1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
|
(* *********************************************************************)
(* *)
(* The Compcert verified compiler *)
(* *)
(* Xavier Leroy, INRIA Paris-Rocquencourt *)
(* *)
(* Copyright Institut National de Recherche en Informatique et en *)
(* Automatique. All rights reserved. This file is distributed *)
(* under the terms of the INRIA Non-Commercial License Agreement. *)
(* *)
(* *********************************************************************)
(** * Correctness of the translation from Clight to C#minor. *)
Require Import Coqlib.
Require Import Errors.
Require Import Maps.
Require Import Integers.
Require Import Floats.
Require Import AST.
Require Import Values.
Require Import Events.
Require Import Memory.
Require Import Globalenvs.
Require Import Smallstep.
Require Import Csyntax.
Require Import Csem.
Require Import Clight.
Require Import Cminor.
Require Import Csharpminor.
Require Import Cshmgen.
(** * Properties of operations over types *)
Remark type_of_chunk_of_type:
forall ty chunk,
chunk_of_type ty = OK chunk ->
type_of_chunk chunk = typ_of_type ty.
Proof.
intros. unfold chunk_of_type in H. destruct ty; simpl in H; try monadInv H.
destruct i; destruct s; monadInv H; reflexivity.
destruct f; monadInv H; reflexivity.
reflexivity. reflexivity.
Qed.
Remark transl_params_types:
forall p tp,
transl_params p = OK tp ->
map type_of_chunk (map param_chunk tp) = typlist_of_typelist (type_of_params p).
Proof.
induction p; simpl; intros.
inv H. auto.
destruct a as [id ty]. generalize H; clear H. case_eq (chunk_of_type ty); intros.
monadInv H0. simpl. f_equal; auto. apply type_of_chunk_of_type; auto.
inv H0.
Qed.
Lemma transl_fundef_sig1:
forall f tf args res,
transl_fundef f = OK tf ->
classify_fun (type_of_fundef f) = fun_case_f args res ->
funsig tf = signature_of_type args res.
Proof.
intros. destruct f; simpl in *.
monadInv H. monadInv EQ. simpl. inversion H0.
unfold fn_sig; simpl. unfold signature_of_type. f_equal.
apply transl_params_types; auto.
destruct (list_typ_eq (sig_args (ef_sig e)) (typlist_of_typelist t)); simpl in H.
destruct (opt_typ_eq (sig_res (ef_sig e)) (opttyp_of_type t0)); simpl in H.
inv H. simpl. destruct (ef_sig e); simpl in *. inv H0.
unfold signature_of_type. auto.
congruence.
congruence.
Qed.
Lemma transl_fundef_sig2:
forall f tf args res,
transl_fundef f = OK tf ->
type_of_fundef f = Tfunction args res ->
funsig tf = signature_of_type args res.
Proof.
intros. eapply transl_fundef_sig1; eauto.
rewrite H0; reflexivity.
Qed.
Lemma var_kind_by_value:
forall ty chunk,
access_mode ty = By_value chunk ->
var_kind_of_type ty = OK(Vscalar chunk).
Proof.
intros ty chunk; destruct ty; simpl; try congruence.
destruct i; try congruence; destruct s; congruence.
destruct f; congruence.
Qed.
Lemma sizeof_var_kind_of_type:
forall ty vk,
var_kind_of_type ty = OK vk ->
Csharpminor.sizeof vk = Csyntax.sizeof ty.
Proof.
intros ty vk.
assert (sizeof (Varray (Csyntax.sizeof ty)) = Csyntax.sizeof ty).
simpl. rewrite Zmax_spec. apply zlt_false.
generalize (Csyntax.sizeof_pos ty). omega.
destruct ty; try (destruct i; try destruct s); try (destruct f);
simpl; intro EQ; inversion EQ; subst vk; auto.
Qed.
Remark cast_int_int_normalized:
forall sz si chunk n,
access_mode (Tint sz si) = By_value chunk ->
val_normalized (Vint (cast_int_int sz si n)) chunk.
Proof.
unfold access_mode, cast_int_int, val_normalized; intros. destruct sz.
destruct si; inv H; simpl.
rewrite Int.sign_ext_idem; auto. compute; auto.
rewrite Int.zero_ext_idem; auto. compute; auto.
destruct si; inv H; simpl.
rewrite Int.sign_ext_idem; auto. compute; auto.
rewrite Int.zero_ext_idem; auto. compute; auto.
inv H. auto.
Qed.
Remark cast_float_float_normalized:
forall sz chunk n,
access_mode (Tfloat sz) = By_value chunk ->
val_normalized (Vfloat (cast_float_float sz n)) chunk.
