summaryrefslogtreecommitdiff
path: root/cfrontend/Cstrategy.v
blob: b6d1c87551ebc2ddc16b3ea82cd3ed38de268cbb (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861
2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
2889
2890
2891
2892
2893
2894
2895
2896
2897
2898
2899
2900
2901
2902
2903
2904
2905
2906
2907
2908
2909
2910
2911
2912
2913
2914
2915
2916
2917
2918
2919
2920
2921
2922
2923
2924
2925
2926
2927
2928
2929
2930
2931
2932
2933
2934
2935
2936
2937
2938
2939
2940
2941
2942
2943
2944
2945
2946
2947
2948
2949
2950
2951
2952
2953
2954
2955
2956
2957
2958
2959
2960
2961
2962
2963
2964
2965
2966
2967
2968
2969
2970
2971
2972
2973
2974
2975
2976
2977
2978
2979
2980
2981
2982
2983
2984
2985
2986
2987
2988
2989
2990
2991
2992
2993
2994
2995
2996
2997
2998
2999
3000
3001
3002
3003
3004
3005
3006
3007
3008
3009
3010
3011
3012
3013
3014
3015
3016
3017
3018
3019
3020
3021
3022
3023
3024
3025
3026
3027
3028
3029
3030
3031
3032
3033
3034
3035
3036
3037
3038
3039
3040
3041
3042
3043
3044
3045
3046
3047
3048
3049
3050
3051
3052
3053
3054
3055
3056
3057
3058
3059
3060
3061
3062
3063
3064
3065
3066
3067
3068
(* *********************************************************************)
(*                                                                     *)
(*              The Compcert verified compiler                         *)
(*                                                                     *)
(*          Xavier Leroy, INRIA Paris-Rocquencourt                     *)
(*                                                                     *)
(*  Copyright Institut National de Recherche en Informatique et en     *)
(*  Automatique.  All rights reserved.  This file is distributed       *)
(*  under the terms of the GNU General Public License as published by  *)
(*  the Free Software Foundation, either version 2 of the License, or  *)
(*  (at your option) any later version.  This file is also distributed *)
(*  under the terms of the INRIA Non-Commercial License Agreement.     *)
(*                                                                     *)
(* *********************************************************************)

(** A deterministic evaluation strategy for C. *)

Require Import Axioms.
Require Import Coqlib.
Require Import Errors.
Require Import Maps.
Require Import Integers.
Require Import Floats.
Require Import Values.
Require Import AST.
Require Import Memory.
Require Import Events.
Require Import Globalenvs.
Require Import Smallstep.
Require Import Ctypes.
Require Import Cop.
Require Import Csyntax.
Require Import Csem.

Section STRATEGY.

Variable ge: genv.

(** * Definition of the strategy *)

(** We now formalize a particular strategy for reducing expressions which
  is the one implemented by the CompCert compiler.  It evaluates effectful
  subexpressions first, in leftmost-innermost order, then finishes 
  with the evaluation of the remaining simple expression. *)

(** Simple expressions are defined as follows. *)

Fixpoint simple (a: expr) : bool :=
  match a with
  | Eloc _ _ _ => true
  | Evar _ _ => true
  | Ederef r _ => simple r
  | Efield r _ _ => simple r
  | Eval _ _ => true
  | Evalof l _ => simple l && negb(type_is_volatile (typeof l))
  | Eaddrof l _ => simple l
  | Eunop _ r1 _ => simple r1
  | Ebinop _ r1 r2 _ => simple r1 && simple r2
  | Ecast r1 _ => simple r1
  | Eseqand _ _ _ => false
  | Eseqor _ _ _ => false
  | Econdition _ _ _ _ => false
  | Esizeof _ _ => true
  | Ealignof _ _ => true
  | Eassign _ _ _ => false
  | Eassignop _ _ _ _ _ => false
  | Epostincr _ _ _ => false
  | Ecomma _ _ _ => false
  | Ecall _ _ _ => false
  | Ebuiltin _ _ _ _ => false
  | Eparen _ _ => false
  end.

Fixpoint simplelist (rl: exprlist) : bool :=
  match rl with Enil => true | Econs r rl' => simple r && simplelist rl' end.

(** Simple expressions have interesting properties: their evaluations always
  terminate, are deterministic, and preserve the memory state.
  We seize this opportunity to define a big-step semantics for simple
  expressions. *)

Section SIMPLE_EXPRS.

Variable e: env.
Variable m: mem.

Inductive eval_simple_lvalue: expr -> block -> int -> Prop :=
  | esl_loc: forall b ofs ty,
      eval_simple_lvalue (Eloc b ofs ty) b ofs
  | esl_var_local: forall x ty b,
      e!x = Some(b, ty) ->
      eval_simple_lvalue (Evar x ty) b Int.zero
  | esl_var_global: forall x ty b,
      e!x = None ->
      Genv.find_symbol ge x = Some b ->
      eval_simple_lvalue (Evar x ty) b Int.zero
  | esl_deref: forall r ty b ofs,
      eval_simple_rvalue r (Vptr b ofs) ->
      eval_simple_lvalue (Ederef r ty) b ofs
  | esl_field_struct: forall r f ty b ofs id fList a delta,
      eval_simple_rvalue r (Vptr b ofs) ->
      typeof r = Tstruct id fList a -> field_offset f fList = OK delta ->
      eval_simple_lvalue (Efield r f ty) b (Int.add ofs (Int.repr delta))
  | esl_field_union: forall r f ty b ofs id fList a,
      eval_simple_rvalue r (Vptr b ofs) ->
      typeof r = Tunion id fList a ->
      eval_simple_lvalue (Efield r f ty) b ofs

with eval_simple_rvalue: expr -> val -> Prop :=
  | esr_val: forall v ty,
      eval_simple_rvalue (Eval v ty) v
  | esr_rvalof: forall b ofs l ty v,
      eval_simple_lvalue l b ofs ->
      ty = typeof l -> type_is_volatile ty = false ->
      deref_loc ge ty m b ofs E0 v ->
      eval_simple_rvalue (Evalof l ty) v
  | esr_addrof: forall b ofs l ty,
      eval_simple_lvalue l b ofs ->
      eval_simple_rvalue (Eaddrof l ty) (Vptr b ofs)
  | esr_unop: forall op r1 ty v1 v,
      eval_simple_rvalue r1 v1 ->
      sem_unary_operation op v1 (typeof r1) = Some v ->
      eval_simple_rvalue (Eunop op r1 ty) v
  | esr_binop: forall op r1 r2 ty v1 v2 v,
      eval_simple_rvalue r1 v1 -> eval_simple_rvalue r2 v2 ->
      sem_binary_operation op v1 (typeof r1) v2 (typeof r2) m = Some v ->
      eval_simple_rvalue (Ebinop op r1 r2 ty) v
  | esr_cast: forall ty r1 v1 v,
      eval_simple_rvalue r1 v1 ->
      sem_cast v1 (typeof r1) ty = Some v ->
      eval_simple_rvalue (Ecast r1 ty) v
  | esr_sizeof: forall ty1 ty,
      eval_simple_rvalue (Esizeof ty1 ty) (Vint (Int.repr (sizeof ty1)))
  | esr_alignof: forall ty1 ty,
      eval_simple_rvalue (Ealignof ty1 ty) (Vint (Int.repr (alignof ty1))).

Inductive eval_simple_list: exprlist -> typelist -> list val -> Prop :=
  | esrl_nil:
      eval_simple_list Enil Tnil nil
  | esrl_cons: forall r rl ty tyl v vl v',
      eval_simple_rvalue r v' -> sem_cast v' (typeof r) ty = Some v ->
      eval_simple_list rl tyl vl ->
      eval_simple_list (Econs r rl) (Tcons ty tyl) (v :: vl).

Scheme eval_simple_rvalue_ind2 := Minimality for eval_simple_rvalue Sort Prop
  with eval_simple_lvalue_ind2 := Minimality for eval_simple_lvalue Sort Prop.
Combined Scheme eval_simple_rvalue_lvalue_ind from eval_simple_rvalue_ind2, eval_simple_lvalue_ind2.

End SIMPLE_EXPRS.

(** Left reduction contexts. These contexts allow reducing to the right
  of a binary operator only if the left subexpression is simple. *)

Inductive leftcontext: kind -> kind -> (expr -> expr) -> Prop :=
  | lctx_top: forall k,
      leftcontext k k (fun x => x)
  | lctx_deref: forall k C ty,
      leftcontext k RV C -> leftcontext k LV (fun x => Ederef (C x) ty)
  | lctx_field: forall k C f ty,
      leftcontext k RV C -> leftcontext k LV (fun x => Efield (C x) f ty)
  | lctx_rvalof: forall k C ty,
      leftcontext k LV C -> leftcontext k RV (fun x => Evalof (C x) ty)
  | lctx_addrof: forall k C ty,
      leftcontext k LV C -> leftcontext k RV (fun x => Eaddrof (C x) ty)
  | lctx_unop: forall k C op ty,
      leftcontext k RV C -> leftcontext k RV (fun x => Eunop op (C x) ty)
  | lctx_binop_left: forall k C op e2 ty,
      leftcontext k RV C -> leftcontext k RV (fun x => Ebinop op (C x) e2 ty)
  | lctx_binop_right: forall k C op e1 ty,
      simple e1 = true -> leftcontext k RV C ->
      leftcontext k RV (fun x => Ebinop op e1 (C x) ty)
  | lctx_cast: forall k C ty,
      leftcontext k RV C -> leftcontext k RV (fun x => Ecast (C x) ty)
  | lctx_seqand: forall k C r2 ty,
      leftcontext k RV C -> leftcontext k RV (fun x => Eseqand (C x) r2 ty)
  | lctx_seqor: forall k C r2 ty,
      leftcontext k RV C -> leftcontext k RV (fun x => Eseqor (C x) r2 ty)
  | lctx_condition: forall k C r2 r3 ty,
      leftcontext k RV C -> leftcontext k RV (fun x => Econdition (C x) r2 r3 ty)
  | lctx_assign_left: forall k C e2 ty,
      leftcontext k LV C -> leftcontext k RV (fun x => Eassign (C x) e2 ty)
  | lctx_assign_right: forall k C e1 ty,
      simple e1 = true -> leftcontext k RV C ->
      leftcontext k RV (fun x => Eassign e1 (C x) ty)
  | lctx_assignop_left: forall k C op e2 tyres ty,
      leftcontext k LV C -> leftcontext k RV (fun x => Eassignop op (C x) e2 tyres ty)
  | lctx_assignop_right: forall k C op e1 tyres ty,
      simple e1 = true -> leftcontext k RV C ->
      leftcontext k RV (fun x => Eassignop op e1 (C x) tyres ty)
  | lctx_postincr: forall k C id ty,
      leftcontext k LV C -> leftcontext k RV (fun x => Epostincr id (C x) ty)
  | lctx_call_left: forall k C el ty,
      leftcontext k RV C -> leftcontext k RV (fun x => Ecall (C x) el ty)
  | lctx_call_right: forall k C e1 ty,
      simple e1 = true -> leftcontextlist k C ->
      leftcontext k RV (fun x => Ecall e1 (C x) ty)
  | lctx_builtin: forall k C ef tyargs ty,
      leftcontextlist k C ->
      leftcontext k RV (fun x => Ebuiltin ef tyargs (C x) ty)
  | lctx_comma: forall k C e2 ty,
      leftcontext k RV C -> leftcontext k RV (fun x => Ecomma (C x) e2 ty)
  | lctx_paren: forall k C ty,
      leftcontext k RV C -> leftcontext k RV (fun x => Eparen (C x) ty)

with leftcontextlist: kind -> (expr -> exprlist) -> Prop :=
  | lctx_list_head: forall k C el,
      leftcontext k RV C -> leftcontextlist k (fun x => Econs (C x) el)
  | lctx_list_tail: forall k C e1,
      simple e1 = true -> leftcontextlist k C ->
      leftcontextlist k (fun x => Econs e1 (C x)).

Lemma leftcontext_context:
  forall k1 k2 C, leftcontext k1 k2 C -> context k1 k2 C
with leftcontextlist_contextlist:
  forall k C, leftcontextlist k C -> contextlist k C.
Proof.
  induction 1; constructor; auto.
  induction 1; constructor; auto.
Qed.

Hint Resolve leftcontext_context.

(** Strategy for reducing expressions. We reduce the leftmost innermost
  non-simple subexpression, evaluating its arguments (which are necessarily
  simple expressions) with the big-step semantics.
  If there are none, the whole expression is simple and is evaluated in
  one big step. *)

Inductive estep: state -> trace -> state -> Prop :=

  | step_expr: forall f r k e m v ty,
      eval_simple_rvalue e m r v ->
      match r with Eval _ _ => False | _ => True end ->
      ty = typeof r ->
      estep (ExprState f r k e m)
         E0 (ExprState f (Eval v ty) k e m)

  | step_rvalof_volatile: forall f C l ty k e m b ofs t v,
      leftcontext RV RV C ->
      eval_simple_lvalue e m l b ofs ->
      deref_loc ge ty m b ofs t v ->
      ty = typeof l -> type_is_volatile ty = true ->
      estep (ExprState f (C (Evalof l ty)) k e m)
          t (ExprState f (C (Eval v ty)) k e m)

  | step_seqand_true: forall f C r1 r2 ty k e m v,
      leftcontext RV RV C ->
      eval_simple_rvalue e m r1 v ->
      bool_val v (typeof r1) = Some true ->
      estep (ExprState f (C (Eseqand r1 r2 ty)) k e m)
         E0 (ExprState f (C (Eparen (Eparen r2 type_bool) ty)) k e m)
  | step_seqand_false: forall f C r1 r2 ty k e m v,
      leftcontext RV RV C ->
      eval_simple_rvalue e m r1 v ->
      bool_val v (typeof r1) = Some false ->
      estep (ExprState f (C (Eseqand r1 r2 ty)) k e m)
         E0 (ExprState f (C (Eval (Vint Int.zero) ty)) k e m)

  | step_seqor_true: forall f C r1 r2 ty k e m v,
      leftcontext RV RV C ->
      eval_simple_rvalue e m r1 v ->
      bool_val v (typeof r1) = Some true ->
      estep (ExprState f (C (Eseqor r1 r2 ty)) k e m)
         E0 (ExprState f (C (Eval (Vint Int.one) ty)) k e m)
  | step_seqor_false: forall f C r1 r2 ty k e m v,
      leftcontext RV RV C ->
      eval_simple_rvalue e m r1 v ->
      bool_val v (typeof r1) = Some false ->
      estep (ExprState f (C (Eseqor r1 r2 ty)) k e m)
         E0 (ExprState f (C (Eparen (Eparen r2 type_bool) ty)) k e m)

  | step_condition: forall f C r1 r2 r3 ty k e m v b,
      leftcontext RV RV C ->
      eval_simple_rvalue e m r1 v ->
      bool_val v (typeof r1) = Some b ->
      estep (ExprState f (C (Econdition r1 r2 r3 ty)) k e m)
         E0 (ExprState f (C (Eparen (if b then r2 else r3) ty)) k e m)

  | step_assign: forall f C l r ty k e m b ofs v v' t m',
      leftcontext RV RV C ->
      eval_simple_lvalue e m l b ofs ->
      eval_simple_rvalue e m r v ->
      sem_cast v (typeof r) (typeof l) = Some v' ->
      assign_loc ge (typeof l) m b ofs v' t m' ->
      ty = typeof l ->
      estep (ExprState f (C (Eassign l r ty)) k e m)
          t (ExprState f (C (Eval v' ty)) k e m')

  | step_assignop: forall f C op l r tyres ty k e m b ofs v1 v2 v3 v4 t1 t2 m' t,
      leftcontext RV RV C ->
      eval_simple_lvalue e m l b ofs ->
      deref_loc ge (typeof l) m b ofs t1 v1 ->
      eval_simple_rvalue e m r v2 ->
      sem_binary_operation op v1 (typeof l) v2 (typeof r) m = Some v3 ->
      sem_cast v3 tyres (typeof l) = Some v4 ->
      assign_loc ge (typeof l) m b ofs v4 t2 m' ->
      ty = typeof l ->
      t = t1 ** t2 ->
      estep (ExprState f (C (Eassignop op l r tyres ty)) k e m)
          t (ExprState f (C (Eval v4 ty)) k e m')

  | step_assignop_stuck: forall f C op l r tyres ty k e m b ofs v1 v2 t,
      leftcontext RV RV C ->
      eval_simple_lvalue e m l b ofs ->
      deref_loc ge (typeof l) m b ofs t v1 ->
      eval_simple_rvalue e m r v2 ->
      match sem_binary_operation op v1 (typeof l) v2 (typeof r) m with
      | None => True
      | Some v3 =>
          match sem_cast v3 tyres (typeof l) with
          | None => True
          | Some v4 => forall t2 m', ~(assign_loc ge (typeof l) m b ofs v4 t2 m')
          end
      end ->
      ty = typeof l ->
      estep (ExprState f (C (Eassignop op l r tyres ty)) k e m)
          t Stuckstate

  | step_postincr: forall f C id l ty k e m b ofs v1 v2 v3 t1 t2 m' t,
      leftcontext RV RV C ->
      eval_simple_lvalue e m l b ofs ->
      deref_loc ge ty m b ofs t1 v1 ->
      sem_incrdecr id v1 ty = Some v2 ->
      sem_cast v2 (incrdecr_type ty) ty = Some v3 ->
      assign_loc ge ty m b ofs v3 t2 m' ->
      ty = typeof l ->
      t = t1 ** t2 ->
      estep (ExprState f (C (Epostincr id l ty)) k e m)
          t (ExprState f (C (Eval v1 ty)) k e m')

  | step_postincr_stuck: forall f C id l ty k e m b ofs v1 t,
      leftcontext RV RV C ->
      eval_simple_lvalue e m l b ofs ->
      deref_loc ge ty m b ofs t v1 ->
      match sem_incrdecr id v1 ty with
      | None => True
      | Some v2 =>
          match sem_cast v2 (incrdecr_type ty) ty with
          | None => True
          | Some v3 => forall t2 m', ~(assign_loc ge (typeof l) m b ofs v3 t2 m')
          end
      end ->
      ty = typeof l ->
      estep (ExprState f (C (Epostincr id l ty)) k e m)
          t Stuckstate

  | step_comma: forall f C r1 r2 ty k e m v,
      leftcontext RV RV C ->
      eval_simple_rvalue e m r1 v ->
      ty = typeof r2 ->
      estep (ExprState f (C (Ecomma r1 r2 ty)) k e m)
         E0 (ExprState f (C r2) k e m)

  | step_paren: forall f C r ty k e m v1 v,
      leftcontext RV RV C ->
      eval_simple_rvalue e m r v1 ->
      sem_cast v1 (typeof r) ty = Some v ->
      estep (ExprState f (C (Eparen r ty)) k e m)
         E0 (ExprState f (C (Eval v ty)) k e m)

  | step_call: forall f C rf rargs ty k e m targs tres cconv vf vargs fd,
      leftcontext RV RV C ->
      classify_fun (typeof rf) = fun_case_f targs tres cconv ->
      eval_simple_rvalue e m rf vf ->
      eval_simple_list e m rargs targs vargs ->
      Genv.find_funct ge vf = Some fd ->
      type_of_fundef fd = Tfunction targs tres cconv ->
      estep (ExprState f (C (Ecall rf rargs ty)) k e m)
         E0 (Callstate fd vargs (Kcall f e C ty k) m)

  | step_builtin: forall f C ef tyargs rargs ty k e m vargs t vres m',
      leftcontext RV RV C ->
      eval_simple_list e m rargs tyargs vargs ->
      external_call ef ge vargs m t vres m' ->
      estep (ExprState f (C (Ebuiltin ef tyargs rargs ty)) k e m)
          t (ExprState f (C (Eval vres ty)) k e m').

