1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
|
(* *********************************************************************)
(* *)
(* The Compcert verified compiler *)
(* *)
(* Xavier Leroy, INRIA Paris-Rocquencourt *)
(* *)
(* Copyright Institut National de Recherche en Informatique et en *)
(* Automatique. All rights reserved. This file is distributed *)
(* under the terms of the INRIA Non-Commercial License Agreement. *)
(* *)
(* *********************************************************************)
(** Semantic preservation for the SimplLocals pass. *)
Require Import FSets.
Require FSetAVL.
Require Import Coqlib.
Require Import Errors.
Require Import Ordered.
Require Import AST.
Require Import Maps.
Require Import Integers.
Require Import Floats.
Require Import Values.
Require Import Memory.
Require Import Globalenvs.
Require Import Events.
Require Import Smallstep.
Require Import Ctypes.
Require Import Cop.
Require Import Clight.
Require Import SimplLocals.
Module VSF := FSetFacts.Facts(VSet).
Module VSP := FSetProperties.Properties(VSet).
Section PRESERVATION.
Variable prog: program.
Variable tprog: program.
Hypothesis TRANSF: transf_program prog = OK tprog.
Let ge := Genv.globalenv prog.
Let tge := Genv.globalenv tprog.
Lemma symbols_preserved:
forall (s: ident), Genv.find_symbol tge s = Genv.find_symbol ge s.
Proof.
exact (Genv.find_symbol_transf_partial _ _ TRANSF).
Qed.
Lemma varinfo_preserved:
forall b, Genv.find_var_info tge b = Genv.find_var_info ge b.
Proof.
exact (Genv.find_var_info_transf_partial _ _ TRANSF).
Qed.
Lemma functions_translated:
forall (v: val) (f: fundef),
Genv.find_funct ge v = Some f ->
exists tf, Genv.find_funct tge v = Some tf /\ transf_fundef f = OK tf.
Proof.
exact (Genv.find_funct_transf_partial _ _ TRANSF).
Qed.
Lemma function_ptr_translated:
forall (b: block) (f: fundef),
Genv.find_funct_ptr ge b = Some f ->
exists tf, Genv.find_funct_ptr tge b = Some tf /\ transf_fundef f = OK tf.
Proof.
exact (Genv.find_funct_ptr_transf_partial _ _ TRANSF).
Qed.
Lemma type_of_fundef_preserved:
forall fd tfd,
transf_fundef fd = OK tfd -> type_of_fundef tfd = type_of_fundef fd.
Proof.
intros. destruct fd; monadInv H; auto.
monadInv EQ. simpl; unfold type_of_function; simpl. auto.
Qed.
(** Matching between environments before and after *)
Inductive match_var (f: meminj) (cenv: compilenv) (e: env) (m: mem) (te: env) (tle: temp_env) (id: ident) : Prop :=
| match_var_lifted: forall b ty chunk v tv
(ENV: e!id = Some(b, ty))
(TENV: te!id = None)
(LIFTED: VSet.mem id cenv = true)
(MAPPED: f b = None)
(MODE: access_mode ty = By_value chunk)
(LOAD: Mem.load chunk m b 0 = Some v)
(TLENV: tle!(id) = Some tv)
(VINJ: val_inject f v tv),
match_var f cenv e m te tle id
| match_var_not_lifted: forall b ty b'
(ENV: e!id = Some(b, ty))
(TENV: te!id = Some(b', ty))
(LIFTED: VSet.mem id cenv = false)
(MAPPED: f b = Some(b', 0)),
match_var f cenv e m te tle id
| match_var_not_local: forall
(ENV: e!id = None)
(TENV: te!id = None)
(LIFTED: VSet.mem id cenv = false),
match_var f cenv e m te tle id.
Record match_envs (f: meminj) (cenv: compilenv)
(e: env) (le: temp_env) (m: mem) (lo hi: block)
(te: env) (tle: temp_env) (tlo thi: block) : Prop :=
mk_match_envs {
me_vars:
forall id, match_var f cenv e m te tle id;
me_temps:
forall id v,
le!id = Some v ->
(exists tv, tle!id = Some tv /\ val_inject f v tv)
/\ (VSet.mem id cenv = true -> v = Vundef);
me_inj:
forall id1 b1 ty1 id2 b2 ty2, e!id1 = Some(b1, ty1) -> e!id2 = Some(b2, ty2) -> id1 <> id2 -> b1 <> b2;
me_range:
forall id b ty, e!id = Some(b, ty) -> Ple lo b /\ Plt b hi;
me_trange:
forall id b ty, te!id = Some(b, ty) -> Ple tlo b /\ Plt b thi;
me_mapped:
forall id b' ty,
te!id = Some(b', ty) -> exists b, f b = Some(b', 0) /\ e!id = Some(b, ty);
me_flat:
forall id b' ty b delta,
te!id = Some(b', ty) -> f b = Some(b', delta) -> e!id = Some(b, ty) /\ delta = 0;
me_incr:
Ple lo hi;
me_tincr:
Ple tlo thi
}.
(** Invariance by change of memory and injection *)
Lemma match_envs_invariant:
forall f cenv e le m lo hi te tle tlo thi f' m',
match_envs f cenv e le m lo hi te tle tlo thi ->
(forall b chunk v,
f b = None -> Ple lo b /\ Plt b hi -> Mem.load chunk m b 0 = Some v -> Mem.load chunk m' b 0 = Some v) ->
inject_incr f f' ->
(forall b, Ple lo b /\ Plt b hi -> f' b = f b) ->
(forall b b' delta, f' b = Some(b', delta) -> Ple tlo b' /\ Plt b' thi -> f' b = f b) ->
match_envs f' cenv e le m' lo hi te tle tlo thi.
Proof.
intros until m'; intros ME LD INCR INV1 INV2.
destruct ME; constructor; eauto.
(* vars *)
intros. generalize (me_vars0 id); intros MV; inv MV.
eapply match_var_lifted; eauto.
rewrite <- MAPPED; eauto.
eapply match_var_not_lifted; eauto.
eapply match_var_not_local; eauto.
(* temps *)
intros. exploit me_temps0; eauto. intros [[v' [A B]] C]. split; auto. exists v'; eauto.
(* mapped *)
intros. exploit me_mapped0; eauto. intros [b [A B]]. exists b; split; auto.
(* flat *)
intros. eapply me_flat0; eauto. rewrite <- H0. symmetry. eapply INV2; eauto.
Qed.
(** Invariance by external call *)
Lemma match_envs_extcall:
forall f cenv e le m lo hi te tle tlo thi tm f' m',
match_envs f cenv e le m lo hi te tle tlo thi ->
Mem.unchanged_on (loc_unmapped f) m m' ->
inject_incr f f' ->
inject_separated f f' m tm ->
Ple hi (Mem.nextblock m) -> Ple thi (Mem.nextblock tm) ->
match_envs f' cenv e le m' lo hi te tle tlo thi.
Proof.
intros. eapply match_envs_invariant; eauto.
intros. eapply Mem.load_unchanged_on; eauto.
red in H2. intros. destruct (f b) as [[b' delta]|] eqn:?.
eapply H1; eauto.
destruct (f' b) as [[b' delta]|] eqn:?; auto.
exploit H2; eauto. unfold Mem.valid_block. intros [A B].
xomegaContradiction.
intros. destruct (f b) as [[b'' delta']|] eqn:?. eauto.
exploit H2; eauto. unfold Mem.valid_block. intros [A B].
xomegaContradiction.
Qed.
(** Properties of values obtained by casting to a given type. *)
Inductive val_casted: val -> type -> Prop :=
| val_casted_int: forall sz si attr n,
cast_int_int sz si n = n ->
val_casted (Vint n) (Tint sz si attr)
| val_casted_float: forall sz attr n,
cast_float_float sz n = n ->
val_casted (Vfloat n) (Tfloat sz attr)
| val_casted_long: forall si attr n,
val_casted (Vlong n) (Tlong si attr)
| val_casted_ptr_ptr: forall b ofs ty attr,
val_casted (Vptr b ofs) (Tpointer ty attr)
| val_casted_int_ptr: forall n ty attr,
val_casted (Vint n) (Tpointer ty attr)
| val_casted_ptr_int: forall b ofs si attr,
val_casted (Vptr b ofs) (Tint I32 si attr)
| val_casted_ptr_cptr: forall b ofs id attr,
val_casted (Vptr b ofs) (Tcomp_ptr id attr)
| val_casted_int_cptr: forall n id attr,
val_casted (Vint n) (Tcomp_ptr id attr)
| val_casted_struct: forall id fld attr b ofs,
val_casted (Vptr b ofs) (Tstruct id fld attr)
| val_casted_union: forall id fld attr b ofs,
val_casted (Vptr b ofs) (Tunion id fld attr)
| val_casted_void: forall v,
val_casted v Tvoid.
Remark cast_int_int_idem:
forall sz sg i, cast_int_int sz sg (cast_int_int sz sg i) = cast_int_int sz sg i.
Proof.
intros. destruct sz; simpl; auto.
destruct sg; [apply Int.sign_ext_idem|apply Int.zero_ext_idem]; compute; intuition congruence.
destruct sg; [apply Int.sign_ext_idem|apply Int.zero_ext_idem]; compute; intuition congruence.
destruct (Int.eq i Int.zero); auto.
Qed.
Remark cast_float_float_idem:
forall sz f, cast_float_float sz (cast_float_float sz f) = cast_float_float sz f.
Proof.
intros; destruct sz; simpl.
apply Float.singleoffloat_idem; auto.
auto.
Qed.
Lemma cast_val_is_casted:
forall v ty ty' v', sem_cast v ty ty' = Some v' -> val_casted v' ty'.
Proof.
unfold sem_cast; intros. destruct ty'; simpl in *.
(* void *)
constructor.
(* int *)
destruct i; destruct ty; simpl in H; try discriminate; destruct v; inv H.
constructor. apply (cast_int_int_idem I8 s).
constructor. apply (cast_int_int_idem I8 s).
destruct (cast_float_int s f0); inv H1. constructor. apply (cast_int_int_idem I8 s).
constructor. apply (cast_int_int_idem I16 s).
constructor. apply (cast_int_int_idem I16 s).
destruct (cast_float_int s f0); inv H1. constructor. apply (cast_int_int_idem I16 s).
constructor. auto.
constructor.
constructor. auto.
destruct (cast_float_int s f0); inv H1. constructor. auto.
constructor. auto.
constructor.
constructor; auto.
constructor.
constructor; auto.
constructor; auto.
constructor; auto.
constructor; auto.
constructor. simpl. destruct (Int.eq i0 Int.zero); auto.
constructor. simpl. destruct (Int64.eq i Int64.zero); auto.
constructor. simpl. destruct (Float.cmp Ceq f0 Float.zero); auto.
constructor. simpl. destruct (Int.eq i Int.zero); auto.
constructor; auto.
constructor. simpl. destruct (Int.eq i Int.zero); auto.
constructor; auto.
constructor. simpl. destruct (Int.eq i Int.zero); auto.
constructor; auto.
constructor. simpl. destruct (Int.eq i0 Int.zero); auto.
constructor; auto.
(* long *)
destruct ty; try discriminate.
destruct v; inv H. constructor.
destruct v; inv H. constructor.
destruct v; try discriminate. destruct (cast_float_long s f0); inv H. constructor.
destruct v; inv H. constructor.
destruct v; inv H. constructor.
destruct v; inv H. constructor.
destruct v; inv H. constructor.
(* float *)
destruct ty; simpl in H; try discriminate; destruct v; inv H.
constructor. unfold cast_float_float, cast_int_float.
destruct f; destruct s; auto.
rewrite Float.singleofint_floatofint. apply Float.singleoffloat_idem.
rewrite Float.singleofintu_floatofintu. apply Float.singleoffloat_idem.
constructor. unfold cast_float_float, cast_long_float.
destruct f; destruct s; auto. apply Float.singleoflong_idem. apply Float.singleoflongu_idem.
constructor. apply cast_float_float_idem.
(* pointer *)
destruct ty; simpl in H; try discriminate; destruct v; inv H; try constructor.
(* impossible cases *)
discriminate.
discriminate.
(* structs *)
destruct ty; try discriminate; destruct v; try discriminate.
destruct (ident_eq i0 i && fieldlist_eq f0 f); inv H; constructor.
(* unions *)
destruct ty; try discriminate; destruct v; try discriminate.
destruct (ident_eq i0 i && fieldlist_eq f0 f); inv H; constructor.