Proof.
unfold access_mode, cast_float_float, val_normalized; intros.
destruct sz; inv H; simpl.
rewrite Float.singleoffloat_idem. auto.
auto.
Qed.
Remark neutral_for_cast_chunk:
forall ty chunk,
neutral_for_cast ty -> access_mode ty = By_value chunk -> chunk = Mint32.
Proof.
induction 1; simpl; intros; inv H; auto.
Qed.
Lemma cast_result_normalized:
forall chunk v1 ty1 ty2 v2,
cast v1 ty1 ty2 v2 ->
access_mode ty2 = By_value chunk ->
val_normalized v2 chunk.
Proof.
induction 1; intros; simpl.
apply cast_int_int_normalized; auto.
apply cast_int_int_normalized; auto.
apply cast_float_float_normalized; auto.
apply cast_float_float_normalized; auto.
rewrite (neutral_for_cast_chunk _ _ H0 H1). red; auto.
rewrite (neutral_for_cast_chunk _ _ H0 H1). red; auto.
Qed.
Definition val_casted (v: val) (ty: type) : Prop :=
exists v0, exists ty0, cast v0 ty0 ty v.
Lemma val_casted_normalized:
forall v ty chunk,
val_casted v ty -> access_mode ty = By_value chunk -> val_normalized v chunk.
Proof.
intros. destruct H as [v0 [ty0 CAST]]. eapply cast_result_normalized; eauto.
Qed.
Fixpoint val_casted_list (vl: list val) (tyl: typelist) {struct vl}: Prop :=
match vl, tyl with
| nil, Tnil => True
| v1 :: vl', Tcons ty1 tyl' => val_casted v1 ty1 /\ val_casted_list vl' tyl'
| _, _ => False
end.
Lemma eval_exprlist_casted:
forall ge e le m al tyl vl,
Clight.eval_exprlist ge e le m al tyl vl ->
val_casted_list vl tyl.
Proof.
induction 1; simpl.
auto.
split. exists v1; exists (typeof a); auto. eauto.
Qed.
(** * Properties of the translation functions *)
Lemma map_partial_names:
forall (A B: Type) (f: A -> res B)
(l: list (ident * A)) (tl: list (ident * B)),
map_partial prefix_var_name f l = OK tl ->
List.map (@fst ident B) tl = List.map (@fst ident A) l.
Proof.
induction l; simpl.
intros. inversion H. reflexivity.
intro tl. destruct a as [id x]. destruct (f x); try congruence.
caseEq (map_partial prefix_var_name f l); simpl; intros; try congruence.
inv H0. simpl. decEq. auto.
Qed.
Lemma map_partial_append:
forall (A B: Type) (f: A -> res B)
(l1 l2: list (ident * A)) (tl1 tl2: list (ident * B)),
map_partial prefix_var_name f l1 = OK tl1 ->
map_partial prefix_var_name f l2 = OK tl2 ->
map_partial prefix_var_name f (l1 ++ l2) = OK (tl1 ++ tl2).
Proof.
induction l1; intros until tl2; simpl.
intros. inversion H. simpl; auto.
destruct a as [id x]. destruct (f x); try congruence.
caseEq (map_partial prefix_var_name f l1); simpl; intros; try congruence.
inv H0. rewrite (IHl1 _ _ _ H H1). auto.
Qed.
Lemma transl_params_names:
forall vars tvars,
transl_params vars = OK tvars ->
List.map param_name tvars = var_names vars.
Proof.
exact (map_partial_names _ _ chunk_of_type).
Qed.
Lemma transl_vars_names:
forall vars tvars,
transl_vars vars = OK tvars ->
List.map variable_name tvars = var_names vars.
Proof.
exact (map_partial_names _ _ var_kind_of_type).
Qed.
Lemma transl_names_norepet:
forall params vars sg tparams tvars temps body,
list_norepet (var_names params ++ var_names vars) ->
transl_params params = OK tparams ->
transl_vars vars = OK tvars ->
let f := Csharpminor.mkfunction sg tparams tvars temps body in
list_norepet (fn_params_names f ++ fn_vars_names f).
Proof.
intros. unfold fn_params_names, fn_vars_names, f. simpl.
rewrite (transl_params_names _ _ H0).
rewrite (transl_vars_names _ _ H1).
auto.
Qed.
Lemma transl_vars_append:
forall l1 l2 tl1 tl2,
transl_vars l1 = OK tl1 -> transl_vars l2 = OK tl2 ->
transl_vars (l1 ++ l2) = OK (tl1 ++ tl2).
Proof.
exact (map_partial_append _ _ var_kind_of_type).
Qed.
