregs dst rA
>>= match_iregs src rB
>>= match_bools false rc
>>= recur_simpl
| _ -> error
)
else compare_code cs ecode pc fw
| FR src :: _, [FR dst] ->
if dst <> src
then (
match ecode with
| FMRx(frD, frB, rc) :: es ->
OK(fw)
>>= match_fregs dst frD
>>= match_fregs src frB
>>= match_bools false rc
>>= recur_simpl
| _ -> error
)
else compare_code cs ecode pc fw
| _ -> error
end
| EF_annot(_, _) -> fatal "Unexpected EF_annot, please report."
| EF_external(_, _) -> fatal "Unexpected EF_external, please report."
| EF_free -> fatal "Unexpected EF_free, please report."
| EF_malloc -> fatal "Unexpected EF_malloc, please report."
| EF_inline_asm(_) -> fatal "Unsupported: inline asm statement."
end
| Pcmplw(r1, r2) ->
begin match ecode with
| CMPL(crfD, l, rA, rB) :: es ->
OK(fw)
>>= match_crbits CRbit_0 crfD
>>= match_bools false l
>>= match_iregs r1 rA
>>= match_iregs r2 rB
>>= recur_simpl
| _ -> error
end
| Pcmplwi(r1, cst) ->
begin match ecode with
| CMPLI(crfD, l, rA, uimm) :: es ->
OK(fw)
>>= match_iregs r1 rA
>>= match_csts cst (Safe32.of_int uimm)
>>= match_crbits CRbit_0 crfD
>>= match_bools false l
>>= recur_simpl
| _ -> error
end
| Pcmpw(r1, r2) ->
begin match ecode with
| CMP(crfD, l, rA, rB) :: es ->
OK(fw)
>>= match_ints crfD 0
>>= match_bools l false
>>= match_iregs r1 rA
>>= match_iregs r2 rB
>>= recur_simpl
| _ -> error
end
| Pcmpwi(r1, cst) ->
begin match ecode with
| CMPI(crfD, l, rA, simm) :: es ->
OK(fw)
>>= match_ints crfD 0
>>= match_bools false l
>>= match_iregs r1 rA
>>= match_csts cst (exts simm)
>>= recur_simpl
| _ -> error
end
| Pcror(bd, b1, b2) ->
begin match ecode with
| CROR(crbD, crbA, crbB) :: es ->
OK(fw)
>>= match_crbits bd crbD
>>= match_crbits b1 crbA
>>= match_crbits b2 crbB
>>= recur_simpl
| _ -> error
end
| Pdivw(rd, r1, r2) ->
begin match ecode with
| DIVWx(rD, rA, rB, oe, rc) :: es ->
OK(fw)
>>= match_iregs rd rD
>>= match_iregs r1 rA
>>= match_iregs r2 rB
>>= match_bools false oe
>>= match_bools false rc
>>= recur_simpl
| _ -> error
end
| Pdivwu(rd, r1, r2) ->
begin match ecode with
| DIVWUx(rD, rA, rB, oe, rc) :: es ->
OK(fw)
>>= match_iregs rd rD
>>= match_iregs r1 rA
>>= match_iregs r2 rB
>>= match_bools false oe
>>= match_bools false rc
>>= recur_simpl
| _ -> error
end
| Peqv(rd, r1, r2) ->
begin match ecode with
| EQVx(rS, rA, rB, rc) :: es ->
OK(fw)
>>= match_iregs rd rA
>>= match_iregs r1 rS
>>= match_iregs r2 rB
>>= match_bools false rc
>>= recur_simpl
| _ -> error
end
| Pextsb(rd, r1) ->
begin match ecode with
| EXTSBx(rS, rA, rc) :: es ->
OK(fw)
>>= match_iregs rd rA
>>= match_iregs r1 rS
>>= match_bools false rc
>>= recur_simpl
| _ -> error
end
| Pextsh(rd, r1) ->
begin match ecode with
| EXTSHx(rS, rA, rc) :: es ->
OK(fw)
>>= match_iregs rd rA
>>= match_iregs r1 rS
>>= match_bools false rc
>>= recur_simpl
| _ -> error
end
| Pfabs(rd, r1) ->
begin match ecode with
| FABSx(frD, frB, rc) :: es ->
OK(fw)
>>= match_fregs rd frD
>>= match_fregs r1 frB
>>= match_bools false rc
>>= recur_simpl
| _ -> error
end
| Pfadd(rd, r1, r2) ->
begin match ecode with
| FADDx(frD, frA, frB, rc) :: es ->
OK(fw)
>>= match_fregs rd frD
>>= match_fregs r1 frA
>>= match_fregs r2 frB
>>= match_bools false rc
>>= recur_simpl
| _ -> error
end
| Pfcmpu(r1, r2) ->
begin match ecode with
| FCMPU(crfD, frA, frB) :: es ->
OK(fw)
>>= match_crbits CRbit_0 crfD
>>= match_fregs r1 frA
>>= match_fregs r2 frB
>>= recur_simpl
| _ -> error
end
| Pfcti(rd, r1) ->
begin match ecode with
| FCTIWZx(frD0, frB0, rc0) ::
STFDU (frS1, rA1, d1) ::
LWZ (rD2, rA2, d2) ::
ADDI (rD3, rA3, simm3) :: es ->
OK(fw)
>>= match_fregs FPR13 frD0
>>= match_fregs r1 frB0
>>= match_bools false rc0
>>= match_fregs FPR13 frS1
>>= match_iregs GPR1 rA1
>>= match_int32s (-8l) (exts d1)
>>= match_iregs rd rD2
>>= match_iregs GPR1 rA2
>>= match_int32s 4l (exts d2)
>>= match_iregs GPR1 rD3
>>= match_iregs GPR1 rA3
>>= match_int32s 8l (exts simm3)
>>= compare_code cs es (Int32.add 16l pc)
| _ -> error
end
| Pfdiv(rd, r1, r2) ->
begin match ecode with
| FDIVx(frD, frA, frB, rc) :: es ->
OK(fw)
>>= match_fregs rd frD
>>= match_fregs r1 frA
>>= match_fregs r2 frB
>>= match_bools false rc
>>= recur_simpl
| _ -> error
end
| Pfmake(rd, r1, r2) ->
begin match ecode with
| STWU (rS0, rA0, d0) ::
STW (rS1, rA1, d1) ::
LFD (frD2, rA2, d2) ::
ADDI (rD3, rA3, simm3) :: es ->
OK(fw)
>>= match_iregs r1 rS0
>>= match_iregs GPR1 rA0
>>= match_int32s (-8l) (exts d0)
>>= match_iregs r2 rS1
>>= match_iregs GPR1 rA1
>>= match_int32s 4l (exts d1)
>>= match_fregs rd frD2
>>= match_iregs GPR1 rA2
>>= match_int32s 0l (exts d2)
>>= match_iregs GPR1 rD3
>>= match_iregs GPR1 rA3
>>= match_int32s 8l (exts simm3)
>>= compare_code cs es (Int32.add 16l pc)
| _ -> error
end
| Pfmr(rd, r1) ->
begin match ecode with
| FMRx(frD, frB, rc) :: es ->
OK(fw)
>>= match_fregs rd frD
>>= match_fregs r1 frB
>>= match_bools false rc
>>= recur_simpl
| _ -> error
end
| Pfmul(rd, r1, r2) ->
begin match ecode with
| FMULx(frD, frA, frC, rc) :: es ->
OK(fw)
>>= match_fregs rd frD
>>= match_fregs r1 frA
>>= match_fregs r2 frC
>>= match_bools false rc
>>= recur_simpl
| _ -> error
end
| Pfneg (rd, r1) ->
begin match ecode with
| FNEGx(frD, frB, rc) :: es ->
OK(fw)
>>= match_fregs rd frD
>>= match_fregs r1 frB
>>= match_bools false rc
>>= recur_simpl
| _ -> error
end
| Pfreeframe(sz, ofs) ->
begin match ecode with
| ADDI(rD, rA, simm) :: es ->
OK(fw)
>>= match_iregs GPR1 rD
>>= match_iregs GPR1 rA
>>= match_z_int32 sz (exts simm)
>>= recur_simpl
| LWZ(rD, rA, d) :: es ->
OK(fw)
>>= match_iregs GPR1 rD
>>= match_iregs GPR1 rA
>>= match_z_int32 ofs (exts d)
>>= recur_simpl
| _ -> error