(* comp_ptr *)
destruct ty; simpl in H; try discriminate; destruct v; inv H; constructor.
Qed.
Lemma val_casted_load_result:
forall v ty chunk,
val_casted v ty -> access_mode ty = By_value chunk ->
Val.load_result chunk v = v.
Proof.
intros. inversion H; clear H; subst v ty; simpl in H0.
destruct sz.
destruct si; inversion H0; clear H0; subst chunk; simpl in *; congruence.
destruct si; inversion H0; clear H0; subst chunk; simpl in *; congruence.
clear H1. inv H0. auto.
inversion H0; clear H0; subst chunk. simpl in *.
destruct (Int.eq n Int.zero); subst n; reflexivity.
destruct sz; inversion H0; clear H0; subst chunk; simpl in *; congruence.
inv H0; auto.
inv H0; auto.
inv H0; auto.
inv H0; auto.
discriminate.
discriminate.
discriminate.
discriminate.
discriminate.
Qed.
Lemma cast_val_casted:
forall v ty, val_casted v ty -> sem_cast v ty ty = Some v.
Proof.
intros. inversion H; clear H; subst v ty; unfold sem_cast; simpl; auto.
destruct sz; congruence.
congruence.
unfold proj_sumbool; repeat rewrite dec_eq_true; auto.
unfold proj_sumbool; repeat rewrite dec_eq_true; auto.
Qed.
Lemma val_casted_inject:
forall f v v' ty,
val_inject f v v' -> val_casted v ty -> val_casted v' ty.
Proof.
intros. inv H; auto.
inv H0; constructor.
inv H0; constructor.
Qed.
Inductive val_casted_list: list val -> typelist -> Prop :=
| vcl_nil:
val_casted_list nil Tnil
| vcl_cons: forall v1 vl ty1 tyl,
val_casted v1 ty1 -> val_casted_list vl tyl ->
val_casted_list (v1 :: vl) (Tcons ty1 tyl).
Lemma val_casted_list_params:
forall params vl,
val_casted_list vl (type_of_params params) ->
list_forall2 val_casted vl (map snd params).
Proof.
induction params; simpl; intros.
inv H. constructor.
destruct a as [id ty]. inv H. constructor; auto.
Qed.
(** Correctness of [make_cast] *)
Lemma make_cast_correct:
forall e le m a v1 tto v2,
eval_expr tge e le m a v1 ->
sem_cast v1 (typeof a) tto = Some v2 ->
eval_expr tge e le m (make_cast a tto) v2.
Proof.
intros.
assert (DFL: eval_expr tge e le m (Ecast a tto) v2).
econstructor; eauto.
unfold sem_cast, make_cast in *.
destruct (classify_cast (typeof a) tto); auto.
destruct v1; inv H0; auto.
destruct sz2; auto. destruct v1; inv H0; auto.
destruct sz2; auto. destruct v1; inv H0; auto.
destruct v1; inv H0; auto.
destruct v1; try discriminate.
destruct (ident_eq id1 id2 && fieldlist_eq fld1 fld2); inv H0; auto.
destruct v1; try discriminate.
destruct (ident_eq id1 id2 && fieldlist_eq fld1 fld2); inv H0; auto.
inv H0; auto.
Qed.
(** Preservation by assignment to lifted variable. *)
Lemma match_envs_assign_lifted:
forall f cenv e le m lo hi te tle tlo thi b ty v m' id tv,
match_envs f cenv e le m lo hi te tle tlo thi ->
e!id = Some(b, ty) ->
val_casted v ty ->
val_inject f v tv ->
assign_loc ty m b Int.zero v m' ->
VSet.mem id cenv = true ->
match_envs f cenv e le m' lo hi te (PTree.set id tv tle) tlo thi.
Proof.
intros. destruct H. generalize (me_vars0 id); intros MV; inv MV; try congruence.
rewrite ENV in H0; inv H0. inv H3; try congruence.
unfold Mem.storev in H0. rewrite Int.unsigned_zero in H0.
constructor; eauto; intros.
(* vars *)
destruct (peq id0 id). subst id0.
eapply match_var_lifted with (v := v); eauto.
exploit Mem.load_store_same; eauto. erewrite val_casted_load_result; eauto.
apply PTree.gss.
generalize (me_vars0 id0); intros MV; inv MV.
eapply match_var_lifted; eauto.
rewrite <- LOAD0. eapply Mem.load_store_other; eauto.
rewrite PTree.gso; auto.
eapply match_var_not_lifted; eauto.
eapply match_var_not_local; eauto.
(* temps *)
exploit me_temps0; eauto. intros [[tv1 [A B]] C]. split; auto.
rewrite PTree.gsspec. destruct (peq id0 id).
subst id0. exists tv; split; auto. rewrite C; auto.
exists tv1; auto.
Qed.
(** Preservation by assignment to a temporary *)
Lemma match_envs_set_temp:
forall f cenv e le m lo hi te tle tlo thi id v tv x,
match_envs f cenv e le m lo hi te tle tlo thi ->
val_inject f v tv ->
check_temp cenv id = OK x ->
match_envs f cenv e (PTree.set id v le) m lo hi te (PTree.set id tv tle) tlo thi.
Proof.
intros. unfold check_temp in H1.
destruct (VSet.mem id cenv) eqn:?; monadInv H1.
destruct H. constructor; eauto; intros.
(* vars *)
generalize (me_vars0 id0); intros MV; inv MV.
eapply match_var_lifted; eauto. rewrite PTree.gso. eauto. congruence.
eapply match_var_not_lifted; eauto.
eapply match_var_not_local; eauto.
(* temps *)
rewrite PTree.gsspec in *. destruct (peq id0 id).
inv H. split. exists tv; auto. intros; congruence.
eapply me_temps0; eauto.
Qed.
Lemma match_envs_set_opttemp:
forall f cenv e le m lo hi te tle tlo thi optid v tv x,
match_envs f cenv e le m lo hi te tle tlo thi ->
val_inject f v tv ->
check_opttemp cenv optid = OK x ->
match_envs f cenv e (set_opttemp optid v le) m lo hi te (set_opttemp optid tv tle) tlo thi.
Proof.
intros. unfold set_opttemp. destruct optid; simpl in H1.
eapply match_envs_set_temp; eauto.
auto.
Qed.
(** Extensionality with respect to temporaries *)
Lemma match_envs_temps_exten:
forall f cenv e le m lo hi te tle tlo thi tle',
match_envs f cenv e le m lo hi te tle tlo thi ->
(forall id, tle'!id = tle!id) ->
match_envs f cenv e le m lo hi te tle' tlo thi.
Proof.
intros. destruct H. constructor; auto; intros.
(* vars *)
generalize (me_vars0 id); intros MV; inv MV.
eapply match_var_lifted; eauto. rewrite H0; auto.
eapply match_var_not_lifted; eauto.
eapply match_var_not_local; eauto.
(* temps *)
rewrite H0. eauto.
Qed.
(** Invariance by assignment to an irrelevant temporary *)
Lemma match_envs_change_temp:
forall f cenv e le m lo hi te tle tlo thi id v,
match_envs f cenv e le m lo hi te tle tlo thi ->
le!id = None -> VSet.mem id cenv = false ->
match_envs f cenv e le m lo hi te (PTree.set id v tle) tlo thi.
Proof.
intros. destruct H. constructor; auto; intros.
(* vars *)
generalize (me_vars0 id0); intros MV; inv MV.
eapply match_var_lifted; eauto. rewrite PTree.gso; auto. congruence.
eapply match_var_not_lifted; eauto.
eapply match_var_not_local; eauto.
(* temps *)
rewrite PTree.gso. eauto. congruence.
Qed.
(** Properties of [cenv_for]. *)
Definition cenv_for_gen (atk: VSet.t) (vars: list (ident * type)) : compilenv :=
List.fold_right (add_local_variable atk) VSet.empty vars.
Remark add_local_variable_charact:
forall id ty atk cenv id1,
VSet.In id1 (add_local_variable atk (id, ty) cenv) <->
VSet.In id1 cenv \/ exists chunk, access_mode ty = By_value chunk /\ id = id1 /\ VSet.mem id atk = false.
Proof.
intros. unfold add_local_variable. split; intros.
destruct (access_mode ty) eqn:?; auto.
destruct (VSet.mem id atk) eqn:?; auto.
rewrite VSF.add_iff in H. destruct H; auto. right; exists m; auto.
destruct H as [A | [chunk [A [B C]]]].
destruct (access_mode ty); auto. destruct (VSet.mem id atk); auto. rewrite VSF.add_iff; auto.
rewrite A. rewrite <- B. rewrite C. apply VSet.add_1; auto.
Qed.
Lemma cenv_for_gen_domain:
forall atk id vars, VSet.In id (cenv_for_gen atk vars) -> In id (var_names vars).
Proof.
induction vars; simpl; intros.
rewrite VSF.empty_iff in H. auto.
destruct a as [id1 ty1]. rewrite add_local_variable_charact in H.
destruct H as [A | [chunk [A [B C]]]]; auto.
Qed.
Lemma cenv_for_gen_by_value:
forall atk id ty vars,
In (id, ty) vars ->
list_norepet (var_names vars) ->
VSet.In id (cenv_for_gen atk vars) ->
exists chunk, access_mode ty = By_value chunk.
Proof.
induction vars; simpl; intros.
contradiction.
destruct a as [id1 ty1]. simpl in H0. inv H0.
rewrite add_local_variable_charact in H1.
destruct H; destruct H1 as [A | [chunk [A [B C]]]].
inv H. elim H4. eapply cenv_for_gen_domain; eauto.
inv H. exists chunk; auto.
eauto.
subst id1. elim H4. change id with (fst (id, ty)). apply in_map; auto.
Qed.
Lemma cenv_for_gen_compat:
forall atk id vars,
VSet.In id (cenv_for_gen atk vars) -> VSet.mem id atk = false.
Proof.
induction vars; simpl; intros.
rewrite VSF.empty_iff in H. contradiction.
destruct a as [id1 ty1]. rewrite add_local_variable_charact in H.
destruct H as [A | [chunk [A [B C]]]].
auto.
congruence.
Qed.
(** Compatibility between a compilation environment and an address-taken set. *)
Definition compat_cenv (atk: VSet.t) (cenv: compilenv) : Prop :=
forall id, VSet.In id atk -> VSet.In id cenv -> False.
Lemma compat_cenv_for:
forall f, compat_cenv (addr_taken_stmt f.(fn_body)) (cenv_for f).
Proof.
intros; red; intros.
assert (VSet.mem id (addr_taken_stmt (fn_body f)) = false).
eapply cenv_for_gen_compat. eexact H0.
rewrite VSF.mem_iff in H. congruence.
Qed.
Lemma compat_cenv_union_l:
forall atk1 atk2 cenv,
compat_cenv (VSet.union atk1 atk2) cenv -> compat_cenv atk1 cenv.
Proof.
intros; red; intros. eapply H; eauto. apply VSet.union_2; auto.
Qed.
Lemma compat_cenv_union_r:
forall atk1 atk2 cenv,
compat_cenv (VSet.union atk1 atk2) cenv -> compat_cenv atk2 cenv.
Proof.
intros; red; intros. eapply H; eauto. apply VSet.union_3; auto.
Qed.
Lemma compat_cenv_empty:
forall cenv, compat_cenv VSet.empty cenv.
Proof.
intros; red; intros. eapply VSet.empty_1; eauto.
Qed.
Hint Resolve compat_cenv_union_l compat_cenv_union_r compat_cenv_empty: compat.
(** Allocation and initialization of parameters *)
Lemma alloc_variables_nextblock:
forall e m vars e' m',
alloc_variables e m vars e' m' -> Ple (Mem.nextblock m) (Mem.nextblock m').
Proof.
induction 1.
apply Ple_refl.
eapply Ple_trans; eauto. exploit Mem.nextblock_alloc; eauto. intros EQ; rewrite EQ. apply Ple_succ.
Qed.
Lemma alloc_variables_range:
forall id b ty e m vars e' m',
alloc_variables e m vars e' m' ->
e'!id = Some(b, ty) -> e!id = Some(b, ty) \/ Ple (Mem.nextblock m) b /\ Plt b (Mem.nextblock m').