Lemma transl_params_vars:
forall params tparams,
transl_params params = OK tparams ->
transl_vars params =
OK (List.map (fun id_chunk => (fst id_chunk, Vscalar (snd id_chunk))) tparams).
Proof.
induction params; intro tparams; simpl.
intros. inversion H. reflexivity.
destruct a as [id x].
unfold chunk_of_type. caseEq (access_mode x); try congruence.
intros chunk AM.
caseEq (transl_params params); simpl; intros; try congruence.
inv H0.
rewrite (var_kind_by_value _ _ AM).
rewrite (IHparams _ H). reflexivity.
Qed.
Lemma transl_fn_variables:
forall params vars sg tparams tvars temps body,
transl_params params = OK tparams ->
transl_vars vars = OK tvars ->
let f := Csharpminor.mkfunction sg tparams tvars temps body in
transl_vars (params ++ vars) = OK (fn_variables f).
Proof.
intros.
generalize (transl_params_vars _ _ H); intro.
rewrite (transl_vars_append _ _ _ _ H1 H0).
reflexivity.
Qed.
(** Transformation of expressions and statements. *)
Lemma is_variable_correct:
forall a id,
is_variable a = Some id ->
a = Clight.Evar id (typeof a).
Proof.
intros until id. unfold is_variable; destruct a; intros; try discriminate.
simpl. congruence.
Qed.
Lemma transl_expr_lvalue:
forall ge e le m a loc ofs ta,
Clight.eval_lvalue ge e le m a loc ofs ->
transl_expr a = OK ta ->
(exists id, exists ty, a = Clight.Evar id ty /\ var_get id ty = OK ta) \/
(exists tb, transl_lvalue a = OK tb /\
make_load tb (typeof a) = OK ta).
Proof.
intros. inversion H; subst; clear H; simpl in H0.
left; exists id; exists ty; auto.
left; exists id; exists ty; auto.
monadInv H0. right. exists x; split; auto.
rewrite H2 in H0. monadInv H0. right.
exists (Ebinop Oadd x (make_intconst (Int.repr x0))). split; auto.
simpl. rewrite H2. rewrite EQ. rewrite EQ1. auto.
rewrite H2 in H0. monadInv H0. right.
exists x; split; auto.
simpl. rewrite H2. auto.
Qed.
(** Properties of labeled statements *)
Lemma transl_lbl_stmt_1:
forall tyret nbrk ncnt n sl tsl,
transl_lbl_stmt tyret nbrk ncnt sl = OK tsl ->
transl_lbl_stmt tyret nbrk ncnt (Clight.select_switch n sl) = OK (select_switch n tsl).
Proof.
induction sl; intros.
monadInv H. simpl. rewrite EQ. auto.
generalize H; intro TR. monadInv TR. simpl.
destruct (Int.eq i n). auto. auto.
Qed.
Lemma transl_lbl_stmt_2:
forall tyret nbrk ncnt sl tsl,
transl_lbl_stmt tyret nbrk ncnt sl = OK tsl ->
transl_statement tyret nbrk ncnt (seq_of_labeled_statement sl) = OK (seq_of_lbl_stmt tsl).
Proof.
induction sl; intros.
monadInv H. simpl. auto.
monadInv H. simpl. rewrite EQ; simpl. rewrite (IHsl _ EQ1). simpl. auto.
Qed.
(** * Correctness of Csharpminor construction functions *)
Section CONSTRUCTORS.
Variable ge: genv.
Lemma make_intconst_correct:
forall n e le m,
eval_expr ge e le m (make_intconst n) (Vint n).
Proof.
intros. unfold make_intconst. econstructor. reflexivity.
Qed.
Lemma make_floatconst_correct:
forall n e le m,
eval_expr ge e le m (make_floatconst n) (Vfloat n).
Proof.
intros. unfold make_floatconst. econstructor. reflexivity.
Qed.
Lemma make_floatofint_correct:
forall a n sg e le m,
eval_expr ge e le m a (Vint n) ->
eval_expr ge e le m (make_floatofint a sg) (Vfloat(cast_int_float sg n)).
Proof.
intros. unfold make_floatofint, cast_int_float.
destruct sg; econstructor; eauto.
Qed.
Lemma make_intoffloat_correct:
forall e le m a sg f i,
eval_expr ge e le m a (Vfloat f) ->
cast_float_int sg f = Some i ->
eval_expr ge e le m (make_intoffloat a sg) (Vint i).
Proof.
unfold cast_float_int, make_intoffloat; intros.
destruct sg; econstructor; eauto; simpl; rewrite H0; auto.
Qed.
Hint Resolve make_intconst_correct make_floatconst_correct
make_floatofint_correct make_intoffloat_correct
eval_Eunop eval_Ebinop: cshm.
