1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
|
(** * Correctness of the C front end, part 3: semantic preservation *)
Require Import Coqlib.
Require Import Maps.
Require Import Integers.
Require Import Floats.
Require Import AST.
Require Import Values.
Require Import Events.
Require Import Mem.
Require Import Globalenvs.
Require Import Csyntax.
Require Import Csem.
Require Import Ctyping.
Require Import Csharpminor.
Require Import Cshmgen.
Require Import Cshmgenproof1.
Require Import Cshmgenproof2.
Section CORRECTNESS.
Variable prog: Csyntax.program.
Variable tprog: Csharpminor.program.
Hypothesis WTPROG: wt_program prog.
Hypothesis TRANSL: transl_program prog = Some tprog.
Let ge := Genv.globalenv prog.
Let tge := Genv.globalenv tprog.
Lemma symbols_preserved:
forall s, Genv.find_symbol tge s = Genv.find_symbol ge s.
Proof.
intros. unfold ge, tge.
apply Genv.find_symbol_transf_partial2 with transl_fundef transl_globvar.
auto.
Qed.
Lemma functions_translated:
forall v f,
Genv.find_funct ge v = Some f ->
exists tf, Genv.find_funct tge v = Some tf /\ transl_fundef f = Some tf.
Proof.
intros.
generalize (Genv.find_funct_transf_partial2 transl_fundef transl_globvar TRANSL H).
intros [A B].
destruct (transl_fundef f). exists f0; split. assumption. auto. congruence.
Qed.
Lemma function_ptr_translated:
forall b f,
Genv.find_funct_ptr ge b = Some f ->
exists tf, Genv.find_funct_ptr tge b = Some tf /\ transl_fundef f = Some tf.
Proof.
intros.
generalize (Genv.find_funct_ptr_transf_partial2 transl_fundef transl_globvar TRANSL H).
intros [A B].
destruct (transl_fundef f). exists f0; split. assumption. auto. congruence.
Qed.
Lemma functions_well_typed:
forall v f,
Genv.find_funct ge v = Some f ->
wt_fundef (global_typenv prog) f.
Proof.
intros. inversion WTPROG.
apply (@Genv.find_funct_prop _ _ (wt_fundef (global_typenv prog)) prog v f).
intros. apply wt_program_funct with id. assumption.
assumption.
Qed.
Lemma function_ptr_well_typed:
forall b f,
Genv.find_funct_ptr ge b = Some f ->
wt_fundef (global_typenv prog) f.
Proof.
intros. inversion WTPROG.
apply (@Genv.find_funct_ptr_prop _ _ (wt_fundef (global_typenv prog)) prog b f).
intros. apply wt_program_funct with id. assumption.
assumption.
Qed.
(** ** Matching between environments *)
Definition match_var_kind (ty: type) (vk: var_kind) : Prop :=
match access_mode ty with
| By_value chunk => vk = Vscalar chunk
| _ => True
end.
Record match_env (tyenv: typenv) (e: Csem.env) (te: Csharpminor.env) : Prop :=
mk_match_env {
me_local:
forall id b ty,
e!id = Some b -> tyenv!id = Some ty ->
exists vk, match_var_kind ty vk /\ te!id = Some (b, vk);
me_global:
forall id ty,
e!id = None -> tyenv!id = Some ty ->
te!id = None /\
(forall chunk, access_mode ty = By_value chunk -> (global_var_env tprog)!id = Some (Vscalar chunk))
}.
Definition match_globalenv (tyenv: typenv) (gv: gvarenv): Prop :=
forall id ty chunk,
tyenv!id = Some ty -> access_mode ty = By_value chunk ->
gv!id = Some (Vscalar chunk).
Lemma match_globalenv_match_env_empty:
forall tyenv,
match_globalenv tyenv (global_var_env tprog) ->
match_env tyenv Csem.empty_env Csharpminor.empty_env.
Proof.
intros. unfold Csem.empty_env, Csharpminor.empty_env.
constructor.
intros until ty. repeat rewrite PTree.gempty. congruence.
intros. split.
apply PTree.gempty.
intros. red in H. eauto.
Qed.
Lemma match_var_kind_of_type:
forall ty vk, var_kind_of_type ty = Some vk -> match_var_kind ty vk.
Proof.
intros; red.
caseEq (access_mode ty); auto.
intros chunk AM. generalize (var_kind_by_value _ _ AM). congruence.
Qed.
Lemma match_env_alloc_variables:
forall e1 m1 vars e2 m2 lb,
Csem.alloc_variables e1 m1 vars e2 m2 lb ->
forall tyenv te1 tvars,
match_env tyenv e1 te1 ->
transl_vars vars = Some tvars ->
exists te2,
Csharpminor.alloc_variables te1 m1 tvars te2 m2 lb
/\ match_env (Ctyping.add_vars tyenv vars) e2 te2.
Proof.
induction 1; intros.
simpl in H0. inversion H0; subst; clear H0.
exists te1; split. constructor. simpl. auto.
generalize H2. simpl.
caseEq (var_kind_of_type ty); [intros vk VK | congruence].
caseEq (transl_vars vars); [intros tvrs TVARS | congruence].
intro EQ; inversion EQ; subst tvars; clear EQ.
set (te2 := PTree.set id (b1, vk) te1).
assert (match_env (add_var tyenv (id, ty)) (PTree.set id b1 e) te2).
inversion H1. unfold te2, add_var. constructor.
(* me_local *)
intros until ty0. repeat rewrite PTree.gsspec. simpl. destruct (peq id0 id); intros.
subst id0. exists vk; split.
apply match_var_kind_of_type. congruence. congruence.
auto.
(* me_global *)
intros until ty0. repeat rewrite PTree.gsspec. simpl. destruct (peq id0 id); intros.
discriminate.
auto.
destruct (IHalloc_variables _ _ _ H3 TVARS) as [te3 [ALLOC MENV]].
exists te3; split.
econstructor; eauto.
rewrite (sizeof_var_kind_of_type _ _ VK). auto.
auto.
Qed.
Lemma bind_parameters_match_rec:
forall e m1 vars vals m2,
Csem.bind_parameters e m1 vars vals m2 ->
forall tyenv te tvars,
(forall id ty, In (id, ty) vars -> tyenv!id = Some ty) ->
match_env tyenv e te ->
transl_params vars = Some tvars ->
Csharpminor.bind_parameters te m1 tvars vals m2.
Proof.
induction 1; intros.
simpl in H1. inversion H1. constructor.
generalize H4; clear H4; simpl.
caseEq (chunk_of_type ty); [intros chunk CHK | congruence].
caseEq (transl_params params); [intros tparams TPARAMS | congruence].
intro EQ; inversion EQ; clear EQ; subst tvars.
generalize CHK. unfold chunk_of_type.
caseEq (access_mode ty); intros; try discriminate.
inversion CHK0; clear CHK0; subst m0.
unfold store_value_of_type in H0. rewrite H4 in H0.
apply bind_parameters_cons with b m1.
assert (tyenv!id = Some ty). apply H2. apply in_eq.
destruct (me_local _ _ _ H3 _ _ _ H H5) as [vk [A B]].
red in A; rewrite H4 in A. congruence.
assumption.
apply IHbind_parameters with tyenv; auto.
intros. apply H2. apply in_cons; auto.
Qed.
Lemma tyenv_add_vars_norepet:
forall vars tyenv,
list_norepet (var_names vars) ->
(forall id ty,
In (id, ty) vars -> (Ctyping.add_vars tyenv vars)!id = Some ty)
/\
(forall id,
~In id (var_names vars) -> (Ctyping.add_vars tyenv vars)!id = tyenv!id).
Proof.
induction vars; simpl; intros.
tauto.
destruct a as [id1 ty1]. simpl in *. inversion H; clear H; subst.
destruct (IHvars (add_var tyenv (id1, ty1)) H3) as [A B].
split; intros.
destruct H. inversion H; subst id1 ty1; clear H.
rewrite B. unfold add_var. simpl. apply PTree.gss. auto.
auto.
rewrite B. unfold add_var; simpl. apply PTree.gso. apply sym_not_equal; tauto. tauto.
Qed.
Lemma bind_parameters_match:
forall e m1 params vals vars m2 tyenv tvars te,
Csem.bind_parameters e m1 params vals m2 ->
list_norepet (var_names params ++ var_names vars) ->
match_env (Ctyping.add_vars tyenv (params ++ vars)) e te ->
transl_params params = Some tvars ->
Csharpminor.bind_parameters te m1 tvars vals m2.