end
| Pfrsp(rd, r1) ->
begin match ecode with
| FRSPx(frD, frB, rc) :: es ->
OK(fw)
>>= match_fregs rd frD
>>= match_fregs r1 frB
>>= match_bools false rc
>>= recur_simpl
| _ -> error
end
| Pfsub(rd, r1, r2) ->
begin match ecode with
| FSUBx(frD, frA, frB, rc) :: es ->
OK(fw)
>>= match_fregs rd frD
>>= match_fregs r1 frA
>>= match_fregs r2 frB
>>= match_bools false rc
>>= recur_simpl
| _ -> error
end
| Plabel(lbl) ->
OK(fw)
>>= lblmap_unify lbl pc
>>^ (fun fw -> {fw with label_list = lbl :: fw.label_list})
>>= compare_code cs ecode pc
| Plbz(rd, Csymbol_sda(ident, ofs), r1) ->
begin match ecode with
| LBZ(rD, rA, d) :: es ->
OK(fw)
>>= match_iregs rd rD
>>= check_sda ident ofs rA (exts d)
>>= recur_simpl
| _ -> error
end
| Plbz(rd, cst, r1) ->
begin match ecode with
| LBZ(rD, rA, d) :: es ->
OK(fw)
>>= match_iregs rd rD
>>= match_csts cst (exts d)
>>= match_iregs r1 rA
>>= recur_simpl
| _ -> error
end
| Plbzx(rd, r1, r2) ->
begin match ecode with
| LBZX(rD, rA, rB) :: es ->
OK(fw)
>>= match_iregs rd rD
>>= match_iregs r1 rA
>>= match_iregs r2 rB
>>= recur_simpl
| _ -> error
end
| Plfd(rd, Csymbol_sda(ident, ofs), r1) ->
begin match ecode with
| LFD(frD, rA, d) :: es ->
OK(fw)
>>= match_fregs rd frD
>>= check_sda ident ofs rA (exts d)
>>= recur_simpl
| _ -> error
end
| Plfd(rd, cst, r1) ->
begin match ecode with
| LFD(frD, rA, d) :: es ->
OK(fw)
>>= match_fregs rd frD
>>= match_csts cst (exts d)
>>= match_iregs r1 rA
>>= recur_simpl
| _ -> error
end
| Plfdx(rd, r1, r2) ->
begin match ecode with
| LFDX(frD, rA, rB) :: es ->
OK(fw)
>>= match_fregs rd frD
>>= match_iregs r1 rA
>>= match_iregs r2 rB
>>= recur_simpl
| _ -> error
end
| Plfi(r1, c) ->
begin match ecode with
| ADDIS(rD0, rA0, simm0) ::
LFD (frD1, rA1, d1) :: es ->
let vaddr = Int32.(
add (shift_left (Safe32.of_int simm0) 16) (exts d1)
) in
if Int32.rem vaddr 8l <> 0l
then ERR("Float constants should be 8-byte aligned")
else
let elf = fw.sf.ef.elf in
let atom = Hashtbl.find fw.sf.atoms fw.this_ident in
let literal_section =
begin match atom.a_sections with
| [_; l; _] -> l
| _ -> Section_literal
end
in
let continue = compare_code cs es (Int32.add 8l pc) in
begin match bitstring_at_vaddr elf vaddr 8l with
| None ->
ERR("Floating point constant address is wrong")
| Some(bs, pofs, psize) ->
let f =
bitmatch bs with
| { f : 64 : int } -> Int64.float_of_bits f
in
OK(fw)
>>= (fun ffw ->
begin match section_at_vaddr elf vaddr with
| None -> ERR("No section at that virtual address")
| Some(sndx) ->
let section_name = elf.e_shdra.(sndx).sh_name in
OK(
ffw
>>> (
ff_sf ^%=
match_sections_name literal_section section_name
)
)
end
)
>>= match_iregs GPR12 rD0
>>= match_iregs GPR0 rA0
>>= match_fregs r1 frD1
>>= match_floats c f
>>^ (ff_ef ^%= add_range pofs psize 8 (Float_literal(f)))
>>= match_iregs GPR12 rA1
>>= continue
end
| _ -> error
end
| Plfs(rd, Csymbol_sda(ident, ofs), r1) ->
begin match ecode with
| LFS(frD, rA, d) :: es ->
OK(fw)
>>= match_fregs rd frD
>>= check_sda ident ofs rA (exts d)
>>= recur_simpl
| _ -> error
end
| Plfs(rd, cst, r1) ->
begin match ecode with
| LFS(frD, rA, d) :: es ->
OK(fw)
>>= match_fregs rd frD
>>= match_csts cst (exts d)
>>= match_iregs r1 rA
>>= recur_simpl
| _ -> error
end
| Plfsx(rd, r1, r2) ->
begin match ecode with
| LFSX(frD, rA, rB) :: es ->
OK(fw)
>>= match_fregs rd frD
>>= match_iregs r1 rA
>>= match_iregs r2 rB
>>= recur_simpl
| _ -> error
end
| Plha(rd, Csymbol_sda(ident, ofs), r1) ->
begin match ecode with
| LHA(rD, rA, d) :: es ->
OK(fw)
>>= match_iregs rd rD
>>= check_sda ident ofs rA (exts d)
>>= recur_simpl
| _ -> error
end
| Plha(rd, cst, r1) ->
begin match ecode with
| LHA(rD, rA, d) :: es ->
OK(fw)
>>= match_iregs rd rD
>>= match_csts cst (exts d)
>>= match_iregs r1 rA
>>= recur_simpl
| _ -> error
end
| Plhax(rd, r1, r2) ->
begin match ecode with
| LHAX(rD, rA, rB) :: es ->
OK(fw)
>>= match_iregs rd rD
>>= match_iregs r1 rA
>>= match_iregs r2 rB
>>= recur_simpl
| _ -> error
end
| Plhz(rd, Csymbol_sda(ident, ofs), r1) ->
begin match ecode with
| LHZ(rD, rA, d) :: es ->
OK(fw)
>>= match_iregs rd rD
>>= check_sda ident ofs rA (exts d)
>>= recur_simpl
| _ -> error
end
| Plhz(rd, cst, r1) ->
begin match ecode with
| LHZ(rD, rA, d) :: es ->
OK(fw)
>>= match_iregs rd rD
>>= match_csts cst (exts d)
>>= match_iregs r1 rA
>>= recur_simpl
| _ -> error
end
| Plhzx(rd, r1, r2) ->
begin match ecode with
| LHZX(rD, rA, rB) :: es ->
OK(fw)
>>= match_iregs rd rD
>>= match_iregs r1 rA
>>= match_iregs r2 rB
>>= recur_simpl
| _ -> error
end
| Plwz(rd, Csymbol_sda(ident, ofs), r1) ->
begin match ecode with
| LWZ(rD, rA, d) :: es ->
OK(fw)
>>= match_iregs rd rD
>>= check_sda ident ofs rA (exts d)
>>= recur_simpl
| _ -> error
end
| Plwz(rd, cst, r1) ->
begin match ecode with
| LWZ(rD, rA, d) :: es ->
OK(fw)
>>= match_iregs rd rD
>>= match_iregs r1 rA
>>= match_csts cst (exts d)
>>= recur_simpl
| _ -> error
end
| Plwzx(rd, r1, r2) ->
begin match ecode with
| LWZX(rD, rA, rB) :: es ->
OK(fw)
>>= match_iregs rd rD
>>= match_iregs r1 rA
>>= match_iregs r2 rB
>>= recur_simpl
| _ -> error
end
| Pmfcrbit(rd, bit) ->
begin match ecode with
| MFCR (rD0) ::
RLWINMx(rS1, rA1, sh1, mb1, me1, rc1) :: es ->
OK(fw)
>>= match_iregs rd rD0
>>= match_iregs rd rS1
>>= match_iregs rd rA1
>>= match_crbits bit (sh1 - 1)
>>= match_ints 31 mb1
>>= match_ints 31 me1
>>= match_bools false rc1
>>= compare_code cs es (Int32.add 8l pc)
| _ -> error
end
| Pmflr(r) ->
begin match ecode with
| MFSPR(rD, spr) :: es ->
OK(fw)
>>= match_iregs r rD
>>= match_lr spr
>>= recur_simpl
| _ -> error
end
| Pmr(rd, r1) ->
begin match ecode with