Definition step (S: state) (t: trace) (S': state) : Prop :=
  estep S t S' \/ sstep ge S t S'.

(** Properties of contexts *)

Lemma context_compose:
  forall k2 k3 C2, context k2 k3 C2 ->
  forall k1 C1, context k1 k2 C1 ->
  context k1 k3 (fun x => C2(C1 x))
with contextlist_compose:
  forall k2 C2, contextlist k2 C2 ->
  forall k1 C1, context k1 k2 C1 ->
  contextlist k1 (fun x => C2(C1 x)).
Proof.
  induction 1; intros; try (constructor; eauto).
  replace (fun x => C1 x) with C1. auto. apply extensionality; auto.
  induction 1; intros; constructor; eauto.
Qed.

Hint Constructors context contextlist.
Hint Resolve context_compose contextlist_compose.

(** * Safe executions. *)

(** A state is safe according to the nondeterministic semantics 
  if it cannot get stuck by doing silent transitions only. *)

Definition safe (s: Csem.state) : Prop :=
  forall s', star Csem.step ge s E0 s' ->
  (exists r, final_state s' r) \/ (exists t, exists s'', Csem.step ge s' t s'').

Lemma safe_steps:
  forall s s',
  safe s -> star Csem.step ge s E0 s' -> safe s'.
Proof.
  intros; red; intros. 
  eapply H. eapply star_trans; eauto. 
Qed.

Lemma star_safe:
  forall s1 s2 t s3,
  safe s1 -> star Csem.step ge s1 E0 s2 -> (safe s2 -> star Csem.step ge s2 t s3) ->
  star Csem.step ge s1 t s3.
Proof.
  intros. eapply star_trans; eauto. apply H1. eapply safe_steps; eauto. auto.
Qed.

Lemma plus_safe:
  forall s1 s2 t s3,
  safe s1 -> star Csem.step ge s1 E0 s2 -> (safe s2 -> plus Csem.step ge s2 t s3) ->
  plus Csem.step ge s1 t s3.
Proof.
  intros. eapply star_plus_trans; eauto. apply H1. eapply safe_steps; eauto. auto.
Qed.

Require Import Classical. 

Lemma safe_imm_safe:
  forall f C a k e m K,
  safe (ExprState f (C a) k e m) ->
  context K RV C ->
  imm_safe ge e K a m.
Proof.
  intros. destruct (classic (imm_safe ge e K a m)); auto.
  destruct (H Stuckstate). 
  apply star_one. left. econstructor; eauto.
  destruct H2 as [r F]. inv F. 
  destruct H2 as [t [s' S]]. inv S. inv H2. inv H2. 
Qed.

(** Safe expressions are well-formed with respect to l-values and r-values. *)

Definition expr_kind (a: expr) : kind :=
  match a with
  | Eloc _ _ _ => LV
  | Evar _ _ => LV
  | Ederef _ _ => LV
  | Efield _ _ _ => LV
  | _ => RV
  end.

Lemma lred_kind:
  forall e a m a' m', lred ge e a m a' m' -> expr_kind a = LV.
Proof.
  induction 1; auto.
Qed.

Lemma rred_kind:
  forall a m t a' m', rred ge a m t a' m' -> expr_kind a = RV.
Proof.
  induction 1; auto.
Qed.

Lemma callred_kind:
  forall a fd args ty, callred ge a fd args ty -> expr_kind a = RV.
Proof.
  induction 1; auto.
Qed.

Lemma context_kind:
  forall a from to C, context from to C -> expr_kind a = from -> expr_kind (C a) = to.
Proof.
  induction 1; intros; simpl; auto.
Qed.

Lemma imm_safe_kind:
  forall e k a m, imm_safe ge e k a m -> expr_kind a = k.
Proof.
  induction 1.
  auto.
  auto.
  eapply context_kind; eauto. eapply lred_kind; eauto.
  eapply context_kind; eauto. eapply rred_kind; eauto.
  eapply context_kind; eauto. eapply callred_kind; eauto.
Qed.

Lemma safe_expr_kind:
  forall from C f a k e m,
  context from RV C ->
  safe (ExprState f (C a) k e m) ->
  expr_kind a = from.
Proof.
  intros. eapply imm_safe_kind. eapply safe_imm_safe; eauto.
Qed.

(** Painful inversion lemmas on particular states that are safe. *)

Section INVERSION_LEMMAS.

Variable e: env.

Fixpoint exprlist_all_values (rl: exprlist) : Prop :=
  match rl with
  | Enil => True
  | Econs (Eval v ty) rl' => exprlist_all_values rl'
  | Econs _ _ => False
  end.

Definition invert_expr_prop (a: expr) (m: mem) : Prop :=
  match a with
  | Eloc b ofs ty => False
  | Evar x ty =>
      exists b,
      e!x = Some(b, ty)
      \/ (e!x = None /\ Genv.find_symbol ge x = Some b)
  | Ederef (Eval v ty1) ty =>
      exists b, exists ofs, v = Vptr b ofs
  | Efield (Eval v ty1) f ty =>
      exists b, exists ofs, v = Vptr b ofs /\
      match ty1 with
      | Tstruct _ fList _ => exists delta, field_offset f fList = Errors.OK delta
      | Tunion _ _ _ => True
      | _ => False
      end
  | Eval v ty => False
  | Evalof (Eloc b ofs ty') ty =>
      ty' = ty /\ exists t, exists v, deref_loc ge ty m b ofs t v
  | Eunop op (Eval v1 ty1) ty =>
      exists v, sem_unary_operation op v1 ty1 = Some v
  | Ebinop op (Eval v1 ty1) (Eval v2 ty2) ty =>
      exists v, sem_binary_operation op v1 ty1 v2 ty2 m = Some v
  | Ecast (Eval v1 ty1) ty =>
      exists v, sem_cast v1 ty1 ty = Some v
  | Eseqand (Eval v1 ty1) r2 ty =>
      exists b, bool_val v1 ty1 = Some b
  | Eseqor (Eval v1 ty1) r2 ty =>
      exists b, bool_val v1 ty1 = Some b
  | Econdition (Eval v1 ty1) r1 r2 ty =>
      exists b, bool_val v1 ty1 = Some b
  | Eassign (Eloc b ofs ty1) (Eval v2 ty2) ty =>
      exists v, exists m', exists t,
      ty = ty1 /\ sem_cast v2 ty2 ty1 = Some v /\ assign_loc ge ty1 m b ofs v t m'
  | Eassignop op (Eloc b ofs ty1) (Eval v2 ty2) tyres ty =>
      exists t, exists v1,
      ty = ty1
      /\ deref_loc ge ty1 m b ofs t v1
  | Epostincr id (Eloc b ofs ty1) ty =>
      exists t, exists v1,
      ty = ty1
      /\ deref_loc ge ty m b ofs t v1
  | Ecomma (Eval v ty1) r2 ty =>
      typeof r2 = ty
  | Eparen (Eval v1 ty1) ty =>
      exists v, sem_cast v1 ty1 ty = Some v
  | Ecall (Eval vf tyf) rargs ty =>
      exprlist_all_values rargs ->
      exists tyargs tyres cconv fd vl,
         classify_fun tyf = fun_case_f tyargs tyres cconv
      /\ Genv.find_funct ge vf = Some fd
      /\ cast_arguments rargs tyargs vl
      /\ type_of_fundef fd = Tfunction tyargs tyres cconv
  | Ebuiltin ef tyargs rargs ty =>
      exprlist_all_values rargs ->
      exists vargs, exists t, exists vres, exists m',
         cast_arguments rargs tyargs vargs
      /\ external_call ef ge vargs m t vres m'
  | _ => True
  end.

Lemma lred_invert:
  forall l m l' m', lred ge e l m l' m' -> invert_expr_prop l m.
Proof.
  induction 1; red; auto.
  exists b; auto.
  exists b; auto.
  exists b; exists ofs; auto.
  exists b; exists ofs; split; auto. exists delta; auto.
  exists b; exists ofs; auto.
Qed.

Lemma rred_invert:
  forall r m t r' m', rred ge r m t r' m' -> invert_expr_prop r m.
Proof.
  induction 1; red; auto.
  split; auto; exists t; exists v; auto.
  exists v; auto.
  exists v; auto.
  exists v; auto.
  exists true; auto. exists false; auto.
  exists true; auto. exists false; auto.
  exists b; auto.
  exists v; exists m'; exists t; auto.
  exists t; exists v1; auto.
  exists t; exists v1; auto.
  exists v; auto.
  intros. exists vargs; exists t; exists vres; exists m'; auto.
Qed.

Lemma callred_invert:
  forall r fd args ty m,
  callred ge r fd args ty ->
  invert_expr_prop r m.
Proof.
  intros. inv H. simpl.
  intros. exists tyargs, tyres, cconv, fd, args; auto.
Qed.

Scheme context_ind2 := Minimality for context Sort Prop
  with contextlist_ind2 := Minimality for contextlist Sort Prop.
Combined Scheme context_contextlist_ind from context_ind2, contextlist_ind2.

Lemma invert_expr_context:
  (forall from to C, context from to C ->
   forall a m,
   invert_expr_prop a m ->
   invert_expr_prop (C a) m)
/\(forall from C, contextlist from C ->
  forall a m,
  invert_expr_prop a m ->
  ~exprlist_all_values (C a)).
Proof.
  apply context_contextlist_ind; intros; try (exploit H0; [eauto|intros]); simpl.
  auto.
  destruct (C a); auto; contradiction.
  destruct (C a); auto; contradiction.
  destruct (C a); auto; contradiction.
  auto.
  destruct (C a); auto; contradiction.
  destruct (C a); auto; contradiction.
  destruct e1; auto; destruct (C a); auto; contradiction.
  destruct (C a); auto; contradiction.
  destruct (C a); auto; contradiction.
  destruct (C a); auto; contradiction.
  destruct (C a); auto; contradiction.
  destruct (C a); auto; contradiction.
  destruct e1; auto; destruct (C a); auto; contradiction.
  destruct (C a); auto; contradiction.
  destruct e1; auto; destruct (C a); auto; contradiction.
  destruct (C a); auto; contradiction.
  destruct (C a); auto; contradiction.
  destruct e1; auto. intros. elim (H0 a m); auto.
  intros. elim (H0 a m); auto. 
  destruct (C a); auto; contradiction.
  destruct (C a); auto; contradiction.
  red; intros. destruct (C a); auto. 
  red; intros. destruct e1; auto. elim (H0 a m); auto. 
Qed.

Lemma imm_safe_inv:
  forall k a m,
  imm_safe ge e k a m ->
  match a with
  | Eloc _ _ _ => True
  | Eval _ _ => True
  | _ => invert_expr_prop a m
  end.
Proof.
  destruct invert_expr_context as [A B].
  intros. inv H. 
  auto.
  auto.
  assert (invert_expr_prop (C e0) m).
    eapply A; eauto. eapply lred_invert; eauto.
  red in H. destruct (C e0); auto; contradiction.
  assert (invert_expr_prop (C e0) m).
    eapply A; eauto. eapply rred_invert; eauto.
  red in H. destruct (C e0); auto; contradiction.
  assert (invert_expr_prop (C e0) m).
    eapply A; eauto. eapply callred_invert; eauto.
  red in H. destruct (C e0); auto; contradiction.
Qed.

Lemma safe_inv:
  forall k C f a K m,
  safe (ExprState f (C a) K e m) ->
  context k RV C ->
  match a with
  | Eloc _ _ _ => True
  | Eval _ _ => True
  | _ => invert_expr_prop a m
  end.
Proof.
  intros. eapply imm_safe_inv; eauto. eapply safe_imm_safe; eauto.
Qed.

End INVERSION_LEMMAS.

(** * Correctness of the strategy. *)

Section SIMPLE_EVAL.

Variable f: function.
Variable k: cont.
Variable e: env.
Variable m: mem.

Lemma eval_simple_steps:
   (forall a v, eval_simple_rvalue e m a v ->
    forall C, context RV RV C ->
    star Csem.step ge (ExprState f (C a) k e m)
                  E0 (ExprState f (C (Eval v (typeof a))) k e m))
/\ (forall a b ofs, eval_simple_lvalue e m a b ofs ->
    forall C, context LV RV C ->
    star Csem.step ge (ExprState f (C a) k e m)
                  E0 (ExprState f (C (Eloc b ofs (typeof a))) k e m)).
Proof.

Ltac Steps REC C' := eapply star_trans; [apply (REC C'); eauto | idtac | simpl; reflexivity].
Ltac FinishR := apply star_one; left; apply step_rred; eauto; simpl; try (econstructor; eauto; fail).
Ltac FinishL := apply star_one; left; apply step_lred; eauto; simpl; try (econstructor; eauto; fail).

  apply eval_simple_rvalue_lvalue_ind; intros.
(* val *)
  apply star_refl.
(* valof *)
  Steps H0 (fun x => C(Evalof x ty)). rewrite <- H1 in *. FinishR.
(* addrof *)
  Steps H0 (fun x => C(Eaddrof x ty)). FinishR.
(* unop *)
  Steps H0 (fun x => C(Eunop op x ty)). FinishR.
(* binop *)
  Steps H0 (fun x => C(Ebinop op x r2 ty)).
  Steps H2 (fun x => C(Ebinop op (Eval v1 (typeof r1)) x ty)).
  FinishR.
(* cast *)
  Steps H0 (fun x => C(Ecast x ty)). FinishR. 
(* sizeof *)
  FinishR.
(* alignof *)
  FinishR.
(* loc *)
  apply star_refl.
(* var local *)
  FinishL. 
(* var global *)
  FinishL. apply red_var_global; auto.
(* deref *)
  Steps H0 (fun x => C(Ederef x ty)). FinishL. 
(* field struct *)
  Steps H0 (fun x => C(Efield x f0 ty)). rewrite H1 in *. FinishL.
(* field union *)
  Steps H0 (fun x => C(Efield x f0 ty)). rewrite H1 in *. FinishL.
Qed.

Lemma eval_simple_rvalue_steps:
  forall a v, eval_simple_rvalue e m a v ->
  forall C, context RV RV C ->
  star Csem.step ge (ExprState f (C a) k e m)
                E0 (ExprState f (C (Eval v (typeof a))) k e m).
Proof (proj1 eval_simple_steps).

Lemma eval_simple_lvalue_steps:
  forall a b ofs, eval_simple_lvalue e m a b ofs ->
  forall C, context LV RV C ->
  star Csem.step ge (ExprState f (C a) k e m)
                E0 (ExprState f (C (Eloc b ofs (typeof a))) k e m).
Proof (proj2 eval_simple_steps).

Corollary eval_simple_rvalue_safe:
  forall C a v,
  eval_simple_rvalue e m a v ->
  context RV RV C -> safe (ExprState f (C a) k e m) ->
  safe (ExprState f (C (Eval v (typeof a))) k e m).
Proof.
  intros. eapply safe_steps; eauto. eapply eval_simple_rvalue_steps; eauto.
Qed.

Corollary eval_simple_lvalue_safe:
  forall C a b ofs,
  eval_simple_lvalue e m a b ofs ->
  context LV RV C -> safe (ExprState f (C a) k e m) ->
  safe (ExprState f (C (Eloc b ofs (typeof a))) k e m).
Proof.
  intros. eapply safe_steps; eauto. eapply eval_simple_lvalue_steps; eauto.
Qed.

Lemma simple_can_eval:
  forall a from C,
  simple a = true -> context from RV C -> safe (ExprState f (C a) k e m) ->
  match from with
  | LV => exists b, exists ofs, eval_simple_lvalue e m a b ofs
  | RV => exists v, eval_simple_rvalue e m a v
  end.
Proof.
Ltac StepL REC C' a :=
  let b := fresh "b" in let ofs := fresh "ofs" in
  let E := fresh "E" in let S := fresh "SAFE" in
  exploit (REC LV C'); eauto; intros [b [ofs E]];
  assert (S: safe (ExprState f (C' (Eloc b ofs (typeof a))) k e m)) by 
    (eapply (eval_simple_lvalue_safe C'); eauto);
  simpl in S.
Ltac StepR REC C' a :=
  let v := fresh "v" in let E := fresh "E" in let S := fresh "SAFE" in
  exploit (REC RV C'); eauto; intros [v E];
  assert (S: safe (ExprState f (C' (Eval v (typeof a))) k e m)) by 
    (eapply (eval_simple_rvalue_safe C'); eauto);
  simpl in S.

  induction a; intros from C S CTX SAFE;
  generalize (safe_expr_kind _ _ _ _ _ _ _ CTX SAFE); intro K; subst;
  simpl in S; try discriminate; simpl.
(* val *)
  exists v; constructor.
(* var *)
  exploit safe_inv; eauto; simpl. intros [b A].
  exists b; exists Int.zero.
  intuition. apply esl_var_local; auto. apply esl_var_global; auto.
(* field *)
  StepR IHa (fun x => C(Efield x f0 ty)) a.
  exploit safe_inv. eexact SAFE0. eauto. simpl.
  intros [b [ofs [EQ TY]]]. subst v. destruct (typeof a) eqn:?; try contradiction.
  destruct TY as [delta OFS]. exists b; exists (Int.add ofs (Int.repr delta)); econstructor; eauto.
  exists b; exists ofs; econstructor; eauto.
(* valof *)
  destruct (andb_prop _ _ S) as [S1 S2]. clear S. rewrite negb_true_iff in S2.
  StepL IHa (fun x => C(Evalof x ty)) a.
  exploit safe_inv. eexact SAFE0. eauto. simpl. intros [TY [t [v LOAD]]].
  assert (t = E0). inv LOAD; auto. congruence. subst t.
  exists v; econstructor; eauto. congruence.
(* deref *)
  StepR IHa (fun x => C(Ederef x ty)) a.
  exploit safe_inv. eexact SAFE0. eauto. simpl. intros [b [ofs EQ]].
  subst v. exists b; exists ofs; econstructor; eauto.
(* addrof *)
  StepL IHa (fun x => C(Eaddrof x ty)) a.
  exists (Vptr b ofs); econstructor; eauto.
(* unop *)
  StepR IHa (fun x => C(Eunop op x ty)) a.
  exploit safe_inv. eexact SAFE0. eauto. simpl. intros [v' EQ].
  exists v'; econstructor; eauto.
(* binop *)
  destruct (andb_prop _ _ S) as [S1 S2]; clear S.
  StepR IHa1 (fun x => C(Ebinop op x a2 ty)) a1.
  StepR IHa2 (fun x => C(Ebinop op (Eval v (typeof a1)) x ty)) a2.
  exploit safe_inv. eexact SAFE1. eauto. simpl. intros [v' EQ].
  exists v'; econstructor; eauto.
(* cast *)
  StepR IHa (fun x => C(Ecast x ty)) a.
  exploit safe_inv. eexact SAFE0. eauto. simpl. intros [v' CAST].
  exists v'; econstructor; eauto.
(* sizeof *)
  econstructor; econstructor.
(* alignof *)
  econstructor; econstructor.
(* loc *)
  exists b; exists ofs; constructor.
Qed.