Proof.
intros.
eapply bind_parameters_match_rec; eauto.
assert (list_norepet (var_names (params ++ vars))).
unfold var_names. rewrite List.map_app. assumption.
destruct (tyenv_add_vars_norepet _ tyenv H3) as [A B].
intros. apply A. apply List.in_or_app. auto.
Qed.
Definition globvarenv
(gv: gvarenv)
(vars: list (ident * list init_data * var_kind)) :=
List.fold_left
(fun gve x => match x with (id, init, k) => PTree.set id k gve end)
vars gv.
Definition type_not_by_value (ty: type) : Prop :=
match access_mode ty with
| By_value _ => False
| _ => True
end.
Lemma add_global_funs_charact:
forall fns tyenv,
(forall id ty, tyenv!id = Some ty -> type_not_by_value ty) ->
(forall id ty, (add_global_funs tyenv fns)!id = Some ty -> type_not_by_value ty).
Proof.
induction fns; simpl; intros.
eauto.
apply IHfns with (add_global_fun tyenv a) id.
intros until ty0. destruct a as [id1 fn1].
unfold add_global_fun; simpl. rewrite PTree.gsspec.
destruct (peq id0 id1).
intros. inversion H1.
unfold type_of_fundef. destruct fn1; exact I.
eauto.
auto.
Qed.
Definition global_fun_typenv :=
add_global_funs (PTree.empty type) prog.(prog_funct).
Lemma add_global_funs_match_global_env:
match_globalenv global_fun_typenv (PTree.empty var_kind).
Proof.
intros; red; intros.
assert (type_not_by_value ty).
apply add_global_funs_charact with (prog_funct prog) (PTree.empty type) id.
intros until ty0. rewrite PTree.gempty. congruence.
assumption.
red in H1. rewrite H0 in H1. contradiction.
Qed.
Lemma add_global_var_match_globalenv:
forall vars tenv gv tvars,
match_globalenv tenv gv ->
map_partial transl_globvar vars = Some tvars ->
match_globalenv (add_global_vars tenv vars) (globvarenv gv tvars).
Proof.
induction vars; simpl.
intros. inversion H0. assumption.
destruct a as [[id init] ty]. intros until tvars; intro.
caseEq (transl_globvar ty); try congruence. intros vk VK.
caseEq (map_partial transl_globvar vars); try congruence. intros tvars' EQ1 EQ2.
inversion EQ2; clear EQ2. simpl.
apply IHvars; auto.
red. intros until chunk. repeat rewrite PTree.gsspec.
destruct (peq id0 id); intros.
inversion H0; clear H0; subst id0 ty0.
generalize (var_kind_by_value _ _ H2).
unfold transl_globvar in VK. congruence.
red in H. eauto.
Qed.
Lemma match_global_typenv:
match_globalenv (global_typenv prog) (global_var_env tprog).
Proof.
change (global_var_env tprog)
with (globvarenv (PTree.empty var_kind) (prog_vars tprog)).
unfold global_typenv.
apply add_global_var_match_globalenv.
apply add_global_funs_match_global_env.
unfold transl_program in TRANSL. functional inversion TRANSL. auto.
Qed.
(** ** Variable accessors *)
Lemma var_get_correct:
forall e m id ty loc ofs v tyenv code te le,
Csem.eval_lvalue ge e m (Expr (Csyntax.Evar id) ty) E0 m loc ofs ->
load_value_of_type ty m loc ofs = Some v ->
wt_expr tyenv (Expr (Csyntax.Evar id) ty) ->
var_get id ty = Some code ->
match_env tyenv e te ->
eval_expr tprog le te m code E0 m v.
Proof.
intros. inversion H1; subst; clear H1.
unfold load_value_of_type in H0.
unfold var_get in H2.
caseEq (access_mode ty).
(* access mode By_value *)
intros chunk ACC. rewrite ACC in H0. rewrite ACC in H2.
inversion H2; clear H2; subst.
inversion H; subst; clear H.
(* local variable *)
exploit me_local; eauto. intros [vk [A B]].
red in A; rewrite ACC in A.
subst vk.
eapply eval_Evar.
eapply eval_var_ref_local. eauto. assumption.
(* global variable *)
exploit me_global; eauto. intros [A B].
eapply eval_Evar.
eapply eval_var_ref_global. auto.
fold tge. rewrite symbols_preserved. eauto.
eauto. assumption.
(* access mode By_reference *)
intros ACC. rewrite ACC in H0. rewrite ACC in H2.
inversion H0; clear H0; subst.
inversion H2; clear H2; subst.
inversion H; subst; clear H.
(* local variable *)
exploit me_local; eauto. intros [vk [A B]].
eapply eval_Eaddrof.
eapply eval_var_addr_local. eauto.
(* global variable *)
exploit me_global; eauto. intros [A B].
eapply eval_Eaddrof.
eapply eval_var_addr_global. auto.
fold tge. rewrite symbols_preserved. eauto.
(* access mode By_nothing *)
intros. rewrite H1 in H0; discriminate.
Qed.
Lemma var_set_correct:
forall e m id ty m1 loc ofs t1 m2 v t2 m3 tyenv code te rhs,
Csem.eval_lvalue ge e m (Expr (Csyntax.Evar id) ty) t1 m1 loc ofs ->
store_value_of_type ty m2 loc ofs v = Some m3 ->
wt_expr tyenv (Expr (Csyntax.Evar id) ty) ->
var_set id ty rhs = Some code ->
match_env tyenv e te ->
eval_expr tprog nil te m1 rhs t2 m2 v ->
exec_stmt tprog te m code (t1 ** t2) m3 Out_normal.
Proof.
intros. inversion H1; subst; clear H1.
unfold store_value_of_type in H0.
unfold var_set in H2.
caseEq (access_mode ty).
(* access mode By_value *)
intros chunk ACC. rewrite ACC in H0. rewrite ACC in H2.
inversion H2; clear H2; subst.
inversion H; subst; clear H; rewrite E0_left.
(* local variable *)
exploit me_local; eauto. intros [vk [A B]].
red in A; rewrite ACC in A; subst vk.
eapply eval_Sassign. eauto.
eapply eval_var_ref_local. eauto. assumption.
(* global variable *)
exploit me_global; eauto. intros [A B].
eapply eval_Sassign. eauto.
eapply eval_var_ref_global. auto.
fold tge. rewrite symbols_preserved. eauto.
eauto. assumption.
(* access mode By_reference *)
intros ACC. rewrite ACC in H0. discriminate.
(* access mode By_nothing *)
intros. rewrite H1 in H0; discriminate.
Qed.
(** ** Proof of semantic simulation *)
(** Inductive properties *)
Definition eval_expr_prop
(e: Csem.env) (m1: mem) (a: Csyntax.expr) (t: trace) (m2: mem) (v: val) : Prop :=
forall tyenv ta te tle
(WT: wt_expr tyenv a)
(TR: transl_expr a = Some ta)
(MENV: match_env tyenv e te),
Csharpminor.eval_expr tprog tle te m1 ta t m2 v.
Definition eval_lvalue_prop
(e: Csem.env) (m1: mem) (a: Csyntax.expr) (t: trace)
(m2: mem) (b: block) (ofs: int) : Prop :=
forall tyenv ta te tle
(WT: wt_expr tyenv a)
(TR: transl_lvalue a = Some ta)
(MENV: match_env tyenv e te),
Csharpminor.eval_expr tprog tle te m1 ta t m2 (Vptr b ofs).
Definition eval_exprlist_prop
(e: Csem.env) (m1: mem) (al: Csyntax.exprlist) (t: trace)
(m2: mem) (vl: list val) : Prop :=
forall tyenv tal te tle
(WT: wt_exprlist tyenv al)
(TR: transl_exprlist al = Some tal)
(MENV: match_env tyenv e te),
Csharpminor.eval_exprlist tprog tle te m1 tal t m2 vl.
Definition transl_outcome (nbrk ncnt: nat) (out: Csem.outcome): Csharpminor.outcome :=
match out with
| Csem.Out_normal => Csharpminor.Out_normal
| Csem.Out_break => Csharpminor.Out_exit nbrk
| Csem.Out_continue => Csharpminor.Out_exit ncnt
| Csem.Out_return vopt => Csharpminor.Out_return vopt
end.
Definition exec_stmt_prop
(e: Csem.env) (m1: mem) (s: Csyntax.statement) (t: trace)
(m2: mem) (out: Csem.outcome) : Prop :=
forall tyenv nbrk ncnt ts te
(WT: wt_stmt tyenv s)
(TR: transl_statement nbrk ncnt s = Some ts)
(MENV: match_env tyenv e te),
Csharpminor.exec_stmt tprog te m1 ts t m2 (transl_outcome nbrk ncnt out).