| ORx(rS, rA, rB, rc) :: es when (rB = rS) ->
OK(fw)
>>= match_iregs rd rA
>>= match_iregs r1 rS
>>= match_bools false rc
>>= recur_simpl
| _ -> error
end
| Pmtctr(r1) ->
begin match ecode with
| MTSPR(rS, spr) :: es ->
OK(fw)
>>= match_iregs r1 rS
>>= match_ctr spr
>>= recur_simpl
| _ -> error
end
| Pmtlr(r1) ->
begin match ecode with
| MTSPR(rS, spr) :: es ->
OK(fw)
>>= match_iregs r1 rS
>>= match_lr spr
>>= recur_simpl
| _ -> error
end
| Pmulli(rd, r1, cst) ->
begin match ecode with
| MULLI(rD, rA, simm) :: es ->
OK(fw)
>>= match_iregs rd rD
>>= match_iregs r1 rA
>>= match_csts cst (exts simm)
>>= recur_simpl
| _ -> error
end
| Pmullw(rd, r1, r2) ->
begin match ecode with
| MULLWx(rD, rA, rB, oe, rc) :: es ->
OK(fw)
>>= match_iregs rd rD
>>= match_iregs r1 rA
>>= match_iregs r2 rB
>>= match_bools false oe
>>= match_bools false rc
>>= recur_simpl
| _ -> error
end
| Pnand(rd, r1, r2) ->
begin match ecode with
| NANDx(rS, rA, rB, rc) :: es ->
OK(fw)
>>= match_iregs rd rA
>>= match_iregs r1 rS
>>= match_iregs r2 rB
>>= match_bools false rc
>>= recur_simpl
| _ -> error
end
| Pnor(rd, r1, r2) ->
begin match ecode with
| NORx(rS, rA, rB, rc) :: es ->
OK(fw)
>>= match_iregs rd rA
>>= match_iregs r1 rS
>>= match_iregs r2 rB
>>= match_bools false rc
>>= recur_simpl
| _ -> error
end
| Por(rd, r1, r2) ->
begin match ecode with
| ORx(rS, rA, rB, rc) :: es ->
OK(fw)
>>= match_iregs rd rA
>>= match_iregs r1 rS
>>= match_iregs r2 rB
>>= match_bools false rc
>>= recur_simpl
| _ -> error
end
| Porc(rd, r1, r2) ->
begin match ecode with
| ORCx(rS, rA, rB, rc) :: es ->
OK(fw)
>>= match_iregs rd rA
>>= match_iregs r1 rS
>>= match_iregs r2 rB
>>= match_bools false rc
>>= recur_simpl
| _ -> error
end
| Pori(rd, r1, cst) ->
begin match ecode with
| ORI(rS, rA, uimm) :: es ->
OK(fw)
>>= match_iregs rd rA
>>= match_iregs r1 rS
>>= match_csts cst (Safe32.of_int uimm)
>>= recur_simpl
| _ -> error
end
| Poris(rd, r1, cst) ->
begin match ecode with
| ORIS(rS, rA, uimm) :: es ->
OK(fw)
>>= match_iregs rd rA
>>= match_iregs r1 rS
>>= match_csts cst (Safe32.of_int uimm)
>>= recur_simpl
| _ -> error
end
| Prlwimi(rd, r1, amount, mask) ->
begin match ecode with
| RLWIMIx(rS, rA, sh, mb, me, rc) :: es ->
OK(fw)
>>= match_iregs r1 rS
>>= match_iregs rd rA
>>= match_z_int amount sh
>>= match_mask mask (bitmask mb me)
>>= match_bools false rc
>>= recur_simpl
| _ -> error
end
| Prlwinm(rd, r1, amount, mask) ->
begin match ecode with
| RLWINMx(rS, rA, sh, mb, me, rc) :: es ->
OK(fw)
>>= match_iregs r1 rS
>>= match_iregs rd rA
>>= match_z_int amount sh
>>= match_mask mask (bitmask mb me)
>>= match_bools false rc
>>= recur_simpl
| _ -> error
end
| Pslw(rd, r1, r2) ->
begin match ecode with
| SLWx(rS, rA, rB, rc) :: es ->
OK(fw)
>>= match_iregs rd rA
>>= match_iregs r1 rS
>>= match_iregs r2 rB
>>= match_bools false rc
>>= recur_simpl
| _ -> error
end
| Psraw(rd, r1, r2) ->
begin match ecode with
| SRAWx(rS, rA, rB, rc) :: es ->
OK(fw)
>>= match_iregs rd rA
>>= match_iregs r1 rS
>>= match_iregs r2 rB
>>= match_bools false rc
>>= recur_simpl
| _ -> error
end
| Psrawi(rd, r1, n) ->
begin match ecode with
| SRAWIx(rS, rA, sh, rc) :: es ->
OK(fw)
>>= match_iregs rd rA
>>= match_iregs r1 rS
>>= match_z_int n sh
>>= match_bools false rc
>>= recur_simpl
| _ -> error
end
| Psrw(rd, r1, r2) ->
begin match ecode with
| SRWx(rS, rA, rB, rc) :: es ->
OK(fw)
>>= match_iregs rd rA
>>= match_iregs r1 rS
>>= match_iregs r2 rB
>>= match_bools false rc
>>= recur_simpl
| _ -> error
end
| Pstb(rd, cst, r1) ->
begin match ecode with
| STB(rS, rA, d) :: es ->
OK(fw)
>>= match_iregs rd rS
>>= match_iregs r1 rA
>>= match_csts cst (exts d)
>>= recur_simpl
| _ -> error
end
| Pstbx(rd, r1, r2) ->
begin match ecode with
| STBX(rS, rA, rB) :: es ->
OK(fw)
>>= match_iregs rd rS
>>= match_iregs r1 rA
>>= match_iregs r2 rB
>>= recur_simpl
| _ -> error
end
| Pstfd(rd, cst, r1) ->
begin match ecode with
| STFD(frS, rA, d) :: es ->
OK(fw)
>>= match_fregs rd frS
>>= match_iregs r1 rA
>>= match_csts cst (exts d)
>>= recur_simpl
| _ -> error
end
| Pstfdx(rd, r1, r2) ->
begin match ecode with
| STFDX(frS, rA, rB) :: es ->
OK(fw)
>>= match_fregs rd frS
>>= match_iregs r1 rA
>>= match_iregs r2 rB
>>= recur_simpl
| _ -> error
end
| Pstfs(rd, cst, r1) ->
begin match ecode with
| FRSPx(frD0, frB0, rc0) ::
STFS (frS1, rA1, d1) :: es ->
OK(fw)
>>= match_fregs FPR13 frD0
>>= match_fregs rd frB0
>>= match_bools false rc0
>>= match_fregs FPR13 frS1
>>= match_iregs r1 rA1
>>= match_csts cst (exts d1)
>>= compare_code cs es (Int32.add 8l pc)
| _ -> error
end
| Pstfsx(rd, r1, r2) ->
begin match ecode with
| FRSPx(frD0, frB0, rc0) ::
STFSX(frS1, rA1, rB1) :: es ->
OK(fw)
>>= match_fregs FPR13 frD0
>>= match_fregs rd frB0
>>= match_bools false rc0
>>= match_fregs FPR13 frS1
>>= match_iregs r1 rA1
>>= match_iregs r2 rB1
>>= compare_code cs es (Int32.add 8l pc)
| _ -> error
end
| Psth(rd, cst, r1) ->
begin match ecode with
| STH(rS, rA, d) :: es ->
OK(fw)
>>= match_iregs rd rS
>>= match_iregs r1 rA
>>= match_csts cst (exts d)
>>= recur_simpl
| _ -> error
end
| Psthx(rd, r1, r2) ->
begin match ecode with
| STHX(rS, rA, rB) :: es ->
OK(fw)
>>= match_iregs rd rS
>>= match_iregs r1 rA
>>= match_iregs r2 rB
>>= recur_simpl
| _ -> error
end
| Pstw(rd, cst, r1) ->
begin match ecode with
| STW(rS, rA, d) :: es ->
OK(fw)
>>= match_iregs rd rS
>>= match_iregs r1 rA
>>= match_csts cst (exts d)
>>= recur_simpl
| _ -> error
end
| Pstwx(rd, r1, r2) ->
begin match ecode with
| STWX(rS, rA, rB) :: es ->
OK(fw)
>>= match_iregs rd rS
>>= match_iregs r1 rA
>>= match_iregs r2 rB
>>= recur_simpl
| _ -> error
end
| Psubfc(rd, r1, r2) ->