Lemma simple_can_eval_rval:
  forall r C, 
  simple r = true -> context RV RV C -> safe (ExprState f (C r) k e m) ->
  exists v, eval_simple_rvalue e m r v
        /\ safe (ExprState f (C (Eval v (typeof r))) k e m).
Proof.
  intros. exploit (simple_can_eval r RV); eauto. intros [v A]. 
  exists v; split; auto. eapply eval_simple_rvalue_safe; eauto.
Qed.

Lemma simple_can_eval_lval:
  forall l C, 
  simple l = true -> context LV RV C -> safe (ExprState f (C l) k e m) ->
  exists b, exists ofs, eval_simple_lvalue e m l b ofs
         /\ safe (ExprState f (C (Eloc b ofs (typeof l))) k e m).
Proof.
  intros. exploit (simple_can_eval l LV); eauto. intros [b [ofs A]]. 
  exists b; exists ofs; split; auto. eapply eval_simple_lvalue_safe; eauto.
Qed.

Fixpoint rval_list (vl: list val) (rl: exprlist) : exprlist :=
  match vl, rl with
  | v1 :: vl', Econs r1 rl' => Econs (Eval v1 (typeof r1)) (rval_list vl' rl')
  | _, _ => Enil
  end.

Inductive eval_simple_list': exprlist -> list val -> Prop :=
  | esrl'_nil:
      eval_simple_list' Enil nil
  | esrl'_cons: forall r rl v vl,
      eval_simple_rvalue e m r v ->
      eval_simple_list' rl vl ->
      eval_simple_list' (Econs r rl) (v :: vl).

Lemma eval_simple_list_implies:
  forall rl tyl vl,
  eval_simple_list e m rl tyl vl -> 
  exists vl', cast_arguments (rval_list vl' rl) tyl vl /\ eval_simple_list' rl vl'.
Proof.
  induction 1.
  exists (@nil val); split. constructor. constructor.
  destruct IHeval_simple_list as [vl' [A B]].
  exists (v' :: vl'); split. constructor; auto. constructor; auto.
Qed.

Lemma can_eval_simple_list:
  forall rl vl,
  eval_simple_list' rl vl ->
  forall tyl vl',
  cast_arguments (rval_list vl rl) tyl vl' ->
  eval_simple_list e m rl tyl vl'.
Proof.
  induction 1; simpl; intros. 
  inv H. constructor.
  inv H1. econstructor; eauto. 
Qed.

Fixpoint exprlist_app (rl1 rl2: exprlist) : exprlist :=
  match rl1 with
  | Enil => rl2
  | Econs r1 rl1' => Econs r1 (exprlist_app rl1' rl2)
  end.

Lemma exprlist_app_assoc:
  forall rl2 rl3 rl1,
  exprlist_app (exprlist_app rl1 rl2) rl3 =
  exprlist_app rl1 (exprlist_app rl2 rl3).
Proof.
  induction rl1; auto. simpl. congruence. 
Qed.

Inductive contextlist' : (exprlist -> expr) -> Prop :=
  | contextlist'_call: forall r1 rl0 ty C,
      context RV RV C ->
      contextlist' (fun rl => C (Ecall r1 (exprlist_app rl0 rl) ty))
  | contextlist'_builtin: forall ef tyargs rl0 ty C,
      context RV RV C ->
      contextlist' (fun rl => C (Ebuiltin ef tyargs (exprlist_app rl0 rl) ty)).

Lemma exprlist_app_context:
  forall rl1 rl2,
  contextlist RV (fun x => exprlist_app rl1 (Econs x rl2)).
Proof.
  induction rl1; simpl; intros. 
  apply ctx_list_head. constructor.
  apply ctx_list_tail. auto. 
Qed.

Lemma contextlist'_head:
  forall rl C,
  contextlist' C ->
  context RV RV (fun x => C (Econs x rl)).
Proof.
  intros. inv H. 
  set (C' := fun x => Ecall r1 (exprlist_app rl0 (Econs x rl)) ty).
  assert (context RV RV C'). constructor. apply exprlist_app_context.
  change (context RV RV (fun x => C0 (C' x))). 
  eapply context_compose; eauto.
  set (C' := fun x => Ebuiltin ef tyargs (exprlist_app rl0 (Econs x rl)) ty).
  assert (context RV RV C'). constructor. apply exprlist_app_context.
  change (context RV RV (fun x => C0 (C' x))). 
  eapply context_compose; eauto.
Qed.

Lemma contextlist'_tail:
  forall r1 C,
  contextlist' C ->
  contextlist' (fun x => C (Econs r1 x)).
Proof.
  intros. inv H. 
  replace (fun x => C0 (Ecall r0 (exprlist_app rl0 (Econs r1 x)) ty))
     with (fun x => C0 (Ecall r0 (exprlist_app (exprlist_app rl0 (Econs r1 Enil)) x) ty)).
  constructor. auto. 
  apply extensionality; intros. f_equal. f_equal. apply exprlist_app_assoc.
  replace (fun x => C0 (Ebuiltin ef tyargs (exprlist_app rl0 (Econs r1 x)) ty))
     with (fun x => C0 (Ebuiltin ef tyargs (exprlist_app (exprlist_app rl0 (Econs r1 Enil)) x) ty)).
  constructor. auto. 
  apply extensionality; intros. f_equal. f_equal. apply exprlist_app_assoc.
Qed.

Hint Resolve contextlist'_head contextlist'_tail.

Lemma eval_simple_list_steps:
  forall rl vl, eval_simple_list' rl vl ->
  forall C, contextlist' C ->
  star Csem.step ge (ExprState f (C rl) k e m)
                E0 (ExprState f (C (rval_list vl rl)) k e m).
Proof.
  induction 1; intros. 
(* nil *)
  apply star_refl.
(* cons *)
  eapply star_trans.
  eapply eval_simple_rvalue_steps with (C := fun x => C(Econs x rl)); eauto.
  apply IHeval_simple_list' with (C := fun x => C(Econs (Eval v (typeof r)) x)); auto.
  auto.
Qed.

Lemma simple_list_can_eval:
  forall rl C,
  simplelist rl = true ->
  contextlist' C ->
  safe (ExprState f (C rl) k e m) ->
  exists vl, eval_simple_list' rl vl.
Proof.
  induction rl; intros.
  econstructor; constructor.
  simpl in H. destruct (andb_prop _ _ H). 
  exploit (simple_can_eval r1 RV (fun x => C(Econs x rl))); eauto.
  intros [v1 EV1].
  exploit (IHrl (fun x => C(Econs (Eval v1 (typeof r1)) x))); eauto.
  apply (eval_simple_rvalue_safe (fun x => C(Econs x rl))); eauto.
  intros [vl EVl].
  exists (v1 :: vl); constructor; auto.
Qed.

Lemma rval_list_all_values:
  forall vl rl, exprlist_all_values (rval_list vl rl).
Proof.
  induction vl; simpl; intros. auto. 
  destruct rl; simpl; auto.
Qed.

End SIMPLE_EVAL.

(** Decomposition *)

Section DECOMPOSITION.

Variable f: function.
Variable k: cont.
Variable e: env.
Variable m: mem.

Definition simple_side_effect (r: expr) : Prop :=
  match r with
  | Evalof l _ => simple l = true /\ type_is_volatile (typeof l) = true
  | Eseqand r1 r2 _ => simple r1 = true
  | Eseqor r1 r2 _ => simple r1 = true
  | Econdition r1 r2 r3 _ => simple r1 = true
  | Eassign l1 r2 _ => simple l1 = true /\ simple r2 = true
  | Eassignop _ l1 r2 _ _ => simple l1 = true /\ simple r2 = true
  | Epostincr _ l1 _ => simple l1 = true
  | Ecomma r1 r2 _ => simple r1 = true
  | Ecall r1 rl _ => simple r1 = true /\ simplelist rl = true
  | Ebuiltin ef tyargs rl _ => simplelist rl = true
  | Eparen r1 _ => simple r1 = true
  | _ => False
  end.

Scheme expr_ind2 := Induction for expr Sort Prop
  with exprlist_ind2 := Induction for exprlist Sort Prop.
Combined Scheme expr_expr_list_ind from expr_ind2, exprlist_ind2.

Hint Constructors leftcontext leftcontextlist.

Lemma decompose_expr:
  (forall a from C,
   context from RV C -> safe (ExprState f (C a) k e m) ->
       simple a = true
    \/ exists C', exists a', a = C' a' /\ simple_side_effect a' /\ leftcontext RV from C')
/\(forall rl C,
   contextlist' C -> safe (ExprState f (C rl) k e m) ->
       simplelist rl = true
    \/ exists C', exists a', rl = C' a' /\ simple_side_effect a' /\ leftcontextlist RV C').
Proof.
  apply expr_expr_list_ind; intros; simpl; auto.

Ltac Kind :=
  exploit safe_expr_kind; eauto; simpl; intros X; rewrite <- X in *; clear X.
Ltac Rec HR kind C C' :=
  destruct (HR kind (fun x => C(C' x))) as [? | [C'' [a' [D [A B]]]]];
  [eauto | eauto | auto |
   right; exists (fun x => C'(C'' x)); exists a'; rewrite D; auto].
Ltac Base :=
  right; exists (fun x => x); econstructor; split; [eauto | simpl; auto].

(* field *)
  Kind. Rec H RV C (fun x => Efield x f0 ty).
(* rvalof *)
  Kind. Rec H LV C (fun x => Evalof x ty).
  destruct (type_is_volatile (typeof l)) eqn:?.
  Base. rewrite H2; auto.
(* deref *)
  Kind. Rec H RV C (fun x => Ederef x ty).
(* addrof *)
  Kind. Rec H LV C (fun x => Eaddrof x ty).
(* unop *)
  Kind. Rec H RV C (fun x => Eunop op x ty).
(* binop *)
  Kind. Rec H RV C (fun x => Ebinop op x r2 ty). rewrite H3.
  Rec H0 RV C (fun x => Ebinop op r1 x ty).
(* cast *)
  Kind. Rec H RV C (fun x => Ecast x ty).
(* seqand *)
  Kind. Rec H RV C (fun x => Eseqand x r2 ty). Base.
(* seqor *)
  Kind. Rec H RV C (fun x => Eseqor x r2 ty). Base.
(* condition *)
  Kind. Rec H RV C (fun x => Econdition x r2 r3 ty). Base.
(* assign *)
  Kind. Rec H LV C (fun x => Eassign x r ty). Rec H0 RV C (fun x => Eassign l x ty). Base.
(* assignop *)
  Kind. Rec H LV C (fun x => Eassignop op x r tyres ty). Rec H0 RV C (fun x => Eassignop op l x tyres ty). Base.
(* postincr *)
  Kind. Rec H LV C (fun x => Epostincr id x ty). Base.
(* comma *)
  Kind. Rec H RV C (fun x => Ecomma x r2 ty). Base.
(* call *)
  Kind. Rec H RV C (fun x => Ecall x rargs ty). 
  destruct (H0 (fun x => C (Ecall r1 x ty))) as [A | [C' [a' [D [A B]]]]].
    eapply contextlist'_call with (C := C) (rl0 := Enil). auto. auto.
  Base.
  right; exists (fun x => Ecall r1 (C' x) ty); exists a'. rewrite D; simpl; auto.
(* builtin *)
  Kind. 
  destruct (H (fun x => C (Ebuiltin ef tyargs x ty))) as [A | [C' [a' [D [A B]]]]].
    eapply contextlist'_builtin with (C := C) (rl0 := Enil). auto. auto.
  Base.
  right; exists (fun x => Ebuiltin ef tyargs (C' x) ty); exists a'. rewrite D; simpl; auto.
(* rparen *)
  Kind. Rec H RV C (fun x => (Eparen x ty)). Base.
(* cons *)
  destruct (H RV (fun x => C (Econs x rl))) as [A | [C' [a' [A [B D]]]]].
    eapply contextlist'_head; eauto. auto.
  destruct (H0 (fun x => C (Econs r1 x))) as [A' | [C' [a' [A' [B D]]]]].
    eapply contextlist'_tail; eauto. auto.
  rewrite A; rewrite A'; auto. 
  right; exists (fun x => Econs r1 (C' x)); exists a'. rewrite A'; eauto.
  right; exists (fun x => Econs (C' x) rl); exists a'. rewrite A; eauto.
Qed.

Lemma decompose_topexpr:
  forall a,
  safe (ExprState f a k e m) ->
       simple a = true
    \/ exists C, exists a', a = C a' /\ simple_side_effect a' /\ leftcontext RV RV C.
Proof.
  intros. eapply (proj1 decompose_expr). apply ctx_top. auto.
Qed.

End DECOMPOSITION.

(** Simulation for expressions. *)

Lemma estep_simulation:
  forall S t S',
  estep S t S' -> plus Csem.step ge S t S'.
Proof.
  intros. inv H. 
(* simple *)
  exploit eval_simple_rvalue_steps; eauto. simpl; intros STEPS.
  exploit star_inv; eauto. intros [[EQ1 EQ2] | A]; eauto. 
  inversion EQ1. rewrite <- H2 in H1; contradiction.
(* valof volatile *)
  eapply plus_right. 
  eapply eval_simple_lvalue_steps with (C := fun x => C(Evalof x (typeof l))); eauto.
  left. apply step_rred; eauto. econstructor; eauto. auto.
(* seqand true *)
  eapply plus_right.
  eapply eval_simple_rvalue_steps with (C := fun x => C(Eseqand x r2 ty)); eauto. 
  left. apply step_rred; eauto. apply red_seqand_true; auto. traceEq.
(* seqand false *)
  eapply plus_right.
  eapply eval_simple_rvalue_steps with (C := fun x => C(Eseqand x r2 ty)); eauto. 
  left. apply step_rred; eauto. apply red_seqand_false; auto. traceEq.
(* seqor true *)
  eapply plus_right.
  eapply eval_simple_rvalue_steps with (C := fun x => C(Eseqor x r2 ty)); eauto. 
  left. apply step_rred; eauto. apply red_seqor_true; auto. traceEq.
(* seqor false *)
  eapply plus_right.
  eapply eval_simple_rvalue_steps with (C := fun x => C(Eseqor x r2 ty)); eauto. 
  left. apply step_rred; eauto. apply red_seqor_false; auto. traceEq.
(* condition *)
  eapply plus_right.
  eapply eval_simple_rvalue_steps with (C := fun x => C(Econdition x r2 r3 ty)); eauto.
  left; apply step_rred; eauto. constructor; auto. auto. 
(* assign *)
  eapply star_plus_trans.
  eapply eval_simple_lvalue_steps with (C := fun x => C(Eassign x r (typeof l))); eauto.
  eapply plus_right.
  eapply eval_simple_rvalue_steps with (C := fun x => C(Eassign (Eloc b ofs (typeof l)) x (typeof l))); eauto.
  left; apply step_rred; eauto. econstructor; eauto.
  reflexivity. auto. 
(* assignop *) 
  eapply star_plus_trans.
  eapply eval_simple_lvalue_steps with (C := fun x => C(Eassignop op x r tyres (typeof l))); eauto.
  eapply star_plus_trans.
  eapply eval_simple_rvalue_steps with (C := fun x => C(Eassignop op (Eloc b ofs (typeof l)) x tyres (typeof l))); eauto.
  eapply plus_left.
  left; apply step_rred; auto. econstructor; eauto.
  eapply star_left.
  left; apply step_rred with (C := fun x => C(Eassign (Eloc b ofs (typeof l)) x (typeof l))); eauto. econstructor; eauto.  
  apply star_one. 
  left; apply step_rred; auto. econstructor; eauto. 
  reflexivity. reflexivity. reflexivity. traceEq.
(* assignop stuck *)
  eapply star_plus_trans.
  eapply eval_simple_lvalue_steps with (C := fun x => C(Eassignop op x r tyres (typeof l))); eauto.
  eapply star_plus_trans.
  eapply eval_simple_rvalue_steps with (C := fun x => C(Eassignop op (Eloc b ofs (typeof l)) x tyres (typeof l))); eauto.
  eapply plus_left.
  left; apply step_rred; auto. econstructor; eauto.
  destruct (sem_binary_operation op v1 (typeof l) v2 (typeof r) m) as [v3|] eqn:?.
  eapply star_left.
  left; apply step_rred with (C := fun x => C(Eassign (Eloc b ofs (typeof l)) x (typeof l))); eauto. econstructor; eauto.  
  apply star_one. 
  left; eapply step_stuck; eauto.
  red; intros. exploit imm_safe_inv; eauto. simpl. intros [v4' [m' [t' [A [B D]]]]].
  rewrite B in H4. eelim H4; eauto.
  reflexivity.
  apply star_one.
  left; eapply step_stuck with (C := fun x => C(Eassign (Eloc b ofs (typeof l)) x (typeof l))); eauto.
  red; intros. exploit imm_safe_inv; eauto. simpl. intros [v3 A]. congruence.
  reflexivity.
  reflexivity. traceEq.
(* postincr *)
  eapply star_plus_trans.
  eapply eval_simple_lvalue_steps with (C := fun x => C(Epostincr id x (typeof l))); eauto.
  eapply plus_left.
  left; apply step_rred; auto. econstructor; eauto.
  eapply star_left.
  left; apply step_rred with (C := fun x => C (Ecomma (Eassign (Eloc b ofs (typeof l)) x (typeof l)) (Eval v1 (typeof l)) (typeof l))); eauto.
  econstructor. instantiate (1 := v2). destruct id; assumption. 
  eapply star_left.
  left; apply step_rred with (C := fun x => C (Ecomma x (Eval v1 (typeof l)) (typeof l))); eauto.
  econstructor; eauto.
  apply star_one.
  left; apply step_rred; auto. econstructor; eauto. 
  reflexivity. reflexivity. reflexivity. traceEq.
(* postincr stuck *)
  eapply star_plus_trans.
  eapply eval_simple_lvalue_steps with (C := fun x => C(Epostincr id x (typeof l))); eauto.
  eapply plus_left.
  left; apply step_rred; auto. econstructor; eauto.
  set (op := match id with Incr => Oadd | Decr => Osub end).
  assert (SEM: sem_binary_operation op v1 (typeof l) (Vint Int.one) type_int32s m =
              sem_incrdecr id v1 (typeof l)).
    destruct id; auto.
  destruct (sem_incrdecr id v1 (typeof l)) as [v2|].
  eapply star_left.
  left; apply step_rred with (C := fun x => C (Ecomma (Eassign (Eloc b ofs (typeof l)) x (typeof l)) (Eval v1 (typeof l)) (typeof l))); eauto.
  econstructor; eauto.
  apply star_one.
  left; eapply step_stuck with (C := fun x => C (Ecomma x (Eval v1 (typeof l)) (typeof l))); eauto.
  red; intros. exploit imm_safe_inv; eauto. simpl. intros [v3 [m' [t' [A [B D]]]]].
  rewrite B in H3. eelim H3; eauto.
  reflexivity.
  apply star_one.
  left; eapply step_stuck with (C := fun x => C (Ecomma (Eassign (Eloc b ofs (typeof l)) x (typeof l)) (Eval v1 (typeof l)) (typeof l))); eauto.
  red; intros. exploit imm_safe_inv; eauto. simpl. intros [v2 A]. congruence.
  reflexivity. 
  traceEq.
(* comma *)
  eapply plus_right.
  eapply eval_simple_rvalue_steps with (C := fun x => C(Ecomma x r2 (typeof r2))); eauto.
  left; apply step_rred; eauto. econstructor; eauto. auto.
(* paren *)
  eapply plus_right; eauto.
  eapply eval_simple_rvalue_steps with (C := fun x => C(Eparen x ty)); eauto.
  left; apply step_rred; eauto. econstructor; eauto. auto.
(* call *)
  exploit eval_simple_list_implies; eauto. intros [vl' [A B]].
  eapply star_plus_trans. 
  eapply eval_simple_rvalue_steps with (C := fun x => C(Ecall x rargs ty)); eauto.
  eapply plus_right.
  eapply eval_simple_list_steps with (C := fun x => C(Ecall (Eval vf (typeof rf)) x ty)); eauto.
  eapply contextlist'_call with (rl0 := Enil); auto.
  left; apply Csem.step_call; eauto. econstructor; eauto.
  traceEq. auto.
(* builtin *)
  exploit eval_simple_list_implies; eauto. intros [vl' [A B]].
  eapply plus_right.
  eapply eval_simple_list_steps with (C := fun x => C(Ebuiltin ef tyargs x ty)); eauto.
  eapply contextlist'_builtin with (rl0 := Enil); auto.
  left; apply Csem.step_rred; eauto. econstructor; eauto.
  traceEq. 
Qed.