Definition exec_lblstmts_prop
(e: Csem.env) (m1: mem) (s: Csyntax.labeled_statements)
(t: trace) (m2: mem) (out: Csem.outcome) : Prop :=
forall tyenv nbrk ncnt body ts te m0 t0
(WT: wt_lblstmts tyenv s)
(TR: transl_lblstmts (lblstmts_length s)
(1 + lblstmts_length s + ncnt)
s body = Some ts)
(MENV: match_env tyenv e te)
(BODY: Csharpminor.exec_stmt tprog te m0 body t0 m1 Out_normal),
Csharpminor.exec_stmt tprog te m0 ts (t0 ** t) m2
(transl_outcome nbrk ncnt (outcome_switch out)).
Definition eval_funcall_prop
(m1: mem) (f: Csyntax.fundef) (params: list val)
(t: trace) (m2: mem) (res: val) : Prop :=
forall tf
(WT: wt_fundef (global_typenv prog) f)
(TR: transl_fundef f = Some tf),
Csharpminor.eval_funcall tprog m1 tf params t m2 res.
(*
Set Printing Depth 100.
Check (Csem.eval_funcall_ind6 ge eval_expr_prop eval_lvalue_prop
eval_exprlist_prop exec_stmt_prop exec_lblstmts_prop eval_funcall_prop).
*)
Lemma transl_Econst_int_correct:
(forall (e : Csem.env) (m : mem) (i : int) (ty : type),
eval_expr_prop e m (Expr (Econst_int i) ty) E0 m (Vint i)).
Proof.
intros; red; intros.
monadInv TR. subst ta. apply make_intconst_correct.
Qed.
Lemma transl_Econst_float_correct:
(forall (e : Csem.env) (m : mem) (f0 : float) (ty : type),
eval_expr_prop e m (Expr (Econst_float f0) ty) E0 m (Vfloat f0)).
Proof.
intros; red; intros.
monadInv TR. subst ta. apply make_floatconst_correct.
Qed.
Lemma transl_Elvalue_correct:
(forall (e : Csem.env) (m : mem) (a : expr_descr) (ty : type)
(t : trace) (m1 : mem) (loc : block) (ofs : int) (v : val),
eval_lvalue ge e m (Expr a ty) t m1 loc ofs ->
eval_lvalue_prop e m (Expr a ty) t m1 loc ofs ->
load_value_of_type ty m1 loc ofs = Some v ->
eval_expr_prop e m (Expr a ty) t m1 v).
Proof.
intros; red; intros.
exploit transl_expr_lvalue; eauto.
intros [[id [EQ VARGET]] | [tb [TRLVAL MKLOAD]]].
(* Case a is a variable *)
subst a.
assert (t = E0 /\ m1 = m). inversion H; auto.
destruct H2; subst t m1.
eapply var_get_correct; eauto.
(* Case a is another lvalue *)
eapply make_load_correct; eauto.
Qed.
Lemma transl_Eaddrof_correct:
(forall (e : Csem.env) (m : mem) (a : Csyntax.expr) (t : trace)
(m1 : mem) (loc : block) (ofs : int) (ty : type),
eval_lvalue ge e m a t m1 loc ofs ->
eval_lvalue_prop e m a t m1 loc ofs ->
eval_expr_prop e m (Expr (Csyntax.Eaddrof a) ty) t m1 (Vptr loc ofs)).
Proof.
intros; red; intros. inversion WT; clear WT; subst. simpl in TR.
eauto.
Qed.
Lemma transl_Esizeof_correct:
(forall (e : Csem.env) (m : mem) (ty' ty : type),
eval_expr_prop e m (Expr (Esizeof ty') ty) E0 m
(Vint (Int.repr (Csyntax.sizeof ty')))).
Proof.
intros; red; intros. monadInv TR. subst ta. apply make_intconst_correct.
Qed.
Lemma transl_Eunop_correct:
(forall (e : Csem.env) (m : mem) (op : unary_operation)
(a : Csyntax.expr) (ty : type) (t : trace) (m1 : mem) (v1 v : val),
Csem.eval_expr ge e m a t m1 v1 ->
eval_expr_prop e m a t m1 v1 ->
sem_unary_operation op v1 (typeof a) = Some v ->
eval_expr_prop e m (Expr (Eunop op a) ty) t m1 v).
Proof.
intros; red; intros.
inversion WT; clear WT; subst.
monadInv TR.
eapply transl_unop_correct; eauto.
Qed.
Lemma transl_Ebinop_correct:
(forall (e : Csem.env) (m : mem) (op : binary_operation)
(a1 a2 : Csyntax.expr) (ty : type) (t1 : trace) (m1 : mem)
(v1 : val) (t2 : trace) (m2 : mem) (v2 v : val),
Csem.eval_expr ge e m a1 t1 m1 v1 ->
eval_expr_prop e m a1 t1 m1 v1 ->
Csem.eval_expr ge e m1 a2 t2 m2 v2 ->
eval_expr_prop e m1 a2 t2 m2 v2 ->
sem_binary_operation op v1 (typeof a1) v2 (typeof a2) m2 = Some v ->
eval_expr_prop e m (Expr (Ebinop op a1 a2) ty) (t1 ** t2) m2 v).
Proof.
intros; red; intros.
inversion WT; clear WT; subst.
monadInv TR.
eapply transl_binop_correct; eauto.
Qed.
Lemma transl_Eorbool_1_correct:
(forall (e : Csem.env) (m : mem) (a1 a2 : Csyntax.expr) (t : trace)
(m1 : mem) (v1 : val) (ty : type),
Csem.eval_expr ge e m a1 t m1 v1 ->
eval_expr_prop e m a1 t m1 v1 ->
is_true v1 (typeof a1) ->
eval_expr_prop e m (Expr (Eorbool a1 a2) ty) t m1 Vtrue).
Proof.
intros; red; intros. inversion WT; clear WT; subst. monadInv TR.
rewrite <- H3; unfold make_orbool.
exploit make_boolean_correct_true; eauto. intros [vb [EVAL ISTRUE]].
eapply eval_Econdition_true; eauto.
unfold Vtrue; apply make_intconst_correct. traceEq.
Qed.
Lemma transl_Eorbool_2_correct:
(forall (e : Csem.env) (m : mem) (a1 a2 : Csyntax.expr) (ty : type)
(t1 : trace) (m1 : mem) (v1 : val) (t2 : trace) (m2 : mem)
(v2 v : val),
Csem.eval_expr ge e m a1 t1 m1 v1 ->
eval_expr_prop e m a1 t1 m1 v1 ->
is_false v1 (typeof a1) ->
Csem.eval_expr ge e m1 a2 t2 m2 v2 ->
eval_expr_prop e m1 a2 t2 m2 v2 ->
bool_of_val v2 (typeof a2) v ->
eval_expr_prop e m (Expr (Eorbool a1 a2) ty) (t1 ** t2) m2 v).
Proof.
intros; red; intros. inversion WT; clear WT; subst. monadInv TR.
rewrite <- H6; unfold make_orbool.
exploit make_boolean_correct_false. eapply H0; eauto. eauto. intros [vb [EVAL ISFALSE]].
eapply eval_Econdition_false; eauto.
inversion H4; subst.
exploit make_boolean_correct_true. eapply H3; eauto. eauto. intros [vc [EVAL' ISTRUE']].
eapply eval_Econdition_true; eauto.
unfold Vtrue; apply make_intconst_correct. traceEq.
exploit make_boolean_correct_false. eapply H3; eauto. eauto. intros [vc [EVAL' ISFALSE']].
eapply eval_Econdition_false; eauto.
unfold Vfalse; apply make_intconst_correct. traceEq.
Qed.
Lemma transl_Eandbool_1_correct:
(forall (e : Csem.env) (m : mem) (a1 a2 : Csyntax.expr) (t : trace)
(m1 : mem) (v1 : val) (ty : type),
Csem.eval_expr ge e m a1 t m1 v1 ->
eval_expr_prop e m a1 t m1 v1 ->
is_false v1 (typeof a1) ->
eval_expr_prop e m (Expr (Eandbool a1 a2) ty) t m1 Vfalse).
Proof.
intros; red; intros. inversion WT; clear WT; subst. monadInv TR.
rewrite <- H3; unfold make_andbool.
exploit make_boolean_correct_false; eauto. intros [vb [EVAL ISFALSE]].
eapply eval_Econdition_false; eauto.
unfold Vfalse; apply make_intconst_correct. traceEq.
Qed.