Hint Extern 2 (@eq trace _ _) => traceEq: cshm.
Remark Vtrue_is_true: Val.is_true Vtrue.
Proof.
simpl. apply Int.one_not_zero.
Qed.
Remark Vfalse_is_false: Val.is_false Vfalse.
Proof.
simpl. auto.
Qed.
Lemma make_boolean_correct_true:
forall e le m a v ty,
eval_expr ge e le m a v ->
is_true v ty ->
exists vb,
eval_expr ge e le m (make_boolean a ty) vb
/\ Val.is_true vb.
Proof.
intros until ty; intros EXEC VTRUE.
destruct ty; simpl;
try (exists v; intuition; inversion VTRUE; simpl; auto; fail).
exists Vtrue; split.
eapply eval_Ebinop; eauto with cshm.
inversion VTRUE; simpl.
rewrite Float.cmp_ne_eq. rewrite H1. auto.
apply Vtrue_is_true.
Qed.
Lemma make_boolean_correct_false:
forall e le m a v ty,
eval_expr ge e le m a v ->
is_false v ty ->
exists vb,
eval_expr ge e le m (make_boolean a ty) vb
/\ Val.is_false vb.
Proof.
intros until ty; intros EXEC VFALSE.
destruct ty; simpl;
try (exists v; intuition; inversion VFALSE; simpl; auto; fail).
exists Vfalse; split.
eapply eval_Ebinop; eauto with cshm.
inversion VFALSE; simpl.
rewrite Float.cmp_ne_eq. rewrite H1. auto.
apply Vfalse_is_false.
Qed.
Lemma make_neg_correct:
forall a tya c va v e le m,
sem_neg va tya = Some v ->
make_neg a tya = OK c ->
eval_expr ge e le m a va ->
eval_expr ge e le m c v.
Proof.
intros until m; intro SEM. unfold make_neg.
functional inversion SEM; intros.
rewrite H0 in H4. inv H4. eapply eval_Eunop; eauto with cshm.
rewrite H0 in H4. inv H4. eauto with cshm.
Qed.
Lemma make_notbool_correct:
forall a tya c va v e le m,
sem_notbool va tya = Some v ->
make_notbool a tya = OK c ->
eval_expr ge e le m a va ->
eval_expr ge e le m c v.
Proof.
intros until m; intro SEM. unfold make_notbool.
functional inversion SEM; intros; rewrite H0 in H4; inversion H4; simpl;
eauto with cshm.
Qed.
Lemma make_notint_correct:
forall a tya c va v e le m,
sem_notint va tya = Some v ->
make_notint a tya = c ->
eval_expr ge e le m a va ->
eval_expr ge e le m c v.
Proof.
intros until m; intro SEM. unfold make_notint.
functional inversion SEM; intros. subst. eauto with cshm.
Qed.
Definition binary_constructor_correct
(make: expr -> type -> expr -> type -> res expr)
(sem: val -> type -> val -> type -> option val): Prop :=
forall a tya b tyb c va vb v e le m,
sem va tya vb tyb = Some v ->
make a tya b tyb = OK c ->
eval_expr ge e le m a va ->
eval_expr ge e le m b vb ->
eval_expr ge e le m c v.
(*
Definition binary_constructor_correct'
(make: expr -> type -> expr -> type -> res expr)
(sem: val -> val -> option val): Prop :=
forall a tya b tyb c va vb v e le m,
sem va vb = Some v ->
make a tya b tyb = OK c ->
eval_expr ge e le m a va ->
eval_expr ge e le m b vb ->
eval_expr ge e le m c v.
*)
Lemma make_add_correct: binary_constructor_correct make_add sem_add.
Proof.
red; intros until m. intro SEM. unfold make_add.
functional inversion SEM; rewrite H0; intros;
inversion H7; eauto with cshm.
eapply eval_Ebinop. eauto.
eapply eval_Ebinop. eauto with cshm. eauto.
simpl. reflexivity. reflexivity.
eapply eval_Ebinop. eauto.
eapply eval_Ebinop. eauto with cshm. eauto.
simpl. reflexivity. simpl. reflexivity.
Qed.
Lemma make_sub_correct: binary_constructor_correct make_sub sem_sub.
Proof.
red; intros until m. intro SEM. unfold make_sub.
functional inversion SEM; rewrite H0; intros;
inversion H7; eauto with cshm.
eapply eval_Ebinop. eauto.
eapply eval_Ebinop. eauto with cshm. eauto.
simpl. reflexivity. reflexivity.
inversion H9. eapply eval_Ebinop.
eapply eval_Ebinop; eauto.
simpl. unfold eq_block; rewrite H3. reflexivity.
eauto with cshm. simpl. rewrite H8. reflexivity.