Proof.
induction 1; intros.
auto.
exploit IHalloc_variables; eauto. rewrite PTree.gsspec. intros [A|A].
destruct (peq id id0). inv A.
right. exploit Mem.alloc_result; eauto. exploit Mem.nextblock_alloc; eauto.
generalize (alloc_variables_nextblock _ _ _ _ _ H0). intros A B C.
subst b. split. apply Ple_refl. eapply Plt_le_trans; eauto. rewrite B. apply Plt_succ.
auto.
right. exploit Mem.nextblock_alloc; eauto. intros B. rewrite B in A. xomega.
Qed.
Lemma alloc_variables_injective:
forall id1 b1 ty1 id2 b2 ty2 e m vars e' m',
alloc_variables e m vars e' m' ->
(e!id1 = Some(b1, ty1) -> e!id2 = Some(b2, ty2) -> id1 <> id2 -> b1 <> b2) ->
(forall id b ty, e!id = Some(b, ty) -> Plt b (Mem.nextblock m)) ->
(e'!id1 = Some(b1, ty1) -> e'!id2 = Some(b2, ty2) -> id1 <> id2 -> b1 <> b2).
Proof.
induction 1; intros.
eauto.
eapply IHalloc_variables; eauto.
repeat rewrite PTree.gsspec; intros.
destruct (peq id1 id); destruct (peq id2 id).
congruence.
inv H6. exploit Mem.alloc_result; eauto. exploit H2; eauto. unfold block; xomega.
inv H7. exploit Mem.alloc_result; eauto. exploit H2; eauto. unfold block; xomega.
eauto.
intros. rewrite PTree.gsspec in H6. destruct (peq id0 id). inv H6.
exploit Mem.alloc_result; eauto. exploit Mem.nextblock_alloc; eauto. unfold block; xomega.
exploit H2; eauto. exploit Mem.nextblock_alloc; eauto. unfold block; xomega.
Qed.
Lemma match_alloc_variables:
forall cenv e m vars e' m',
alloc_variables e m vars e' m' ->
forall j tm te,
list_norepet (var_names vars) ->
Mem.inject j m tm ->
exists j', exists te', exists tm',
alloc_variables te tm (remove_lifted cenv vars) te' tm'
/\ Mem.inject j' m' tm'
/\ inject_incr j j'
/\ (forall b, Mem.valid_block m b -> j' b = j b)
/\ (forall b b' delta, j' b = Some(b', delta) -> Mem.valid_block tm b' -> j' b = j b)
/\ (forall b b' delta, j' b = Some(b', delta) -> ~Mem.valid_block tm b' ->
exists id, exists ty, e'!id = Some(b, ty) /\ te'!id = Some(b', ty) /\ delta = 0)
/\ (forall id ty, In (id, ty) vars ->
exists b,
e'!id = Some(b, ty)
/\ if VSet.mem id cenv
then te'!id = te!id /\ j' b = None
else exists tb, te'!id = Some(tb, ty) /\ j' b = Some(tb, 0))
/\ (forall id, ~In id (var_names vars) -> e'!id = e!id /\ te'!id = te!id).
Proof.
induction 1; intros.
(* base case *)
exists j; exists te; exists tm. simpl.
split. constructor.
split. auto. split. auto. split. auto. split. auto.
split. intros. elim H2. eapply Mem.mi_mappedblocks; eauto.
split. tauto. auto.
(* inductive case *)
simpl in H1. inv H1. simpl.
destruct (VSet.mem id cenv) eqn:?. simpl.
(* variable is lifted out of memory *)
exploit Mem.alloc_left_unmapped_inject; eauto.
intros [j1 [A [B [C D]]]].
exploit IHalloc_variables; eauto. instantiate (1 := te).
intros [j' [te' [tm' [J [K [L [M [N [Q [O P]]]]]]]]]].
exists j'; exists te'; exists tm'.
split. auto.
split. auto.
split. eapply inject_incr_trans; eauto.
split. intros. transitivity (j1 b). apply M. eapply Mem.valid_block_alloc; eauto.
apply D. apply Mem.valid_not_valid_diff with m; auto. eapply Mem.fresh_block_alloc; eauto.
split. intros. transitivity (j1 b). eapply N; eauto.
destruct (eq_block b b1); auto. subst.
assert (j' b1 = j1 b1). apply M. eapply Mem.valid_new_block; eauto.
congruence.
split. exact Q.
split. intros. destruct (ident_eq id0 id).
(* same var *)
subst id0.
assert (ty0 = ty).
destruct H1. congruence. elim H5. unfold var_names. change id with (fst (id, ty0)). apply in_map; auto.
subst ty0.
exploit P; eauto. intros [X Y]. rewrite Heqb. rewrite X. rewrite Y.
exists b1. split. apply PTree.gss.
split. auto.
rewrite M. auto. eapply Mem.valid_new_block; eauto.
(* other vars *)
eapply O; eauto. destruct H1. congruence. auto.
intros. exploit (P id0). tauto. intros [X Y]. rewrite X; rewrite Y.
split; auto. apply PTree.gso. intuition.
(* variable is not lifted out of memory *)
exploit Mem.alloc_parallel_inject.
eauto. eauto. apply Zle_refl. apply Zle_refl.
intros [j1 [tm1 [tb1 [A [B [C [D E]]]]]]].
exploit IHalloc_variables; eauto. instantiate (1 := PTree.set id (tb1, ty) te).
intros [j' [te' [tm' [J [K [L [M [N [Q [O P]]]]]]]]]].
exists j'; exists te'; exists tm'.
split. simpl. econstructor; eauto.
split. auto.
split. eapply inject_incr_trans; eauto.
split. intros. transitivity (j1 b). apply M. eapply Mem.valid_block_alloc; eauto.
apply E. apply Mem.valid_not_valid_diff with m; auto. eapply Mem.fresh_block_alloc; eauto.
split. intros. transitivity (j1 b). eapply N; eauto. eapply Mem.valid_block_alloc; eauto.
destruct (eq_block b b1); auto. subst.
assert (j' b1 = j1 b1). apply M. eapply Mem.valid_new_block; eauto.
rewrite H4 in H1. rewrite D in H1. inv H1. eelim Mem.fresh_block_alloc; eauto.
split. intros. destruct (eq_block b' tb1).
subst b'. rewrite (N _ _ _ H1) in H1.
destruct (eq_block b b1). subst b. rewrite D in H1; inv H1.
exploit (P id); auto. intros [X Y]. exists id; exists ty.
rewrite X; rewrite Y. repeat rewrite PTree.gss. auto.
rewrite E in H1; auto. elim H3. eapply Mem.mi_mappedblocks; eauto.
eapply Mem.valid_new_block; eauto.
eapply Q; eauto. unfold Mem.valid_block in *.
exploit Mem.nextblock_alloc. eexact A. exploit Mem.alloc_result. eexact A.
unfold block; xomega.
split. intros. destruct (ident_eq id0 id).
(* same var *)
subst id0.
assert (ty0 = ty).
destruct H1. congruence. elim H5. unfold var_names. change id with (fst (id, ty0)). apply in_map; auto.
subst ty0.
exploit P; eauto. intros [X Y]. rewrite Heqb. rewrite X. rewrite Y.
exists b1. split. apply PTree.gss.
exists tb1; split.
apply PTree.gss.
rewrite M. auto. eapply Mem.valid_new_block; eauto.
(* other vars *)
exploit (O id0 ty0). destruct H1. congruence. auto.
rewrite PTree.gso; auto.
intros. exploit (P id0). tauto. intros [X Y]. rewrite X; rewrite Y.
split; apply PTree.gso; intuition.
Qed.
Lemma alloc_variables_load:
forall e m vars e' m',
alloc_variables e m vars e' m' ->
forall chunk b ofs v,
Mem.load chunk m b ofs = Some v ->
Mem.load chunk m' b ofs = Some v.
Proof.
induction 1; intros.
auto.
apply IHalloc_variables. eapply Mem.load_alloc_other; eauto.
Qed.
Lemma sizeof_by_value:
forall ty chunk,
access_mode ty = By_value chunk -> size_chunk chunk <= sizeof ty.
Proof.
unfold access_mode; intros.
assert (size_chunk chunk = sizeof ty).
{
destruct ty; try destruct i; try destruct s; try destruct f; inv H; auto.
}
omega.
Qed.
Definition env_initial_value (e: env) (m: mem) :=
forall id b ty chunk,
e!id = Some(b, ty) -> access_mode ty = By_value chunk -> Mem.load chunk m b 0 = Some Vundef.
Lemma alloc_variables_initial_value:
forall e m vars e' m',
alloc_variables e m vars e' m' ->
env_initial_value e m ->
env_initial_value e' m'.
Proof.
induction 1; intros.
auto.
apply IHalloc_variables. red; intros. rewrite PTree.gsspec in H2.
destruct (peq id0 id). inv H2.
eapply Mem.load_alloc_same'; eauto.
omega. rewrite Zplus_0_l. eapply sizeof_by_value; eauto.
apply Zdivide_0.
eapply Mem.load_alloc_other; eauto.
Qed.
Lemma create_undef_temps_charact:
forall id ty vars, In (id, ty) vars -> (create_undef_temps vars)!id = Some Vundef.
Proof.
induction vars; simpl; intros.
contradiction.
destruct H. subst a. apply PTree.gss.
destruct a as [id1 ty1]. rewrite PTree.gsspec. destruct (peq id id1); auto.
Qed.
Lemma create_undef_temps_inv:
forall vars id v, (create_undef_temps vars)!id = Some v -> v = Vundef /\ In id (var_names vars).
Proof.
induction vars; simpl; intros.
rewrite PTree.gempty in H; congruence.
destruct a as [id1 ty1]. rewrite PTree.gsspec in H. destruct (peq id id1).
inv H. auto.
exploit IHvars; eauto. tauto.
Qed.
Lemma create_undef_temps_exten:
forall id l1 l2,
(In id (var_names l1) <-> In id (var_names l2)) ->
(create_undef_temps l1)!id = (create_undef_temps l2)!id.
Proof.
assert (forall id l1 l2,
(In id (var_names l1) -> In id (var_names l2)) ->
(create_undef_temps l1)!id = None \/ (create_undef_temps l1)!id = (create_undef_temps l2)!id).
intros. destruct ((create_undef_temps l1)!id) as [v1|] eqn:?; auto.
exploit create_undef_temps_inv; eauto. intros [A B]. subst v1.
exploit list_in_map_inv. unfold var_names in H. apply H. eexact B.
intros [[id1 ty1] [P Q]]. simpl in P; subst id1.
right; symmetry; eapply create_undef_temps_charact; eauto.
intros.
exploit (H id l1 l2). tauto.
exploit (H id l2 l1). tauto.
intuition congruence.
Qed.
Remark var_names_app:
forall vars1 vars2, var_names (vars1 ++ vars2) = var_names vars1 ++ var_names vars2.
Proof.
intros. apply map_app.
Qed.
Remark filter_app:
forall (A: Type) (f: A -> bool) l1 l2,
List.filter f (l1 ++ l2) = List.filter f l1 ++ List.filter f l2.
Proof.
induction l1; simpl; intros.
auto.
destruct (f a). simpl. decEq; auto. auto.
Qed.
Remark filter_charact:
forall (A: Type) (f: A -> bool) x l,
In x (List.filter f l) <-> In x l /\ f x = true.
Proof.
induction l; simpl. tauto.
destruct (f a) eqn:?.
simpl. rewrite IHl. intuition congruence.
intuition congruence.
Qed.
Remark filter_norepet:
forall (A: Type) (f: A -> bool) l,
list_norepet l -> list_norepet (List.filter f l).
Proof.
induction 1; simpl. constructor.
destruct (f hd); auto. constructor; auto. rewrite filter_charact. tauto.
Qed.
Remark filter_map:
forall (A B: Type) (f: A -> B) (pa: A -> bool) (pb: B -> bool),
(forall a, pb (f a) = pa a) ->
forall l, List.map f (List.filter pa l) = List.filter pb (List.map f l).
Proof.
induction l; simpl.
auto.
rewrite H. destruct (pa a); simpl; congruence.
Qed.
Lemma create_undef_temps_lifted:
forall id f,
~ In id (var_names (fn_params f)) ->
(create_undef_temps (add_lifted (cenv_for f) (fn_vars f) (fn_temps f))) ! id =
(create_undef_temps (add_lifted (cenv_for f) (fn_params f ++ fn_vars f) (fn_temps f))) ! id.