Lemma transl_Eandbool_2_correct:
(forall (e : Csem.env) (m : mem) (a1 a2 : Csyntax.expr) (ty : type)
(t1 : trace) (m1 : mem) (v1 : val) (t2 : trace) (m2 : mem)
(v2 v : val),
Csem.eval_expr ge e m a1 t1 m1 v1 ->
eval_expr_prop e m a1 t1 m1 v1 ->
is_true v1 (typeof a1) ->
Csem.eval_expr ge e m1 a2 t2 m2 v2 ->
eval_expr_prop e m1 a2 t2 m2 v2 ->
bool_of_val v2 (typeof a2) v ->
eval_expr_prop e m (Expr (Eandbool a1 a2) ty) (t1 ** t2) m2 v).
Proof.
intros; red; intros. inversion WT; clear WT; subst. monadInv TR.
rewrite <- H6; unfold make_andbool.
exploit make_boolean_correct_true. eapply H0; eauto. eauto. intros [vb [EVAL ISTRUE]].
eapply eval_Econdition_true; eauto.
inversion H4; subst.
exploit make_boolean_correct_true. eapply H3; eauto. eauto. intros [vc [EVAL' ISTRUE']].
eapply eval_Econdition_true; eauto.
unfold Vtrue; apply make_intconst_correct. traceEq.
exploit make_boolean_correct_false. eapply H3; eauto. eauto. intros [vc [EVAL' ISFALSE']].
eapply eval_Econdition_false; eauto.
unfold Vfalse; apply make_intconst_correct. traceEq.
Qed.
Lemma transl_Ecast_correct:
(forall (e : Csem.env) (m : mem) (a : Csyntax.expr) (ty : type)
(t : trace) (m1 : mem) (v1 v : val),
Csem.eval_expr ge e m a t m1 v1 ->
eval_expr_prop e m a t m1 v1 ->
cast v1 (typeof a) ty v ->
eval_expr_prop e m (Expr (Ecast ty a) ty) t m1 v).
Proof.
intros; red; intros. inversion WT; clear WT; subst. monadInv TR. subst ta.
eapply make_cast_correct; eauto.
Qed.
Lemma transl_Ecall_correct:
(forall (e : Csem.env) (m : mem) (a : Csyntax.expr)
(bl : Csyntax.exprlist) (ty : type) (m3 : mem) (vres : val)
(t1 : trace) (m1 : mem) (vf : val) (t2 : trace) (m2 : mem)
(vargs : list val) (f : Csyntax.fundef) (t3 : trace),
Csem.eval_expr ge e m a t1 m1 vf ->
eval_expr_prop e m a t1 m1 vf ->
Csem.eval_exprlist ge e m1 bl t2 m2 vargs ->
eval_exprlist_prop e m1 bl t2 m2 vargs ->
Genv.find_funct ge vf = Some f ->
type_of_fundef f = typeof a ->
Csem.eval_funcall ge m2 f vargs t3 m3 vres ->
eval_funcall_prop m2 f vargs t3 m3 vres ->
eval_expr_prop e m (Expr (Csyntax.Ecall a bl) ty) (t1 ** t2 ** t3) m3
vres).
Proof.
intros; red; intros.
inversion WT; clear WT; subst.
simpl in TR.
caseEq (classify_fun (typeof a)).
2: intros; rewrite H7 in TR; discriminate.
intros targs tres EQ. rewrite EQ in TR.
monadInv TR. clear TR. subst ta.
rewrite <- H4 in EQ.
exploit functions_translated; eauto. intros [tf [FIND TRL]].
econstructor.
eapply H0; eauto.
eapply H2; eauto.
eexact FIND.
eapply transl_fundef_sig1; eauto.
eapply H6; eauto.
eapply functions_well_typed; eauto.
auto.
Qed.
Lemma transl_Evar_local_correct:
(forall (e : Csem.env) (m : mem) (id : positive) (l : block)
(ty : type),
e ! id = Some l ->
eval_lvalue_prop e m (Expr (Csyntax.Evar id) ty) E0 m l Int.zero).
Proof.
intros; red; intros. inversion WT; clear WT; subst. monadInv TR. subst ta.
exploit (me_local _ _ _ MENV); eauto. intros [vk [A B]].
econstructor. eapply eval_var_addr_local. eauto.
Qed.
Lemma transl_Evar_global_correct:
(forall (e : PTree.t block) (m : mem) (id : positive) (l : block)
(ty : type),
e ! id = None ->
Genv.find_symbol ge id = Some l ->
eval_lvalue_prop e m (Expr (Csyntax.Evar id) ty) E0 m l Int.zero).
Proof.
intros; red; intros. inversion WT; clear WT; subst. monadInv TR. subst ta.
exploit (me_global _ _ _ MENV); eauto. intros [A B].
econstructor. eapply eval_var_addr_global. eauto.
rewrite symbols_preserved. auto.
Qed.
Lemma transl_Ederef_correct:
(forall (e : Csem.env) (m m1 : mem) (a : Csyntax.expr) (t : trace)
(ofs : int) (ty : type) (l : block),
Csem.eval_expr ge e m a t m1 (Vptr l ofs) ->
eval_expr_prop e m a t m1 (Vptr l ofs) ->
eval_lvalue_prop e m (Expr (Ederef a) ty) t m1 l ofs).
Proof.
intros; red; intros. inversion WT; clear WT; subst. simpl in TR.
eauto.
Qed.
Lemma transl_Eindex_correct:
(forall (e : Csem.env) (m : mem) (a1 : Csyntax.expr) (t1 : trace)
(m1 : mem) (v1 : val) (a2 : Csyntax.expr) (t2 : trace) (m2 : mem)
(v2 : val) (l : block) (ofs : int) (ty : type),
Csem.eval_expr ge e m a1 t1 m1 v1 ->
eval_expr_prop e m a1 t1 m1 v1 ->
Csem.eval_expr ge e m1 a2 t2 m2 v2 ->
eval_expr_prop e m1 a2 t2 m2 v2 ->
sem_add v1 (typeof a1) v2 (typeof a2) = Some (Vptr l ofs) ->
eval_lvalue_prop e m (Expr (Eindex a1 a2) ty) (t1 ** t2) m2 l ofs).
Proof.
intros; red; intros. inversion WT; clear WT; subst. simpl in TR. monadInv TR.
eapply (make_add_correct tprog); eauto.
Qed.
Lemma transl_Efield_struct_correct:
(forall (e : Csem.env) (m : mem) (a : Csyntax.expr) (t : trace)
(m1 : mem) (l : block) (ofs : int) (id: ident) (fList : fieldlist) (i : ident)
(ty : type) (delta : Z),
eval_lvalue ge e m a t m1 l ofs ->
eval_lvalue_prop e m a t m1 l ofs ->
typeof a = Tstruct id fList ->
field_offset i fList = Some delta ->
eval_lvalue_prop e m (Expr (Efield a i) ty) t m1 l
(Int.add ofs (Int.repr delta))).
Proof.
intros; red; intros. inversion WT; clear WT; subst.
simpl in TR. rewrite H1 in TR. monadInv TR.
rewrite <- H5. eapply make_binop_correct; eauto.
apply make_intconst_correct.
simpl. congruence. traceEq.
Qed.
Lemma transl_Efield_union_correct:
(forall (e : Csem.env) (m : mem) (a : Csyntax.expr) (t : trace)
(m1 : mem) (l : block) (ofs : int) (id: ident) (fList : fieldlist) (i : ident)
(ty : type),
eval_lvalue ge e m a t m1 l ofs ->
eval_lvalue_prop e m a t m1 l ofs ->
typeof a = Tunion id fList ->
eval_lvalue_prop e m (Expr (Efield a i) ty) t m1 l ofs).
Proof.
intros; red; intros. inversion WT; clear WT; subst.
simpl in TR. rewrite H1 in TR. eauto.
Qed.
Lemma transl_Enil_correct:
(forall (e : Csem.env) (m : mem),
eval_exprlist_prop e m Csyntax.Enil E0 m nil).
Proof.
intros; red; intros. monadInv TR. subst tal. constructor.
Qed.
Lemma transl_Econs_correct:
(forall (e : Csem.env) (m : mem) (a : Csyntax.expr)
(bl : Csyntax.exprlist) (t1 : trace) (m1 : mem) (v : val)
(t2 : trace) (m2 : mem) (vl : list val),
Csem.eval_expr ge e m a t1 m1 v ->
eval_expr_prop e m a t1 m1 v ->
Csem.eval_exprlist ge e m1 bl t2 m2 vl ->
eval_exprlist_prop e m1 bl t2 m2 vl ->
eval_exprlist_prop e m (Csyntax.Econs a bl) (t1 ** t2) m2 (v :: vl)).