Qed.
Lemma make_mul_correct: binary_constructor_correct make_mul sem_mul.
Proof.
red; intros until m. intro SEM. unfold make_mul.
functional inversion SEM; rewrite H0; intros;
inversion H7; eauto with cshm.
Qed.
Lemma make_div_correct: binary_constructor_correct make_div sem_div.
Proof.
red; intros until m. intro SEM. unfold make_div.
functional inversion SEM; rewrite H0; intros.
inversion H8. eapply eval_Ebinop; eauto with cshm.
simpl. rewrite H7; auto.
inversion H8. eapply eval_Ebinop; eauto with cshm.
simpl. rewrite H7; auto.
inversion H7; eauto with cshm.
inversion H7; eauto with cshm.
inversion H7; eauto with cshm.
Qed.
Lemma make_mod_correct: binary_constructor_correct make_mod sem_mod.
red; intros until m. intro SEM. unfold make_mod.
functional inversion SEM; rewrite H0; intros.
inversion H8. eapply eval_Ebinop; eauto with cshm.
simpl. rewrite H7; auto.
inversion H8. eapply eval_Ebinop; eauto with cshm.
simpl. rewrite H7; auto.
Qed.
Lemma make_and_correct: binary_constructor_correct make_and sem_and.
Proof.
red; intros until m. intro SEM. unfold make_and.
functional inversion SEM. intros. inversion H7.
eauto with cshm.
Qed.
Lemma make_or_correct: binary_constructor_correct make_or sem_or.
Proof.
red; intros until m. intro SEM. unfold make_or.
functional inversion SEM. intros. inversion H7.
eauto with cshm.
Qed.
Lemma make_xor_correct: binary_constructor_correct make_xor sem_xor.
Proof.
red; intros until m. intro SEM. unfold make_xor.
functional inversion SEM. intros. inversion H7.
eauto with cshm.
Qed.
Lemma make_shl_correct: binary_constructor_correct make_shl sem_shl.
Proof.
red; intros until m. intro SEM. unfold make_shl.
functional inversion SEM. intros. inversion H8.
eapply eval_Ebinop; eauto with cshm.
simpl. rewrite H7. auto.
Qed.
Lemma make_shr_correct: binary_constructor_correct make_shr sem_shr.
Proof.
red; intros until m. intro SEM. unfold make_shr.
functional inversion SEM; intros; rewrite H0 in H8; inversion H8.
eapply eval_Ebinop; eauto with cshm.
simpl; rewrite H7; auto.
eapply eval_Ebinop; eauto with cshm.
simpl; rewrite H7; auto.
Qed.
Lemma make_cmp_correct:
forall cmp a tya b tyb c va vb v e le m,
sem_cmp cmp va tya vb tyb m = Some v ->
make_cmp cmp a tya b tyb = OK c ->
eval_expr ge e le m a va ->
eval_expr ge e le m b vb ->
eval_expr ge e le m c v.
Proof.
intros until m. intro SEM. unfold make_cmp.
functional inversion SEM; rewrite H0; intros.
(** ii Signed *)
inversion H8; eauto with cshm.
(* ii Unsigned *)
inversion H8. eauto with cshm.
(* pp int int *)
inversion H8. eauto with cshm.
(* pp ptr ptr *)
inversion H10. eapply eval_Ebinop; eauto with cshm.
simpl. rewrite H3. unfold eq_block. rewrite H9. auto.
inversion H10. eapply eval_Ebinop; eauto with cshm.
simpl. rewrite H3. unfold eq_block. rewrite H9. auto.
(* pp ptr int *)
inversion H9. eapply eval_Ebinop; eauto with cshm.
simpl. unfold eval_compare_null. rewrite H8. auto.
(* pp int ptr *)
inversion H9. eapply eval_Ebinop; eauto with cshm.
simpl. unfold eval_compare_null. rewrite H8. auto.
(* ff *)
inversion H8. eauto with cshm.
(* if *)
inversion H8. eauto with cshm.
(* fi *)
inversion H8. eauto with cshm.
Qed.
Lemma transl_unop_correct:
forall op a tya c va v e le m,
transl_unop op a tya = OK c ->
sem_unary_operation op va tya = Some v ->
eval_expr ge e le m a va ->
eval_expr ge e le m c v.
Proof.
intros. destruct op; simpl in *.
eapply make_notbool_correct; eauto.
eapply make_notint_correct with (tya := tya); eauto. congruence.
eapply make_neg_correct; eauto.
Qed.