begin match ecode with
| SUBFCx(rD, rA, rB, oe, rc) :: es ->
OK(fw)
>>= match_iregs rd rD
>>= match_iregs r1 rA
>>= match_iregs r2 rB
>>= match_bools false oe
>>= match_bools false rc
>>= recur_simpl
| _ -> error
end
| Psubfe(rd, r1, r2) ->
begin match ecode with
| SUBFEx(rD, rA, rB, oe, rc) :: es ->
OK(fw)
>>= match_iregs rd rD
>>= match_iregs r1 rA
>>= match_iregs r2 rB
>>= match_bools false oe
>>= match_bools false rc
>>= recur_simpl
| _ -> error
end
| Psubfic(rd, r1, cst) ->
begin match ecode with
| SUBFIC(rD, rA, simm) :: es ->
OK(fw)
>>= match_iregs rd rD
>>= match_iregs r1 rA
>>= match_csts cst (exts simm)
>>= recur_simpl
| _ -> error
end
| Pxor(rd, r1, r2) ->
begin match ecode with
| XORx(rS, rA, rB, rc) :: es ->
OK(fw)
>>= match_iregs rd rA
>>= match_iregs r1 rS
>>= match_iregs r2 rB
>>= match_bools false rc
>>= recur_simpl
| _ -> error
end
| Pxori(rd, r1, cst) ->
begin match ecode with
| XORI(rS, rA, uimm) :: es ->
OK(fw)
>>= match_iregs rd rA
>>= match_iregs r1 rS
>>= match_csts cst (Safe32.of_int uimm)
>>= recur_simpl
| _ -> error
end
| Pxoris(rd, r1, cst) ->
begin match ecode with
| XORIS(rS, rA, uimm) :: es ->
OK(fw)
>>= match_iregs rd rA
>>= match_iregs r1 rS
>>= match_csts cst (Safe32.of_int uimm)
>>= recur_simpl
| _ -> error
end
and check_builtin_vload_common ccode ecode pc chunk addr offset res fw =
let error = ERR("Non-matching instructions") in
let recur_simpl = compare_code ccode (List.tl ecode) (Int32.add pc 4l) in
begin match chunk, res with
| Mint8unsigned, [IR res] ->
begin match ecode with
| LBZ(rD, rA, d) :: es ->
OK(fw)
>>= match_iregs res rD
>>= match_iregs addr rA
>>= match_csts offset (exts d)
>>= recur_simpl
| _ -> error
end
| Mint8signed, [IR res] ->
begin match ecode with
| LBZ (rD0, rA0, d0) ::
EXTSBx(rS1, rA1, rc1) :: es ->
OK(fw)
>>= match_iregs res rD0
>>= match_iregs addr rA0
>>= match_csts offset (exts d0)
>>= match_iregs res rS1
>>= match_iregs res rA1
>>= match_bools false rc1
>>= compare_code ccode es (Int32.add 8l pc)
| _ -> error
end
| Mint16unsigned, [IR res] ->
begin match ecode with
| LHZ(rD, rA, d) :: es ->
OK(fw)
>>= match_iregs res rD
>>= match_iregs addr rA
>>= match_csts offset (exts d)
>>= recur_simpl
| _ -> error
end
| Mint16signed, [IR res] ->
begin match ecode with
| LHA(rD, rA, d) :: es ->
OK(fw)
>>= match_iregs res rD
>>= match_iregs addr rA
>>= match_csts offset (exts d)
>>= recur_simpl
| _ -> error
end
| Mint32, [IR res] ->
begin match ecode with
| LWZ(rD, rA, d) :: es ->
OK(fw)
>>= match_iregs res rD
>>= match_iregs addr rA
>>= match_csts offset (exts d)
>>= recur_simpl
| _ -> error
end
| Mfloat32, [FR res] ->
begin match ecode with
| LFS(frD, rA, d) :: es ->
OK(fw)
>>= match_fregs res frD
>>= match_iregs addr rA
>>= match_csts offset (exts d)
>>= recur_simpl
| _ -> error
end
| (Mfloat64 | Mfloat64al32), [FR res] ->
begin match ecode with
| LFD(frD, rA, d) :: es ->
OK(fw)
>>= match_fregs res frD
>>= match_iregs addr rA
>>= match_csts offset (exts d)
>>= recur_simpl
| _ -> error
end
| _ -> error
end
and check_builtin_vstore_common ccode ecode pc chunk addr offset src fw =
let recur_simpl = compare_code ccode (List.tl ecode) (Int32.add pc 4l) in
let error = ERR("Non-matching instructions") in
begin match chunk, src with
| (Mint8signed | Mint8unsigned), IR src ->
begin match ecode with
| STB(rS, rA, d) :: es ->
OK(fw)
>>= match_iregs src rS
>>= match_iregs addr rA
>>= match_csts offset (exts d)
>>= recur_simpl
| _ -> error
end
| (Mint16signed | Mint16unsigned), IR src ->
begin match ecode with
| STH(rS, rA, d) :: es ->
OK(fw)
>>= match_iregs src rS
>>= match_iregs addr rA
>>= match_csts offset (exts d)
>>= recur_simpl
| _ -> error
end
| Mint32, IR src ->
begin match ecode with
| STW(rS, rA, d) :: es ->
OK(fw)
>>= match_iregs src rS
>>= match_iregs addr rA
>>= match_csts offset (exts d)
>>= recur_simpl
| _ -> error
end
| Mfloat32, FR src ->
begin match ecode with
| FRSPx(frD0, frB0, rc0) ::
STFS (frS1, rA1, d1) :: es ->
OK(fw)
>>= match_fregs FPR13 frD0
>>= match_fregs src frB0
>>= match_bools false rc0
>>= match_fregs FPR13 frS1
>>= match_iregs addr rA1
>>= match_csts offset (exts d1)
>>= compare_code ccode es (Int32.add pc 8l)
| _ -> error
end
| (Mfloat64 | Mfloat64al32), FR src ->
begin match ecode with
| STFD(frS, rA, d) :: es ->
OK(fw)
>>= match_fregs src frS
>>= match_iregs addr rA
>>= match_csts offset (exts d)
>>= recur_simpl
| _ -> error
end
| _ -> error
end
(** A work element is a triple giving a CompCert ident for the function to
analyze, its name as a string, and the actual code. It is not obvious how
to recover one of the three components given the other two.
*)
type worklist = (ident * string * ccode) list
(** Pops a work element from the worklist, ensuring that fully-determined idents
(i.e. those for which the possible virtual address have been narrowed to one
candidate) are picked first.
When the first element is not fully-determined, the whole list is sorted so
that hopefully several fully-determined idents are brought at the beginning
at the same time.
*)
let worklist_pop fw wl =
match wl with
| [] -> None
| h::t ->
let (i, _, _) = h in
let candidates =
try PosMap.find i fw.ident_to_sym_ndx
with Not_found -> []
in
match candidates with
| [] | [_] -> Some (h, t, candidates)
| _ ->
let wl = List.fast_sort
(fun (i1, _, _) (i2, _, _) ->
compare
(List.length (PosMap.find i1 fw.ident_to_sym_ndx))
(List.length (PosMap.find i2 fw.ident_to_sym_ndx)))
wl in
let winner = List.hd wl in
let (i, _, _) = winner in
Some (winner, List.tl wl, PosMap.find i fw.ident_to_sym_ndx)
(** Processes a worklist, threading in the framework.