Proof.
intros; red; intros. inversion WT; clear WT; subst. simpl in TR; monadInv TR.
subst tal. econstructor; eauto.
Qed.
Lemma transl_Sskip_correct:
(forall (e : Csem.env) (m : mem),
exec_stmt_prop e m Csyntax.Sskip E0 m Csem.Out_normal).
Proof.
intros; red; intros. monadInv TR. subst ts. simpl. constructor.
Qed.
Lemma transl_Sexpr_correct:
(forall (e : Csem.env) (m : mem) (a : Csyntax.expr) (t : trace)
(m1 : mem) (v : val),
Csem.eval_expr ge e m a t m1 v ->
eval_expr_prop e m a t m1 v ->
exec_stmt_prop e m (Csyntax.Sexpr a) t m1 Csem.Out_normal).
Proof.
intros; red; intros; simpl. inversion WT; clear WT; subst.
monadInv TR. subst ts.
econstructor; eauto.
Qed.
Lemma transl_Sassign_correct:
(forall (e : Csem.env) (m : mem) (a1 a2 : Csyntax.expr) (t1 : trace)
(m1 : mem) (loc : block) (ofs : int) (t2 : trace) (m2 : mem)
(v2 : val) (m3 : mem),
eval_lvalue ge e m a1 t1 m1 loc ofs ->
eval_lvalue_prop e m a1 t1 m1 loc ofs ->
Csem.eval_expr ge e m1 a2 t2 m2 v2 ->
eval_expr_prop e m1 a2 t2 m2 v2 ->
store_value_of_type (typeof a1) m2 loc ofs v2 = Some m3 ->
exec_stmt_prop e m (Csyntax.Sassign a1 a2) (t1 ** t2) m3
Csem.Out_normal).
Proof.
intros; red; intros.
inversion WT; subst; clear WT.
simpl in TR.
caseEq (is_variable a1).
(* a = variable id *)
intros id ISVAR. rewrite ISVAR in TR.
generalize (is_variable_correct _ _ ISVAR). intro EQ.
rewrite EQ in H; rewrite EQ in H0; rewrite EQ in H6.
monadInv TR.
eapply var_set_correct; eauto.
(* a is not a variable *)
intro ISVAR; rewrite ISVAR in TR. monadInv TR.
eapply make_store_correct; eauto.
Qed.
Lemma transl_Ssequence_1_correct:
(forall (e : Csem.env) (m : mem) (s1 s2 : statement) (t1 : trace)
(m1 : mem) (t2 : trace) (m2 : mem) (out : Csem.outcome),
Csem.exec_stmt ge e m s1 t1 m1 Csem.Out_normal ->
exec_stmt_prop e m s1 t1 m1 Csem.Out_normal ->
Csem.exec_stmt ge e m1 s2 t2 m2 out ->
exec_stmt_prop e m1 s2 t2 m2 out ->
exec_stmt_prop e m (Ssequence s1 s2) (t1 ** t2) m2 out).
Proof.
intros; red; intros. inversion WT; clear WT; subst. simpl in TR; monadInv TR.
subst ts. red in H0; simpl in H0. eapply exec_Sseq_continue; eauto.
Qed.
Lemma transl_Ssequence_2_correct:
(forall (e : Csem.env) (m : mem) (s1 s2 : statement) (t1 : trace)
(m1 : mem) (out : Csem.outcome),
Csem.exec_stmt ge e m s1 t1 m1 out ->
exec_stmt_prop e m s1 t1 m1 out ->
out <> Csem.Out_normal ->
exec_stmt_prop e m (Ssequence s1 s2) t1 m1 out).
Proof.
intros; red; intros. inversion WT; clear WT; subst. simpl in TR; monadInv TR.
subst ts. eapply exec_Sseq_stop; eauto.
destruct out; simpl; congruence.
Qed.
Lemma transl_Sifthenelse_true_correct:
(forall (e : Csem.env) (m : mem) (a : Csyntax.expr)
(s1 s2 : statement) (t1 : trace) (m1 : mem) (v1 : val) (t2 : trace)
(m2 : mem) (out : Csem.outcome),
Csem.eval_expr ge e m a t1 m1 v1 ->
eval_expr_prop e m a t1 m1 v1 ->
is_true v1 (typeof a) ->
Csem.exec_stmt ge e m1 s1 t2 m2 out ->
exec_stmt_prop e m1 s1 t2 m2 out ->
exec_stmt_prop e m (Csyntax.Sifthenelse a s1 s2) (t1 ** t2) m2 out).
Proof.
intros; red; intros. inversion WT; clear WT; subst. simpl in TR; monadInv TR.
exploit make_boolean_correct_true. eapply H0; eauto. eauto. intros [vb [EVAL ISTRUE]].
subst ts. eapply exec_Sifthenelse_true; eauto.
Qed.
Lemma transl_Sifthenelse_false_correct:
(forall (e : Csem.env) (m : mem) (a : Csyntax.expr)
(s1 s2 : statement) (t1 : trace) (m1 : mem) (v1 : val) (t2 : trace)
(m2 : mem) (out : Csem.outcome),
Csem.eval_expr ge e m a t1 m1 v1 ->
eval_expr_prop e m a t1 m1 v1 ->
is_false v1 (typeof a) ->
Csem.exec_stmt ge e m1 s2 t2 m2 out ->
exec_stmt_prop e m1 s2 t2 m2 out ->
exec_stmt_prop e m (Csyntax.Sifthenelse a s1 s2) (t1 ** t2) m2 out).
Proof.
intros; red; intros. inversion WT; clear WT; subst. simpl in TR; monadInv TR.
exploit make_boolean_correct_false. eapply H0; eauto. eauto. intros [vb [EVAL ISFALSE]].
subst ts. eapply exec_Sifthenelse_false; eauto.
Qed.
Lemma transl_Sreturn_none_correct:
(forall (e : Csem.env) (m : mem),
exec_stmt_prop e m (Csyntax.Sreturn None) E0 m (Csem.Out_return None)).
Proof.
intros; red; intros. inversion WT; clear WT; subst. simpl in TR; monadInv TR.
subst ts. simpl. apply exec_Sreturn_none.
Qed.
Lemma transl_Sreturn_some_correct:
(forall (e : Csem.env) (m : mem) (a : Csyntax.expr) (t : trace)
(m1 : mem) (v : val),
Csem.eval_expr ge e m a t m1 v ->
eval_expr_prop e m a t m1 v ->
exec_stmt_prop e m (Csyntax.Sreturn (Some a)) t m1
(Csem.Out_return (Some v))).
Proof.
intros; red; intros. inversion WT; clear WT; subst. simpl in TR; monadInv TR.
subst ts. simpl. eapply exec_Sreturn_some; eauto.
Qed.
Lemma transl_Sbreak_correct:
(forall (e : Csem.env) (m : mem),
exec_stmt_prop e m Sbreak E0 m Out_break).
Proof.
intros; red; intros. inversion WT; clear WT; subst. simpl in TR; monadInv TR.
subst ts. simpl. apply exec_Sexit.
Qed.
Lemma transl_Scontinue_correct:
(forall (e : Csem.env) (m : mem),
exec_stmt_prop e m Scontinue E0 m Out_continue).
Proof.
intros; red; intros. inversion WT; clear WT; subst. simpl in TR; monadInv TR.
subst ts. simpl. apply exec_Sexit.
Qed.
Lemma exit_if_false_true:
forall a ts e m1 t m2 v tyenv te,
exit_if_false a = Some ts ->
eval_expr_prop e m1 a t m2 v ->
match_env tyenv e te ->
wt_expr tyenv a ->
is_true v (typeof a) ->
exec_stmt tprog te m1 ts t m2 Out_normal.
Proof.
intros. monadInv H. rewrite <- H5.
exploit make_boolean_correct_true. eapply H0; eauto. eauto.
intros [vb [EVAL ISTRUE]].
eapply exec_Sifthenelse_true with (v1 := vb); eauto.
constructor. traceEq.
Qed.
Lemma exit_if_false_false:
forall a ts e m1 t m2 v tyenv te,
exit_if_false a = Some ts ->
eval_expr_prop e m1 a t m2 v ->
match_env tyenv e te ->
wt_expr tyenv a ->
is_false v (typeof a) ->
exec_stmt tprog te m1 ts t m2 (Out_exit 0).
Proof.
intros. monadInv H. rewrite <- H5.
exploit make_boolean_correct_false. eapply H0; eauto. eauto.
intros [vb [EVAL ISFALSE]].
eapply exec_Sifthenelse_false with (v1 := vb); eauto.
constructor. traceEq.
Qed.