Lemma can_estep:
  forall f a k e m,
  safe (ExprState f a k e m) ->
  match a with Eval _ _ => False | _ => True end ->
  exists t, exists S, estep (ExprState f a k e m) t S.
Proof.
  intros. destruct (decompose_topexpr f k e m a H) as [A | [C [b [P [Q R]]]]].
(* simple expr *)
  exploit (simple_can_eval f k e m a RV (fun x => x)); auto. intros [v P].
  econstructor; econstructor; eapply step_expr; eauto. 
(* side effect *)
  clear H0. subst a. red in Q. destruct b; try contradiction. 
(* valof volatile *)
  destruct Q.
  exploit (simple_can_eval_lval f k e m b (fun x => C(Evalof x ty))); eauto.
  intros [b1 [ofs [E1 S1]]].
  exploit safe_inv. eexact S1. eauto. simpl. intros [A [t [v B]]].
  econstructor; econstructor; eapply step_rvalof_volatile; eauto. congruence. 
(* seqand *)
  exploit (simple_can_eval_rval f k e m b1 (fun x => C(Eseqand x b2 ty))); eauto.
  intros [v1 [E1 S1]].
  exploit safe_inv. eexact S1. eauto. simpl. intros [b BV].
  destruct b.
  econstructor; econstructor; eapply step_seqand_true; eauto. 
  econstructor; econstructor; eapply step_seqand_false; eauto. 
(* seqor *)
  exploit (simple_can_eval_rval f k e m b1 (fun x => C(Eseqor x b2 ty))); eauto.
  intros [v1 [E1 S1]].
  exploit safe_inv. eexact S1. eauto. simpl. intros [b BV].
  destruct b.
  econstructor; econstructor; eapply step_seqor_true; eauto. 
  econstructor; econstructor; eapply step_seqor_false; eauto. 
(* condition *)
  exploit (simple_can_eval_rval f k e m b1 (fun x => C(Econdition x b2 b3 ty))); eauto.
  intros [v1 [E1 S1]].
  exploit safe_inv. eexact S1. eauto. simpl. intros [b BV].
  econstructor; econstructor. eapply step_condition; eauto. 
(* assign *)
  destruct Q.
  exploit (simple_can_eval_lval f k e m b1 (fun x => C(Eassign x b2 ty))); eauto.
  intros [b [ofs [E1 S1]]].
  exploit (simple_can_eval_rval f k e m b2 (fun x => C(Eassign (Eloc b ofs (typeof b1)) x ty))); eauto.
  intros [v [E2 S2]].
  exploit safe_inv. eexact S2. eauto. simpl. intros [v' [m' [t [A [B D]]]]].
  econstructor; econstructor; eapply step_assign; eauto. 
(* assignop *)
  destruct Q.
  exploit (simple_can_eval_lval f k e m b1 (fun x => C(Eassignop op x b2 tyres ty))); eauto.
  intros [b [ofs [E1 S1]]].
  exploit (simple_can_eval_rval f k e m b2 (fun x => C(Eassignop op (Eloc b ofs (typeof b1)) x tyres ty))); eauto.
  intros [v [E2 S2]].
  exploit safe_inv. eexact S2. eauto. simpl. intros [t1 [v1 [A B]]].
  destruct (sem_binary_operation op v1 (typeof b1) v (typeof b2) m) as [v3|] eqn:?.
  destruct (sem_cast v3 tyres (typeof b1)) as [v4|] eqn:?.
  destruct (classic (exists t2, exists m', assign_loc ge (typeof b1) m b ofs v4 t2 m')).
  destruct H2 as [t2 [m' D]].
  econstructor; econstructor; eapply step_assignop; eauto.
  econstructor; econstructor; eapply step_assignop_stuck; eauto. 
  rewrite Heqo. rewrite Heqo0. intros; red; intros. elim H2. exists t2; exists m'; auto.
  econstructor; econstructor; eapply step_assignop_stuck; eauto. 
  rewrite Heqo. rewrite Heqo0. auto.
  econstructor; econstructor; eapply step_assignop_stuck; eauto. 
  rewrite Heqo. auto.
(* postincr *)
  exploit (simple_can_eval_lval f k e m b (fun x => C(Epostincr id x ty))); eauto.
  intros [b1 [ofs [E1 S1]]].
  exploit safe_inv. eexact S1. eauto. simpl. intros [t [v1 [A B]]].
  destruct (sem_incrdecr id v1 ty) as [v2|] eqn:?.
  destruct (sem_cast v2 (incrdecr_type ty) ty) as [v3|] eqn:?.
  destruct (classic (exists t2, exists m', assign_loc ge ty m b1 ofs v3 t2 m')).
  destruct H0 as [t2 [m' D]].
  econstructor; econstructor; eapply step_postincr; eauto.
  econstructor; econstructor; eapply step_postincr_stuck; eauto. 
  rewrite Heqo. rewrite Heqo0. intros; red; intros. elim H0. exists t2; exists m'; congruence.
  econstructor; econstructor; eapply step_postincr_stuck; eauto. 
  rewrite Heqo. rewrite Heqo0. auto.
  econstructor; econstructor; eapply step_postincr_stuck; eauto. 
  rewrite Heqo. auto.
(* comma *)
  exploit (simple_can_eval_rval f k e m b1 (fun x => C(Ecomma x b2 ty))); eauto.
  intros [v1 [E1 S1]].
  exploit safe_inv. eexact S1. eauto. simpl. intros EQ.
  econstructor; econstructor; eapply step_comma; eauto.
(* call *)
  destruct Q.
  exploit (simple_can_eval_rval f k e m b (fun x => C(Ecall x rargs ty))); eauto.
  intros [vf [E1 S1]].
  pose (C' := fun x => C(Ecall (Eval vf (typeof b)) x ty)).
  assert (contextlist' C'). unfold C'; eapply contextlist'_call with (rl0 := Enil); auto.
  exploit (simple_list_can_eval f k e m rargs C'); eauto.
  intros [vl E2].
  exploit safe_inv. 2: eapply leftcontext_context; eexact R.
  eapply safe_steps. eexact S1.
  apply (eval_simple_list_steps f k e m rargs vl E2 C'); auto.
  simpl. intros X. exploit X. eapply rval_list_all_values. 
  intros [tyargs [tyres [cconv [fd [vargs [P [Q [U V]]]]]]]].
  econstructor; econstructor; eapply step_call; eauto. eapply can_eval_simple_list; eauto. 
(* builtin *)
  pose (C' := fun x => C(Ebuiltin ef tyargs x ty)).
  assert (contextlist' C'). unfold C'; eapply contextlist'_builtin with (rl0 := Enil); auto.
  exploit (simple_list_can_eval f k e m rargs C'); eauto.
  intros [vl E].
  exploit safe_inv. 2: eapply leftcontext_context; eexact R.
  eapply safe_steps. eexact H.
  apply (eval_simple_list_steps f k e m rargs vl E C'); auto.
  simpl. intros X. exploit X. eapply rval_list_all_values.
  intros [vargs [t [vres [m' [U V]]]]].
  econstructor; econstructor; eapply step_builtin; eauto.
  eapply can_eval_simple_list; eauto. 
(* paren *)
  exploit (simple_can_eval_rval f k e m b (fun x => C(Eparen x ty))); eauto.
  intros [v1 [E1 S1]].
  exploit safe_inv. eexact S1. eauto. simpl. intros [v CAST].
  econstructor; econstructor; eapply step_paren; eauto.
Qed.

(** Simulation for all states *)

Theorem step_simulation:
  forall S1 t S2,
  step S1 t S2 -> plus Csem.step ge S1 t S2.
Proof.
  intros. inv H.
  apply estep_simulation; auto.
  apply plus_one. right. auto.
Qed.

Theorem progress:
  forall S,
  safe S -> (exists r, final_state S r) \/ (exists t, exists S', step S t S').
Proof.
  intros. exploit H. apply star_refl. intros [FIN | [t [S' STEP]]].
  (* 1. Finished. *)
  auto.
  right. destruct STEP.
  (* 2. Expression step. *)
  assert (exists t, exists S', estep S t S').
    inv H0.
    (* lred *)
    eapply can_estep; eauto. inv H2; auto. 
    (* rred *)
    eapply can_estep; eauto. inv H2; auto. inv H1; auto. 
    (* callred *)
    eapply can_estep; eauto. inv H2; auto. inv H1; auto.
    (* stuck *)
    exploit (H Stuckstate). apply star_one. left. econstructor; eauto.
    intros [[r F] | [t [S' R]]]. inv F. inv R. inv H0. inv H0.
  destruct H1 as [t' [S'' ESTEP]].
  exists t'; exists S''; left; auto.
  (* 3. Other step. *)
  exists t; exists S'; right; auto.
Qed.

End STRATEGY.

(** The semantics that follows the strategy. *)

Definition semantics (p: program) :=
  Semantics step (initial_state p) final_state (Genv.globalenv p).

(** This semantics is receptive to changes in events. *)

Remark deref_loc_trace:
  forall F V (ge: Genv.t F V) ty m b ofs t v,
  deref_loc ge ty m b ofs t v ->
  match t with nil => True | ev :: nil => True | _ => False end.
Proof.
  intros. inv H; simpl; auto. inv H2; simpl; auto. 
Qed.

Remark deref_loc_receptive:
  forall F V (ge: Genv.t F V) ty m b ofs ev1 t1 v ev2,
  deref_loc ge ty m b ofs (ev1 :: t1) v ->
  match_traces ge (ev1 :: nil) (ev2 :: nil) ->
  t1 = nil /\ exists v', deref_loc ge ty m b ofs (ev2 :: nil) v'.
Proof.
  intros.
  assert (t1 = nil). exploit deref_loc_trace; eauto. destruct t1; simpl; tauto.
  inv H. exploit volatile_load_receptive; eauto. intros [v' A]. 
  split; auto; exists v'; econstructor; eauto.
Qed.

Remark assign_loc_trace:
  forall F V (ge: Genv.t F V) ty m b ofs t v m',
  assign_loc ge ty m b ofs v t m' ->
  match t with nil => True | ev :: nil => output_event ev | _ => False end.
Proof.
  intros. inv H; simpl; auto. inv H2; simpl; auto. 
Qed.

Remark assign_loc_receptive:
  forall F V (ge: Genv.t F V) ty m b ofs ev1 t1 v m' ev2,
  assign_loc ge ty m b ofs v (ev1 :: t1) m' ->
  match_traces ge (ev1 :: nil) (ev2 :: nil) ->
  ev1 :: t1 = ev2 :: nil.
Proof.
  intros.
  assert (t1 = nil). exploit assign_loc_trace; eauto. destruct t1; simpl; tauto.
  inv H. eapply volatile_store_receptive; eauto. 
Qed.

Lemma semantics_strongly_receptive: 
  forall p, strongly_receptive (semantics p).
Proof.
  intros. constructor; simpl; intros.
(* receptiveness *)
  inversion H; subst.
  inv H1.
  (* valof volatile *)
  exploit deref_loc_receptive; eauto. intros [A [v' B]]. 
  econstructor; econstructor. left; eapply step_rvalof_volatile; eauto. 
  (* assign *)
  exploit assign_loc_receptive; eauto. intro EQ; rewrite EQ in H.
  econstructor; econstructor; eauto.
  (* assignop *)
  destruct t0 as [ | ev0 t0]; simpl in H10. 
  subst t2. exploit assign_loc_receptive; eauto. intros EQ; rewrite EQ in H.
  econstructor; econstructor; eauto.
  inv H10. exploit deref_loc_receptive; eauto. intros [EQ [v1' A]]. subst t0.
  destruct (sem_binary_operation op v1' (typeof l) v2 (typeof r) m) as [v3'|] eqn:?.
  destruct (sem_cast v3' tyres (typeof l)) as [v4'|] eqn:?.
  destruct (classic (exists t2', exists m'', assign_loc (Genv.globalenv p) (typeof l) m b ofs v4' t2' m'')).
  destruct H1 as [t2' [m'' P]]. 
  econstructor; econstructor. left; eapply step_assignop with (v1 := v1'); eauto. simpl; reflexivity. 
  econstructor; econstructor. left; eapply step_assignop_stuck with (v1 := v1'); eauto. 
  rewrite Heqo; rewrite Heqo0. intros; red; intros; elim H1. exists t0; exists m'0; auto.
  econstructor; econstructor. left; eapply step_assignop_stuck with (v1 := v1'); eauto. 
  rewrite Heqo; rewrite Heqo0; auto.
  econstructor; econstructor. left; eapply step_assignop_stuck with (v1 := v1'); eauto. 
  rewrite Heqo; auto.
  (* assignop stuck *)
  exploit deref_loc_receptive; eauto. intros [EQ [v1' A]]. subst t1.
  destruct (sem_binary_operation op v1' (typeof l) v2 (typeof r) m) as [v3'|] eqn:?.
  destruct (sem_cast v3' tyres (typeof l)) as [v4'|] eqn:?.
  destruct (classic (exists t2', exists m'', assign_loc (Genv.globalenv p) (typeof l) m b ofs v4' t2' m'')).
  destruct H1 as [t2' [m'' P]]. 
  econstructor; econstructor. left; eapply step_assignop with (v1 := v1'); eauto. simpl; reflexivity. 
  econstructor; econstructor. left; eapply step_assignop_stuck with (v1 := v1'); eauto. 
  rewrite Heqo; rewrite Heqo0. intros; red; intros; elim H1. exists t2; exists m'; auto.
  econstructor; econstructor. left; eapply step_assignop_stuck with (v1 := v1'); eauto. 
  rewrite Heqo; rewrite Heqo0; auto.
  econstructor; econstructor. left; eapply step_assignop_stuck with (v1 := v1'); eauto. 
  rewrite Heqo; auto.
  (* postincr *)
  destruct t0 as [ | ev0 t0]; simpl in H9. 
  subst t2. exploit assign_loc_receptive; eauto. intros EQ; rewrite EQ in H.
  econstructor; econstructor; eauto.
  inv H9. exploit deref_loc_receptive; eauto. intros [EQ [v1' A]]. subst t0.
  destruct (sem_incrdecr id v1' (typeof l)) as [v2'|] eqn:?.
  destruct (sem_cast v2' (incrdecr_type (typeof l)) (typeof l)) as [v3'|] eqn:?.
  destruct (classic (exists t2', exists m'', assign_loc (Genv.globalenv p) (typeof l) m b ofs v3' t2' m'')).
  destruct H1 as [t2' [m'' P]]. 
  econstructor; econstructor. left; eapply step_postincr with (v1 := v1'); eauto. simpl; reflexivity. 
  econstructor; econstructor. left; eapply step_postincr_stuck with (v1 := v1'); eauto. 
  rewrite Heqo; rewrite Heqo0. intros; red; intros; elim H1. exists t0; exists m'0; auto.
  econstructor; econstructor. left; eapply step_postincr_stuck with (v1 := v1'); eauto. 
  rewrite Heqo; rewrite Heqo0; auto.
  econstructor; econstructor. left; eapply step_postincr_stuck with (v1 := v1'); eauto. 
  rewrite Heqo; auto.
  (* postincr stuck *)
  exploit deref_loc_receptive; eauto. intros [EQ [v1' A]]. subst t1.
  destruct (sem_incrdecr id v1' (typeof l)) as [v2'|] eqn:?.
  destruct (sem_cast v2' (incrdecr_type (typeof l)) (typeof l)) as [v3'|] eqn:?.
  destruct (classic (exists t2', exists m'', assign_loc (Genv.globalenv p) (typeof l) m b ofs v3' t2' m'')).
  destruct H1 as [t2' [m'' P]]. 
  econstructor; econstructor. left; eapply step_postincr with (v1 := v1'); eauto. simpl; reflexivity. 
  econstructor; econstructor. left; eapply step_postincr_stuck with (v1 := v1'); eauto. 
  rewrite Heqo; rewrite Heqo0. intros; red; intros; elim H1. exists t2; exists m'; auto.
  econstructor; econstructor. left; eapply step_postincr_stuck with (v1 := v1'); eauto. 
  rewrite Heqo; rewrite Heqo0; auto.
  econstructor; econstructor. left; eapply step_postincr_stuck with (v1 := v1'); eauto. 
  rewrite Heqo; auto.
  (* builtin *)
  exploit external_call_trace_length; eauto. destruct t1; simpl; intros. 
  exploit external_call_receptive; eauto. intros [vres2 [m2 EC2]]. 
  econstructor; econstructor. left; eapply step_builtin; eauto.
  omegaContradiction.
  (* external calls *)
  inv H1.
  exploit external_call_trace_length; eauto. destruct t1; simpl; intros. 
  exploit external_call_receptive; eauto. intros [vres2 [m2 EC2]]. 
  exists (Returnstate vres2 k m2); exists E0; right; econstructor; eauto.
  omegaContradiction.
(* well-behaved traces *)
  red; intros. inv H; inv H0; simpl; auto.
  (* valof volatile *)
  exploit deref_loc_trace; eauto. destruct t; auto. destruct t; tauto.
  (* assign *)
  exploit assign_loc_trace; eauto. destruct t; auto. destruct t; simpl; tauto.
  (* assignop *)
  exploit deref_loc_trace; eauto. exploit assign_loc_trace; eauto.
  destruct t1. destruct t2. simpl; auto. destruct t2; simpl; tauto. 
  destruct t1. destruct t2. simpl; auto. destruct t2; simpl; tauto. 
  tauto.
  (* assignop stuck *)
  exploit deref_loc_trace; eauto. destruct t; auto. destruct t; tauto.
  (* postincr *)
  exploit deref_loc_trace; eauto. exploit assign_loc_trace; eauto.
  destruct t1. destruct t2. simpl; auto. destruct t2; simpl; tauto. 
  destruct t1. destruct t2. simpl; auto. destruct t2; simpl; tauto. 
  tauto.
  (* postincr stuck *)
  exploit deref_loc_trace; eauto. destruct t; auto. destruct t; tauto.
  (* builtins *)
  exploit external_call_trace_length; eauto.
  destruct t; simpl; auto. destruct t; simpl; auto. intros; omegaContradiction.
  (* external calls *)
  exploit external_call_trace_length; eauto.
  destruct t; simpl; auto. destruct t; simpl; auto. intros; omegaContradiction.
Qed.

(** The main simulation result. *)

Theorem strategy_simulation:
  forall p, backward_simulation (Csem.semantics p) (semantics p).
Proof.
  intros.
  apply backward_simulation_plus with (match_states := fun (S1 S2: state) => S1 = S2); simpl.
(* symbols *)
  auto.
(* initial states exist *)
  intros. exists s1; auto.
(* initial states match *)
  intros. exists s2; auto.
(* final states match *)
  intros. subst s2. auto. 
(* progress *)
  intros. subst s2. apply progress. auto. 
(* simulation *)
  intros. subst s1. exists s2'; split; auto. apply step_simulation; auto.
Qed.