Lemma transl_binop_correct:
forall op a tya b tyb c va vb v e le m,
transl_binop op a tya b tyb = OK c ->
sem_binary_operation op va tya vb tyb m = Some v ->
eval_expr ge e le m a va ->
eval_expr ge e le m b vb ->
eval_expr ge e le m c v.
Proof.
intros. destruct op; simpl in *.
eapply make_add_correct; eauto.
eapply make_sub_correct; eauto.
eapply make_mul_correct; eauto.
eapply make_div_correct; eauto.
eapply make_mod_correct; eauto.
eapply make_and_correct; eauto.
eapply make_or_correct; eauto.
eapply make_xor_correct; eauto.
eapply make_shl_correct; eauto.
eapply make_shr_correct; eauto.
eapply make_cmp_correct; eauto.
eapply make_cmp_correct; eauto.
eapply make_cmp_correct; eauto.
eapply make_cmp_correct; eauto.
eapply make_cmp_correct; eauto.
eapply make_cmp_correct; eauto.
Qed.
Lemma make_cast_correct:
forall e le m a v ty1 ty2 v',
eval_expr ge e le m a v ->
cast v ty1 ty2 v' ->
eval_expr ge e le m (make_cast ty1 ty2 a) v'.
Proof.
unfold make_cast, make_cast1, make_cast2.
intros until v'; intros EVAL CAST.
inversion CAST; clear CAST; subst.
(* cast_int_int *)
destruct sz2; destruct si2; repeat econstructor; eauto with cshm.
(* cast_float_int *)
exploit make_intoffloat_correct; eauto. intros A.
destruct sz2; destruct si2; eauto with cshm.
(* cast_int_float *)
destruct sz2; destruct si1; unfold make_floatofint; repeat econstructor; eauto with cshm; simpl; auto.
(* cast_float_float *)
destruct sz2; repeat econstructor; eauto with cshm.
(* neutral, ptr *)
inversion H0; auto; inversion H; auto.
(* neutral, int *)
inversion H0; auto; inversion H; auto.
Qed.
Lemma make_load_correct:
forall addr ty code b ofs v e le m,
make_load addr ty = OK code ->
eval_expr ge e le m addr (Vptr b ofs) ->
load_value_of_type ty m b ofs = Some v ->
eval_expr ge e le m code v.
Proof.
unfold make_load, load_value_of_type.
intros until m; intros MKLOAD EVEXP LDVAL.
destruct (access_mode ty); inversion MKLOAD.
(* access_mode ty = By_value m *)
apply eval_Eload with (Vptr b ofs); auto.
(* access_mode ty = By_reference *)
subst code. inversion LDVAL. auto.
Qed.
Lemma make_store_correct:
forall addr ty rhs code e le m b ofs v m' f k,
make_store addr ty rhs = OK code ->
eval_expr ge e le m addr (Vptr b ofs) ->
eval_expr ge e le m rhs v ->
store_value_of_type ty m b ofs v = Some m' ->
step ge (State f code k e le m) E0 (State f Sskip k e le m').
Proof.
unfold make_store, store_value_of_type.
intros until k; intros MKSTORE EV1 EV2 STVAL.
destruct (access_mode ty); inversion MKSTORE.
(* access_mode ty = By_value m *)
eapply step_store; eauto.
Qed.
End CONSTRUCTORS.
(** * Basic preservation invariants *)
Section CORRECTNESS.
Variable prog: Clight.program.
Variable tprog: Csharpminor.program.
Hypothesis TRANSL: transl_program prog = OK tprog.
Let ge := Genv.globalenv prog.
Let tge := Genv.globalenv tprog.
Lemma symbols_preserved:
forall s, Genv.find_symbol tge s = Genv.find_symbol ge s.
Proof (Genv.find_symbol_transf_partial2 transl_fundef transl_globvar _ TRANSL).
Lemma functions_translated:
forall v f,
Genv.find_funct ge v = Some f ->
exists tf, Genv.find_funct tge v = Some tf /\ transl_fundef f = OK tf.
Proof (Genv.find_funct_transf_partial2 transl_fundef transl_globvar _ TRANSL).
Lemma function_ptr_translated:
forall b f,
Genv.find_funct_ptr ge b = Some f ->
exists tf, Genv.find_funct_ptr tge b = Some tf /\ transl_fundef f = OK tf.
Proof (Genv.find_funct_ptr_transf_partial2 transl_fundef transl_globvar _ TRANSL).
Lemma var_info_translated:
forall b v,
Genv.find_var_info ge b = Some v ->
exists tv, Genv.find_var_info tge b = Some tv /\ transf_globvar transl_globvar v = OK tv.
Proof (Genv.find_var_info_transf_partial2 transl_fundef transl_globvar _ TRANSL).