Proof.
intros. apply create_undef_temps_exten.
unfold add_lifted. rewrite filter_app.
unfold var_names in *.
repeat rewrite map_app. repeat rewrite in_app. intuition.
exploit list_in_map_inv; eauto. intros [[id1 ty1] [P Q]]. simpl in P. subst id.
rewrite filter_charact in Q. destruct Q.
elim H. change id1 with (fst (id1, ty1)). apply List.in_map. auto.
Qed.
Lemma vars_and_temps_properties:
forall cenv params vars temps,
list_norepet (var_names params ++ var_names vars) ->
list_disjoint (var_names params) (var_names temps) ->
list_norepet (var_names params)
/\ list_norepet (var_names (remove_lifted cenv (params ++ vars)))
/\ list_disjoint (var_names params) (var_names (add_lifted cenv vars temps)).
Proof.
intros. rewrite list_norepet_app in H. destruct H as [A [B C]].
split. auto.
split. unfold remove_lifted. unfold var_names. erewrite filter_map.
instantiate (1 := fun a => negb (VSet.mem a cenv)). 2: auto.
apply filter_norepet. rewrite map_app. apply list_norepet_append; assumption.
unfold add_lifted. rewrite var_names_app.
unfold var_names at 2. erewrite filter_map.
instantiate (1 := fun a => VSet.mem a cenv). 2: auto.
change (map fst vars) with (var_names vars).
red; intros.
rewrite in_app in H1. destruct H1.
rewrite filter_charact in H1. destruct H1. apply C; auto.
apply H0; auto.
Qed.
Theorem match_envs_alloc_variables:
forall cenv m vars e m' temps j tm,
alloc_variables empty_env m vars e m' ->
list_norepet (var_names vars) ->
Mem.inject j m tm ->
(forall id ty, In (id, ty) vars -> VSet.mem id cenv = true ->
exists chunk, access_mode ty = By_value chunk) ->
(forall id, VSet.mem id cenv = true -> In id (var_names vars)) ->
exists j', exists te, exists tm',
alloc_variables empty_env tm (remove_lifted cenv vars) te tm'
/\ match_envs j' cenv e (create_undef_temps temps) m' (Mem.nextblock m) (Mem.nextblock m')
te (create_undef_temps (add_lifted cenv vars temps)) (Mem.nextblock tm) (Mem.nextblock tm')
/\ Mem.inject j' m' tm'
/\ inject_incr j j'
/\ (forall b, Mem.valid_block m b -> j' b = j b)
/\ (forall b b' delta, j' b = Some(b', delta) -> Mem.valid_block tm b' -> j' b = j b).
Proof.
intros.
exploit (match_alloc_variables cenv); eauto. instantiate (1 := empty_env).
intros [j' [te [tm' [A [B [C [D [E [K [F G]]]]]]]]]].
exists j'; exists te; exists tm'.
split. auto. split; auto.
constructor; intros.
(* vars *)
destruct (In_dec ident_eq id (var_names vars)).
unfold var_names in i. exploit list_in_map_inv; eauto.
intros [[id' ty] [EQ IN]]; simpl in EQ; subst id'.
exploit F; eauto. intros [b [P R]].
destruct (VSet.mem id cenv) eqn:?.
(* local var, lifted *)
destruct R as [U V]. exploit H2; eauto. intros [chunk X].
eapply match_var_lifted with (v := Vundef) (tv := Vundef); eauto.
rewrite U; apply PTree.gempty.
eapply alloc_variables_initial_value; eauto.
red. unfold empty_env; intros. rewrite PTree.gempty in H4; congruence.
apply create_undef_temps_charact with ty.
unfold add_lifted. apply in_or_app. left.
rewrite filter_In. auto.
(* local var, not lifted *)
destruct R as [tb [U V]].
eapply match_var_not_lifted; eauto.
(* non-local var *)
exploit G; eauto. unfold empty_env. rewrite PTree.gempty. intros [U V].
eapply match_var_not_local; eauto.
destruct (VSet.mem id cenv) eqn:?; auto.
elim n; eauto.
(* temps *)
exploit create_undef_temps_inv; eauto. intros [P Q]. subst v.
unfold var_names in Q. exploit list_in_map_inv; eauto.
intros [[id1 ty] [EQ IN]]; simpl in EQ; subst id1.
split; auto. exists Vundef; split; auto.
apply create_undef_temps_charact with ty. unfold add_lifted.
apply in_or_app; auto.
(* injective *)
eapply alloc_variables_injective. eexact H.
rewrite PTree.gempty. congruence.
intros. rewrite PTree.gempty in H7. congruence.
eauto. eauto. auto.
(* range *)
exploit alloc_variables_range. eexact H. eauto.
rewrite PTree.gempty. intuition congruence.
(* trange *)
exploit alloc_variables_range. eexact A. eauto.
rewrite PTree.gempty. intuition congruence.
(* mapped *)
destruct (In_dec ident_eq id (var_names vars)).
unfold var_names in i. exploit list_in_map_inv; eauto.
intros [[id' ty'] [EQ IN]]; simpl in EQ; subst id'.
exploit F; eauto. intros [b [P Q]].
destruct (VSet.mem id cenv).
rewrite PTree.gempty in Q. destruct Q; congruence.
destruct Q as [tb [U V]]. exists b; split; congruence.
exploit G; eauto. rewrite PTree.gempty. intuition congruence.
(* flat *)
exploit alloc_variables_range. eexact A. eauto.
rewrite PTree.gempty. intros [P|P]. congruence.
exploit K; eauto. unfold Mem.valid_block. xomega.
intros [id0 [ty0 [U [V W]]]]. split; auto.
destruct (ident_eq id id0). congruence.
assert (b' <> b').
eapply alloc_variables_injective with (e' := te) (id1 := id) (id2 := id0); eauto.
rewrite PTree.gempty; congruence.
intros until ty1; rewrite PTree.gempty; congruence.
congruence.
(* incr *)
eapply alloc_variables_nextblock; eauto.
eapply alloc_variables_nextblock; eauto.
Qed.
Lemma assign_loc_inject:
forall f ty m loc ofs v m' tm loc' ofs' v',
assign_loc ty m loc ofs v m' ->
val_inject f (Vptr loc ofs) (Vptr loc' ofs') ->
val_inject f v v' ->
Mem.inject f m tm ->
exists tm',
assign_loc ty tm loc' ofs' v' tm'
/\ Mem.inject f m' tm'
/\ (forall b chunk v,
f b = None -> Mem.load chunk m b 0 = Some v -> Mem.load chunk m' b 0 = Some v).
Proof.
intros. inv H.
- (* by value *)
exploit Mem.storev_mapped_inject; eauto. intros [tm' [A B]].
exists tm'; split. eapply assign_loc_value; eauto.
split. auto.
intros. rewrite <- H5. eapply Mem.load_store_other; eauto.
left. inv H0. congruence.
- (* by copy *)
inv H0. inv H1.
rename b' into bsrc. rename ofs'0 into osrc.
rename loc into bdst. rename ofs into odst.
rename loc' into bdst'. rename b2 into bsrc'.
destruct (zeq (sizeof ty) 0).
+ (* special case size = 0 *)
assert (bytes = nil).
{ exploit (Mem.loadbytes_empty m bsrc (Int.unsigned osrc) (sizeof ty)).
omega. congruence. }
subst.
destruct (Mem.range_perm_storebytes tm bdst' (Int.unsigned (Int.add odst (Int.repr delta))) nil)
as [tm' SB].
simpl. red; intros; omegaContradiction.
exists tm'.
split. eapply assign_loc_copy; eauto.
intros; omegaContradiction.
intros; omegaContradiction.
rewrite e; right; omega.
apply Mem.loadbytes_empty. omega.
split. eapply Mem.storebytes_empty_inject; eauto.
intros. rewrite <- H0. eapply Mem.load_storebytes_other; eauto.
left. congruence.
+ (* general case size > 0 *)
exploit Mem.loadbytes_length; eauto. intros LEN.
assert (SZPOS: sizeof ty > 0).
{ generalize (sizeof_pos ty); omega. }
assert (RPSRC: Mem.range_perm m bsrc (Int.unsigned osrc) (Int.unsigned osrc + sizeof ty) Cur Nonempty).
eapply Mem.range_perm_implies. eapply Mem.loadbytes_range_perm; eauto. auto with mem.
assert (RPDST: Mem.range_perm m bdst (Int.unsigned odst) (Int.unsigned odst + sizeof ty) Cur Nonempty).
replace (sizeof ty) with (Z_of_nat (length bytes)).
eapply Mem.range_perm_implies. eapply Mem.storebytes_range_perm; eauto. auto with mem.
rewrite LEN. apply nat_of_Z_eq. omega.
assert (PSRC: Mem.perm m bsrc (Int.unsigned osrc) Cur Nonempty).
apply RPSRC. omega.
assert (PDST: Mem.perm m bdst (Int.unsigned odst) Cur Nonempty).
apply RPDST. omega.
exploit Mem.address_inject. eauto. eexact PSRC. eauto. intros EQ1.
exploit Mem.address_inject. eauto. eexact PDST. eauto. intros EQ2.
exploit Mem.loadbytes_inject; eauto. intros [bytes2 [A B]].
exploit Mem.storebytes_mapped_inject; eauto. intros [tm' [C D]].
exists tm'.
split. eapply assign_loc_copy; try rewrite EQ1; try rewrite EQ2; eauto.
intros; eapply Mem.aligned_area_inject with (m := m); eauto.
apply alignof_blockcopy_1248.
apply sizeof_alignof_blockcopy_compat.
intros; eapply Mem.aligned_area_inject with (m := m); eauto.
apply alignof_blockcopy_1248.
apply sizeof_alignof_blockcopy_compat.
eapply Mem.disjoint_or_equal_inject with (m := m); eauto.
apply Mem.range_perm_max with Cur; auto.
apply Mem.range_perm_max with Cur; auto.
split. auto.
intros. rewrite <- H0. eapply Mem.load_storebytes_other; eauto.
left. congruence.
Qed.
Remark bind_parameter_temps_inv:
forall id params args le le',
bind_parameter_temps params args le = Some le' ->
~In id (var_names params) ->
le'!id = le!id.
Proof.
induction params; simpl; intros.
destruct args; inv H. auto.
destruct a as [id1 ty1]. destruct args; try discriminate.
transitivity ((PTree.set id1 v le)!id).
eapply IHparams; eauto. apply PTree.gso. intuition.
Qed.
Lemma assign_loc_nextblock:
forall ty m b ofs v m',
assign_loc ty m b ofs v m' -> Mem.nextblock m' = Mem.nextblock m.
Proof.
induction 1.
simpl in H0. eapply Mem.nextblock_store; eauto.
eapply Mem.nextblock_storebytes; eauto.
Qed.
Theorem store_params_correct:
forall j f k cenv le lo hi te tlo thi e m params args m',
bind_parameters e m params args m' ->
forall s tm tle1 tle2 targs,
list_norepet (var_names params) ->
list_forall2 val_casted args (map snd params) ->
val_list_inject j args targs ->
match_envs j cenv e le m lo hi te tle1 tlo thi ->
Mem.inject j m tm ->
(forall id, ~In id (var_names params) -> tle2!id = tle1!id) ->
(forall id, In id (var_names params) -> le!id = None) ->
exists tle, exists tm',
star step2 tge (State f (store_params cenv params s) k te tle tm)
E0 (State f s k te tle tm')
/\ bind_parameter_temps params targs tle2 = Some tle
/\ Mem.inject j m' tm'
/\ match_envs j cenv e le m' lo hi te tle tlo thi
/\ Mem.nextblock tm' = Mem.nextblock tm.
Proof.
induction 1; simpl; intros until targs; intros NOREPET CASTED VINJ MENV MINJ TLE LE.
(* base case *)
inv VINJ. exists tle2; exists tm; split. apply star_refl. split. auto. split. auto.
split. apply match_envs_temps_exten with tle1; auto. auto.
(* inductive case *)
inv NOREPET. inv CASTED. inv VINJ.
exploit me_vars; eauto. instantiate (1 := id); intros MV.
destruct (VSet.mem id cenv) eqn:?.
(* lifted to temp *)
eapply IHbind_parameters with (tle1 := PTree.set id v' tle1); eauto.
eapply match_envs_assign_lifted; eauto.
inv MV; try congruence. rewrite ENV in H; inv H.
inv H0; try congruence.
unfold Mem.storev in H2. eapply Mem.store_unmapped_inject; eauto.
intros. repeat rewrite PTree.gsspec. destruct (peq id0 id). auto.
apply TLE. intuition.