Lemma transl_Swhile_false_correct:
(forall (e : Csem.env) (m : mem) (s : statement) (a : Csyntax.expr)
(t : trace) (v : val) (m1 : mem),
Csem.eval_expr ge e m a t m1 v ->
eval_expr_prop e m a t m1 v ->
is_false v (typeof a) ->
exec_stmt_prop e m (Swhile a s) t m1 Csem.Out_normal).
Proof.
intros; red; intros. inversion WT; clear WT; subst. simpl in TR; monadInv TR.
subst ts. simpl.
change Out_normal with (outcome_block (Out_exit 0)).
apply exec_Sblock. apply exec_Sloop_stop. apply exec_Sseq_stop.
eapply exit_if_false_false; eauto. congruence. congruence.
Qed.
Lemma transl_out_break_or_return:
forall out1 out2 nbrk ncnt,
out_break_or_return out1 out2 ->
transl_outcome nbrk ncnt out2 =
outcome_block (outcome_block (transl_outcome 1 0 out1)).
Proof.
intros. inversion H; subst; reflexivity.
Qed.
Lemma transl_out_normal_or_continue:
forall out,
out_normal_or_continue out ->
Out_normal = outcome_block (transl_outcome 1 0 out).
Proof.
intros; inversion H; reflexivity.
Qed.
Lemma transl_Swhile_stop_correct:
(forall (e : Csem.env) (m : mem) (a : Csyntax.expr) (t1 : trace)
(m1 : mem) (v : val) (s : statement) (m2 : mem) (t2 : trace)
(out2 out : Csem.outcome),
Csem.eval_expr ge e m a t1 m1 v ->
eval_expr_prop e m a t1 m1 v ->
is_true v (typeof a) ->
Csem.exec_stmt ge e m1 s t2 m2 out2 ->
exec_stmt_prop e m1 s t2 m2 out2 ->
out_break_or_return out2 out ->
exec_stmt_prop e m (Swhile a s) (t1 ** t2) m2 out).
Proof.
intros; red; intros. inversion WT; clear WT; subst. simpl in TR; monadInv TR.
subst ts. rewrite (transl_out_break_or_return _ _ nbrk ncnt H4).
apply exec_Sblock. apply exec_Sloop_stop.
eapply exec_Sseq_continue.
eapply exit_if_false_true; eauto.
apply exec_Sblock. eauto.
auto. inversion H4; simpl; congruence.
Qed.
Lemma transl_Swhile_loop_correct:
(forall (e : Csem.env) (m : mem) (a : Csyntax.expr) (t1 : trace)
(m1 : mem) (v : val) (s : statement) (out2 out : Csem.outcome)
(t2 : trace) (m2 : mem) (t3 : trace) (m3 : mem),
Csem.eval_expr ge e m a t1 m1 v ->
eval_expr_prop e m a t1 m1 v ->
is_true v (typeof a) ->
Csem.exec_stmt ge e m1 s t2 m2 out2 ->
exec_stmt_prop e m1 s t2 m2 out2 ->
out_normal_or_continue out2 ->
Csem.exec_stmt ge e m2 (Swhile a s) t3 m3 out ->
exec_stmt_prop e m2 (Swhile a s) t3 m3 out ->
exec_stmt_prop e m (Swhile a s) (t1 ** t2 ** t3) m3 out).
Proof.
intros; red; intros.
exploit H6; eauto. intro NEXTITER.
inversion WT; clear WT; subst. simpl in TR; monadInv TR.
subst ts.
inversion NEXTITER; subst.
apply exec_Sblock.
eapply exec_Sloop_loop. eapply exec_Sseq_continue.
eapply exit_if_false_true; eauto.
rewrite (transl_out_normal_or_continue _ H4).
apply exec_Sblock. eauto.
reflexivity. eassumption.
traceEq.
Qed.
Lemma transl_Sdowhile_false_correct:
(forall (e : Csem.env) (m : mem) (s : statement) (a : Csyntax.expr)
(t1 : trace) (m1 : mem) (out1 : Csem.outcome) (v : val)
(t2 : trace) (m2 : mem),
Csem.exec_stmt ge e m s t1 m1 out1 ->
exec_stmt_prop e m s t1 m1 out1 ->
out_normal_or_continue out1 ->
Csem.eval_expr ge e m1 a t2 m2 v ->
eval_expr_prop e m1 a t2 m2 v ->
is_false v (typeof a) ->
exec_stmt_prop e m (Sdowhile a s) (t1 ** t2) m2 Csem.Out_normal).
Proof.
intros; red; intros. inversion WT; clear WT; subst. simpl in TR; monadInv TR.
subst ts. simpl.
change Out_normal with (outcome_block (Out_exit 0)).
apply exec_Sblock. apply exec_Sloop_stop. eapply exec_Sseq_continue.
rewrite (transl_out_normal_or_continue out1 H1).
apply exec_Sblock. eauto.
eapply exit_if_false_false; eauto. auto. congruence.
Qed.
Lemma transl_Sdowhile_stop_correct:
(forall (e : Csem.env) (m : mem) (s : statement) (a : Csyntax.expr)
(t : trace) (m1 : mem) (out1 out : Csem.outcome),
Csem.exec_stmt ge e m s t m1 out1 ->
exec_stmt_prop e m s t m1 out1 ->
out_break_or_return out1 out ->
exec_stmt_prop e m (Sdowhile a s) t m1 out).
Proof.
intros; red; intros. inversion WT; clear WT; subst. simpl in TR; monadInv TR.
subst ts. simpl.
assert (outcome_block (transl_outcome 1 0 out1) <> Out_normal).
inversion H1; simpl; congruence.
rewrite (transl_out_break_or_return _ _ nbrk ncnt H1).
apply exec_Sblock. apply exec_Sloop_stop.
apply exec_Sseq_stop. apply exec_Sblock. eauto.
auto. auto.
Qed.
Lemma transl_Sdowhile_loop_correct:
(forall (e : Csem.env) (m : mem) (s : statement) (a : Csyntax.expr)
(m1 m2 m3 : mem) (t1 t2 t3 : trace) (out out1 : Csem.outcome)
(v : val),
Csem.exec_stmt ge e m s t1 m1 out1 ->
exec_stmt_prop e m s t1 m1 out1 ->
out_normal_or_continue out1 ->
Csem.eval_expr ge e m1 a t2 m2 v ->
eval_expr_prop e m1 a t2 m2 v ->
is_true v (typeof a) ->
Csem.exec_stmt ge e m2 (Sdowhile a s) t3 m3 out ->
exec_stmt_prop e m2 (Sdowhile a s) t3 m3 out ->
exec_stmt_prop e m (Sdowhile a s) (t1 ** t2 ** t3) m3 out).
Proof.
intros; red; intros.
exploit H6; eauto. intro NEXTITER.
inversion WT; clear WT; subst. simpl in TR; monadInv TR.
subst ts.
inversion NEXTITER; subst.
apply exec_Sblock.
eapply exec_Sloop_loop. eapply exec_Sseq_continue.
rewrite (transl_out_normal_or_continue _ H1).
apply exec_Sblock. eauto.
eapply exit_if_false_true; eauto.
reflexivity. eassumption. traceEq.
Qed.
Lemma transl_Sfor_start_correct:
(forall (e : Csem.env) (m : mem) (s a1 : statement)
(a2 : Csyntax.expr) (a3 : statement) (out : Csem.outcome)
(m1 m2 : mem) (t1 t2 : trace),
Csem.exec_stmt ge e m a1 t1 m1 Csem.Out_normal ->
exec_stmt_prop e m a1 t1 m1 Csem.Out_normal ->
Csem.exec_stmt ge e m1 (Sfor Csyntax.Sskip a2 a3 s) t2 m2 out ->
exec_stmt_prop e m1 (Sfor Csyntax.Sskip a2 a3 s) t2 m2 out ->
exec_stmt_prop e m (Sfor a1 a2 a3 s) (t1 ** t2) m2 out).
Proof.
intros; red; intros.
exploit transl_stmt_Sfor_start; eauto.
intros [ts1 [ts2 [A [B C]]]].
clear TR; subst ts.
inversion WT; subst.
assert (WT': wt_stmt tyenv (Sfor Csyntax.Sskip a2 a3 s)).
constructor; auto. constructor.
exploit H0; eauto. simpl. intro EXEC1.
exploit H2; eauto. intro EXEC2.
assert (EXEC3: exec_stmt tprog te m1 ts2 t2 m2 (transl_outcome nbrk ncnt out)).
inversion EXEC2; subst.
inversion H5; subst. rewrite E0_left; auto.
inversion H11; subst. congruence.
eapply exec_Sseq_continue; eauto.