(** * Matching between environments *)
(** In this section, we define a matching relation between
a Clight local environment and a Csharpminor local environment. *)
Record match_env (e: Clight.env) (te: Csharpminor.env) : Prop :=
mk_match_env {
me_local:
forall id b ty,
e!id = Some (b, ty) ->
exists vk, var_kind_of_type ty = OK vk /\ te!id = Some (b, vk);
me_local_inv:
forall id b vk,
te!id = Some (b, vk) -> exists ty, e!id = Some(b, ty)
}.
Lemma match_env_globals:
forall e te id l ty,
match_env e te ->
e!id = None ->
Genv.find_symbol ge id = Some l ->
type_of_global ge l = Some ty ->
te!id = None /\
(forall chunk, access_mode ty = By_value chunk ->
exists gv, Genv.find_var_info tge l = Some gv /\ gvar_info gv = Vscalar chunk).
Proof.
intros.
case_eq (te!id). intros [b' vk] EQ.
exploit me_local_inv; eauto. intros [ty' EQ']. congruence.
intros. split; auto; intros.
revert H2; unfold type_of_global.
case_eq (Genv.find_var_info ge l). intros. inv H5.
exploit var_info_translated; eauto. intros [gv [A B]]. monadInv B. unfold transl_globvar in EQ.
econstructor; split. eauto. simpl.
exploit var_kind_by_value; eauto. congruence.
intros. destruct (Genv.find_funct_ptr ge l); intros; inv H5.
destruct f; simpl in H4; discriminate.
Qed.
Lemma match_env_same_blocks:
forall e te,
match_env e te ->
blocks_of_env te = Csem.blocks_of_env e.
Proof.
intros.
set (R := fun (x: (block * type)) (y: (block * var_kind)) =>
match x, y with
| (b1, ty), (b2, vk) => b2 = b1 /\ var_kind_of_type ty = OK vk
end).
assert (list_forall2
(fun i_x i_y => fst i_x = fst i_y /\ R (snd i_x) (snd i_y))
(PTree.elements e) (PTree.elements te)).
apply PTree.elements_canonical_order.
intros id [b ty] GET. exploit me_local; eauto. intros [vk [A B]].
exists (b, vk); split; auto. red. auto.
intros id [b vk] GET.
exploit me_local_inv; eauto. intros [ty A].
exploit me_local; eauto. intros [vk' [B C]].
assert (vk' = vk) by congruence. subst vk'.
exists (b, ty); split; auto. red. auto.
unfold blocks_of_env, Csem.blocks_of_env.
generalize H0. induction 1. auto.
simpl. f_equal; auto.
unfold block_of_binding, Csem.block_of_binding.
destruct a1 as [id1 [blk1 ty1]]. destruct b1 as [id2 [blk2 vk2]].
simpl in *. destruct H1 as [A [B C]]. subst blk2 id2. f_equal.
apply sizeof_var_kind_of_type. auto.
Qed.
Lemma match_env_free_blocks:
forall e te m m',
match_env e te ->
Mem.free_list m (Csem.blocks_of_env e) = Some m' ->
Mem.free_list m (blocks_of_env te) = Some m'.
Proof.
intros. rewrite (match_env_same_blocks _ _ H). auto.
Qed.
Lemma match_env_empty:
match_env Clight.empty_env Csharpminor.empty_env.
Proof.
unfold Clight.empty_env, Csharpminor.empty_env.
constructor.
intros until b. repeat rewrite PTree.gempty. congruence.
intros until vk. rewrite PTree.gempty. congruence.
Qed.
(** The following lemmas establish the [match_env] invariant at
the beginning of a function invocation, after allocation of
local variables and initialization of the parameters. *)
Lemma match_env_alloc_variables:
forall e1 m1 vars e2 m2,
Csem.alloc_variables e1 m1 vars e2 m2 ->
forall te1 tvars,
match_env e1 te1 ->
transl_vars vars = OK tvars ->
exists te2,
Csharpminor.alloc_variables te1 m1 tvars te2 m2
/\ match_env e2 te2.
Proof.
induction 1; intros.
monadInv H0.
exists te1; split. constructor. auto.
generalize H2. simpl.
caseEq (var_kind_of_type ty); simpl; [intros vk VK | congruence].
caseEq (transl_vars vars); simpl; [intros tvrs TVARS | congruence].
intro EQ; inversion EQ; subst tvars; clear EQ.
set (te2 := PTree.set id (b1, vk) te1).
assert (match_env (PTree.set id (b1, ty) e) te2).
inversion H1. unfold te2. constructor.
(* me_local *)
intros until ty0. simpl. repeat rewrite PTree.gsspec.
destruct (peq id0 id); intros.
inv H3. exists vk; intuition.
auto.