*)
let rec worklist_process (wl: worklist) sfw: s_framework =
match worklist_pop sfw wl with
| None -> sfw (*done*)
| Some ((ident, name, ccode), wl, candidates) ->
let process_ndx ndx = (
let elf = (sfw |. sf_ef).elf in
let pc = elf.e_symtab.(ndx).st_value in
match code_of_sym_ndx elf ndx with
| None -> ERR("Could not find symbol data for function symbol " ^ name)
| Some ecode ->
sfw
>>> sf_ef ^%=
add_log (DEBUG("Processing function: " ^ name))
>>> (fun sfw ->
{
sf = sfw;
this_sym_ndx = ndx;
this_ident = ident;
label_to_vaddr = PosMap.empty;
label_list = [];
}
)
>>> compare_code ccode ecode pc
>>^ mark_covered_fun_sym_ndx ndx
) in
begin match candidates with
| [] ->
sfw
>>> sf_ef ^%=
add_log (ERROR("Skipping missing symbol " ^ name))
>>> worklist_process wl
| [ndx] ->
begin match process_ndx ndx with
| OK(ffw) ->
ffw
>>> check_label_existence
>>> check_label_unicity
>>> (fun ffw ->
worklist_process wl ffw.sf
)
| ERR(s) ->
sfw
>>> sf_ef ^%=
add_log (ERROR(
Printf.sprintf
"Unique candidate for %s did not match: %s"
name
s
))
>>> worklist_process wl
end
| ndxes ->
(* Multiple candidates for one symbol *)
let fws = filter_ok (List.map process_ndx ndxes) in
begin match fws with
| [] ->
sfw
>>> sf_ef ^%=
add_log (ERROR("No matching candidate for: " ^ name))
>>> worklist_process wl
| [ffw] ->
worklist_process wl ffw.sf
| fws ->
sfw
>>> sf_ef ^%=
add_log (ERROR(
"Multiple matching candidates for: " ^ name
))
>>> worklist_process wl
end
end
(** Compares a data symbol with its expected contents. Returns the updated
framework as well as the size of the data matched.
**)
let compare_data (l: init_data list) (bs: bitstring) (sfw: s_framework)
: (s_framework * int) or_err =
let error = ERR("Reached end of data bitstring too soon") in
let rec compare_data_aux l bs s (sfw: s_framework):
(s_framework * int) or_err =
match l with
| [] -> OK(sfw, s)
| d::l ->
let sfw =
if !debug
then (
(sf_ef ^%= add_log (DEBUG(" " ^ string_of_init_data d))) sfw
)
else sfw
in
begin match d with
| Init_int8(i) -> (
bitmatch bs with
| { j : 8 : int; bs : -1 : bitstring } ->
if (z_int_lax i) land 0xFF = j
then compare_data_aux l bs (s + 1) sfw
else ERR("Wrong int8")
| { _ } -> error
)
| Init_int16(i) -> (
bitmatch bs with
| { j : 16 : int; bs : -1 : bitstring } ->
if (z_int_lax i) land 0xFFFF = j
then compare_data_aux l bs (s + 2) sfw
else ERR("Wrong int16")
| { _ } -> error
)
| Init_int32(i) -> (
bitmatch bs with
| { j : 32 : int; bs : -1 : bitstring } ->
if z_int32_lax i = j
then compare_data_aux l bs (s + 4) sfw
else ERR("Wrong int32")
| { _ } -> error
)
| Init_float32(f) -> (
bitmatch bs with
| { j : 32 : int; bs : -1 : bitstring } ->
if camlfloat_of_coqfloat f = Int32.float_of_bits j
then compare_data_aux l bs (s + 4) sfw
else ERR("Wrong float32")
| { _ } -> error
)
| Init_float64(f) -> (
bitmatch bs with
| { j : 64 : int; bs : -1 : bitstring } ->
if camlfloat_of_coqfloat f = Int64.float_of_bits j
then compare_data_aux l bs (s + 8) sfw
else ERR("Wrong float64")
| { _ } -> error
)
| Init_int64(i) -> (
bitmatch bs with
| { j : 64 : int; bs : -1 : bitstring } ->
if z_int64 i = j
then compare_data_aux l bs (s + 8) sfw
else ERR("Wrong int64")
| { _ } -> error
)
| Init_space(z) -> (
let space_size = z_int z in
bitmatch bs with
| { space : space_size * 8 : bitstring; bs : -1 : bitstring } ->
if is_zeros space (space_size * 8)
then compare_data_aux l bs (s + space_size) sfw
else ERR("Wrong space " ^
string_of_int (z_int z) ^ " " ^
string_of_bitstring space)
| { _ } -> error
)
| Init_addrof(ident, ofs) -> (
bitmatch bs with
| { vaddr : 32 : int; bs : -1 : bitstring } ->
sfw
>>> idmap_unify ident (Int32.sub vaddr (z_int32 ofs))
>>= compare_data_aux l bs (s + 4)
| { _ } -> error
)
end
in
compare_data_aux l bs 0 sfw
(** Checks the data symbol table.
*)
let check_data_symtab ident sym_ndx size sfw =
let elf = sfw.ef.elf in
let symtab_ent_start = Int32.(
add
elf.e_shdra.(elf.e_symtab_sndx).sh_offset
(Safe32.of_int (16 * sym_ndx))
) in
let sym = sfw.ef.elf.e_symtab.(sym_ndx) in
let atom = Hashtbl.find sfw.atoms ident in
let section =
match atom.a_sections with
| [s] -> s
| _ -> Section_data true
in
sfw
>>> (
if sym.st_size = Safe32.of_int size
then id
else (
sf_ef ^%=
add_log (ERROR(
"Incorrect symbol size (" ^ sym.st_name ^
"): expected " ^ string_of_int32i sym.st_size ^
", counted: " ^ string_of_int size
))
)
)
>>> check_st_bind atom sym
>>> (
match sym.st_type with
| STT_OBJECT -> id
| STT_NOTYPE -> (sf_ef ^%=
add_log (WARNING("Missing type for symbol " ^ sym.st_name))
)
| _ -> (sf_ef ^%=
add_log (ERROR("Symbol should have type STT_OBJECT"))
)
)
>>> (
if sym.st_other = 0
then id
else (sf_ef ^%=
add_log (ERROR("Symbol should have st_other set to 0"))
)
)
>>> match_sections_name section elf.e_shdra.(sym.st_shndx).sh_name
>>> (sf_ef ^%=
add_range symtab_ent_start 16l 4 (Symtab_data(sym))
)
(** Checks all the program variables.
*)
let check_data (pv: (ident * unit globvar) list) (sfw: s_framework)
: s_framework =
let process_ndx ident ldata sfw ndx =
let elf = sfw.ef.elf in
let sym = elf.e_symtab.(ndx) in
let sym_vaddr = sym.st_value in
begin match bitstring_at_vaddr_nosize elf sym_vaddr with
| None -> ERR("Could not find symbol data for data symbol " ^ sym.st_name)
| Some(sym_bs, pofs, psize) ->
let res =
sfw
>>> (sf_ef ^%= add_log (DEBUG("Processing data: " ^ sym.st_name)))
>>> compare_data ldata sym_bs
in
begin match res with
| ERR(s) -> ERR(s)
| OK(sfw, size) ->
let align =
begin match (Hashtbl.find sfw.atoms ident).a_alignment with
| None -> 0
| Some(a) -> a
end
in
sfw.ef.chkd_data_syms.(ndx) <- true;
OK(sfw)
>>= (fun sfw ->
if size = 0
then OK(sfw) (* These occupy no space, for now we just forget them *)
else OK(
sfw
>>> sf_ef ^%=
add_range pofs (Safe32.of_int size) align (Data_symbol(sym))
)
)
>>= (fun sfw ->
if not (is_well_aligned sym_vaddr align)
then ERR("Symbol not correctly aligned in the ELF file")
else OK(sfw)
)
>>^ check_data_symtab ident ndx size
end
end
in
let check_data_aux sfw ig =
let (ident, gv) = ig in
let init_data = gv.gvar_init in
let ident_ndxes = PosMap.find ident sfw.ident_to_sym_ndx in
(*print_endline ("Candidates: " ^ string_of_list id ", "
(List.map
(fun ndx -> fw.elf.e_symtab.(ndx).st_name)
ident_ndxes));*)
let results = List.map (process_ndx ident init_data sfw) ident_ndxes in
let successes = filter_ok results in
match successes with
| [] ->
sfw
>>> sf_ef ^%=
add_log (ERROR(
"No matching data segment among candidates [" ^
(string_of_list
(fun ndx -> sfw.ef.elf.e_symtab.(ndx).st_name)
", "
ident_ndxes
) ^
"], Errors: [" ^
string_of_list
(function OK(_) -> "" | ERR(s) -> s)
", "
(List.filter (function ERR(_) -> true | _ -> false) results)
^ "]"
))
| [sfw] -> sfw
| fws ->
sfw
>>> sf_ef ^%= add_log (ERROR("Multiple matching data segments!"))