Qed.
Lemma transl_Sfor_false_correct:
(forall (e : Csem.env) (m : mem) (s : statement) (a2 : Csyntax.expr)
(a3 : statement) (t : trace) (v : val) (m1 : mem),
Csem.eval_expr ge e m a2 t m1 v ->
eval_expr_prop e m a2 t m1 v ->
is_false v (typeof a2) ->
exec_stmt_prop e m (Sfor Csyntax.Sskip a2 a3 s) t m1 Csem.Out_normal).
Proof.
intros; red; intros. inversion WT; clear WT; subst. simpl in TR; monadInv TR.
subst ts. simpl.
eapply exec_Sseq_continue. apply exec_Sskip.
change Out_normal with (outcome_block (Out_exit 0)).
apply exec_Sblock. apply exec_Sloop_stop.
apply exec_Sseq_stop. eapply exit_if_false_false; eauto.
congruence. congruence. traceEq.
Qed.
Lemma transl_Sfor_stop_correct:
(forall (e : Csem.env) (m : mem) (s : statement) (a2 : Csyntax.expr)
(a3 : statement) (v : val) (m1 m2 : mem) (t1 t2 : trace)
(out2 out : Csem.outcome),
Csem.eval_expr ge e m a2 t1 m1 v ->
eval_expr_prop e m a2 t1 m1 v ->
is_true v (typeof a2) ->
Csem.exec_stmt ge e m1 s t2 m2 out2 ->
exec_stmt_prop e m1 s t2 m2 out2 ->
out_break_or_return out2 out ->
exec_stmt_prop e m (Sfor Csyntax.Sskip a2 a3 s) (t1 ** t2) m2 out).
Proof.
intros; red; intros. inversion WT; clear WT; subst. simpl in TR; monadInv TR.
subst ts. simpl.
assert (outcome_block (transl_outcome 1 0 out2) <> Out_normal).
inversion H4; simpl; congruence.
rewrite (transl_out_break_or_return _ _ nbrk ncnt H4).
eapply exec_Sseq_continue. apply exec_Sskip.
apply exec_Sblock. apply exec_Sloop_stop.
eapply exec_Sseq_continue. eapply exit_if_false_true; eauto.
apply exec_Sseq_stop. apply exec_Sblock. eauto.
auto. reflexivity. auto. traceEq.
Qed.
Lemma transl_Sfor_loop_correct:
(forall (e : Csem.env) (m : mem) (s : statement) (a2 : Csyntax.expr)
(a3 : statement) (v : val) (m1 m2 m3 m4 : mem)
(t1 t2 t3 t4 : trace) (out2 out : Csem.outcome),
Csem.eval_expr ge e m a2 t1 m1 v ->
eval_expr_prop e m a2 t1 m1 v ->
is_true v (typeof a2) ->
Csem.exec_stmt ge e m1 s t2 m2 out2 ->
exec_stmt_prop e m1 s t2 m2 out2 ->
out_normal_or_continue out2 ->
Csem.exec_stmt ge e m2 a3 t3 m3 Csem.Out_normal ->
exec_stmt_prop e m2 a3 t3 m3 Csem.Out_normal ->
Csem.exec_stmt ge e m3 (Sfor Csyntax.Sskip a2 a3 s) t4 m4 out ->
exec_stmt_prop e m3 (Sfor Csyntax.Sskip a2 a3 s) t4 m4 out ->
exec_stmt_prop e m (Sfor Csyntax.Sskip a2 a3 s)
(t1 ** t2 ** t3 ** t4) m4 out).
Proof.
intros; red; intros.
exploit H8; eauto. intro NEXTITER.
inversion WT; clear WT; subst. simpl in TR; monadInv TR.
subst ts.
inversion NEXTITER; subst.
inversion H11; subst.
inversion H18; subst.
eapply exec_Sseq_continue. apply exec_Sskip.
apply exec_Sblock.
eapply exec_Sloop_loop. eapply exec_Sseq_continue.
eapply exit_if_false_true; eauto.
eapply exec_Sseq_continue.
rewrite (transl_out_normal_or_continue _ H4).
apply exec_Sblock. eauto.
red in H6; simpl in H6; eauto.
reflexivity. reflexivity. eassumption.
reflexivity. traceEq.
inversion H17. congruence.
Qed.
Lemma transl_lblstmts_switch:
forall e m0 t1 m1 n nbrk ncnt tyenv te t2 m2 out sl body ts,
exec_stmt tprog te m0 body t1 m1
(Out_exit (switch_target n (lblstmts_length sl) (switch_table sl 0))) ->
transl_lblstmts
(lblstmts_length sl)
(S (lblstmts_length sl + ncnt))
sl (Sblock body) = Some ts ->
wt_lblstmts tyenv sl ->
match_env tyenv e te ->
exec_lblstmts_prop e m1 (select_switch n sl) t2 m2 out ->
Csharpminor.exec_stmt tprog te m0 ts (t1 ** t2) m2
(transl_outcome nbrk ncnt (outcome_switch out)).
Proof.
induction sl; intros.
simpl in H. simpl in H3.
eapply H3; eauto.
change Out_normal with (outcome_block (Out_exit 0)).
apply exec_Sblock. auto.
(* Inductive case *)
simpl in H. simpl in H3. rewrite Int.eq_sym in H3. destruct (Int.eq n i).
(* first case selected *)
eapply H3; eauto.
change Out_normal with (outcome_block (Out_exit 0)).
apply exec_Sblock. auto.
(* next case selected *)
inversion H1; clear H1; subst.
simpl in H0; monadInv H0.
eapply IHsl with (body := Sseq (Sblock body) s0); eauto.
apply exec_Sseq_stop.
change (Out_exit (switch_target n (lblstmts_length sl) (switch_table sl 0)))
with (outcome_block (Out_exit (S (switch_target n (lblstmts_length sl) (switch_table sl 0))))).
apply exec_Sblock.
rewrite switch_target_table_shift in H. auto. congruence.
Qed.
Lemma transl_Sswitch_correct:
(forall (e : Csem.env) (m : mem) (a : Csyntax.expr) (t1 : trace)
(m1 : mem) (n : int) (sl : labeled_statements) (t2 : trace)
(m2 : mem) (out : Csem.outcome),
Csem.eval_expr ge e m a t1 m1 (Vint n) ->
eval_expr_prop e m a t1 m1 (Vint n) ->
exec_lblstmts ge e m1 (select_switch n sl) t2 m2 out ->
exec_lblstmts_prop e m1 (select_switch n sl) t2 m2 out ->
exec_stmt_prop e m (Csyntax.Sswitch a sl) (t1 ** t2) m2
(outcome_switch out)).
Proof.
intros; red; intros.
inversion WT; clear WT; subst.
simpl in TR. monadInv TR; clear TR.
rewrite length_switch_table in EQ0.
replace (ncnt + lblstmts_length sl + 1)%nat
with (S (lblstmts_length sl + ncnt))%nat in EQ0 by omega.
eapply transl_lblstmts_switch; eauto.
constructor. eapply H0; eauto.
Qed.
Lemma transl_LSdefault_correct:
(forall (e : Csem.env) (m : mem) (s : statement) (t : trace)
(m1 : mem) (out : Csem.outcome),
Csem.exec_stmt ge e m s t m1 out ->
exec_stmt_prop e m s t m1 out ->
exec_lblstmts_prop e m (LSdefault s) t m1 out).
Proof.
intros; red; intros.
inversion WT; subst.
simpl in TR. monadInv TR.
rewrite <- H3.
replace (transl_outcome nbrk ncnt (outcome_switch out))
with (outcome_block (transl_outcome 0 (S ncnt) out)).
constructor.
eapply exec_Sseq_continue. eauto.
eapply H0; eauto. traceEq.
destruct out; simpl; auto.
Qed.
Lemma transl_LScase_fallthrough_correct:
(forall (e : Csem.env) (m : mem) (n : int) (s : statement)
(ls : labeled_statements) (t1 : trace) (m1 : mem) (t2 : trace)
(m2 : mem) (out : Csem.outcome),
Csem.exec_stmt ge e m s t1 m1 Csem.Out_normal ->
exec_stmt_prop e m s t1 m1 Csem.Out_normal ->
exec_lblstmts ge e m1 ls t2 m2 out ->
exec_lblstmts_prop e m1 ls t2 m2 out ->
exec_lblstmts_prop e m (LScase n s ls) (t1 ** t2) m2 out).