(* still in memory *)
inv MV; try congruence. rewrite ENV in H; inv H.
exploit assign_loc_inject; eauto.
intros [tm1 [A [B C]]].
exploit IHbind_parameters. eauto. eauto. eauto.
instantiate (1 := PTree.set id v' tle1).
apply match_envs_change_temp.
eapply match_envs_invariant; eauto.
apply LE; auto. auto.
eauto.
instantiate (1 := PTree.set id v' tle2).
intros. repeat rewrite PTree.gsspec. destruct (peq id0 id). auto.
apply TLE. intuition.
intros. apply LE. auto.
instantiate (1 := s).
intros [tle [tm' [U [V [X [Y Z]]]]]].
exists tle; exists tm'; split.
eapply star_trans.
eapply star_left. econstructor.
eapply star_left. econstructor.
eapply eval_Evar_local. eauto.
eapply eval_Etempvar. erewrite bind_parameter_temps_inv; eauto.
apply PTree.gss.
simpl. instantiate (1 := v'). apply cast_val_casted.
eapply val_casted_inject with (v := v1); eauto.
simpl. eexact A.
apply star_one. constructor.
reflexivity. reflexivity.
eexact U.
traceEq.
rewrite (assign_loc_nextblock _ _ _ _ _ _ A) in Z. auto.
Qed.
Lemma bind_parameters_nextblock:
forall e m params args m',
bind_parameters e m params args m' -> Mem.nextblock m' = Mem.nextblock m.
Proof.
induction 1.
auto.
rewrite IHbind_parameters. eapply assign_loc_nextblock; eauto.
Qed.
Lemma bind_parameters_load:
forall e chunk b ofs,
(forall id b' ty, e!id = Some(b', ty) -> b <> b') ->
forall m params args m',
bind_parameters e m params args m' ->
Mem.load chunk m' b ofs = Mem.load chunk m b ofs.
Proof.
induction 2.
auto.
rewrite IHbind_parameters.
assert (b <> b0) by eauto.
inv H1.
simpl in H5. eapply Mem.load_store_other; eauto.
eapply Mem.load_storebytes_other; eauto.
Qed.
(** Freeing of local variables *)
Lemma free_blocks_of_env_perm_1:
forall m e m' id b ty ofs k p,
Mem.free_list m (blocks_of_env e) = Some m' ->
e!id = Some(b, ty) ->
Mem.perm m' b ofs k p ->
0 <= ofs < sizeof ty ->
False.
Proof.
intros. exploit Mem.perm_free_list; eauto. intros [A B].
apply B with 0 (sizeof ty); auto.
unfold blocks_of_env. change (b, 0, sizeof ty) with (block_of_binding (id, (b, ty))).
apply in_map. apply PTree.elements_correct. auto.
Qed.
Lemma free_list_perm':
forall b lo hi l m m',
Mem.free_list m l = Some m' ->
In (b, lo, hi) l ->
Mem.range_perm m b lo hi Cur Freeable.
Proof.
induction l; simpl; intros.
contradiction.
destruct a as [[b1 lo1] hi1].
destruct (Mem.free m b1 lo1 hi1) as [m1|] eqn:?; try discriminate.
destruct H0. inv H0. eapply Mem.free_range_perm; eauto.
red; intros. eapply Mem.perm_free_3; eauto. eapply IHl; eauto.
Qed.
Lemma free_blocks_of_env_perm_2:
forall m e m' id b ty,
Mem.free_list m (blocks_of_env e) = Some m' ->
e!id = Some(b, ty) ->
Mem.range_perm m b 0 (sizeof ty) Cur Freeable.
Proof.
intros. eapply free_list_perm'; eauto.
unfold blocks_of_env. change (b, 0, sizeof ty) with (block_of_binding (id, (b, ty))).
apply in_map. apply PTree.elements_correct. auto.
Qed.
Fixpoint freelist_no_overlap (l: list (block * Z * Z)) : Prop :=
match l with
| nil => True
| (b, lo, hi) :: l' =>
freelist_no_overlap l' /\
(forall b' lo' hi', In (b', lo', hi') l' ->
b' <> b \/ hi' <= lo \/ hi <= lo')
end.
Lemma can_free_list:
forall l m,
(forall b lo hi, In (b, lo, hi) l -> Mem.range_perm m b lo hi Cur Freeable) ->
freelist_no_overlap l ->
exists m', Mem.free_list m l = Some m'.
Proof.
induction l; simpl; intros.
- exists m; auto.
- destruct a as [[b lo] hi]. destruct H0.
destruct (Mem.range_perm_free m b lo hi) as [m1 A]; auto.
rewrite A. apply IHl; auto.
intros. red; intros. eapply Mem.perm_free_1; eauto.
exploit H1; eauto. intros [B|B]. auto. right; omega.
eapply H; eauto.
Qed.
Lemma blocks_of_env_no_overlap:
forall j cenv e le m lo hi te tle tlo thi tm,
match_envs j cenv e le m lo hi te tle tlo thi ->
Mem.inject j m tm ->
(forall id b ty,
e!id = Some(b, ty) -> Mem.range_perm m b 0 (sizeof ty) Cur Freeable) ->
forall l,
list_norepet (List.map fst l) ->
(forall id bty, In (id, bty) l -> te!id = Some bty) ->
freelist_no_overlap (List.map block_of_binding l).
Proof.
intros until tm; intros ME MINJ PERMS. induction l; simpl; intros.
- auto.
- destruct a as [id [b ty]]. simpl in *. inv H. split.
+ apply IHl; auto.
+ intros. exploit list_in_map_inv; eauto. intros [[id' [b'' ty']] [A B]].
simpl in A. inv A. rename b'' into b'.
assert (TE: te!id = Some(b, ty)) by eauto.
assert (TE': te!id' = Some(b', ty')) by eauto.
exploit me_mapped. eauto. eexact TE. intros [b0 [INJ E]].
exploit me_mapped. eauto. eexact TE'. intros [b0' [INJ' E']].
destruct (zle (sizeof ty) 0); auto.
destruct (zle (sizeof ty') 0); auto.
assert (b0 <> b0').
{ eapply me_inj; eauto. red; intros; subst; elim H3.
change id' with (fst (id', (b', ty'))). apply List.in_map; auto. }
assert (Mem.perm m b0 0 Max Nonempty).
{ apply Mem.perm_cur_max. apply Mem.perm_implies with Freeable.
eapply PERMS; eauto. omega. auto with mem. }
assert (Mem.perm m b0' 0 Max Nonempty).
{ apply Mem.perm_cur_max. apply Mem.perm_implies with Freeable.
eapply PERMS; eauto. omega. auto with mem. }
exploit Mem.mi_no_overlap; eauto. intros [A|A]. auto. omegaContradiction.
Qed.
Lemma free_list_right_inject:
forall j m1 l m2 m2',
Mem.inject j m1 m2 ->
Mem.free_list m2 l = Some m2' ->
(forall b1 b2 delta lo hi ofs k p,
j b1 = Some(b2, delta) -> In (b2, lo, hi) l ->
Mem.perm m1 b1 ofs k p -> lo <= ofs + delta < hi -> False) ->
Mem.inject j m1 m2'.
Proof.
induction l; simpl; intros.
congruence.
destruct a as [[b lo] hi]. destruct (Mem.free m2 b lo hi) as [m21|] eqn:?; try discriminate.
eapply IHl with (m2 := m21); eauto.
eapply Mem.free_right_inject; eauto.
Qed.
Theorem match_envs_free_blocks:
forall j cenv e le m lo hi te tle tlo thi m' tm,
match_envs j cenv e le m lo hi te tle tlo thi ->
Mem.inject j m tm ->
Mem.free_list m (blocks_of_env e) = Some m' ->
exists tm',
Mem.free_list tm (blocks_of_env te) = Some tm'
/\ Mem.inject j m' tm'.
Proof.
intros.
assert (X: exists tm', Mem.free_list tm (blocks_of_env te) = Some tm').
{
apply can_free_list.
- (* permissions *)
intros. unfold blocks_of_env in H2.
exploit list_in_map_inv; eauto. intros [[id [b' ty]] [EQ IN]].
simpl in EQ; inv EQ.
exploit me_mapped; eauto. eapply PTree.elements_complete; eauto.
intros [b [A B]].
change 0 with (0 + 0). replace (sizeof ty) with (sizeof ty + 0) by omega.
eapply Mem.range_perm_inject; eauto.
eapply free_blocks_of_env_perm_2; eauto.
- (* no overlap *)
unfold blocks_of_env; eapply blocks_of_env_no_overlap; eauto.
intros. eapply free_blocks_of_env_perm_2; eauto.
apply PTree.elements_keys_norepet.
intros. apply PTree.elements_complete; auto.
}
destruct X as [tm' FREE].
exists tm'; split; auto.
eapply free_list_right_inject; eauto.
eapply Mem.free_list_left_inject; eauto.
intros. unfold blocks_of_env in H3. exploit list_in_map_inv; eauto.
intros [[id [b' ty]] [EQ IN]]. simpl in EQ. inv EQ.
exploit me_flat; eauto. apply PTree.elements_complete; eauto.
intros [P Q]. subst delta. eapply free_blocks_of_env_perm_1 with (m := m); eauto.
omega.
Qed.
(** Matching global environments *)
Inductive match_globalenvs (f: meminj) (bound: block): Prop :=
| mk_match_globalenvs
(DOMAIN: forall b, Plt b bound -> f b = Some(b, 0))
(IMAGE: forall b1 b2 delta, f b1 = Some(b2, delta) -> Plt b2 bound -> b1 = b2)
(SYMBOLS: forall id b, Genv.find_symbol ge id = Some b -> Plt b bound)
(FUNCTIONS: forall b fd, Genv.find_funct_ptr ge b = Some fd -> Plt b bound)
(VARINFOS: forall b gv, Genv.find_var_info ge b = Some gv -> Plt b bound).
Lemma match_globalenvs_preserves_globals:
forall f,
(exists bound, match_globalenvs f bound) ->
meminj_preserves_globals ge f.
Proof.
intros. destruct H as [bound MG]. inv MG.
split; intros. eauto. split; intros. eauto. symmetry. eapply IMAGE; eauto.
Qed.
(** Evaluation of expressions *)
Section EVAL_EXPR.
Variables e te: env.
Variables le tle: temp_env.
Variables m tm: mem.
Variable f: meminj.
Variable cenv: compilenv.
Variables lo hi tlo thi: block.
Hypothesis MATCH: match_envs f cenv e le m lo hi te tle tlo thi.
Hypothesis MEMINJ: Mem.inject f m tm.
Hypothesis GLOB: exists bound, match_globalenvs f bound.
Lemma typeof_simpl_expr:
forall a, typeof (simpl_expr cenv a) = typeof a.
Proof.
destruct a; simpl; auto. destruct (VSet.mem i cenv); auto.
Qed.
Lemma deref_loc_inject:
forall ty loc ofs v loc' ofs',
deref_loc ty m loc ofs v ->
val_inject f (Vptr loc ofs) (Vptr loc' ofs') ->
exists tv, deref_loc ty tm loc' ofs' tv /\ val_inject f v tv.
Proof.
intros. inv H.
(* by value *)
exploit Mem.loadv_inject; eauto. intros [tv [A B]].
exists tv; split; auto. eapply deref_loc_value; eauto.
(* by reference *)
exists (Vptr loc' ofs'); split; auto. eapply deref_loc_reference; eauto.
(* by copy *)
exists (Vptr loc' ofs'); split; auto. eapply deref_loc_copy; eauto.
Qed.
Lemma eval_simpl_expr:
forall a v,
eval_expr ge e le m a v ->
compat_cenv (addr_taken_expr a) cenv ->
exists tv, eval_expr tge te tle tm (simpl_expr cenv a) tv /\ val_inject f v tv
with eval_simpl_lvalue:
forall a b ofs,
eval_lvalue ge e le m a b ofs ->
compat_cenv (addr_taken_expr a) cenv ->
match a with Evar id ty => VSet.mem id cenv = false | _ => True end ->
exists b', exists ofs', eval_lvalue tge te tle tm (simpl_expr cenv a) b' ofs' /\ val_inject f (Vptr b ofs) (Vptr b' ofs').
Proof.
destruct 1; simpl; intros.
(* const *)
exists (Vint i); split; auto. constructor.
exists (Vfloat f0); split; auto. constructor.
exists (Vlong i); split; auto. constructor.