in
List.fold_left check_data_aux sfw
(* Empty lists mean the symbol is external, no need for check *)
(List.filter (fun (_, gv) -> gv.gvar_init <> []) pv)
(** Checks that everything that has been assimiled as a stub during checks
indeed looks like a stub.
*)
let check_stubs sfw =
let check cond msg sfw =
sfw
>>> (if cond then id else (sf_ef ^%= add_log (ERROR(msg))))
in
let check_eq msg a b = check (a = b) msg in
let match_bools = check_eq "match_bools" in
let match_ints = check_eq "match_ints" in
let check_stub ident vaddr sfw =
let fundef = List.find (fun (i, _) -> i = ident) sfw.program.prog_defs in
let elf = sfw.ef.elf in
let stub_ecode = from_some (code_at_vaddr elf vaddr 2) in
let stub_offset = from_some (physical_offset_of_vaddr elf vaddr) in
begin match fundef with
| (_, Gfun(External(EF_external(dest_ident, _) as ef))) ->
let args = (ef_sig ef).sig_args in
if List.mem Tfloat args
then
begin match stub_ecode with
| CREQV(crbD, crbA, crbB) :: (* vaddr *)
Bx(li, aa, lk) :: (* vaddr + 4 *)
[] ->
let dest_vaddr = Int32.(add (add vaddr 4l) (mul 4l (exts li))) in
begin match idmap_unify dest_ident dest_vaddr sfw with
| ERR(s) ->
sfw
>>> (sf_ef ^%= add_log (ERROR(
"Couldn't match stub, " ^ s
)))
| OK(sfw) ->
sfw
>>> match_ints 6 crbD
>>> match_ints 6 crbA
>>> match_ints 6 crbB
>>> match_bools false aa
>>> match_bools false lk
>>> (sf_ef ^%=
add_range stub_offset 8l 4
(Stub(Hashtbl.find sfw.ident_to_name ident))
)
end
| _ ->
sfw
>>> (sf_ef ^%= add_log (ERROR("Couldn't match stub")))
end
else
begin match stub_ecode with
| CRXOR(crbD, crbA, crbB) :: (* vaddr *)
Bx(li, aa, lk) :: (* vaddr + 4 *)
[] ->
let dest_vaddr = Int32.(add (add vaddr 4l) (mul 4l (exts li))) in
begin match idmap_unify dest_ident dest_vaddr sfw with
| ERR(s) ->
sfw
>>> (sf_ef ^%= add_log (ERROR(
"Couldn't match stub, " ^ s
)))
| OK(sfw) ->
sfw
>>> match_ints 6 crbD
>>> match_ints 6 crbA
>>> match_ints 6 crbB
>>> match_bools false aa
>>> match_bools false lk
>>> (sf_ef ^%=
add_range stub_offset 8l 4
(Stub(Hashtbl.find sfw.ident_to_name ident))
)
end
| _ ->
sfw
>>> (sf_ef ^%= add_log (ERROR("Couldn't match stub")))
end
| _ -> fatal "Unexpected fundef in check_stubs, please report."
end
in
PosMap.fold check_stub sfw.stub_ident_to_vaddr sfw
(** Read a .sdump file *)
let sdump_magic_number = "CompCertSDUMP" ^ Configuration.version
let read_sdump file =
let ic = open_in_bin file in
try
let magic = String.create (String.length sdump_magic_number) in
really_input ic magic 0 (String.length sdump_magic_number);
if magic <> sdump_magic_number then fatal "Bad magic number";
let prog = (input_value ic: Asm.program) in
let names = (input_value ic: (ident, string) Hashtbl.t) in
let atoms = (input_value ic: (ident, C2C.atom_info) Hashtbl.t) in
close_in ic;
(prog, names, atoms)
with
| End_of_file ->
close_in ic; Printf.eprintf "Truncated file %s\n" file; exit 2
| Failure msg ->
close_in ic; Printf.eprintf "Corrupted file %s: %s\n" file msg; exit 2
(** Split program definitions into functions and variables *)
let split_prog_defs p =
let rec split fns vars = function
| [] -> (List.rev fns, List.rev vars)
| (id, Gfun fd) :: defs -> split ((id, fd) :: fns) vars defs
| (id, Gvar vd) :: defs -> split fns ((id, vd) :: vars) defs
in split [] [] p.prog_defs
(** Processes a .sdump file.
*)
let process_sdump efw sdump: e_framework =
print_debug ("Beginning reading " ^ sdump);
let (prog, names, atoms) = read_sdump sdump in
let (prog_funct, prog_vars) = split_prog_defs prog in
print_debug ("Constructing mapping from idents to symbol indices");
let ident_to_sym_ndx =
Hashtbl.fold
(fun ident name m ->
match ndxes_of_sym_name efw.elf name with
| [] -> m (* skip if missing *)
| ndxes -> PosMap.add ident ndxes m
)
names
PosMap.empty
in
print_debug("Constructing worklist");
let worklist_fundefs =
List.filter
(fun f ->
match snd f with
| Internal _ -> true
| External _ -> false
)
prog_funct
in
let wl =
List.map
(fun f ->
match f with
| ident, Internal ccode -> (ident, Hashtbl.find names ident, ccode)
| _, External _ -> fatal "IMPOSSIBRU!"
)
worklist_fundefs
in
print_debug("Beginning processing of the worklist");
efw
>>> (fun efw ->
{ ef = efw
; program = prog
; ident_to_name = names
; ident_to_sym_ndx = ident_to_sym_ndx
; stub_ident_to_vaddr = PosMap.empty
; atoms = atoms
}
)
>>> worklist_process wl
>>> (fun sfw ->
print_debug "Checking stubs";
sfw
)
>>> check_stubs
>>> (fun sfw ->
print_debug "Checking data";
sfw
)
>>> check_data prog_vars
>>> (fun sfw -> sfw.ef)
(** Returns true if [a, b] intersects [ofs, ofs + size - 1]. *)
let intersect (a, b) ofs size: bool =
let within (a, b) x = (a <= x) && (x <= b) in
(within (a, b) ofs) || (within (ofs, Int32.(sub (add ofs size) 1l)) a)
let string_of_range a b = "[0x" ^ Printf.sprintf "%08lx" a ^ " - 0x" ^
Printf.sprintf "%08lx" b ^ "]"
(** Checks that the bits from [start] to [stop] in [bs] are zeroed. *)
let is_padding bs start stop =
let bs_start = start * 8 in
let bs_length = (stop - start + 1) * 8 in
start <= stop &&
is_zeros (Bitstring.subbitstring bs bs_start bs_length) bs_length
(** This functions goes through the list of checked bytes, and tries to find
padding in it. That is, it takes pairs of chunks in order, and adds a
padding chunk in between if these conditions are met:
- the second chunk needs to be aligned.
- the difference between the two chunks is strictly less than the alignment.
- the data in this space is zeroed.
Otherwise, it fills holes with an Unknown chunk.
Returns a framework where [chkd_bytes_list] is sorted and full.