(** * A big-step semantics for CompCert C implementing the reduction strategy. *)

Section BIGSTEP.

Variable ge: genv.

(** The execution of a statement produces an ``outcome'', indicating
  how the execution terminated: either normally or prematurely
  through the execution of a [break], [continue] or [return] statement. *)

Inductive outcome: Type :=
   | Out_break: outcome                 (**r terminated by [break] *)
   | Out_continue: outcome              (**r terminated by [continue] *)
   | Out_normal: outcome                (**r terminated normally *)
   | Out_return: option (val * type) -> outcome. (**r terminated by [return] *)

Inductive out_normal_or_continue : outcome -> Prop :=
  | Out_normal_or_continue_N: out_normal_or_continue Out_normal
  | Out_normal_or_continue_C: out_normal_or_continue Out_continue.

Inductive out_break_or_return : outcome -> outcome -> Prop :=
  | Out_break_or_return_B: out_break_or_return Out_break Out_normal
  | Out_break_or_return_R: forall ov,
      out_break_or_return (Out_return ov) (Out_return ov).

Definition outcome_switch (out: outcome) : outcome :=
  match out with
  | Out_break => Out_normal
  | o => o
  end.

Definition outcome_result_value (out: outcome) (t: type) (v: val) : Prop :=
  match out, t with
  | Out_normal, Tvoid => v = Vundef
  | Out_return None, Tvoid => v = Vundef
  | Out_return (Some (v', ty')), ty => ty <> Tvoid /\ sem_cast v' ty' ty = Some v
  | _, _ => False
  end. 

(** [eval_expression ge e m1 a t m2 a'] describes the evaluation of the
  complex expression e.  [v] is the resulting value, [m2] the final
  memory state, and [t] the trace of input/output events performed
  during this evaluation.  *)

Inductive eval_expression: env -> mem -> expr -> trace -> mem -> val -> Prop :=
  | eval_expression_intro: forall e m a t m' a' v,
      eval_expr e m RV a t m' a' -> eval_simple_rvalue ge e m' a' v ->
      eval_expression e m a t m' v

with eval_expr: env -> mem -> kind -> expr -> trace -> mem -> expr -> Prop :=
  | eval_val: forall e m v ty,
      eval_expr e m RV (Eval v ty) E0 m (Eval v ty)
  | eval_var: forall e m x ty,
      eval_expr e m LV (Evar x ty) E0 m (Evar x ty)
  | eval_field: forall e m a t m' a' f ty,
      eval_expr e m RV a t m' a' ->
      eval_expr e m LV (Efield a f ty) t m' (Efield a' f ty)
  | eval_valof: forall e m a t m' a' ty,
      type_is_volatile (typeof a) = false ->
      eval_expr e m LV a t m' a' ->
      eval_expr e m RV (Evalof a ty) t m' (Evalof a' ty)
  | eval_valof_volatile: forall e m a t1 m' a' ty b ofs t2 v,
      type_is_volatile (typeof a) = true ->
      eval_expr e m LV a t1 m' a' ->
      eval_simple_lvalue ge e m' a' b ofs ->
      deref_loc ge (typeof a) m' b ofs t2 v ->
      ty = typeof a ->
      eval_expr e m RV (Evalof a ty) (t1 ** t2) m' (Eval v ty)
  | eval_deref: forall e m a t m' a' ty,
      eval_expr e m RV a t m' a' ->
      eval_expr e m LV (Ederef a ty) t m' (Ederef a' ty)
  | eval_addrof: forall e m a t m' a' ty,
      eval_expr e m LV a t m' a' ->
      eval_expr e m RV (Eaddrof a ty) t m' (Eaddrof a' ty)
  | eval_unop: forall e m a t m' a' op ty,
      eval_expr e m RV a t m' a' ->
      eval_expr e m RV (Eunop op a ty) t m' (Eunop op a' ty)
  | eval_binop: forall e m a1 t1 m' a1' a2 t2 m'' a2' op ty,
      eval_expr e m RV a1 t1 m' a1' -> eval_expr e m' RV a2 t2 m'' a2' ->
      eval_expr e m RV (Ebinop op a1 a2 ty) (t1 ** t2) m'' (Ebinop op a1' a2' ty)
  | eval_cast: forall e m a t m' a' ty,
      eval_expr e m RV a t m' a' ->
      eval_expr e m RV (Ecast a ty) t m' (Ecast a' ty)
  | eval_seqand_true: forall e m a1 a2 ty t1 m' a1' v1 t2 m'' a2' v2 v' v,
      eval_expr e m RV a1 t1 m' a1' -> eval_simple_rvalue ge e m' a1' v1 ->
      bool_val v1 (typeof a1) = Some true ->
      eval_expr e m' RV a2 t2 m'' a2' -> eval_simple_rvalue ge e m'' a2' v2 ->
      sem_cast v2 (typeof a2) type_bool = Some v' ->
      sem_cast v' type_bool ty = Some v ->
      eval_expr e m RV (Eseqand a1 a2 ty) (t1**t2) m'' (Eval v ty)
  | eval_seqand_false: forall e m a1 a2 ty t1 m' a1' v1,
      eval_expr e m RV a1 t1 m' a1' -> eval_simple_rvalue ge e m' a1' v1 ->
      bool_val v1 (typeof a1) = Some false ->
      eval_expr e m RV (Eseqand a1 a2 ty) t1 m' (Eval (Vint Int.zero) ty)
  | eval_seqor_false: forall e m a1 a2 ty t1 m' a1' v1 t2 m'' a2' v2 v' v,
      eval_expr e m RV a1 t1 m' a1' -> eval_simple_rvalue ge e m' a1' v1 ->
      bool_val v1 (typeof a1) = Some false ->
      eval_expr e m' RV a2 t2 m'' a2' -> eval_simple_rvalue ge e m'' a2' v2 ->
      sem_cast v2 (typeof a2) type_bool = Some v' ->
      sem_cast v' type_bool ty = Some v ->
      eval_expr e m RV (Eseqor a1 a2 ty) (t1**t2) m'' (Eval v ty)
  | eval_seqor_true: forall e m a1 a2 ty t1 m' a1' v1,
      eval_expr e m RV a1 t1 m' a1' -> eval_simple_rvalue ge e m' a1' v1 ->
      bool_val v1 (typeof a1) = Some true ->
      eval_expr e m RV (Eseqor a1 a2 ty) t1 m' (Eval (Vint Int.one) ty)
  | eval_condition: forall e m a1 a2 a3 ty t1 m' a1' v1 t2 m'' a' v' b v,
      eval_expr e m RV a1 t1 m' a1' -> eval_simple_rvalue ge e m' a1' v1 ->
      bool_val v1 (typeof a1) = Some b ->
      eval_expr e m' RV (if b then a2 else a3) t2 m'' a' -> eval_simple_rvalue ge e m'' a' v' ->
      sem_cast v' (typeof (if b then a2 else a3)) ty = Some v ->
      eval_expr e m RV (Econdition a1 a2 a3 ty) (t1**t2) m'' (Eval v ty)
  | eval_sizeof: forall e m ty' ty,
      eval_expr e m RV (Esizeof ty' ty) E0 m (Esizeof ty' ty)
  | eval_alignof: forall e m ty' ty,
      eval_expr e m RV (Ealignof ty' ty) E0 m (Ealignof ty' ty)
  | eval_assign: forall e m l r ty t1 m1 l' t2 m2 r' b ofs v v' t3 m3,
      eval_expr e m LV l t1 m1 l' -> eval_expr e m1 RV r t2 m2 r' ->
      eval_simple_lvalue ge e m2 l' b ofs ->
      eval_simple_rvalue ge e m2 r' v ->
      sem_cast v (typeof r) (typeof l) = Some v' ->
      assign_loc ge (typeof l) m2 b ofs v' t3 m3 ->
      ty = typeof l ->
      eval_expr e m RV (Eassign l r ty) (t1**t2**t3) m3 (Eval v' ty)
  | eval_assignop: forall e m op l r tyres ty t1 m1 l' t2 m2 r' b ofs
                          v1 v2 v3 v4 t3 t4 m3,
      eval_expr e m LV l t1 m1 l' -> eval_expr e m1 RV r t2 m2 r' ->
      eval_simple_lvalue ge e m2 l' b ofs ->
      deref_loc ge (typeof l) m2 b ofs t3 v1 ->
      eval_simple_rvalue ge e m2 r' v2 ->
      sem_binary_operation op v1 (typeof l) v2 (typeof r) m2 = Some v3 ->
      sem_cast v3 tyres (typeof l) = Some v4 ->
      assign_loc ge (typeof l) m2 b ofs v4 t4 m3 ->
      ty = typeof l ->
      eval_expr e m RV (Eassignop op l r tyres ty) (t1**t2**t3**t4) m3 (Eval v4 ty)
  | eval_postincr: forall e m id l ty t1 m1 l' b ofs v1 v2 v3 m2 t2 t3,
      eval_expr e m LV l t1 m1 l' ->
      eval_simple_lvalue ge e m1 l' b ofs ->
      deref_loc ge ty m1 b ofs t2 v1 ->
      sem_incrdecr id v1 ty = Some v2 ->
      sem_cast v2 (incrdecr_type ty) ty = Some v3 ->
      assign_loc ge ty m1 b ofs v3 t3 m2 ->
      ty = typeof l ->
      eval_expr e m RV (Epostincr id l ty) (t1**t2**t3) m2 (Eval v1 ty)
  | eval_comma: forall e m r1 r2 ty t1 m1 r1' v1 t2 m2 r2',
      eval_expr e m RV r1 t1 m1 r1' ->
      eval_simple_rvalue ge e m1 r1' v1 ->
      eval_expr e m1 RV r2 t2 m2 r2' ->
      ty = typeof r2 ->
      eval_expr e m RV (Ecomma r1 r2 ty) (t1**t2) m2 r2'
  | eval_call: forall e m rf rargs ty t1 m1 rf' t2 m2 rargs' vf vargs
                      targs tres cconv fd t3 m3 vres,
      eval_expr e m RV rf t1 m1 rf' -> eval_exprlist e m1 rargs t2 m2 rargs' ->
      eval_simple_rvalue ge e m2 rf' vf ->
      eval_simple_list ge e m2 rargs' targs vargs ->
      classify_fun (typeof rf) = fun_case_f targs tres cconv ->
      Genv.find_funct ge vf = Some fd ->
      type_of_fundef fd = Tfunction targs tres cconv ->
      eval_funcall m2 fd vargs t3 m3 vres ->
      eval_expr e m RV (Ecall rf rargs ty) (t1**t2**t3) m3 (Eval vres ty)

with eval_exprlist: env -> mem -> exprlist -> trace -> mem -> exprlist -> Prop :=
  | eval_nil: forall e m,
      eval_exprlist e m Enil E0 m Enil
  | eval_cons: forall e m a1 al t1 m1 a1' t2 m2 al',
      eval_expr e m RV a1 t1 m1 a1' -> eval_exprlist e m1 al t2 m2 al' ->
      eval_exprlist e m (Econs a1 al) (t1**t2) m2 (Econs a1' al')

(** [exec_stmt ge e m1 s t m2 out] describes the execution of 
  the statement [s].  [out] is the outcome for this execution.
  [m1] is the initial memory state, [m2] the final memory state.
  [t] is the trace of input/output events performed during this
  evaluation. *)

with exec_stmt: env -> mem -> statement -> trace -> mem -> outcome -> Prop :=
  | exec_Sskip:   forall e m,
      exec_stmt e m Sskip
               E0 m Out_normal
  | exec_Sdo:     forall e m a t m' v,
      eval_expression e m a t m' v ->
      exec_stmt e m (Sdo a)
                t m' Out_normal
  | exec_Sseq_1:   forall e m s1 s2 t1 m1 t2 m2 out,
      exec_stmt e m s1 t1 m1 Out_normal ->
      exec_stmt e m1 s2 t2 m2 out ->
      exec_stmt e m (Ssequence s1 s2)
                (t1 ** t2) m2 out
  | exec_Sseq_2:   forall e m s1 s2 t1 m1 out,
      exec_stmt e m s1 t1 m1 out ->
      out <> Out_normal ->
      exec_stmt e m (Ssequence s1 s2)
                t1 m1 out
  | exec_Sifthenelse: forall e m a s1 s2 t1 m1 v1 t2 m2 b out,
      eval_expression e m a t1 m1 v1 ->
      bool_val v1 (typeof a) = Some b ->
      exec_stmt e m1 (if b then s1 else s2) t2 m2 out ->
      exec_stmt e m (Sifthenelse a s1 s2)
                (t1**t2) m2 out
  | exec_Sreturn_none:   forall e m,
      exec_stmt e m (Sreturn None)
               E0 m (Out_return None)
  | exec_Sreturn_some: forall e m a t m' v,
      eval_expression e m a t m' v ->
      exec_stmt e m (Sreturn (Some a))
                t m' (Out_return (Some(v, typeof a)))
  | exec_Sbreak:   forall e m,
      exec_stmt e m Sbreak
               E0 m Out_break
  | exec_Scontinue:   forall e m,
      exec_stmt e m Scontinue
               E0 m Out_continue
  | exec_Swhile_false: forall e m a s t m' v,
      eval_expression e m a t m' v ->
      bool_val v (typeof a) = Some false ->
      exec_stmt e m (Swhile a s)
                t m' Out_normal
  | exec_Swhile_stop: forall e m a s t1 m1 v t2 m2 out' out,
      eval_expression e m a t1 m1 v ->
      bool_val v (typeof a) = Some true ->
      exec_stmt e m1 s t2 m2 out' ->
      out_break_or_return out' out ->
      exec_stmt e m (Swhile a s)
                (t1**t2) m2 out
  | exec_Swhile_loop: forall e m a s t1 m1 v t2 m2 out1 t3 m3 out,
      eval_expression e m a t1 m1 v ->
      bool_val v (typeof a) = Some true ->
      exec_stmt e m1 s t2 m2 out1 ->
      out_normal_or_continue out1 ->
      exec_stmt e m2 (Swhile a s) t3 m3 out ->
      exec_stmt e m (Swhile a s)
                (t1 ** t2 ** t3) m3 out
  | exec_Sdowhile_false: forall e m s a t1 m1 out1 t2 m2 v,
      exec_stmt e m s t1 m1 out1 ->
      out_normal_or_continue out1 ->
      eval_expression e m1 a t2 m2 v ->
      bool_val v (typeof a) = Some false ->
      exec_stmt e m (Sdowhile a s)
                (t1 ** t2) m2 Out_normal
  | exec_Sdowhile_stop: forall e m s a t m1 out1 out,
      exec_stmt e m s t m1 out1 ->
      out_break_or_return out1 out ->
      exec_stmt e m (Sdowhile a s)
                t m1 out
  | exec_Sdowhile_loop: forall e m s a t1 m1 out1 t2 m2 v t3 m3 out,
      exec_stmt e m s t1 m1 out1 ->
      out_normal_or_continue out1 ->
      eval_expression e m1 a t2 m2 v ->
      bool_val v (typeof a) = Some true ->
      exec_stmt e m2 (Sdowhile a s) t3 m3 out ->
      exec_stmt e m (Sdowhile a s) 
                (t1 ** t2 ** t3) m3 out
  | exec_Sfor_start: forall e m s a1 a2 a3 out m1 m2 t1 t2,
      exec_stmt e m a1 t1 m1 Out_normal ->
      exec_stmt e m1 (Sfor Sskip a2 a3 s) t2 m2 out ->
      exec_stmt e m (Sfor a1 a2 a3 s) 
                (t1 ** t2) m2 out
  | exec_Sfor_false: forall e m s a2 a3 t m' v,
      eval_expression e m a2 t m' v ->
      bool_val v (typeof a2) = Some false ->
      exec_stmt e m (Sfor Sskip a2 a3 s)
                t m' Out_normal
  | exec_Sfor_stop: forall e m s a2 a3 t1 m1 v t2 m2 out1 out,
      eval_expression e m a2 t1 m1 v ->
      bool_val v (typeof a2) = Some true ->
      exec_stmt e m1 s t2 m2 out1 ->
      out_break_or_return out1 out ->
      exec_stmt e m (Sfor Sskip a2 a3 s)
                (t1 ** t2) m2 out
  | exec_Sfor_loop: forall e m s a2 a3 t1 m1 v t2 m2 out1 t3 m3 t4 m4 out,
      eval_expression e m a2 t1 m1 v ->
      bool_val v (typeof a2) = Some true ->
      exec_stmt e m1 s t2 m2 out1 ->
      out_normal_or_continue out1 ->
      exec_stmt e m2 a3 t3 m3 Out_normal ->
      exec_stmt e m3 (Sfor Sskip a2 a3 s) t4 m4 out ->
      exec_stmt e m (Sfor Sskip a2 a3 s)
                (t1 ** t2 ** t3 ** t4) m4 out
  | exec_Sswitch:   forall e m a sl t1 m1 n t2 m2 out,
      eval_expression e m a t1 m1 (Vint n) ->
      exec_stmt e m1 (seq_of_labeled_statement (select_switch n sl)) t2 m2 out ->
      exec_stmt e m (Sswitch a sl)
                (t1 ** t2) m2 (outcome_switch out)

(** [eval_funcall m1 fd args t m2 res] describes the invocation of
  function [fd] with arguments [args].  [res] is the value returned
  by the call.  *)

with eval_funcall: mem -> fundef -> list val -> trace -> mem -> val -> Prop :=
  | eval_funcall_internal: forall m f vargs t e m1 m2 m3 out vres m4,
      list_norepet (var_names f.(fn_params) ++ var_names f.(fn_vars)) ->
      alloc_variables empty_env m (f.(fn_params) ++ f.(fn_vars)) e m1 ->
      bind_parameters ge e m1 f.(fn_params) vargs m2 ->
      exec_stmt e m2 f.(fn_body) t m3 out ->
      outcome_result_value out f.(fn_return) vres ->
      Mem.free_list m3 (blocks_of_env e) = Some m4 ->
      eval_funcall m (Internal f) vargs t m4 vres
  | eval_funcall_external: forall m ef targs tres cconv vargs t vres m',
      external_call ef ge vargs m t vres m' ->
      eval_funcall m (External ef targs tres cconv) vargs t m' vres.

Scheme eval_expression_ind5 := Minimality for eval_expression Sort Prop
  with eval_expr_ind5 := Minimality for eval_expr Sort Prop
  with eval_exprlist_ind5 := Minimality for eval_exprlist Sort Prop
  with exec_stmt_ind5 := Minimality for exec_stmt Sort Prop
  with eval_funcall_ind5 := Minimality for eval_funcall Sort Prop.

Combined Scheme bigstep_induction from
        eval_expression_ind5,  eval_expr_ind5,  eval_exprlist_ind5,
        exec_stmt_ind5, eval_funcall_ind5.