(* tempvar *)
exploit me_temps; eauto. intros [[tv [A B]] C].
exists tv; split; auto. constructor; auto.
(* addrof *)
exploit eval_simpl_lvalue; eauto.
destruct a; auto with compat.
destruct a; auto. destruct (VSet.mem i cenv) eqn:?; auto.
elim (H0 i). apply VSet.singleton_2. auto. apply VSet.mem_2. auto.
intros [b' [ofs' [A B]]].
exists (Vptr b' ofs'); split; auto. constructor; auto.
(* unop *)
exploit eval_simpl_expr; eauto. intros [tv1 [A B]].
exploit sem_unary_operation_inject; eauto. intros [tv [C D]].
exists tv; split; auto. econstructor; eauto. rewrite typeof_simpl_expr; auto.
(* binop *)
exploit eval_simpl_expr. eexact H. eauto with compat. intros [tv1 [A B]].
exploit eval_simpl_expr. eexact H0. eauto with compat. intros [tv2 [C D]].
exploit sem_binary_operation_inject; eauto. intros [tv [E F]].
exists tv; split; auto. econstructor; eauto. repeat rewrite typeof_simpl_expr; auto.
(* cast *)
exploit eval_simpl_expr; eauto. intros [tv1 [A B]].
exploit sem_cast_inject; eauto. intros [tv2 [C D]].
exists tv2; split; auto. econstructor. eauto. rewrite typeof_simpl_expr; auto.
(* rval *)
assert (EITHER: (exists id, exists ty, a = Evar id ty /\ VSet.mem id cenv = true)
\/ (match a with Evar id _ => VSet.mem id cenv = false | _ => True end)).
destruct a; auto. destruct (VSet.mem i cenv) eqn:?; auto. left; exists i; exists t; auto.
destruct EITHER as [ [id [ty [EQ OPT]]] | NONOPT ].
(* a variable pulled out of memory *)
subst a. simpl. rewrite OPT.
exploit me_vars; eauto. instantiate (1 := id). intros MV.
inv H; inv MV; try congruence.
rewrite ENV in H6; inv H6.
inv H0; try congruence.
assert (chunk0 = chunk). simpl in H. congruence. subst chunk0.
assert (v0 = v). unfold Mem.loadv in H2. rewrite Int.unsigned_zero in H2. congruence. subst v0.
exists tv; split; auto. constructor; auto.
simpl in H; congruence.
simpl in H; congruence.
(* any other l-value *)
exploit eval_simpl_lvalue; eauto. intros [loc' [ofs' [A B]]].
exploit deref_loc_inject; eauto. intros [tv [C D]].
exists tv; split; auto. econstructor. eexact A. rewrite typeof_simpl_expr; auto.
(* lvalues *)
destruct 1; simpl; intros.
(* local var *)
rewrite H1.
exploit me_vars; eauto. instantiate (1 := id). intros MV. inv MV; try congruence.
rewrite ENV in H; inv H.
exists b'; exists Int.zero; split.
apply eval_Evar_local; auto.
econstructor; eauto.
(* global var *)
rewrite H2.
exploit me_vars; eauto. instantiate (1 := id). intros MV. inv MV; try congruence.
exists l; exists Int.zero; split.
apply eval_Evar_global. auto. rewrite <- H0. apply symbols_preserved.
destruct GLOB as [bound GLOB1]. inv GLOB1.
econstructor; eauto.
(* deref *)
exploit eval_simpl_expr; eauto. intros [tv [A B]].
inversion B. subst.
econstructor; econstructor; split; eauto. econstructor; eauto.
(* field struct *)
exploit eval_simpl_expr; eauto. intros [tv [A B]].
inversion B. subst.
econstructor; econstructor; split.
eapply eval_Efield_struct; eauto. rewrite typeof_simpl_expr; eauto.
econstructor; eauto. repeat rewrite Int.add_assoc. decEq. apply Int.add_commut.
(* field union *)
exploit eval_simpl_expr; eauto. intros [tv [A B]].
inversion B. subst.
econstructor; econstructor; split.
eapply eval_Efield_union; eauto. rewrite typeof_simpl_expr; eauto. auto.
Qed.
Lemma eval_simpl_exprlist:
forall al tyl vl,
eval_exprlist ge e le m al tyl vl ->
compat_cenv (addr_taken_exprlist al) cenv ->
val_casted_list vl tyl /\
exists tvl,
eval_exprlist tge te tle tm (simpl_exprlist cenv al) tyl tvl
/\ val_list_inject f vl tvl.
Proof.
induction 1; simpl; intros.
split. constructor. econstructor; split. constructor. auto.
exploit eval_simpl_expr; eauto with compat. intros [tv1 [A B]].
exploit sem_cast_inject; eauto. intros [tv2 [C D]].
exploit IHeval_exprlist; eauto with compat. intros [E [tvl [F G]]].
split. constructor; auto. eapply cast_val_is_casted; eauto.
exists (tv2 :: tvl); split. econstructor; eauto.
rewrite typeof_simpl_expr; auto.
econstructor; eauto.
Qed.
End EVAL_EXPR.
(** Matching continuations *)
Inductive match_cont (f: meminj): compilenv -> cont -> cont -> mem -> block -> block -> Prop :=
| match_Kstop: forall cenv m bound tbound hi,
match_globalenvs f hi -> Ple hi bound -> Ple hi tbound ->
match_cont f cenv Kstop Kstop m bound tbound
| match_Kseq: forall cenv s k ts tk m bound tbound,
simpl_stmt cenv s = OK ts ->
match_cont f cenv k tk m bound tbound ->
compat_cenv (addr_taken_stmt s) cenv ->
match_cont f cenv (Kseq s k) (Kseq ts tk) m bound tbound
| match_Kloop1: forall cenv s1 s2 k ts1 ts2 tk m bound tbound,
simpl_stmt cenv s1 = OK ts1 ->
simpl_stmt cenv s2 = OK ts2 ->
match_cont f cenv k tk m bound tbound ->
compat_cenv (VSet.union (addr_taken_stmt s1) (addr_taken_stmt s2)) cenv ->
match_cont f cenv (Kloop1 s1 s2 k) (Kloop1 ts1 ts2 tk) m bound tbound
| match_Kloop2: forall cenv s1 s2 k ts1 ts2 tk m bound tbound,
simpl_stmt cenv s1 = OK ts1 ->
simpl_stmt cenv s2 = OK ts2 ->
match_cont f cenv k tk m bound tbound ->
compat_cenv (VSet.union (addr_taken_stmt s1) (addr_taken_stmt s2)) cenv ->
match_cont f cenv (Kloop2 s1 s2 k) (Kloop2 ts1 ts2 tk) m bound tbound
| match_Kswitch: forall cenv k tk m bound tbound,
match_cont f cenv k tk m bound tbound ->
match_cont f cenv (Kswitch k) (Kswitch tk) m bound tbound
| match_Kcall: forall cenv optid fn e le k tfn te tle tk m hi thi lo tlo bound tbound x,
transf_function fn = OK tfn ->
match_envs f (cenv_for fn) e le m lo hi te tle tlo thi ->
match_cont f (cenv_for fn) k tk m lo tlo ->
check_opttemp (cenv_for fn) optid = OK x ->
Ple hi bound -> Ple thi tbound ->
match_cont f cenv (Kcall optid fn e le k)
(Kcall optid tfn te tle tk) m bound tbound.
(** Invariance property by change of memory and injection *)
Lemma match_cont_invariant:
forall f' m' f cenv k tk m bound tbound,
match_cont f cenv k tk m bound tbound ->
(forall b chunk v,
f b = None -> Plt b bound -> Mem.load chunk m b 0 = Some v -> Mem.load chunk m' b 0 = Some v) ->
inject_incr f f' ->
(forall b, Plt b bound -> f' b = f b) ->
(forall b b' delta, f' b = Some(b', delta) -> Plt b' tbound -> f' b = f b) ->
match_cont f' cenv k tk m' bound tbound.
Proof.
induction 1; intros LOAD INCR INJ1 INJ2; econstructor; eauto.
(* globalenvs *)
inv H. constructor; intros; eauto.
assert (f b1 = Some (b2, delta)). rewrite <- H; symmetry; eapply INJ2; eauto. xomega.
eapply IMAGE; eauto.
(* call *)
eapply match_envs_invariant; eauto.
intros. apply LOAD; auto. xomega.
intros. apply INJ1; auto; xomega.
intros. eapply INJ2; eauto; xomega.
eapply IHmatch_cont; eauto.
intros; apply LOAD; auto. inv H0; xomega.
intros; apply INJ1. inv H0; xomega.
intros; eapply INJ2; eauto. inv H0; xomega.
Qed.
(** Invariance by assignment to location "above" *)
Lemma match_cont_assign_loc:
forall f cenv k tk m bound tbound ty loc ofs v m',
match_cont f cenv k tk m bound tbound ->
assign_loc ty m loc ofs v m' ->
Ple bound loc ->
match_cont f cenv k tk m' bound tbound.
Proof.
intros. eapply match_cont_invariant; eauto.
intros. rewrite <- H4. inv H0.
(* scalar *)
simpl in H6. eapply Mem.load_store_other; eauto. left. unfold block; xomega.
(* block copy *)
eapply Mem.load_storebytes_other; eauto. left. unfold block; xomega.
Qed.
(** Invariance by external calls *)
Lemma match_cont_extcall:
forall f cenv k tk m bound tbound tm f' m',
match_cont f cenv k tk m bound tbound ->
Mem.unchanged_on (loc_unmapped f) m m' ->
inject_incr f f' ->
inject_separated f f' m tm ->
Ple bound (Mem.nextblock m) -> Ple tbound (Mem.nextblock tm) ->
match_cont f' cenv k tk m' bound tbound.
Proof.
intros. eapply match_cont_invariant; eauto.
intros. eapply Mem.load_unchanged_on; eauto.
red in H2. intros. destruct (f b) as [[b' delta] | ] eqn:?. auto.
destruct (f' b) as [[b' delta] | ] eqn:?; auto.
exploit H2; eauto. unfold Mem.valid_block. intros [A B]. xomegaContradiction.
red in H2. intros. destruct (f b) as [[b'' delta''] | ] eqn:?. auto.
exploit H2; eauto. unfold Mem.valid_block. intros [A B]. xomegaContradiction.
Qed.
(** Invariance by change of bounds *)
Lemma match_cont_incr_bounds:
forall f cenv k tk m bound tbound,
match_cont f cenv k tk m bound tbound ->
forall bound' tbound',
Ple bound bound' -> Ple tbound tbound' ->
match_cont f cenv k tk m bound' tbound'.
Proof.
induction 1; intros; econstructor; eauto; xomega.
Qed.
(** [match_cont] and call continuations. *)
Lemma match_cont_change_cenv:
forall f cenv k tk m bound tbound cenv',
match_cont f cenv k tk m bound tbound ->
is_call_cont k ->
match_cont f cenv' k tk m bound tbound.
Proof.
intros. inv H; simpl in H0; try contradiction; econstructor; eauto.
Qed.
Lemma match_cont_is_call_cont:
forall f cenv k tk m bound tbound,
match_cont f cenv k tk m bound tbound ->
is_call_cont k ->
is_call_cont tk.
Proof.
intros. inv H; auto.
Qed.
Lemma match_cont_call_cont:
forall f cenv k tk m bound tbound,
match_cont f cenv k tk m bound tbound ->
forall cenv',
match_cont f cenv' (call_cont k) (call_cont tk) m bound tbound.
Proof.
induction 1; simpl; auto; intros; econstructor; eauto.
Qed.
(** [match_cont] and freeing of environment blocks *)
Remark free_list_nextblock:
forall l m m',
Mem.free_list m l = Some m' -> Mem.nextblock m' = Mem.nextblock m.
Proof.
induction l; simpl; intros.
congruence.
destruct a. destruct p. destruct (Mem.free m b z0 z) as [m1|] eqn:?; try discriminate.
transitivity (Mem.nextblock m1). eauto. eapply Mem.nextblock_free; eauto.
Qed.
Remark free_list_load:
forall chunk b' l m m',
Mem.free_list m l = Some m' ->
(forall b lo hi, In (b, lo, hi) l -> Plt b' b) ->
Mem.load chunk m' b' 0 = Mem.load chunk m b' 0.