Proof.
intros; red; intros.
inversion WT; subst.
simpl in TR. monadInv TR; clear TR.
assert (exec_stmt tprog te m0 (Sblock (Sseq body s0))
(t0 ** t1) m1 Out_normal).
change Out_normal with
(outcome_block (transl_outcome (S (lblstmts_length ls))
(S (S (lblstmts_length ls + ncnt)))
Csem.Out_normal)).
apply exec_Sblock. eapply exec_Sseq_continue. eexact BODY.
eapply H0; eauto.
auto.
exploit H2. eauto. simpl; eauto. eauto. eauto. simpl.
rewrite Eapp_assoc. eauto.
Qed.
Lemma transl_LScase_stop_correct:
(forall (e : Csem.env) (m : mem) (n : int) (s : statement)
(ls : labeled_statements) (t : trace) (m1 : mem)
(out : Csem.outcome),
Csem.exec_stmt ge e m s t m1 out ->
exec_stmt_prop e m s t m1 out ->
out <> Csem.Out_normal ->
exec_lblstmts_prop e m (LScase n s ls) t m1 out).
Proof.
intros; red; intros.
inversion WT; subst.
simpl in TR. monadInv TR; clear TR.
exploit H0; eauto. intro EXEC.
destruct out; simpl; simpl in EXEC.
(* out = Out_break *)
change Out_normal with (outcome_block (Out_exit 0)).
eapply transl_lblstmts_exit with (body := Sblock (Sseq body s0)); eauto.
rewrite plus_0_r.
change (Out_exit (lblstmts_length ls))
with (outcome_block (Out_exit (S (lblstmts_length ls)))).
constructor. eapply exec_Sseq_continue; eauto.
(* out = Out_continue *)
change (Out_exit ncnt) with (outcome_block (Out_exit (S ncnt))).
eapply transl_lblstmts_exit with (body := Sblock (Sseq body s0)); eauto.
replace (Out_exit (lblstmts_length ls + S ncnt))
with (outcome_block (Out_exit (S (S (lblstmts_length ls + ncnt))))).
constructor. eapply exec_Sseq_continue; eauto.
simpl. decEq. omega.
(* out = Out_normal *)
congruence.
(* out = Out_return *)
eapply transl_lblstmts_return with (body := Sblock (Sseq body s0)); eauto.
change (Out_return o)
with (outcome_block (Out_return o)).
constructor. eapply exec_Sseq_continue; eauto.
Qed.
Remark outcome_result_value_match:
forall out ty v nbrk ncnt,
Csem.outcome_result_value out ty v ->
Csharpminor.outcome_result_value (transl_outcome nbrk ncnt out) (opttyp_of_type ty) v.
Proof.
intros until ncnt.
destruct out; simpl; try contradiction.
destruct ty; simpl; auto.
destruct o. intros [A B]. destruct ty; simpl; congruence.
destruct ty; simpl; auto.
Qed.
Lemma transl_funcall_internal_correct:
(forall (m : mem) (f : Csyntax.function) (vargs : list val)
(t : trace) (e : Csem.env) (m1 : mem) (lb : list block)
(m2 m3 : mem) (out : Csem.outcome) (vres : val),
Csem.alloc_variables Csem.empty_env m
(Csyntax.fn_params f ++ Csyntax.fn_vars f) e m1 lb ->
Csem.bind_parameters e m1 (Csyntax.fn_params f) vargs m2 ->
Csem.exec_stmt ge e m2 (Csyntax.fn_body f) t m3 out ->
exec_stmt_prop e m2 (Csyntax.fn_body f) t m3 out ->
Csem.outcome_result_value out (fn_return f) vres ->
eval_funcall_prop m (Internal f) vargs t (free_list m3 lb) vres).
Proof.
intros; red; intros.
(* Exploitation of typing hypothesis *)
inversion WT; clear WT; subst.
inversion H6; clear H6; subst.
(* Exploitation of translation hypothesis *)
monadInv TR. subst tf. clear TR.
monadInv EQ. clear EQ. subst f0.
(* Allocation of variables *)
exploit match_env_alloc_variables; eauto.
apply match_globalenv_match_env_empty.
apply match_global_typenv.
eexact (transl_fn_variables _ _ (signature_of_function f) _ _ s EQ0 EQ1).
intros [te [ALLOCVARS MATCHENV]].
(* Execution *)
econstructor; simpl.
(* Norepet *)
eapply transl_names_norepet; eauto.
(* Alloc *)
eexact ALLOCVARS.
(* Bind *)
eapply bind_parameters_match; eauto.
(* Execution of body *)
eapply H2; eauto.
(* Outcome_result_value *)
apply outcome_result_value_match; auto.
Qed.
Lemma transl_funcall_external_correct:
(forall (m : mem) (id : ident) (targs : typelist) (tres : type)
(vargs : list val) (t : trace) (vres : val),
event_match (external_function id targs tres) vargs t vres ->
eval_funcall_prop m (External id targs tres) vargs t m vres).
Proof.
intros; red; intros.
monadInv TR. subst tf. constructor. auto.
Qed.
Theorem transl_funcall_correct:
forall (m : mem) (f : Csyntax.fundef) (l : list val) (t : trace)
(m0 : mem) (v : val),
Csem.eval_funcall ge m f l t m0 v ->
eval_funcall_prop m f l t m0 v.
Proof
(Csem.eval_funcall_ind6 ge
eval_expr_prop
eval_lvalue_prop
eval_exprlist_prop
exec_stmt_prop
exec_lblstmts_prop
eval_funcall_prop
transl_Econst_int_correct
transl_Econst_float_correct
transl_Elvalue_correct
transl_Eaddrof_correct
transl_Esizeof_correct
transl_Eunop_correct
transl_Ebinop_correct
transl_Eorbool_1_correct
transl_Eorbool_2_correct
transl_Eandbool_1_correct
transl_Eandbool_2_correct
transl_Ecast_correct
transl_Ecall_correct
transl_Evar_local_correct
transl_Evar_global_correct
transl_Ederef_correct
transl_Eindex_correct
transl_Efield_struct_correct
transl_Efield_union_correct
transl_Enil_correct
transl_Econs_correct
transl_Sskip_correct
transl_Sexpr_correct
transl_Sassign_correct
transl_Ssequence_1_correct
transl_Ssequence_2_correct
transl_Sifthenelse_true_correct
transl_Sifthenelse_false_correct
transl_Sreturn_none_correct
transl_Sreturn_some_correct
transl_Sbreak_correct
transl_Scontinue_correct
transl_Swhile_false_correct
transl_Swhile_stop_correct
transl_Swhile_loop_correct
transl_Sdowhile_false_correct
transl_Sdowhile_stop_correct
transl_Sdowhile_loop_correct
transl_Sfor_start_correct
transl_Sfor_false_correct
transl_Sfor_stop_correct
transl_Sfor_loop_correct
transl_Sswitch_correct
transl_LSdefault_correct
transl_LScase_fallthrough_correct
transl_LScase_stop_correct
transl_funcall_internal_correct
transl_funcall_external_correct).
End CORRECTNESS.
(** Semantic preservation for whole programs. *)
Theorem transl_program_correct:
forall prog tprog t r,
transl_program prog = Some tprog ->
Ctyping.wt_program prog ->
Csem.exec_program prog t r ->
Csharpminor.exec_program tprog t r.
Proof.
intros until r. intros TRANSL WT [b [f [m1 [FINDS [FINDF EVAL]]]]].
inversion WT; subst.
assert (exists targs, type_of_fundef f = Tfunction targs (Tint I32 Signed)).
apply wt_program_main.
eapply Genv.find_funct_ptr_symbol_inversion; eauto.
elim H; clear H; intros targs TYP.
assert (targs = Tnil).
inversion EVAL; subst; simpl in TYP.
inversion H0; subst. injection TYP. rewrite <- H6. simpl; auto.
inversion TYP; subst targs0 tres. inversion H. simpl in H0.
inversion H0. destruct targs; simpl in H8; congruence.
subst targs.
exploit function_ptr_translated; eauto. intros [tf [TFINDF TRANSLFD]].
exists b; exists tf; exists m1.
split.
rewrite (symbols_preserved _ _ TRANSL).
rewrite (transform_partial_program2_main transl_fundef transl_globvar prog TRANSL). auto.
split. auto.
split.
generalize (transl_fundef_sig2 _ _ _ _ TRANSLFD TYP). simpl; auto.
rewrite (@Genv.init_mem_transf_partial2 _ _ _ _ transl_fundef transl_globvar prog tprog TRANSL).
generalize (transl_funcall_correct _ _ WT TRANSL _ _ _ _ _ _ EVAL).
intro. eapply H.
eapply function_ptr_well_typed; eauto.
auto.
Qed.
|