(** [evalinf_expr ge e m1 K a T] denotes the fact that expression [a]
  diverges in initial state [m1].  [T] is the trace of input/output
  events performed during this evaluation.  *)

CoInductive evalinf_expr: env -> mem -> kind -> expr -> traceinf -> Prop :=
  | evalinf_field: forall e m a t f ty,
      evalinf_expr e m RV a t ->
      evalinf_expr e m LV (Efield a f ty) t
  | evalinf_valof: forall e m a t ty,
      evalinf_expr e m LV a t ->
      evalinf_expr e m RV (Evalof a ty) t
  | evalinf_deref: forall e m a t ty,
      evalinf_expr e m RV a t ->
      evalinf_expr e m LV (Ederef a ty) t
  | evalinf_addrof: forall e m a t ty,
      evalinf_expr e m LV a t ->
      evalinf_expr e m RV (Eaddrof a ty) t
  | evalinf_unop: forall e m a t op ty,
      evalinf_expr e m RV a t ->
      evalinf_expr e m RV (Eunop op a ty) t
  | evalinf_binop_left: forall e m a1 t1 a2 op ty,
      evalinf_expr e m RV a1 t1 ->
      evalinf_expr e m RV (Ebinop op a1 a2 ty) t1
  | evalinf_binop_right: forall e m a1 t1 m' a1' a2 t2 op ty,
      eval_expr e m RV a1 t1 m' a1' -> evalinf_expr e m' RV a2 t2 ->
      evalinf_expr e m RV (Ebinop op a1 a2 ty) (t1 *** t2)
  | evalinf_cast: forall e m a t ty,
      evalinf_expr e m RV a t ->
      evalinf_expr e m RV (Ecast a ty) t
  | evalinf_seqand: forall e m a1 a2 ty t1,
      evalinf_expr e m RV a1 t1 ->
      evalinf_expr e m RV (Eseqand a1 a2 ty) t1
  | evalinf_seqand_2: forall e m a1 a2 ty t1 m' a1' v1 t2,
      eval_expr e m RV a1 t1 m' a1' -> eval_simple_rvalue ge e m' a1' v1 ->
      bool_val v1 (typeof a1) = Some true ->
      evalinf_expr e m' RV a2 t2 ->
      evalinf_expr e m RV (Eseqand a1 a2 ty) (t1***t2)
  | evalinf_seqor: forall e m a1 a2 ty t1,
      evalinf_expr e m RV a1 t1 ->
      evalinf_expr e m RV (Eseqor a1 a2 ty) t1
  | evalinf_seqor_2: forall e m a1 a2 ty t1 m' a1' v1 t2,
      eval_expr e m RV a1 t1 m' a1' -> eval_simple_rvalue ge e m' a1' v1 ->
      bool_val v1 (typeof a1) = Some false ->
      evalinf_expr e m' RV a2 t2 ->
      evalinf_expr e m RV (Eseqor a1 a2 ty) (t1***t2)
  | evalinf_condition: forall e m a1 a2 a3 ty t1,
      evalinf_expr e m RV a1 t1 ->
      evalinf_expr e m RV (Econdition a1 a2 a3 ty) t1
  | evalinf_condition_2: forall e m a1 a2 a3 ty t1 m' a1' v1 t2 b,
      eval_expr e m RV a1 t1 m' a1' -> eval_simple_rvalue ge e m' a1' v1 ->
      bool_val v1 (typeof a1) = Some b ->
      evalinf_expr e m' RV (if b then a2 else a3) t2 ->
      evalinf_expr e m RV (Econdition a1 a2 a3 ty) (t1***t2)
  | evalinf_assign_left: forall e m a1 t1 a2 ty,
      evalinf_expr e m LV a1 t1 ->
      evalinf_expr e m RV (Eassign a1 a2 ty) t1
  | evalinf_assign_right: forall e m a1 t1 m' a1' a2 t2 ty,
      eval_expr e m LV a1 t1 m' a1' -> evalinf_expr e m' RV a2 t2 ->
      evalinf_expr e m RV (Eassign a1 a2 ty) (t1 *** t2)
  | evalinf_assignop_left: forall e m a1 t1 a2 op tyres ty,
      evalinf_expr e m LV a1 t1 ->
      evalinf_expr e m RV (Eassignop op a1 a2 tyres ty) t1
  | evalinf_assignop_right: forall e m a1 t1 m' a1' a2 t2 op tyres ty,
      eval_expr e m LV a1 t1 m' a1' -> evalinf_expr e m' RV a2 t2 ->
      evalinf_expr e m RV (Eassignop op a1 a2 tyres ty) (t1 *** t2)
  | evalinf_postincr: forall e m a t id ty,
      evalinf_expr e m LV a t ->
      evalinf_expr e m RV (Epostincr id a ty) t
  | evalinf_comma_left: forall e m a1 t1 a2 ty,
      evalinf_expr e m RV a1 t1 ->
      evalinf_expr e m RV (Ecomma a1 a2 ty) t1
  | evalinf_comma_right: forall e m a1 t1 m1 a1' v1 a2 t2 ty,
      eval_expr e m RV a1 t1 m1 a1' -> eval_simple_rvalue ge e m1 a1' v1 ->
      ty = typeof a2 ->
      evalinf_expr e m1 RV a2 t2 ->
      evalinf_expr e m RV (Ecomma a1 a2 ty) (t1 *** t2)
  | evalinf_call_left: forall e m a1 t1 a2 ty,
      evalinf_expr e m RV a1 t1 ->
      evalinf_expr e m RV (Ecall a1 a2 ty) t1
  | evalinf_call_right: forall e m a1 t1 m1 a1' a2 t2 ty,
      eval_expr e m RV a1 t1 m1 a1' -> 
      evalinf_exprlist e m1 a2 t2 ->
      evalinf_expr e m RV (Ecall a1 a2 ty) (t1 *** t2)
  | evalinf_call: forall e m rf rargs ty t1 m1 rf' t2 m2 rargs' vf vargs
                      targs tres cconv fd t3,
      eval_expr e m RV rf t1 m1 rf' -> eval_exprlist e m1 rargs t2 m2 rargs' ->
      eval_simple_rvalue ge e m2 rf' vf ->
      eval_simple_list ge e m2 rargs' targs vargs ->
      classify_fun (typeof rf) = fun_case_f targs tres cconv ->
      Genv.find_funct ge vf = Some fd ->
      type_of_fundef fd = Tfunction targs tres cconv ->
      evalinf_funcall m2 fd vargs t3 ->
      evalinf_expr e m RV (Ecall rf rargs ty) (t1***t2***t3)

with evalinf_exprlist: env -> mem -> exprlist -> traceinf -> Prop :=
  | evalinf_cons_left: forall e m a1 al t1,
      evalinf_expr e m RV a1 t1 ->
      evalinf_exprlist e m (Econs a1 al) t1
  | evalinf_cons_right: forall e m a1 al t1 m1 a1' t2,
      eval_expr e m RV a1 t1 m1 a1' -> evalinf_exprlist e m1 al t2 ->
      evalinf_exprlist e m (Econs a1 al) (t1***t2)

(** [execinf_stmt ge e m1 s t] describes the diverging execution of 
  the statement [s].  *)

with execinf_stmt: env -> mem -> statement -> traceinf -> Prop :=
  | execinf_Sdo:     forall e m a t,
      evalinf_expr e m RV a t ->
      execinf_stmt e m (Sdo a) t
  | execinf_Sseq_1:   forall e m s1 s2 t1,
      execinf_stmt e m s1 t1 ->
      execinf_stmt e m (Ssequence s1 s2) t1
  | execinf_Sseq_2:   forall e m s1 s2 t1 m1 t2,
      exec_stmt e m s1 t1 m1 Out_normal ->
      execinf_stmt e m1 s2 t2 ->
      execinf_stmt e m (Ssequence s1 s2) (t1***t2)
  | execinf_Sifthenelse_test: forall e m a s1 s2 t1,
      evalinf_expr e m RV a t1 ->
      execinf_stmt e m (Sifthenelse a s1 s2) t1
  | execinf_Sifthenelse: forall e m a s1 s2 t1 m1 v1 t2 b,
      eval_expression e m a t1 m1 v1 ->
      bool_val v1 (typeof a) = Some b ->
      execinf_stmt e m1 (if b then s1 else s2) t2 ->
      execinf_stmt e m (Sifthenelse a s1 s2) (t1***t2)
  | execinf_Sreturn_some: forall e m a t,
      evalinf_expr e m RV a t ->
      execinf_stmt e m (Sreturn (Some a)) t
  | execinf_Swhile_test: forall e m a s t1,
      evalinf_expr e m RV a t1 ->
      execinf_stmt e m (Swhile a s) t1
  | execinf_Swhile_body: forall e m a s t1 m1 v t2,
      eval_expression e m a t1 m1 v ->
      bool_val v (typeof a) = Some true ->
      execinf_stmt e m1 s t2 ->
      execinf_stmt e m (Swhile a s) (t1***t2)
  | execinf_Swhile_loop: forall e m a s t1 m1 v t2 m2 out1 t3,
      eval_expression e m a t1 m1 v ->
      bool_val v (typeof a) = Some true ->
      exec_stmt e m1 s t2 m2 out1 ->
      out_normal_or_continue out1 ->
      execinf_stmt e m2 (Swhile a s) t3 ->
      execinf_stmt e m (Swhile a s) (t1***t2***t3)
  | execinf_Sdowhile_body: forall e m s a t1,
      execinf_stmt e m s t1 ->
      execinf_stmt e m (Sdowhile a s) t1
  | execinf_Sdowhile_test: forall e m s a t1 m1 out1 t2,
      exec_stmt e m s t1 m1 out1 ->
      out_normal_or_continue out1 ->
      evalinf_expr e m1 RV a t2 ->
      execinf_stmt e m (Sdowhile a s) (t1***t2)
  | execinf_Sdowhile_loop: forall e m s a t1 m1 out1 t2 m2 v t3,
      exec_stmt e m s t1 m1 out1 ->
      out_normal_or_continue out1 ->
      eval_expression e m1 a t2 m2 v ->
      bool_val v (typeof a) = Some true ->
      execinf_stmt e m2 (Sdowhile a s) t3 ->
      execinf_stmt e m (Sdowhile a s) (t1***t2***t3)
  | execinf_Sfor_start_1: forall e m s a1 a2 a3 t1,
      execinf_stmt e m a1 t1 ->
      execinf_stmt e m (Sfor a1 a2 a3 s) t1
  | execinf_Sfor_start_2: forall e m s a1 a2 a3 m1 t1 t2,
      exec_stmt e m a1 t1 m1 Out_normal -> a1 <> Sskip ->
      execinf_stmt e m1 (Sfor Sskip a2 a3 s) t2 ->
      execinf_stmt e m (Sfor a1 a2 a3 s) (t1***t2)
  | execinf_Sfor_test: forall e m s a2 a3 t,
      evalinf_expr e m RV a2 t ->
      execinf_stmt e m (Sfor Sskip a2 a3 s) t
  | execinf_Sfor_body: forall e m s a2 a3 t1 m1 v t2,
      eval_expression e m a2 t1 m1 v ->
      bool_val v (typeof a2) = Some true ->
      execinf_stmt e m1 s t2 ->
      execinf_stmt e m (Sfor Sskip a2 a3 s) (t1***t2)
  | execinf_Sfor_next: forall e m s a2 a3 t1 m1 v t2 m2 out1 t3,
      eval_expression e m a2 t1 m1 v ->
      bool_val v (typeof a2) = Some true ->
      exec_stmt e m1 s t2 m2 out1 ->
      out_normal_or_continue out1 ->
      execinf_stmt e m2 a3 t3 ->
      execinf_stmt e m (Sfor Sskip a2 a3 s) (t1***t2***t3)
  | execinf_Sfor_loop: forall e m s a2 a3 t1 m1 v t2 m2 out1 t3 m3 t4,
      eval_expression e m a2 t1 m1 v ->
      bool_val v (typeof a2) = Some true ->
      exec_stmt e m1 s t2 m2 out1 ->
      out_normal_or_continue out1 ->
      exec_stmt e m2 a3 t3 m3 Out_normal ->
      execinf_stmt e m3 (Sfor Sskip a2 a3 s) t4 ->
      execinf_stmt e m (Sfor Sskip a2 a3 s) (t1***t2***t3***t4)
  | execinf_Sswitch_expr:   forall e m a sl t1,
      evalinf_expr e m RV a t1 ->
      execinf_stmt e m (Sswitch a sl) t1
  | execinf_Sswitch_body:   forall e m a sl t1 m1 n t2,
      eval_expression e m a t1 m1 (Vint n) ->
      execinf_stmt e m1 (seq_of_labeled_statement (select_switch n sl)) t2 ->
      execinf_stmt e m (Sswitch a sl) (t1***t2)

(** [evalinf_funcall m1 fd args t m2 res] describes a diverging
  invocation of function [fd] with arguments [args].  *)

with evalinf_funcall: mem -> fundef -> list val -> traceinf -> Prop :=
  | evalinf_funcall_internal: forall m f vargs t e m1 m2,
      list_norepet (var_names f.(fn_params) ++ var_names f.(fn_vars)) ->
      alloc_variables empty_env m (f.(fn_params) ++ f.(fn_vars)) e m1 ->
      bind_parameters ge e m1 f.(fn_params) vargs m2 ->
      execinf_stmt e m2 f.(fn_body) t ->
      evalinf_funcall m (Internal f) vargs t.

(** ** Implication from big-step semantics to transition semantics *)

Inductive outcome_state_match
       (e: env) (m: mem) (f: function) (k: cont): outcome -> state -> Prop :=
  | osm_normal:
      outcome_state_match e m f k Out_normal (State f Sskip k e m)
  | osm_break:
      outcome_state_match e m f k Out_break (State f Sbreak k e m)
  | osm_continue:
      outcome_state_match e m f k Out_continue (State f Scontinue k e m)
  | osm_return_none: forall k',
      call_cont k' = call_cont k ->
      outcome_state_match e m f k 
        (Out_return None) (State f (Sreturn None) k' e m)
  | osm_return_some: forall v ty k',
      call_cont k' = call_cont k ->
      outcome_state_match e m f k
        (Out_return (Some (v, ty))) (ExprState f (Eval v ty) (Kreturn k') e m).

Lemma is_call_cont_call_cont:
  forall k, is_call_cont k -> call_cont k = k.
Proof.
  destruct k; simpl; intros; contradiction || auto.
Qed.

Lemma leftcontext_compose:
  forall k2 k3 C2, leftcontext k2 k3 C2 ->
  forall k1 C1, leftcontext k1 k2 C1 ->
  leftcontext k1 k3 (fun x => C2(C1 x))
with leftcontextlist_compose:
  forall k2 C2, leftcontextlist k2 C2 ->
  forall k1 C1, leftcontext k1 k2 C1 ->
  leftcontextlist k1 (fun x => C2(C1 x)).
Proof.
  induction 1; intros; try (constructor; eauto).
  replace (fun x => C1 x) with C1. auto. apply extensionality; auto.
  induction 1; intros; constructor; eauto.
Qed.

Lemma exprlist_app_leftcontext:
  forall rl1 rl2,
  simplelist rl1 = true -> leftcontextlist RV (fun x => exprlist_app rl1 (Econs x rl2)).
Proof.
  induction rl1; simpl; intros. 
  apply lctx_list_head. constructor.
  destruct (andb_prop _ _ H). apply lctx_list_tail. auto. auto. 
Qed.

Lemma exprlist_app_simple:
  forall rl1 rl2,
  simplelist (exprlist_app rl1 rl2) = simplelist rl1 && simplelist rl2.
Proof.
  induction rl1; intros; simpl. auto. rewrite IHrl1. apply andb_assoc. 
Qed.

Lemma bigstep_to_steps:
  (forall e m a t m' v,
   eval_expression e m a t m' v ->
   forall f k,
   star step ge (ExprState f a k e m) t (ExprState f (Eval v (typeof a)) k e m'))
/\(forall e m K a t m' a',
   eval_expr e m K a t m' a' ->
   forall C f k, leftcontext K RV C ->
   simple a' = true /\ typeof a' = typeof a /\
   star step ge (ExprState f (C a) k e m) t (ExprState f (C a') k e m'))
/\(forall e m al t m' al',
   eval_exprlist e m al t m' al' ->
   forall a1 al2 ty C f k, leftcontext RV RV C -> simple a1 = true -> simplelist al2 = true ->
   simplelist al' = true /\
   star step ge (ExprState f (C (Ecall a1 (exprlist_app al2 al) ty)) k e m)
              t (ExprState f (C (Ecall a1 (exprlist_app al2 al') ty)) k e m'))
/\(forall e m s t m' out,
   exec_stmt e m s t m' out ->
   forall f k,
   exists S,
   star step ge (State f s k e m) t S /\ outcome_state_match e m' f k out S)
/\(forall m fd args t m' res,
   eval_funcall m fd args t m' res ->
   forall k,
   is_call_cont k ->
   star step ge (Callstate fd args k m) t (Returnstate res k m')).
Proof.
  apply bigstep_induction; intros.
(* expression, general *)
  exploit (H0 (fun x => x) f k). constructor. intros [A [B C]].
  assert (match a' with Eval _ _ => False | _ => True end ->
          star step ge (ExprState f a k e m) t (ExprState f (Eval v (typeof a)) k e m')).
   intro. eapply star_right. eauto. left. eapply step_expr; eauto. traceEq. 
  destruct a'; auto.
  simpl in B. rewrite B in C. inv H1. auto. 