Proof.
induction l; simpl; intros.
inv H; auto.
destruct a. destruct p. destruct (Mem.free m b z0 z) as [m1|] eqn:?; try discriminate.
transitivity (Mem.load chunk m1 b' 0). eauto.
eapply Mem.load_free. eauto. left. assert (Plt b' b) by eauto. unfold block; xomega.
Qed.
Lemma match_cont_free_env:
forall f cenv e le m lo hi te tle tm tlo thi k tk m' tm',
match_envs f cenv e le m lo hi te tle tlo thi ->
match_cont f cenv k tk m lo tlo ->
Ple hi (Mem.nextblock m) ->
Ple thi (Mem.nextblock tm) ->
Mem.free_list m (blocks_of_env e) = Some m' ->
Mem.free_list tm (blocks_of_env te) = Some tm' ->
match_cont f cenv k tk m' (Mem.nextblock m') (Mem.nextblock tm').
Proof.
intros. apply match_cont_incr_bounds with lo tlo.
eapply match_cont_invariant; eauto.
intros. rewrite <- H7. eapply free_list_load; eauto.
unfold blocks_of_env; intros. exploit list_in_map_inv; eauto.
intros [[id [b1 ty]] [P Q]]. simpl in P. inv P.
exploit me_range; eauto. eapply PTree.elements_complete; eauto. xomega.
rewrite (free_list_nextblock _ _ _ H3). inv H; xomega.
rewrite (free_list_nextblock _ _ _ H4). inv H; xomega.
Qed.
(** Matching of global environments *)
Lemma match_cont_globalenv:
forall f cenv k tk m bound tbound,
match_cont f cenv k tk m bound tbound ->
exists bound, match_globalenvs f bound.
Proof.
induction 1; auto. exists hi; auto.
Qed.
Hint Resolve match_cont_globalenv: compat.
Lemma match_cont_find_funct:
forall f cenv k tk m bound tbound vf fd tvf,
match_cont f cenv k tk m bound tbound ->
Genv.find_funct ge vf = Some fd ->
val_inject f vf tvf ->
exists tfd, Genv.find_funct tge tvf = Some tfd /\ transf_fundef fd = OK tfd.
Proof.
intros. exploit match_cont_globalenv; eauto. intros [bound1 MG]. destruct MG.
inv H1; simpl in H0; try discriminate. destruct (Int.eq_dec ofs1 Int.zero); try discriminate.
subst ofs1.
assert (f b1 = Some(b1, 0)).
apply DOMAIN. eapply FUNCTIONS; eauto.
rewrite H1 in H2; inv H2.
rewrite Int.add_zero. simpl. rewrite dec_eq_true. apply function_ptr_translated; auto.
Qed.
(** Relating execution states *)
Inductive match_states: state -> state -> Prop :=
| match_regular_states:
forall f s k e le m tf ts tk te tle tm j lo hi tlo thi
(TRF: transf_function f = OK tf)
(TRS: simpl_stmt (cenv_for f) s = OK ts)
(MENV: match_envs j (cenv_for f) e le m lo hi te tle tlo thi)
(MCONT: match_cont j (cenv_for f) k tk m lo tlo)
(MINJ: Mem.inject j m tm)
(COMPAT: compat_cenv (addr_taken_stmt s) (cenv_for f))
(BOUND: Ple hi (Mem.nextblock m))
(TBOUND: Ple thi (Mem.nextblock tm)),
match_states (State f s k e le m)
(State tf ts tk te tle tm)
| match_call_state:
forall fd vargs k m tfd tvargs tk tm j targs tres cconv
(TRFD: transf_fundef fd = OK tfd)
(MCONT: forall cenv, match_cont j cenv k tk m (Mem.nextblock m) (Mem.nextblock tm))
(MINJ: Mem.inject j m tm)
(AINJ: val_list_inject j vargs tvargs)
(FUNTY: type_of_fundef fd = Tfunction targs tres cconv)
(ANORM: val_casted_list vargs targs),
match_states (Callstate fd vargs k m)
(Callstate tfd tvargs tk tm)
| match_return_state:
forall v k m tv tk tm j
(MCONT: forall cenv, match_cont j cenv k tk m (Mem.nextblock m) (Mem.nextblock tm))
(MINJ: Mem.inject j m tm)
(RINJ: val_inject j v tv),
match_states (Returnstate v k m)
(Returnstate tv tk tm).
(** The simulation diagrams *)
Remark is_liftable_var_charact:
forall cenv a,
match is_liftable_var cenv a with
| Some id => exists ty, a = Evar id ty /\ VSet.mem id cenv = true
| None => match a with Evar id ty => VSet.mem id cenv = false | _ => True end
end.
Proof.
intros. destruct a; simpl; auto.
destruct (VSet.mem i cenv) eqn:?.
exists t; auto.
auto.
Qed.
Remark simpl_select_switch:
forall cenv n ls tls,
simpl_lblstmt cenv ls = OK tls ->
simpl_lblstmt cenv (select_switch n ls) = OK (select_switch n tls).
Proof.
intros cenv n.
assert (DFL:
forall ls tls,
simpl_lblstmt cenv ls = OK tls ->
simpl_lblstmt cenv (select_switch_default ls) = OK (select_switch_default tls)).
{
induction ls; simpl; intros; monadInv H.
auto.
simpl. destruct o. eauto. simpl; rewrite EQ, EQ1. auto.
}
assert (CASE:
forall ls tls,
simpl_lblstmt cenv ls = OK tls ->
match select_switch_case n ls with
| None => select_switch_case n tls = None
| Some ls' =>
exists tls', select_switch_case n tls = Some tls' /\ simpl_lblstmt cenv ls' = OK tls'
end).
{
induction ls; simpl; intros; monadInv H; simpl.
auto.
destruct o.
destruct (Int.eq i n).
econstructor; split; eauto. simpl; rewrite EQ, EQ1; auto.
apply IHls. auto.
apply IHls. auto.
}
intros; unfold select_switch.
specialize (CASE _ _ H). destruct (select_switch_case n ls) as [ls'|].
destruct CASE as [tls' [P Q]]. rewrite P, Q. auto.
rewrite CASE. apply DFL; auto.
Qed.
Remark simpl_seq_of_labeled_statement:
forall cenv ls tls,
simpl_lblstmt cenv ls = OK tls ->
simpl_stmt cenv (seq_of_labeled_statement ls) = OK (seq_of_labeled_statement tls).
Proof.
induction ls; simpl; intros; monadInv H; simpl.
auto.
rewrite EQ; simpl. erewrite IHls; eauto. simpl. auto.
Qed.
Remark compat_cenv_select_switch:
forall cenv n ls,
compat_cenv (addr_taken_lblstmt ls) cenv ->
compat_cenv (addr_taken_lblstmt (select_switch n ls)) cenv.
Proof.
intros cenv n.
assert (DFL: forall ls,
compat_cenv (addr_taken_lblstmt ls) cenv ->
compat_cenv (addr_taken_lblstmt (select_switch_default ls)) cenv).
{
induction ls; simpl; intros.
eauto with compat.
destruct o; simpl; eauto with compat.
}
assert (CASE: forall ls ls',
compat_cenv (addr_taken_lblstmt ls) cenv ->
select_switch_case n ls = Some ls' ->
compat_cenv (addr_taken_lblstmt ls') cenv).
{
induction ls; simpl; intros.
discriminate.
destruct o. destruct (Int.eq i n). inv H0. auto. eauto with compat.
eauto with compat.
}
intros. specialize (CASE ls). unfold select_switch.
destruct (select_switch_case n ls) as [ls'|]; eauto.
Qed.
Remark addr_taken_seq_of_labeled_statement:
forall ls, addr_taken_stmt (seq_of_labeled_statement ls) = addr_taken_lblstmt ls.
Proof.
induction ls; simpl; congruence.
Qed.
Section FIND_LABEL.
Variable f: meminj.
Variable cenv: compilenv.
Variable m: mem.
Variables bound tbound: block.
Variable lbl: ident.
Lemma simpl_find_label:
forall s k ts tk,
simpl_stmt cenv s = OK ts ->
match_cont f cenv k tk m bound tbound ->
compat_cenv (addr_taken_stmt s) cenv ->
match find_label lbl s k with
| None =>
find_label lbl ts tk = None
| Some(s', k') =>
exists ts', exists tk',
find_label lbl ts tk = Some(ts', tk')
/\ compat_cenv (addr_taken_stmt s') cenv
/\ simpl_stmt cenv s' = OK ts'
/\ match_cont f cenv k' tk' m bound tbound
end
with simpl_find_label_ls:
forall ls k tls tk,
simpl_lblstmt cenv ls = OK tls ->
match_cont f cenv k tk m bound tbound ->
compat_cenv (addr_taken_lblstmt ls) cenv ->
match find_label_ls lbl ls k with
| None =>
find_label_ls lbl tls tk = None
| Some(s', k') =>
exists ts', exists tk',
find_label_ls lbl tls tk = Some(ts', tk')
/\ compat_cenv (addr_taken_stmt s') cenv
/\ simpl_stmt cenv s' = OK ts'
/\ match_cont f cenv k' tk' m bound tbound
end.
Proof.
induction s; simpl; intros until tk; intros TS MC COMPAT; auto.
(* skip *)
monadInv TS; auto.
(* var *)
destruct (is_liftable_var cenv e); monadInv TS; auto.
(* set *)
monadInv TS; auto.
(* call *)
monadInv TS; auto.
(* builtin *)
monadInv TS; auto.
(* seq *)
monadInv TS.
exploit (IHs1 (Kseq s2 k) x (Kseq x0 tk)); eauto with compat.
constructor; eauto with compat.
destruct (find_label lbl s1 (Kseq s2 k)) as [[s' k']|].
intros [ts' [tk' [P [Q [R S]]]]]. exists ts'; exists tk'. simpl. rewrite P. auto.
intros E. simpl. rewrite E. eapply IHs2; eauto with compat.
(* ifthenelse *)
monadInv TS.
exploit (IHs1 k x tk); eauto with compat.
destruct (find_label lbl s1 k) as [[s' k']|].
intros [ts' [tk' [P [Q [R S]]]]]. exists ts'; exists tk'. simpl. rewrite P. auto.
intros E. simpl. rewrite E. eapply IHs2; eauto with compat.
(* loop *)
monadInv TS.
exploit (IHs1 (Kloop1 s1 s2 k) x (Kloop1 x x0 tk)); eauto with compat.
constructor; eauto with compat.
destruct (find_label lbl s1 (Kloop1 s1 s2 k)) as [[s' k']|].
intros [ts' [tk' [P [Q [R S]]]]]. exists ts'; exists tk'. simpl; rewrite P. auto.
intros E. simpl; rewrite E. eapply IHs2; eauto with compat. econstructor; eauto with compat.
(* break *)
monadInv TS; auto.
(* continue *)
monadInv TS; auto.
(* return *)
monadInv TS; auto.
(* switch *)
monadInv TS. simpl.
eapply simpl_find_label_ls; eauto with compat. constructor; auto.
(* label *)
monadInv TS. simpl.
destruct (ident_eq lbl l).
exists x; exists tk; auto.
eapply IHs; eauto.
(* goto *)
monadInv TS; auto.
induction ls; simpl; intros.
(* nil *)
monadInv H. auto.
(* cons *)
monadInv H.
exploit (simpl_find_label s (Kseq (seq_of_labeled_statement ls) k)).
eauto. constructor. eapply simpl_seq_of_labeled_statement; eauto. eauto.
rewrite addr_taken_seq_of_labeled_statement. eauto with compat.
eauto with compat.
destruct (find_label lbl s (Kseq (seq_of_labeled_statement ls) k)) as [[s' k']|].
intros [ts' [tk' [P [Q [R S]]]]]. exists ts'; exists tk'; split. simpl; rewrite P. auto. auto.
intros E. simpl; rewrite E. eapply IHls; eauto with compat.
Qed.
Lemma find_label_store_params:
forall lbl s k params, find_label lbl (store_params cenv params s) k = find_label lbl s k.
Proof.
induction params; simpl. auto.
destruct a as [id ty]. destruct (VSet.mem id cenv); auto.
Qed.
End FIND_LABEL.
Lemma step_simulation:
forall S1 t S2, step1 ge S1 t S2 ->
forall S1' (MS: match_states S1 S1'), exists S2', plus step2 tge S1' t S2' /\ match_states S2 S2'.
Proof.
induction 1; simpl; intros; inv MS; simpl in *; try (monadInv TRS).