*)
let check_padding efw =
print_debug "Checking padding";
let elf = efw.elf in
let sndxes = list_n elf.e_hdr.e_shnum in
let matching_sections x y =
string_of_list
id
", "
(List.map
(fun ndx -> elf.e_shdra.(ndx).sh_name)
(List.filter
(fun ndx ->
let shdr = elf.e_shdra.(ndx) in
intersect (x, y) shdr.sh_offset shdr.sh_size
)
sndxes
)
)
in
let matching_symbols x y =
string_of_list
id
", "
(List.map
(fun sym -> sym.st_name)
(List.filter
(fun sym ->
if sym.st_shndx >= Array.length elf.e_shdra
then false (* special section *)
else
match physical_offset_of_vaddr elf sym.st_value with
| None -> false
| Some(ofs) -> intersect (x, y) ofs sym.st_size
)
(Array.to_list elf.e_symtab)
)
)
in
let unknown x y = Unknown(
"\nSections: " ^ matching_sections x y ^ "\nSymbols: " ^ matching_symbols x y
)
in
(* check_padding_aux assumes a sorted list *)
let rec check_padding_aux efw accu l =
match l with
| [] -> efw
(* if there is only one chunk left, we add an unknown space between it and
the end. *)
| [(_, e, _, _) as h] ->
let elf_size =
Safe32.of_int ((Bitstring.bitstring_length efw.elf.e_bitstring) / 8) in
let elf_end = Int32.sub elf_size 1l in
if e = elf_end
then { efw with
chkd_bytes_list = List.rev (h :: accu);
}
else (
let start = Int32.add e 1l in
{ efw with
chkd_bytes_list = List.rev
((start, elf_end, 0, unknown start elf_end) :: h :: accu);
}
)
| ((b1, e1, a1, n1) as h1) :: ((b2, e2, a2, n2) as h2) :: rest ->
let pad_start = Int32.add e1 1l in
let pad_stop = Int32.sub b2 1l in
if pad_start = b2 (* if they are directly consecutive *)
|| Safe.(of_int32 b2 - of_int32 e1) > a2 (* or if they are too far away *)
|| not (is_padding efw.elf.e_bitstring
(Safe32.to_int pad_start) (Safe32.to_int pad_stop))
then (* not padding *)
if pad_start <= pad_stop
then
check_padding_aux efw
((pad_start, pad_stop, 0, unknown pad_start pad_stop) :: h1 :: accu)
(h2 :: rest)
else
check_padding_aux efw (h1 :: accu) (h2 :: rest)
else ( (* this is padding! *)
check_padding_aux efw
((pad_start, pad_stop, 0, Padding) :: h1 :: accu)
(h2 :: rest)
)
in
let sorted_chkd_bytes_list =
List.fast_sort
(fun (a, _, _, _) (b, _, _, _) -> Int32.compare a b)
efw.chkd_bytes_list
in check_padding_aux efw [] sorted_chkd_bytes_list
(** Checks a boolean. *)
let ef_checkb b msg =
if b then id else add_log(ERROR(msg))
let check_elf_identification efw =
let ei = efw.elf.e_hdr.e_ident in
efw
>>> ef_checkb (ei.ei_class = ELFCLASS32) "ELF class should be ELFCLASS32"
>>> ef_checkb (ei.ei_data = ELFDATA2MSB || ei.ei_data = ELFDATA2LSB)
"ELF should be MSB or LSB"
>>> ef_checkb (ei.ei_version = EV_CURRENT)
"ELF identification version should be EV_CURRENT"
let check_elf_header efw: e_framework =
let eh = efw.elf.e_hdr in
efw
>>> check_elf_identification
>>> ef_checkb (eh.e_type = ET_EXEC) "ELF type should be ET_EXEC"
>>> ef_checkb (eh.e_machine = EM_PPC) "ELF machine should be PPC"
>>> ef_checkb (eh.e_version = EV_CURRENT) "ELF version should be EV_CURRENT"
>>> add_range 0l 52l 0 ELF_header (* Header is always 52-bytes long *)
(** Checks the index 0 of the symbol table. This index is reserved to hold
special values. *)
let check_sym_tab_zero efw =
let elf = efw.elf in
let sym0 = efw.elf.e_symtab.(0) in
(* First, let's mark it checked as a data symbol, to avoid warnings *)
efw.chkd_data_syms.(0) <- true;
efw
>>> (
if sym0.st_name = ""
then id
else add_log (ERROR("Symbol 0 should not have a name"))
)
>>> (
if sym0.st_value = 0l
then id
else add_log (ERROR("Symbol 0 should have st_value = 0"))
)
>>> (
if sym0.st_size = 0l
then id
else add_log (ERROR("Symbol 0 should have st_size = 0"))
)
>>> (
if sym0.st_bind = STB_LOCAL
then id
else add_log (ERROR("Symbol 0 should have STB_LOCAL binding"))
)
>>> (
if sym0.st_type = STT_NOTYPE
then id
else add_log (ERROR("Symbol 0 should have STT_NOTYPE type"))
)
>>> (
if sym0.st_other = 0
then id
else add_log (ERROR("Symbol 0 should have st_other = 0"))
)
>>> (
if sym0.st_shndx = shn_UNDEF
then id
else add_log (ERROR("Symbol 0 should have st_shndx = SHN_UNDEF"))
)
>>> add_range elf.e_shdra.(elf.e_symtab_sndx).sh_offset 16l 4 Zero_symbol
(** If CompCert sections have been mapped to an ELF section whose name is
not the same, we warn the user.
*)
let warn_sections_remapping efw =
print_debug "Checking remapped sections";
StringMap.fold
(fun c_name (e_name, conflicts) efw ->
if StringSet.is_empty conflicts
then
match e_name with
| Provided(e_name) ->
efw
| Inferred(e_name) ->
if c_name = e_name
then efw
else
begin
efw
>>> add_log (WARNING(
Printf.sprintf
"Detected linker script remapping: section %S -> %S"
c_name e_name
))
end
else (* conflicts not empty *)
match e_name with
| Provided(e_name) ->
efw
>>> add_log (ERROR(
Printf.sprintf "
Conflicting remappings for section %s:
Specified: %s
Expected: %s"
c_name e_name (string_of_list id ", " (StringSet.elements conflicts))
))
| Inferred(e_name) ->
efw
>>> add_log (ERROR(
Printf.sprintf "
Conflicting remappings for section %s:
%s"
c_name (string_of_list id ", " (e_name :: (StringSet.elements conflicts)))
))
)
efw.section_map
efw
let warn_sda_mapping efw =
print_debug "Checking SDA mappings";
if IntMap.is_empty efw.sda_map
then efw
else (
IntMap.fold
(fun r vaddr efw ->
match vaddr with
| Provided(_) -> efw
| Inferred(vaddr) ->
efw >>> add_log (WARNING(
Printf.sprintf
"This SDA register mapping was inferred: register r%u = 0x%lX"
r vaddr
))
)
efw.sda_map
efw
)
let (>>=) li f = List.flatten (List.map f li)
(** Returns the list of all strictly-ordered pairs of [[0; len - 1]] that don't
satisfy f. *)
let forall_sym (len: int) (f: 'a -> 'a -> bool): ('a * 'a) list =
(list_n len) >>= fun x ->
(list_ab (x + 1) (len - 1)) >>= fun y ->
(if f x y then [] else [(x, y)])
let check_overlaps efw =
let shdra = efw.elf.e_shdra in
let intersect a asize b bsize =
asize <> 0l && bsize <> 0l &&
(
let last x xsize = Int32.(sub (add x xsize) 1l) in
let alast = last a asize in
let blast = last b bsize in
let within (a, b) x = (a <= x) && (x <= b) in
(within (a, alast) b) || (within (b, blast) a)
)
in
match
forall_sym (Array.length shdra)
(fun i j ->
let ai = shdra.(i) in
let aj = shdra.(j) in
(ai.sh_type = SHT_NOBITS)
|| (aj.sh_type = SHT_NOBITS)
|| (not (intersect ai.sh_offset ai.sh_size aj.sh_offset aj.sh_size))
)
with
| [] -> efw
| l ->
List.fold_left
(fun efw (i, j) ->
let msg =
Printf.sprintf "Sections %s and %s overlap" shdra.(i).sh_name shdra.(j).sh_name
in
add_log (ERROR(msg)) efw
)
efw l
let check_unknown_chunks efw =
if
List.exists
(function (_, _, _, Unknown(_)) -> true | _ -> false)
efw.chkd_bytes_list
then add_log (WARNING(
"Some parts of the ELF file are unknown." ^
(if !print_elfmap then "" else " Use -print-elfmap to see what was covered.")