(* val *)
  simpl; intuition. apply star_refl.
(* var *)
  simpl; intuition. apply star_refl.
(* field *)
  exploit (H0 (fun x => C(Efield x f ty))).
    eapply leftcontext_compose; eauto. repeat constructor. intros [A [B D]].
  simpl; intuition; eauto. 
(* valof *)
  exploit (H1 (fun x => C(Evalof x ty))).
    eapply leftcontext_compose; eauto. repeat constructor. intros [A [B D]].
  simpl; intuition; eauto. rewrite A; rewrite B; rewrite H; auto.
(* valof volatile *)
  exploit (H1 (fun x => C(Evalof x ty))).
    eapply leftcontext_compose; eauto. repeat constructor. intros [A [B D]].
  simpl; intuition.
  eapply star_right. eexact D. 
  left. eapply step_rvalof_volatile; eauto. rewrite H4; eauto. congruence. congruence. 
  traceEq.
(* deref *)
  exploit (H0 (fun x => C(Ederef x ty))).
    eapply leftcontext_compose; eauto. repeat constructor. intros [A [B D]].
  simpl; intuition; eauto.
(* addrof *)
  exploit (H0 (fun x => C(Eaddrof x ty))).
    eapply leftcontext_compose; eauto. repeat constructor. intros [A [B D]].
  simpl; intuition; eauto.
(* unop *)
  exploit (H0 (fun x => C(Eunop op x ty))).
    eapply leftcontext_compose; eauto. repeat constructor. intros [A [B D]].
  simpl; intuition; eauto.
(* binop *)
  exploit (H0 (fun x => C(Ebinop op x a2 ty))).
    eapply leftcontext_compose; eauto. repeat constructor. intros [A [B D]].
  exploit (H2 (fun x => C(Ebinop op a1' x ty))).
    eapply leftcontext_compose; eauto. repeat constructor. auto. intros [E [F G]].
  simpl; intuition. eapply star_trans; eauto. 
(* cast *)
  exploit (H0 (fun x => C(Ecast x ty))).
    eapply leftcontext_compose; eauto. repeat constructor. intros [A [B D]].
  simpl; intuition; eauto.
(* seqand true *)
  exploit (H0 (fun x => C(Eseqand x a2 ty))).
    eapply leftcontext_compose; eauto. repeat constructor. intros [A [B D]].
  exploit (H4 (fun x => C(Eparen (Eparen x type_bool) ty))).
    eapply leftcontext_compose; eauto. repeat constructor. intros [E [F G]].
  simpl; intuition. eapply star_trans. eexact D. 
  eapply star_left. left; eapply step_seqand_true; eauto. rewrite B; auto. 
  eapply star_trans. eexact G.
  set (C' := fun x => C (Eparen x ty)).
  change (C (Eparen (Eparen a2' type_bool) ty)) with (C' (Eparen a2' type_bool)).
  eapply star_two.
  left; eapply step_paren; eauto. unfold C'; eapply leftcontext_compose; eauto. repeat constructor.
  rewrite F; eauto.
  unfold C'. left; eapply step_paren; eauto. constructor. 
  eauto. eauto. eauto. traceEq. 
(* seqand false *)
  exploit (H0 (fun x => C(Eseqand x a2 ty))).
    eapply leftcontext_compose; eauto. repeat constructor. intros [A [B D]].
  simpl; intuition. eapply star_right. eexact D. 
  left; eapply step_seqand_false; eauto. rewrite B; auto.
  traceEq.
(* seqor false *)
  exploit (H0 (fun x => C(Eseqor x a2 ty))).
    eapply leftcontext_compose; eauto. repeat constructor. intros [A [B D]].
  exploit (H4 (fun x => C(Eparen (Eparen x type_bool) ty))).
    eapply leftcontext_compose; eauto. repeat constructor. intros [E [F G]].
  simpl; intuition. eapply star_trans. eexact D. 
  eapply star_left. left; eapply step_seqor_false; eauto. rewrite B; auto. 
  eapply star_trans. eexact G.
  set (C' := fun x => C (Eparen x ty)).
  change (C (Eparen (Eparen a2' type_bool) ty)) with (C' (Eparen a2' type_bool)).
  eapply star_two.
  left; eapply step_paren; eauto. unfold C'; eapply leftcontext_compose; eauto. repeat constructor.
  rewrite F; eauto.
  unfold C'. left; eapply step_paren; eauto. constructor. 
  eauto. eauto. eauto. traceEq. 
(* seqor true *)
  exploit (H0 (fun x => C(Eseqor x a2 ty))).
    eapply leftcontext_compose; eauto. repeat constructor. intros [A [B D]].
  simpl; intuition. eapply star_right. eexact D. 
  left; eapply step_seqor_true; eauto. rewrite B; auto.
  traceEq.
(* condition *)
  exploit (H0 (fun x => C(Econdition x a2 a3 ty))).
    eapply leftcontext_compose; eauto. repeat constructor. intros [A [B D]].
  exploit (H4 (fun x => C(Eparen x ty))).
    eapply leftcontext_compose; eauto. repeat constructor. intros [E [F G]].
  simpl. split; auto. split; auto. 
  eapply star_trans. eexact D.
  eapply star_left. left; eapply step_condition; eauto. rewrite B; eauto. 
  eapply star_right. eexact G. left; eapply step_paren; eauto. congruence. 
  reflexivity. reflexivity. traceEq.
(* sizeof *)
  simpl; intuition. apply star_refl.
(* alignof *)
  simpl; intuition. apply star_refl.
(* assign *)
  exploit (H0 (fun x => C(Eassign x r ty))).
    eapply leftcontext_compose; eauto. repeat constructor. intros [A [B D]].
  exploit (H2 (fun x => C(Eassign l' x ty))).
    eapply leftcontext_compose; eauto. repeat constructor. auto. intros [E [F G]].
  simpl; intuition.
  eapply star_trans. eexact D. 
  eapply star_right. eexact G.
  left. eapply step_assign; eauto. congruence. rewrite B; eauto. congruence.
  reflexivity. traceEq.
(* assignop *)
  exploit (H0 (fun x => C(Eassignop op x r tyres ty))).
    eapply leftcontext_compose; eauto. repeat constructor. intros [A [B D]].
  exploit (H2 (fun x => C(Eassignop op l' x tyres ty))).
    eapply leftcontext_compose; eauto. repeat constructor. auto. intros [E [F G]].
  simpl; intuition.
  eapply star_trans. eexact D. 
  eapply star_right. eexact G.
  left. eapply step_assignop; eauto.
  rewrite B; eauto. rewrite B; rewrite F; eauto. congruence. rewrite B; eauto. congruence.
  reflexivity. traceEq.
(* postincr *)
  exploit (H0 (fun x => C(Epostincr id x ty))).
    eapply leftcontext_compose; eauto. repeat constructor. intros [A [B D]].
  simpl; intuition.
  eapply star_right. eexact D. 
  left. eapply step_postincr; eauto. congruence. 
  traceEq.
(* comma *)
  exploit (H0 (fun x => C(Ecomma x r2 ty))).
    eapply leftcontext_compose; eauto. repeat constructor. intros [A [B D]].
  exploit (H3 C). auto. intros [E [F G]].
  simpl; intuition. congruence.
  eapply star_trans. eexact D.
  eapply star_left. left; eapply step_comma; eauto. 
  eexact G.
  reflexivity. traceEq.
(* call *)
  exploit (H0 (fun x => C(Ecall x rargs ty))).
    eapply leftcontext_compose; eauto. repeat constructor. intros [A [B D]].
  exploit (H2 rf' Enil ty C); eauto. intros [E F].
  simpl; intuition. 
  eapply star_trans. eexact D.
  eapply star_trans. eexact F. 
  eapply star_left. left; eapply step_call; eauto. congruence. 
  eapply star_right. eapply H9. red; auto. 
  right; constructor. 
  reflexivity. reflexivity. reflexivity. traceEq.
(* nil *)
  simpl; intuition. apply star_refl.
(* cons *)
  exploit (H0 (fun x => C(Ecall a0 (exprlist_app al2 (Econs x al)) ty))).
    eapply leftcontext_compose; eauto. repeat constructor. auto.
    apply exprlist_app_leftcontext; auto. intros [A [B D]].
  exploit (H2 a0 (exprlist_app al2 (Econs a1' Enil))); eauto.
  rewrite exprlist_app_simple. simpl. rewrite H5; rewrite A; auto. 
  repeat rewrite exprlist_app_assoc. simpl.  
  intros [E F].
  simpl; intuition. 
  eapply star_trans; eauto.

(* skip *)
  econstructor; split. apply star_refl. constructor.

(* do *)
  econstructor; split. 
  eapply star_left. right; constructor. 
  eapply star_right. apply H0. right; constructor.
  reflexivity. traceEq.
  constructor.

(* sequence 2 *)
  destruct (H0 f (Kseq s2 k)) as [S1 [A1 B1]]; auto. inv B1.
  destruct (H2 f k) as [S2 [A2 B2]]; auto.
  econstructor; split.
  eapply star_left. right; econstructor.
  eapply star_trans. eexact A1. 
  eapply star_left. right; constructor. eexact A2.
  reflexivity. reflexivity. traceEq.
  auto.

(* sequence 1 *)
  destruct (H0 f (Kseq s2 k)) as [S1 [A1 B1]]; auto.
  set (S2 :=
    match out with
    | Out_break => State f Sbreak k e m1
    | Out_continue => State f Scontinue k e m1
    | _ => S1
    end).
  exists S2; split.
  eapply star_left. right; econstructor.
  eapply star_trans. eexact A1.
  unfold S2; inv B1.
    congruence.
    apply star_one. right; apply step_break_seq.
    apply star_one. right; apply step_continue_seq.
    apply star_refl.
    apply star_refl.
  reflexivity. traceEq.
  unfold S2; inv B1; congruence || econstructor; eauto.

(* ifthenelse *)
  destruct (H3 f k) as [S1 [A1 B1]]; auto.
  exists S1; split.
  eapply star_left. right; apply step_ifthenelse_1.
  eapply star_trans. eapply H0.
  eapply star_left. 2: eexact A1. right; eapply step_ifthenelse_2; eauto.
  reflexivity. reflexivity. traceEq.
  auto.

(* return none *)
  econstructor; split. apply star_refl. constructor. auto.

(* return some *)
  econstructor; split.
  eapply star_left. right; apply step_return_1.
  eapply H0. traceEq.
  econstructor; eauto. 

(* break *)
  econstructor; split. apply star_refl. constructor.

(* continue *)
  econstructor; split. apply star_refl. constructor.

(* while false *)
  econstructor; split.
  eapply star_left. right; apply step_while.
  eapply star_right. apply H0. right; eapply step_while_false; eauto. 
  reflexivity. traceEq.
  constructor.

(* while stop *)
  destruct (H3 f (Kwhile2 a s k)) as [S1 [A1 B1]].
  set (S2 :=
    match out' with
    | Out_break => State f Sskip k e m2
    | _ => S1
    end).
  exists S2; split.
  eapply star_left. right; apply step_while.
  eapply star_trans. apply H0.
  eapply star_left. right; eapply step_while_true; eauto.
  eapply star_trans. eexact A1.
  unfold S2. inversion H4; subst.
  inv B1. apply star_one. right; constructor.    
  apply star_refl.
  reflexivity. reflexivity. reflexivity. traceEq.
  unfold S2. inversion H4; subst. constructor. inv B1; econstructor; eauto.

(* while loop *)
  destruct (H3 f (Kwhile2 a s k)) as [S1 [A1 B1]].
  destruct (H6 f k) as [S2 [A2 B2]]; auto.
  exists S2; split.
  eapply star_left. right; apply step_while.
  eapply star_trans. apply H0.
  eapply star_left. right; eapply step_while_true; eauto.
  eapply star_trans. eexact A1.
  eapply star_left.
  inv H4; inv B1; right; apply step_skip_or_continue_while; auto.
  eexact A2.
  reflexivity. reflexivity. reflexivity. reflexivity. traceEq.
  auto.

(* dowhile false *)
  destruct (H0 f (Kdowhile1 a s k)) as [S1 [A1 B1]].
  exists (State f Sskip k e m2); split.
  eapply star_left. right; constructor.
  eapply star_trans. eexact A1.
  eapply star_left.
  inv H1; inv B1; right; eapply step_skip_or_continue_dowhile; eauto.
  eapply star_right. apply H3. 
  right; eapply step_dowhile_false; eauto. 
  reflexivity. reflexivity. reflexivity. traceEq. 
  constructor.

(* dowhile stop *)
  destruct (H0 f (Kdowhile1 a s k)) as [S1 [A1 B1]].
  set (S2 :=
    match out1 with
    | Out_break => State f Sskip k e m1
    | _ => S1
    end).
  exists S2; split.
  eapply star_left. right; apply step_dowhile. 
  eapply star_trans. eexact A1.
  unfold S2. inversion H1; subst.
  inv B1. apply star_one. right; constructor.
  apply star_refl.
  reflexivity. traceEq.
  unfold S2. inversion H1; subst. constructor. inv B1; econstructor; eauto.

(* dowhile loop *)
  destruct (H0 f (Kdowhile1 a s k)) as [S1 [A1 B1]].
  destruct (H6 f k) as [S2 [A2 B2]]; auto.
  exists S2; split.
  eapply star_left. right; constructor.
  eapply star_trans. eexact A1.
  eapply star_left.
  inv H1; inv B1; right; eapply step_skip_or_continue_dowhile; eauto.
  eapply star_trans. apply H3.
  eapply star_left. right; eapply step_dowhile_true; eauto.
  eexact A2.
  reflexivity. reflexivity. reflexivity. reflexivity. traceEq.
  auto.

(* for start *)
  assert (a1 = Sskip \/ a1 <> Sskip). destruct a1; auto; right; congruence. 
  destruct H3.
  subst a1. inv H. apply H2; auto.
  destruct (H0 f (Kseq (Sfor Sskip a2 a3 s) k)) as [S1 [A1 B1]]; auto. inv B1.
  destruct (H2 f k) as [S2 [A2 B2]]; auto.
  exists S2; split.
  eapply star_left. right; apply step_for_start; auto.   
  eapply star_trans. eexact A1.
  eapply star_left. right; constructor. eexact A2.
  reflexivity. reflexivity. traceEq.
  auto.

(* for false *)
  econstructor; split.
  eapply star_left. right; apply step_for. 
  eapply star_right. apply H0. right; eapply step_for_false; eauto. 
  reflexivity. traceEq.
  constructor.

(* for stop *)
  destruct (H3 f (Kfor3 a2 a3 s k)) as [S1 [A1 B1]].
  set (S2 :=
    match out1 with
    | Out_break => State f Sskip k e m2
    | _ => S1
    end).
  exists S2; split.
  eapply star_left. right; apply step_for. 
  eapply star_trans. apply H0. 
  eapply star_left. right; eapply step_for_true; eauto.
  eapply star_trans. eexact A1. 
  unfold S2. inversion H4; subst.
  inv B1. apply star_one. right; constructor. 
  apply star_refl.
  reflexivity. reflexivity. reflexivity. traceEq.
  unfold S2. inversion H4; subst. constructor. inv B1; econstructor; eauto.

(* for loop *)
  destruct (H3 f (Kfor3 a2 a3 s k)) as [S1 [A1 B1]].
  destruct (H6 f (Kfor4 a2 a3 s k)) as [S2 [A2 B2]]; auto. inv B2.
  destruct (H8 f k) as [S3 [A3 B3]]; auto.
  exists S3; split.
  eapply star_left. right; apply step_for. 
  eapply star_trans. apply H0. 
  eapply star_left. right; eapply step_for_true; eauto.
  eapply star_trans. eexact A1.
  eapply star_trans with (s2 := State f a3 (Kfor4 a2 a3 s k) e m2).
  inv H4; inv B1.
  apply star_one. right; constructor; auto. 
  apply star_one. right; constructor; auto. 
  eapply star_trans. eexact A2. 
  eapply star_left. right; constructor.
  eexact A3.
  reflexivity. reflexivity. reflexivity. reflexivity.
  reflexivity. reflexivity. traceEq.
  auto.

(* switch *)
  destruct (H2 f (Kswitch2 k)) as [S1 [A1 B1]].
  set (S2 :=
    match out with
    | Out_normal => State f Sskip k e m2
    | Out_break => State f Sskip k e m2
    | Out_continue => State f Scontinue k e m2
    | _ => S1
    end).
  exists S2; split.
  eapply star_left. right; eapply step_switch.
  eapply star_trans. apply H0. 
  eapply star_left. right; eapply step_expr_switch.
  eapply star_trans. eexact A1. 
  unfold S2; inv B1.
    apply star_one. right; constructor. auto. 
    apply star_one. right; constructor. auto. 
    apply star_one. right; constructor. 
    apply star_refl.
    apply star_refl.
  reflexivity. reflexivity. reflexivity. traceEq.
  unfold S2. inv B1; simpl; econstructor; eauto.

(* call internal *)
  destruct (H3 f k) as [S1 [A1 B1]].
  eapply star_left. right; eapply step_internal_function; eauto.
  eapply star_right. eexact A1. 
  inv B1; simpl in H4; try contradiction.
  (* Out_normal *)
  assert (fn_return f = Tvoid /\ vres = Vundef).
    destruct (fn_return f); auto || contradiction.
  destruct H7 as [P Q]. subst vres. right; eapply step_skip_call; eauto.
  (* Out_return None *)
  assert (fn_return f = Tvoid /\ vres = Vundef).
    destruct (fn_return f); auto || contradiction.
  destruct H8 as [P Q]. subst vres.
  rewrite <- (is_call_cont_call_cont k H6). rewrite <- H7.
  right; apply step_return_0; auto.
  (* Out_return Some *)
  destruct H4. rewrite <- (is_call_cont_call_cont k H6). rewrite <- H7.
  right; eapply step_return_2; eauto.
  reflexivity. traceEq.

(* call external *)
  apply star_one. right; apply step_external_function; auto. 
Qed.

Lemma eval_expression_to_steps:
   forall e m a t m' v,
   eval_expression e m a t m' v ->
   forall f k,
   star step ge (ExprState f a k e m) t (ExprState f (Eval v (typeof a)) k e m').
Proof (proj1 bigstep_to_steps).

Lemma eval_expr_to_steps:
   forall e m K a t m' a',
   eval_expr e m K a t m' a' ->
   forall C f k, leftcontext K RV C ->
   simple a' = true /\ typeof a' = typeof a /\
   star step ge (ExprState f (C a) k e m) t (ExprState f (C a') k e m').
Proof (proj1 (proj2 bigstep_to_steps)).

Lemma eval_exprlist_to_steps:
   forall e m al t m' al',
   eval_exprlist e m al t m' al' ->
   forall a1 al2 ty C f k, leftcontext RV RV C -> simple a1 = true -> simplelist al2 = true ->
   simplelist al' = true /\
   star step ge (ExprState f (C (Ecall a1 (exprlist_app al2 al) ty)) k e m)
              t (ExprState f (C (Ecall a1 (exprlist_app al2 al') ty)) k e m').
Proof (proj1 (proj2 (proj2 bigstep_to_steps))).

Lemma exec_stmt_to_steps:
   forall e m s t m' out,
   exec_stmt e m s t m' out ->
   forall f k,
   exists S,
   star step ge (State f s k e m) t S /\ outcome_state_match e m' f k out S.
Proof (proj1 (proj2 (proj2 (proj2 bigstep_to_steps)))).

Lemma eval_funcall_to_steps:
  forall m fd args t m' res,
  eval_funcall m fd args t m' res ->
  forall k,
  is_call_cont k ->
  star step ge (Callstate fd args k m) t (Returnstate res k m').
Proof (proj2 (proj2 (proj2 (proj2 bigstep_to_steps)))).

Fixpoint esize (a: expr) : nat :=
  match a with
  | Eloc _ _ _ => 1%nat
  | Evar _ _ => 1%nat
  | Ederef r1 _ => S(esize r1)
  | Efield l1 _ _ => S(esize l1)
  | Eval _ _ => O
  | Evalof l1 _ => S(esize l1)
  | Eaddrof l1 _ => S(esize l1)
  | Eunop _ r1 _ => S(esize r1)
  | Ebinop _ r1 r2 _ => S(esize r1 + esize r2)%nat
  | Ecast r1 _ => S(esize r1)
  | Eseqand r1 r2 _ => S(esize r1)
  | Eseqor r1 r2 _ => S(esize r1)
  | Econdition r1 _ _ _ => S(esize r1)
  | Esizeof _ _ => 1%nat
  | Ealignof _ _ => 1%nat
  | Eassign l1 r2 _ => S(esize l1 + esize r2)%nat
  | Eassignop _ l1 r2 _ _ => S(esize l1 + esize r2)%nat
  | Epostincr _ l1 _ => S(esize l1)
  | Ecomma r1 r2 _ => S(esize r1 + esize r2)%nat
  | Ecall r1 rl2 _ => S(esize r1 + esizelist rl2)%nat
  | Ebuiltin ef tyargs rl _ => S(esizelist rl)
  | Eparen r1 _ => S(esize r1)
  end

with esizelist (el: exprlist) : nat :=
  match el with
  | Enil => O
  | Econs r1 rl2 => S(esize r1 + esizelist rl2)%nat
  end.

Lemma leftcontext_size:
  forall from to C,
  leftcontext from to C ->
  forall e1 e2,
  (esize e1 < esize e2)%nat ->
  (esize (C e1) < esize (C e2))%nat
with leftcontextlist_size:
  forall from C,
  leftcontextlist from C ->
  forall e1 e2,
  (esize e1 < esize e2)%nat ->
  (esizelist (C e1) < esizelist (C e2))%nat.
Proof.
  induction 1; intros; simpl; auto with arith.
  exploit leftcontextlist_size; eauto. auto with arith.
  exploit leftcontextlist_size; eauto. auto with arith.
  induction 1; intros; simpl; auto with arith.
  exploit leftcontext_size; eauto. auto with arith.
Qed.