(* assign *)
generalize (is_liftable_var_charact (cenv_for f) a1); destruct (is_liftable_var (cenv_for f) a1) as [id|]; monadInv TRS.
(* liftable *)
intros [ty [P Q]]; subst a1; simpl in *.
exploit eval_simpl_expr; eauto with compat. intros [tv2 [A B]].
exploit sem_cast_inject; eauto. intros [tv [C D]].
exploit me_vars; eauto. instantiate (1 := id). intros MV.
inv H.
(* local variable *)
econstructor; split.
apply plus_one. econstructor. eapply make_cast_correct. eexact A. rewrite typeof_simpl_expr. eexact C.
econstructor; eauto with compat.
eapply match_envs_assign_lifted; eauto. eapply cast_val_is_casted; eauto.
eapply match_cont_assign_loc; eauto. exploit me_range; eauto. xomega.
inv MV; try congruence. inv H2; try congruence. unfold Mem.storev in H3.
eapply Mem.store_unmapped_inject; eauto. congruence.
erewrite assign_loc_nextblock; eauto.
(* global variable *)
inv MV; congruence.
(* not liftable *)
intros P.
exploit eval_simpl_lvalue; eauto with compat. intros [tb [tofs [E F]]].
exploit eval_simpl_expr; eauto with compat. intros [tv2 [A B]].
exploit sem_cast_inject; eauto. intros [tv [C D]].
exploit assign_loc_inject; eauto. intros [tm' [X [Y Z]]].
econstructor; split.
apply plus_one. econstructor. eexact E. eexact A. repeat rewrite typeof_simpl_expr. eexact C.
rewrite typeof_simpl_expr; auto. eexact X.
econstructor; eauto with compat.
eapply match_envs_invariant; eauto.
eapply match_cont_invariant; eauto.
erewrite assign_loc_nextblock; eauto.
erewrite assign_loc_nextblock; eauto.
(* set temporary *)
exploit eval_simpl_expr; eauto with compat. intros [tv [A B]].
econstructor; split.
apply plus_one. econstructor. eauto.
econstructor; eauto with compat.
eapply match_envs_set_temp; eauto.
(* call *)
exploit eval_simpl_expr; eauto with compat. intros [tvf [A B]].
exploit eval_simpl_exprlist; eauto with compat. intros [CASTED [tvargs [C D]]].
exploit match_cont_find_funct; eauto. intros [tfd [P Q]].
econstructor; split.
apply plus_one. eapply step_call with (fd := tfd).
rewrite typeof_simpl_expr. eauto.
eauto. eauto. eauto.
erewrite type_of_fundef_preserved; eauto.
econstructor; eauto.
intros. econstructor; eauto.
(* builtin *)
exploit eval_simpl_exprlist; eauto with compat. intros [CASTED [tvargs [C D]]].
exploit external_call_mem_inject; eauto. apply match_globalenvs_preserves_globals; eauto with compat.
intros [j' [tvres [tm' [P [Q [R [S [T [U V]]]]]]]]].
econstructor; split.
apply plus_one. econstructor; eauto. eapply external_call_symbols_preserved; eauto.
exact symbols_preserved. exact varinfo_preserved.
econstructor; eauto with compat.
eapply match_envs_set_opttemp; eauto.
eapply match_envs_extcall; eauto.
eapply match_cont_extcall; eauto.
inv MENV; xomega. inv MENV; xomega.
eapply Ple_trans; eauto. eapply external_call_nextblock; eauto.
eapply Ple_trans; eauto. eapply external_call_nextblock; eauto.
(* sequence *)
econstructor; split. apply plus_one. econstructor.
econstructor; eauto with compat. econstructor; eauto with compat.
(* skip sequence *)
inv MCONT. econstructor; split. apply plus_one. econstructor. econstructor; eauto.
(* continue sequence *)
inv MCONT. econstructor; split. apply plus_one. econstructor. econstructor; eauto.
(* break sequence *)
inv MCONT. econstructor; split. apply plus_one. econstructor. econstructor; eauto.
(* ifthenelse *)
exploit eval_simpl_expr; eauto with compat. intros [tv [A B]].
econstructor; split.
apply plus_one. apply step_ifthenelse with (v1 := tv) (b := b). auto.
rewrite typeof_simpl_expr. eapply bool_val_inject; eauto.
destruct b; econstructor; eauto with compat.
(* loop *)
econstructor; split. apply plus_one. econstructor. econstructor; eauto with compat. econstructor; eauto with compat.
(* skip-or-continue loop *)
inv MCONT. econstructor; split.
apply plus_one. econstructor. destruct H; subst x; simpl in *; intuition congruence.
econstructor; eauto with compat. econstructor; eauto with compat.
(* break loop1 *)
inv MCONT. econstructor; split. apply plus_one. eapply step_break_loop1.
econstructor; eauto.
(* skip loop2 *)
inv MCONT. econstructor; split. apply plus_one. eapply step_skip_loop2.
econstructor; eauto with compat. simpl; rewrite H2; rewrite H4; auto.
(* break loop2 *)
inv MCONT. econstructor; split. apply plus_one. eapply step_break_loop2.
econstructor; eauto.
(* return none *)
exploit match_envs_free_blocks; eauto. intros [tm' [P Q]].
econstructor; split. apply plus_one. econstructor; eauto.
econstructor; eauto.
intros. eapply match_cont_call_cont. eapply match_cont_free_env; eauto.
(* return some *)
exploit eval_simpl_expr; eauto with compat. intros [tv [A B]].
exploit sem_cast_inject; eauto. intros [tv' [C D]].
exploit match_envs_free_blocks; eauto. intros [tm' [P Q]].
econstructor; split. apply plus_one. econstructor; eauto.
rewrite typeof_simpl_expr. monadInv TRF; simpl. eauto.
econstructor; eauto.
intros. eapply match_cont_call_cont. eapply match_cont_free_env; eauto.
(* skip call *)
exploit match_envs_free_blocks; eauto. intros [tm' [P Q]].
econstructor; split. apply plus_one. econstructor; eauto.
eapply match_cont_is_call_cont; eauto.
monadInv TRF; auto.
econstructor; eauto.
intros. apply match_cont_change_cenv with (cenv_for f); auto. eapply match_cont_free_env; eauto.
(* switch *)
exploit eval_simpl_expr; eauto with compat. intros [tv [A B]]. inv B.
econstructor; split. apply plus_one. econstructor; eauto.
econstructor; eauto.
erewrite simpl_seq_of_labeled_statement. reflexivity.
eapply simpl_select_switch; eauto.
econstructor; eauto. rewrite addr_taken_seq_of_labeled_statement.
apply compat_cenv_select_switch. eauto with compat.
(* skip-break switch *)
inv MCONT. econstructor; split.
apply plus_one. eapply step_skip_break_switch. destruct H; subst x; simpl in *; intuition congruence.
econstructor; eauto with compat.
(* continue switch *)
inv MCONT. econstructor; split.
apply plus_one. eapply step_continue_switch.
econstructor; eauto with compat.
(* label *)
econstructor; split. apply plus_one. econstructor. econstructor; eauto.
(* goto *)
generalize TRF; intros TRF'. monadInv TRF'.
exploit (simpl_find_label j (cenv_for f) m lo tlo lbl (fn_body f) (call_cont k) x (call_cont tk)).
eauto. eapply match_cont_call_cont. eauto.
apply compat_cenv_for.
rewrite H. intros [ts' [tk' [A [B [C D]]]]].
econstructor; split.
apply plus_one. econstructor; eauto. simpl. rewrite find_label_store_params. eexact A.
econstructor; eauto.
(* internal function *)
monadInv TRFD. inv H.
generalize EQ; intro EQ'; monadInv EQ'.
assert (list_norepet (var_names (fn_params f ++ fn_vars f))).
unfold var_names. rewrite map_app. auto.
exploit match_envs_alloc_variables; eauto.
instantiate (1 := cenv_for_gen (addr_taken_stmt f.(fn_body)) (fn_params f ++ fn_vars f)).
intros. eapply cenv_for_gen_by_value; eauto. rewrite VSF.mem_iff. eexact H4.
intros. eapply cenv_for_gen_domain. rewrite VSF.mem_iff. eexact H3.
intros [j' [te [tm0 [A [B [C [D [E F]]]]]]]].
exploit store_params_correct.
eauto.
eapply list_norepet_append_left; eauto.
apply val_casted_list_params. unfold type_of_function in FUNTY. congruence.
apply val_list_inject_incr with j'; eauto.
eexact B. eexact C.
intros. apply (create_undef_temps_lifted id f). auto.
intros. destruct (create_undef_temps (fn_temps f))!id as [v|] eqn:?; auto.
exploit create_undef_temps_inv; eauto. intros [P Q]. elim (l id id); auto.
intros [tel [tm1 [P [Q [R [S T]]]]]].
change (cenv_for_gen (addr_taken_stmt (fn_body f)) (fn_params f ++ fn_vars f))
with (cenv_for f) in *.
generalize (vars_and_temps_properties (cenv_for f) (fn_params f) (fn_vars f) (fn_temps f)).
intros [X [Y Z]]. auto. auto.
econstructor; split.
eapply plus_left. econstructor.
econstructor. exact Y. exact X. exact Z. simpl. eexact A. simpl. eexact Q.
simpl. eexact P.
traceEq.
econstructor; eauto.
eapply match_cont_invariant; eauto.
intros. transitivity (Mem.load chunk m0 b 0).
eapply bind_parameters_load; eauto. intros.
exploit alloc_variables_range. eexact H1. eauto.
unfold empty_env. rewrite PTree.gempty. intros [?|?]. congruence.
red; intros; subst b'. xomega.
eapply alloc_variables_load; eauto.
apply compat_cenv_for.
rewrite (bind_parameters_nextblock _ _ _ _ _ H2). xomega.
rewrite T; xomega.
(* external function *)
monadInv TRFD. inv FUNTY.
exploit external_call_mem_inject; eauto. apply match_globalenvs_preserves_globals.
eapply match_cont_globalenv. eexact (MCONT VSet.empty).
intros [j' [tvres [tm' [P [Q [R [S [T [U V]]]]]]]]].
econstructor; split.
apply plus_one. econstructor; eauto. eapply external_call_symbols_preserved; eauto.
exact symbols_preserved. exact varinfo_preserved.
econstructor; eauto.
intros. apply match_cont_incr_bounds with (Mem.nextblock m) (Mem.nextblock tm).
eapply match_cont_extcall; eauto. xomega. xomega.
eapply external_call_nextblock; eauto.
eapply external_call_nextblock; eauto.
(* return *)
specialize (MCONT (cenv_for f)). inv MCONT.
econstructor; split.
apply plus_one. econstructor.
econstructor; eauto with compat.
eapply match_envs_set_opttemp; eauto.
Qed.
Lemma initial_states_simulation:
forall S, initial_state prog S ->
exists R, initial_state tprog R /\ match_states S R.
Proof.
intros. inv H.
exploit function_ptr_translated; eauto. intros [tf [A B]].
econstructor; split.
econstructor.
eapply Genv.init_mem_transf_partial; eauto.
rewrite (transform_partial_program_main _ _ TRANSF).
instantiate (1 := b). rewrite <- H1. apply symbols_preserved.
eauto.
rewrite <- H3; apply type_of_fundef_preserved; auto.
econstructor; eauto.
intros. instantiate (1 := Mem.flat_inj (Mem.nextblock m0)).
econstructor. instantiate (1 := Mem.nextblock m0).
constructor; intros.
unfold Mem.flat_inj. apply pred_dec_true; auto.
unfold Mem.flat_inj in H. destruct (plt b1 (Mem.nextblock m0)); inv H. auto.
eapply Genv.find_symbol_not_fresh; eauto.
eapply Genv.find_funct_ptr_not_fresh; eauto.
eapply Genv.find_var_info_not_fresh; eauto.
xomega. xomega.
eapply Genv.initmem_inject; eauto.
constructor.
Qed.
Lemma final_states_simulation:
forall S R r,
match_states S R -> final_state S r -> final_state R r.
Proof.
intros. inv H0. inv H.
specialize (MCONT VSet.empty). inv MCONT.
inv RINJ. constructor.
Qed.
Theorem transf_program_correct:
forward_simulation (semantics1 prog) (semantics2 tprog).
Proof.
eapply forward_simulation_plus.
eexact symbols_preserved.
eexact initial_states_simulation.
eexact final_states_simulation.
eexact step_simulation.
Qed.
End PRESERVATION.
|