)) efw
else efw
let check_missed_symbols efw =
if not !exhaustivity
then efw
else
let chkd_syms_a =
Array.init
(Array.length efw.elf.e_symtab)
(
fun ndx ->
match efw.elf.e_symtab.(ndx).st_type with
(* we only care about function and data symbols *)
| STT_SECTION | STT_FILE -> true
| STT_OBJECT | STT_FUNC | STT_NOTYPE | STT_UNKNOWN ->
(* checked as either a function or a data symbol *)
efw.chkd_fun_syms.(ndx)
|| efw.chkd_data_syms.(ndx)
(* or part of the symbols we know are mising *)
|| StringSet.mem efw.elf.e_symtab.(ndx).st_name efw.missing_syms
)
in
let missed_syms_l = list_false_indices chkd_syms_a in
match missed_syms_l with
| [] -> efw
| _ ->
let symtab = efw.elf.e_symtab in
let symlist_names = string_of_list (fun ndx -> symtab.(ndx).st_name) " " in
let missed_funs =
List.filter (fun ndx -> symtab.(ndx).st_type = STT_FUNC) missed_syms_l in
let missed_data =
List.filter (fun ndx -> symtab.(ndx).st_type = STT_OBJECT) missed_syms_l in
let missed_unknown =
List.filter (fun ndx ->
match symtab.(ndx).st_type with
| STT_NOTYPE | STT_UNKNOWN -> true
| _ -> false
) missed_syms_l in
if !list_missing
then
efw
>>> add_log (WARNING(
Printf.sprintf
"
The following function symbol(s) do not appear in .sdump files:
%s
The following data symbols do not appear in .sdump files:
%s
The following unknown type symbols do not appear in .sdump files:
%s"
(symlist_names missed_funs)
(symlist_names missed_data)
(symlist_names missed_unknown)
))
else
efw
>>> add_log (WARNING(
Printf.sprintf
"%u function symbol(s), %u data symbol(s) and %u unknown type symbol(s) do not appear in .sdump files. Add -list-missing to list them."
(List.length missed_funs)
(List.length missed_data)
(List.length missed_unknown)
))
let print_diagnosis efw =
let (nb_err, nb_warn) = List.fold_left
(fun (e, w) -> function
| DEBUG(_) -> (e, w)
| ERROR(_) -> (e + 1, w)
| INFO(_) -> (e, w)
| WARNING(_) -> (e, w + 1)
)
(0, 0)
efw.log
in
if !debug
then Printf.printf "\n\nFINAL LOG:\n\n";
List.(iter
(fun e ->
match string_of_log_entry false e with
| "" -> ()
| s -> print_endline s
)
(rev efw.log)
);
let plural n = if n > 1 then "s" else "" in
Printf.printf " SUMMARY: %d error%s, %d warning%s\n"
nb_err (plural nb_err) nb_warn (plural nb_warn);
efw
let conf_file = ref (None: string option)
let parse_conf filename =
let section_map = ref StringMap.empty in
let sda_map = ref IntMap.empty in
let missing_syms = ref StringSet.empty in
let ic = open_in filename in
try
while true
do
let line = input_line ic in
(* Test different patterns one by one, until one of them works *)
let rec match_line = function
| [] -> failwith (Printf.sprintf "Couldn't read configuration line: %s" line)
| try_match::rest ->
try try_match ()
with Scanf.Scan_failure(_) -> match_line rest
in
(* an empty line is ignored *)
if line <> ""
then
match_line
(* a comment *)
[ (fun () ->
Scanf.sscanf line
"#%s"
(fun _ -> ())
)
(* a section remapping *)
; (fun () ->
Scanf.sscanf line
"section %S -> %S"
(fun sfrom sto ->
if StringMap.mem sfrom !section_map
then failwith (
Printf.sprintf
"Your configuration file contains multiple mappings for section %s"
sfrom
)
else
section_map :=
StringMap.add sfrom (Provided(sto), StringSet.empty) !section_map
)
)
(* a SDA mapping *)
; (fun () ->
Scanf.sscanf line
"register r%u = %li"
(fun r addr ->
if IntMap.mem r !sda_map
then failwith (
Printf.sprintf
"Your configuration file contains multiple SDA mappings for register %u"
r
)
else
sda_map := IntMap.add r (Provided(addr)) !sda_map)
)
(* a list of symbols supposed to be missing from the .sdump files *)
; (fun () ->
Scanf.sscanf line
"external %s@\n"
(fun sym_list_s ->
let sym_list = Str.split (Str.regexp "[ \t]+") sym_list_s in
List.iter
(fun sym -> missing_syms := StringSet.add sym !missing_syms)
sym_list
)
)
]
done; raise End_of_file (* unreachable, just to please the typer *)
with
| End_of_file -> (!section_map, !sda_map, !missing_syms)
(** Checks a whole ELF file according to a list of .sdump files. This never
dumps anything, so it can be safely used when fuzz-testing even if the
user accidentally enabled dumping options. *)
let check_elf_nodump elf sdumps =
let eh = elf.e_hdr in
let nb_syms = Array.length elf.e_symtab in
let section_strtab = elf.e_shdra.(eh.e_shstrndx) in
let symtab_shdr = elf.e_shdra.(elf.e_symtab_sndx) in
let symbol_strtab = elf.e_shdra.(Safe32.to_int symtab_shdr.sh_link) in
let (section_map, sda_map, missing_syms) =
match !conf_file with
| None -> (StringMap.empty, IntMap.empty, StringSet.empty)
| Some(filename) -> parse_conf filename
in
let efw =
{ elf = elf
; log = []
; chkd_bytes_list = []
; chkd_fun_syms = Array.make nb_syms false
; chkd_data_syms = Array.make nb_syms false
; section_map = section_map
; sda_map = sda_map
; missing_syms = missing_syms
}
>>> check_elf_header
>>> add_range
eh.e_phoff
Safe.(to_int32 (eh.e_phnum * eh.e_phentsize))
4
ELF_progtab
>>> add_range
eh.e_shoff
Safe.(to_int32 (eh.e_shnum * eh.e_shentsize))
4
ELF_shtab
>>> add_range
section_strtab.sh_offset
section_strtab.sh_size
0
ELF_section_strtab
>>> add_range
symbol_strtab.sh_offset
symbol_strtab.sh_size
0
ELF_symbol_strtab
>>> check_sym_tab_zero
in
print_debug "Done checking header, beginning processing of .sdumps";
(* Thread the framework through the processing of all .sdump files *)
List.fold_left process_sdump efw sdumps
(* check the padding in between identified byte chunks *)
>>> check_padding
(* warn if some CompCert sections have been remapped by the linker script *)
>>> warn_sections_remapping
(* warn if there exists non-empty overlapping sections *)
>>> check_overlaps
(* warn about inferred SDA registers *)
>>> warn_sda_mapping
(* warn about regions of the ELF file that could not be identified *)
>>> check_unknown_chunks
>>> check_missed_symbols
>>> print_diagnosis
(** Checks a whole ELF file according to .sdump files.
If requested, dump the calculated bytes mapping, so that it can be
reused by the fuzzer. *)
let check_elf_dump elffilename sdumps =
print_debug "Beginning ELF parsing";
let elf = read_elf elffilename in
print_debug "Beginning ELF checking";
let efw = check_elf_nodump elf sdumps in
(* print the elfmap if requested *)
if !print_elfmap
then
begin
Printf.printf "\n\n%s\n\n\n"
(string_of_list
(fun (a, b, align, r) -> string_of_range a b ^ " (" ^
string_of_int align ^ ") " ^ string_of_byte_chunk_desc r)
"\n"
efw.chkd_bytes_list
)
end;
(* dump the elfmap if requested *)
if !dump_elfmap
then
begin
let oc = open_out (elffilename ^ ".elfmap") in
output_value oc efw.chkd_bytes_list;
close_out oc
end
|