Lemma evalinf_funcall_steps:
  forall m fd args t k,
  evalinf_funcall m fd args t ->
  forever_N step lt ge O (Callstate fd args k m) t.
Proof.
  cofix COF.

  assert (COS: 
    forall e m s t f k,
    execinf_stmt e m s t ->
    forever_N step lt ge O (State f s k e m) t).
  cofix COS.

  assert (COE:
    forall e m K a t C f k,
    evalinf_expr e m K a t ->
    leftcontext K RV C ->
    forever_N step lt ge (esize a) (ExprState f (C a) k e m) t).
  cofix COE.

  assert (COEL:
    forall e m a t C f k a1 al ty,
    evalinf_exprlist e m a t ->
    leftcontext RV RV C -> simple a1 = true -> simplelist al = true ->
    forever_N step lt ge (esizelist a)
                   (ExprState f (C (Ecall a1 (exprlist_app al a) ty)) k e m) t).
  cofix COEL.
  intros. inv H.
(* cons left *)
  eapply forever_N_star with (a2 := (esize a0)). apply star_refl. simpl; omega. 
  eapply COE with (C := fun x => C(Ecall a1 (exprlist_app al (Econs x al0)) ty)).
  eauto. eapply leftcontext_compose; eauto. constructor. auto. 
  apply exprlist_app_leftcontext; auto. traceEq.
(* cons right *) 
  destruct (eval_expr_to_steps _ _ _ _ _ _ _ H3 
             (fun x => C(Ecall a1 (exprlist_app al (Econs x al0)) ty)) f k)
  as [P [Q R]]. 
  eapply leftcontext_compose; eauto. repeat constructor. auto. 
  apply exprlist_app_leftcontext; auto. 
  eapply forever_N_star with (a2 := (esizelist al0)).
  eexact R. simpl; omega.
  change (Econs a1' al0) with (exprlist_app (Econs a1' Enil) al0).
  rewrite <- exprlist_app_assoc.  
  eapply COEL. eauto. auto. auto. 
  rewrite exprlist_app_simple. simpl. rewrite H2; rewrite P; auto.
  auto.

  intros. inv H.
(* field *)
  eapply forever_N_star with (a2 := (esize a0)). apply star_refl. simpl; omega.
  eapply COE with (C := fun x => C(Efield x f0 ty)). eauto. 
  eapply leftcontext_compose; eauto. repeat constructor. traceEq.
(* valof *)
  eapply forever_N_star with (a2 := (esize a0)). apply star_refl. simpl; omega.
  eapply COE with (C := fun x => C(Evalof x ty)). eauto. 
  eapply leftcontext_compose; eauto. repeat constructor. traceEq.
(* deref *)
  eapply forever_N_star with (a2 := (esize a0)). apply star_refl. simpl; omega.
  eapply COE with (C := fun x => C(Ederef x ty)). eauto. 
  eapply leftcontext_compose; eauto. repeat constructor. traceEq.
(* addrof *)
  eapply forever_N_star with (a2 := (esize a0)). apply star_refl. simpl; omega.
  eapply COE with (C := fun x => C(Eaddrof x ty)). eauto. 
  eapply leftcontext_compose; eauto. repeat constructor. traceEq.
(* unop *)
  eapply forever_N_star with (a2 := (esize a0)). apply star_refl. simpl; omega.
  eapply COE with (C := fun x => C(Eunop op x ty)). eauto. 
  eapply leftcontext_compose; eauto. repeat constructor. traceEq.
(* binop left *)
  eapply forever_N_star with (a2 := (esize a1)). apply star_refl. simpl; omega.
  eapply COE with (C := fun x => C(Ebinop op x a2 ty)). eauto. 
  eapply leftcontext_compose; eauto. repeat constructor. traceEq.
(* binop right *)
  destruct (eval_expr_to_steps _ _ _ _ _ _ _ H1 (fun x => C(Ebinop op x a2 ty)) f k)
  as [P [Q R]]. 
  eapply leftcontext_compose; eauto. repeat constructor.
  eapply forever_N_star with (a2 := (esize a2)). eexact R. simpl; omega.
  eapply COE with (C := fun x => C(Ebinop op a1' x ty)). eauto. 
  eapply leftcontext_compose; eauto. repeat constructor. auto. traceEq.
(* cast *)
  eapply forever_N_star with (a2 := (esize a0)). apply star_refl. simpl; omega.
  eapply COE with (C := fun x => C(Ecast x ty)). eauto. 
  eapply leftcontext_compose; eauto. repeat constructor. traceEq.
(* seqand left *)
  eapply forever_N_star with (a2 := (esize a1)). apply star_refl. simpl; omega.
  eapply COE with (C := fun x => C(Eseqand x a2 ty)). eauto. 
  eapply leftcontext_compose; eauto. repeat constructor. traceEq.
(* seqand 2 *)
  destruct (eval_expr_to_steps _ _ _ _ _ _ _ H1 (fun x => C(Eseqand x a2 ty)) f k)
  as [P [Q R]]. 
  eapply leftcontext_compose; eauto. repeat constructor.
  eapply forever_N_plus. eapply plus_right. eexact R. 
  left; eapply step_seqand_true; eauto. rewrite Q; eauto.
  reflexivity. 
  eapply COE with (C := fun x => (C (Eparen (Eparen x type_bool) ty))). eauto.
  eapply leftcontext_compose; eauto. repeat constructor. traceEq.
(* seqor left *)
  eapply forever_N_star with (a2 := (esize a1)). apply star_refl. simpl; omega.
  eapply COE with (C := fun x => C(Eseqor x a2 ty)). eauto. 
  eapply leftcontext_compose; eauto. repeat constructor. traceEq.
(* seqor 2 *)
  destruct (eval_expr_to_steps _ _ _ _ _ _ _ H1 (fun x => C(Eseqor x a2 ty)) f k)
  as [P [Q R]]. 
  eapply leftcontext_compose; eauto. repeat constructor.
  eapply forever_N_plus. eapply plus_right. eexact R. 
  left; eapply step_seqor_false; eauto. rewrite Q; eauto.
  reflexivity. 
  eapply COE with (C := fun x => (C (Eparen (Eparen x type_bool) ty))). eauto.
  eapply leftcontext_compose; eauto. repeat constructor. traceEq.
(* condition top *)
  eapply forever_N_star with (a2 := (esize a1)). apply star_refl. simpl; omega.
  eapply COE with (C := fun x => C(Econdition x a2 a3 ty)). eauto. 
  eapply leftcontext_compose; eauto. repeat constructor. traceEq.
(* condition *)
  destruct (eval_expr_to_steps _ _ _ _ _ _ _ H1 (fun x => C(Econdition x a2 a3 ty)) f k)
  as [P [Q R]]. 
  eapply leftcontext_compose; eauto. repeat constructor.
  eapply forever_N_plus. eapply plus_right. eexact R. 
  left; eapply step_condition; eauto. rewrite Q; eauto.
  reflexivity. 
  eapply COE with (C := fun x => (C (Eparen x ty))). eauto.
  eapply leftcontext_compose; eauto. repeat constructor. traceEq.
(* assign left *)
  eapply forever_N_star with (a2 := (esize a1)). apply star_refl. simpl; omega.
  eapply COE with (C := fun x => C(Eassign x a2 ty)). eauto. 
  eapply leftcontext_compose; eauto. repeat constructor. traceEq.
(* assign right *)
  destruct (eval_expr_to_steps _ _ _ _ _ _ _ H1 (fun x => C(Eassign x a2 ty)) f k)
  as [P [Q R]]. 
  eapply leftcontext_compose; eauto. repeat constructor.
  eapply forever_N_star with (a2 := (esize a2)). eexact R. simpl; omega.
  eapply COE with (C := fun x => C(Eassign a1' x ty)). eauto. 
  eapply leftcontext_compose; eauto. repeat constructor. auto. traceEq.
(* assignop left *)
  eapply forever_N_star with (a2 := (esize a1)). apply star_refl. simpl; omega.
  eapply COE with (C := fun x => C(Eassignop op x a2 tyres ty)). eauto. 
  eapply leftcontext_compose; eauto. repeat constructor. traceEq.
(* assignop right *)
  destruct (eval_expr_to_steps _ _ _ _ _ _ _ H1 (fun x => C(Eassignop op x a2 tyres ty)) f k)
  as [P [Q R]]. 
  eapply leftcontext_compose; eauto. repeat constructor.
  eapply forever_N_star with (a2 := (esize a2)). eexact R. simpl; omega.
  eapply COE with (C := fun x => C(Eassignop op a1' x tyres ty)). eauto. 
  eapply leftcontext_compose; eauto. repeat constructor. auto. traceEq.
(* postincr *)
  eapply forever_N_star with (a2 := (esize a0)). apply star_refl. simpl; omega.
  eapply COE with (C := fun x => C(Epostincr id x ty)). eauto. 
  eapply leftcontext_compose; eauto. repeat constructor. traceEq.
(* comma left *)
  eapply forever_N_star with (a2 := (esize a1)). apply star_refl. simpl; omega.
  eapply COE with (C := fun x => C(Ecomma x a2 ty)). eauto. 
  eapply leftcontext_compose; eauto. repeat constructor. traceEq.
(* comma right *)
  destruct (eval_expr_to_steps _ _ _ _ _ _ _ H1 (fun x => C(Ecomma x a2 (typeof a2))) f k)
  as [P [Q R]]. 
  eapply leftcontext_compose; eauto. repeat constructor.
  eapply forever_N_plus. eapply plus_right. eexact R. 
  left; eapply step_comma; eauto. reflexivity.  
  eapply COE with (C := C); eauto. traceEq.
(* call left *)
  eapply forever_N_star with (a2 := (esize a1)). apply star_refl. simpl; omega.
  eapply COE with (C := fun x => C(Ecall x a2 ty)). eauto. 
  eapply leftcontext_compose; eauto. repeat constructor. traceEq.
(* call right *)
  destruct (eval_expr_to_steps _ _ _ _ _ _ _ H1 (fun x => C(Ecall x a2 ty)) f k)
  as [P [Q R]]. 
  eapply leftcontext_compose; eauto. repeat constructor.
  eapply forever_N_star with (a2 := (esizelist a2)). eexact R. simpl; omega.
  eapply COEL with (al := Enil). eauto. auto. auto. auto. traceEq.
(* call *)
  destruct (eval_expr_to_steps _ _ _ _ _ _ _ H1 (fun x => C(Ecall x rargs ty)) f k)
  as [P [Q R]]. 
  eapply leftcontext_compose; eauto. repeat constructor.
  destruct (eval_exprlist_to_steps _ _ _ _ _ _ H2 rf' Enil ty C f k)
  as [S T]. auto. auto. simpl; auto.
  eapply forever_N_plus. eapply plus_right.
  eapply star_trans. eexact R. eexact T. reflexivity.
  simpl. left; eapply step_call; eauto. congruence. reflexivity. 
  apply COF. eauto. traceEq. 

(* statements *)
  intros. inv H.
(* do *)
  eapply forever_N_plus. apply plus_one; right; constructor. 
  eapply COE with (C := fun x => x); eauto. constructor. traceEq.
(* seq 1 *)
  eapply forever_N_plus. apply plus_one; right; constructor. 
  eapply COS; eauto. traceEq.
(* seq 2 *)
  destruct (exec_stmt_to_steps _ _ _ _ _ _ H0 f (Kseq s2 k)) as [S1 [A1 B1]]; auto. inv B1.
  eapply forever_N_plus. 
  eapply plus_left. right; constructor. 
  eapply star_right. eauto. right; constructor.
  reflexivity. reflexivity. 
  eapply COS; eauto. traceEq.
(* if test *)
  eapply forever_N_plus. apply plus_one; right; constructor. 
  eapply COE with (C := fun x => x); eauto. constructor. traceEq.
(* if true/false *)
  eapply forever_N_plus.
  eapply plus_left. right; constructor.
  eapply star_right. eapply eval_expression_to_steps; eauto.
  right. eapply step_ifthenelse_2 with (b := b). auto. 
  reflexivity. reflexivity.
  eapply COS; eauto. traceEq.
(* return some *)
  eapply forever_N_plus. apply plus_one; right; constructor.
  eapply COE with (C := fun x => x); eauto. constructor. traceEq.
(* while test *)
  eapply forever_N_plus. apply plus_one; right; constructor.
  eapply COE with (C := fun x => x); eauto. constructor. traceEq.
(* while body *)
  eapply forever_N_plus.
  eapply plus_left. right; constructor. 
  eapply star_right. eapply eval_expression_to_steps; eauto.
  right; apply step_while_true; auto.
  reflexivity. reflexivity.
  eapply COS; eauto. traceEq.
(* while loop *)
  destruct (exec_stmt_to_steps _ _ _ _ _ _ H2 f (Kwhile2 a s0 k)) as [S1 [A1 B1]]; auto.
  eapply forever_N_plus.
  eapply plus_left. right; constructor. 
  eapply star_trans. eapply eval_expression_to_steps; eauto.
  eapply star_left. right; apply step_while_true; auto.
  eapply star_trans. eexact A1. 
  inv H3; inv B1; apply star_one; right; apply step_skip_or_continue_while; auto.
  reflexivity. reflexivity. reflexivity. reflexivity.
  eapply COS; eauto. traceEq.
(* dowhile body *)
  eapply forever_N_plus. apply plus_one; right; constructor.
  eapply COS; eauto. traceEq.
(* dowhile test *)
  destruct (exec_stmt_to_steps _ _ _ _ _ _ H0 f (Kdowhile1 a s0 k)) as [S1 [A1 B1]]; auto.
  eapply forever_N_plus.
  eapply plus_left. right; constructor. 
  eapply star_trans. eexact A1.
  eapply star_one. right. inv H1; inv B1; apply step_skip_or_continue_dowhile; auto.
  reflexivity. reflexivity.
  eapply COE with (C := fun x => x); eauto. constructor. traceEq.
(* dowhile loop *)
  destruct (exec_stmt_to_steps _ _ _ _ _ _ H0 f (Kdowhile1 a s0 k)) as [S1 [A1 B1]]; auto.
  eapply forever_N_plus.
  eapply plus_left. right; constructor. 
  eapply star_trans. eexact A1.
  eapply star_left. right. inv H1; inv B1; apply step_skip_or_continue_dowhile; auto.
  eapply star_right. eapply eval_expression_to_steps; eauto.
  right; apply step_dowhile_true; auto.
  reflexivity. reflexivity. reflexivity. reflexivity.
  eapply COS; eauto. traceEq.
(* for start 1 *)
  assert (a1 <> Sskip). red; intros; subst a1; inv H0.
  eapply forever_N_plus. apply plus_one. right. constructor. auto.
  eapply COS; eauto. traceEq.
(* for start 2 *)
  destruct (exec_stmt_to_steps _ _ _ _ _ _ H0 f (Kseq (Sfor Sskip a2 a3 s0) k)) as [S1 [A1 B1]]; auto. inv B1.
  eapply forever_N_plus.
  eapply plus_left. right; constructor. auto. 
  eapply star_trans. eexact A1.
  apply star_one. right; constructor. 
  reflexivity. reflexivity.
  eapply COS; eauto. traceEq.
(* for test *)
  eapply forever_N_plus. apply plus_one; right; apply step_for.
  eapply COE with (C := fun x => x); eauto. constructor. traceEq.
(* for body *)
  eapply forever_N_plus.
  eapply plus_left. right; apply step_for.
  eapply star_right. eapply eval_expression_to_steps; eauto.
  right; apply step_for_true; auto.
  reflexivity. reflexivity.
  eapply COS; eauto. traceEq.
(* for next *)
  destruct (exec_stmt_to_steps _ _ _ _ _ _ H2 f (Kfor3 a2 a3 s0 k)) as [S1 [A1 B1]]; auto.
  eapply forever_N_plus.
  eapply plus_left. right; apply step_for.
  eapply star_trans. eapply eval_expression_to_steps; eauto.
  eapply star_left. right; apply step_for_true; auto.
  eapply star_trans. eexact A1. 
  inv H3; inv B1; apply star_one; right; apply step_skip_or_continue_for3; auto.
  reflexivity. reflexivity. reflexivity. reflexivity.
  eapply COS; eauto. traceEq.
(* for loop *)
  destruct (exec_stmt_to_steps _ _ _ _ _ _ H2 f (Kfor3 a2 a3 s0 k)) as [S1 [A1 B1]]; auto.
  destruct (exec_stmt_to_steps _ _ _ _ _ _ H4 f (Kfor4 a2 a3 s0 k)) as [S2 [A2 B2]]; auto. inv B2.
  eapply forever_N_plus.
  eapply plus_left. right; apply step_for.
  eapply star_trans. eapply eval_expression_to_steps; eauto.
  eapply star_left. right; apply step_for_true; auto.
  eapply star_trans. eexact A1.
  eapply star_left.
  inv H3; inv B1; right; apply step_skip_or_continue_for3; auto.
  eapply star_right. eexact A2. 
  right; constructor.
  reflexivity. reflexivity. reflexivity. reflexivity. reflexivity. reflexivity.
  eapply COS; eauto. traceEq.
(* switch expr *)
  eapply forever_N_plus. apply plus_one; right; constructor.
  eapply COE with (C := fun x => x); eauto. constructor. traceEq.
(* switch body *)
  eapply forever_N_plus.
  eapply plus_left. right; constructor. 
  eapply star_right. eapply eval_expression_to_steps; eauto. 
  right; constructor. 
  reflexivity. reflexivity. 
  eapply COS; eauto. traceEq. 

(* funcalls *)
  intros. inv H.
  eapply forever_N_plus. apply plus_one. right; econstructor; eauto. 
  eapply COS; eauto. traceEq.
Qed.

End BIGSTEP.

(** ** Whole-program behaviors, big-step style. *)

Inductive bigstep_program_terminates (p: program): trace -> int -> Prop :=
  | bigstep_program_terminates_intro: forall b f m0 m1 t r,
      let ge := Genv.globalenv p in 
      Genv.init_mem p = Some m0 ->
      Genv.find_symbol ge p.(prog_main) = Some b ->
      Genv.find_funct_ptr ge b = Some f ->
      type_of_fundef f = Tfunction Tnil type_int32s cc_default ->
      eval_funcall ge m0 f nil t m1 (Vint r) ->
      bigstep_program_terminates p t r.

Inductive bigstep_program_diverges (p: program): traceinf -> Prop :=
  | bigstep_program_diverges_intro: forall b f m0 t,
      let ge := Genv.globalenv p in 
      Genv.init_mem p = Some m0 ->
      Genv.find_symbol ge p.(prog_main) = Some b ->
      Genv.find_funct_ptr ge b = Some f ->
      type_of_fundef f = Tfunction Tnil type_int32s cc_default ->
      evalinf_funcall ge m0 f nil t ->
      bigstep_program_diverges p t.

Definition bigstep_semantics (p: program) :=
  Bigstep_semantics (bigstep_program_terminates p) (bigstep_program_diverges p).

Theorem bigstep_semantics_sound:
  forall p, bigstep_sound (bigstep_semantics p) (semantics p).
Proof.
  intros; constructor; intros.
(* termination *)
  inv H. econstructor; econstructor. 
  split. econstructor; eauto.
  split. apply eval_funcall_to_steps. eauto. red; auto.
  econstructor.
(* divergence *)
  inv H. econstructor.
  split. econstructor; eauto.
  eapply forever_N_forever with (order := lt).
  apply lt_wf.
  eapply evalinf_funcall_steps; eauto.
Qed.