(* me_local_inv *)
intros until vk0. repeat rewrite PTree.gsspec.
destruct (peq id0 id); intros. exists ty; congruence. eauto.
destruct (IHalloc_variables _ _ H3 TVARS) as [te3 [ALLOC MENV]].
exists te3; split.
econstructor; eauto.
rewrite (sizeof_var_kind_of_type _ _ VK). eauto.
auto.
Qed.
Lemma bind_parameters_match:
forall e m1 vars vals m2,
Csem.bind_parameters e m1 vars vals m2 ->
forall te tvars,
val_casted_list vals (type_of_params vars) ->
match_env e te ->
transl_params vars = OK tvars ->
Csharpminor.bind_parameters te m1 tvars vals m2.
Proof.
induction 1; intros.
(* base case *)
monadInv H1. constructor.
(* inductive case *)
simpl in H2. destruct H2.
revert H4; simpl.
caseEq (chunk_of_type ty); simpl; [intros chunk CHK | congruence].
caseEq (transl_params params); simpl; [intros tparams TPARAMS | congruence].
intro EQ; inversion EQ; clear EQ; subst tvars.
generalize CHK. unfold chunk_of_type.
caseEq (access_mode ty); intros; try discriminate.
inversion CHK0; clear CHK0; subst m0.
unfold store_value_of_type in H0. rewrite H4 in H0.
apply bind_parameters_cons with b m1.
exploit me_local; eauto. intros [vk [A B]].
exploit var_kind_by_value; eauto. congruence.
eapply val_casted_normalized; eauto.
assumption.
apply IHbind_parameters; auto.
Qed.
(* ** Correctness of variable accessors *)
(** Correctness of the code generated by [var_get]. *)
Lemma var_get_correct:
forall e le m id ty loc ofs v code te,
Clight.eval_lvalue ge e le m (Clight.Evar id ty) loc ofs ->
load_value_of_type ty m loc ofs = Some v ->
var_get id ty = OK code ->
match_env e te ->
eval_expr tge te le m code v.
Proof.
intros. revert H0 H1. unfold load_value_of_type, var_get.
case_eq (access_mode ty).
(* access mode By_value *)
intros chunk ACC LOAD EQ. inv EQ.
inv H.
(* local variable *)
exploit me_local; eauto. intros [vk [A B]].
assert (vk = Vscalar chunk).
exploit var_kind_by_value; eauto. congruence.
subst vk.
eapply eval_Evar.
eapply eval_var_ref_local. eauto. assumption.
(* global variable *)
exploit match_env_globals; eauto. intros [A B].
exploit B; eauto. intros [gv [C D]].
eapply eval_Evar.
eapply eval_var_ref_global. auto.
rewrite symbols_preserved. eauto.
eauto. eauto.
assumption.
(* access mode By_reference *)
intros ACC EQ1 EQ2. inv EQ1; inv EQ2; inv H.
(* local variable *)
exploit me_local; eauto. intros [vk [A B]].
eapply eval_Eaddrof.
eapply eval_var_addr_local. eauto.
(* global variable *)
exploit match_env_globals; eauto. intros [A B].
eapply eval_Eaddrof.
eapply eval_var_addr_global. auto.
rewrite symbols_preserved. eauto.
(* access mode By_nothing *)
congruence.
Qed.
(** Correctness of the code generated by [var_set]. *)
Lemma var_set_correct:
forall e le m id ty loc ofs v m' code te rhs f k,
Clight.eval_lvalue ge e le m (Clight.Evar id ty) loc ofs ->
val_casted v ty ->
store_value_of_type ty m loc ofs v = Some m' ->
var_set id ty rhs = OK code ->
match_env e te ->
eval_expr tge te le m rhs v ->
step tge (State f code k te le m) E0 (State f Sskip k te le m').
Proof.
intros. revert H1 H2. unfold store_value_of_type, var_set.
caseEq (access_mode ty).
(* access mode By_value *)
intros chunk ACC STORE EQ. inv EQ.
inv H.
(* local variable *)
exploit me_local; eauto. intros [vk [A B]].
assert (vk = Vscalar chunk).
exploit var_kind_by_value; eauto. congruence.
subst vk.
eapply step_assign. eauto.
econstructor. eapply eval_var_ref_local. eauto.
eapply val_casted_normalized; eauto. assumption.
(* global variable *)
exploit match_env_globals; eauto. intros [A B].
exploit B; eauto. intros [gv [C D]].
eapply step_assign. eauto.
econstructor. eapply eval_var_ref_global. auto.
rewrite symbols_preserved. eauto.
eauto. eauto.
eapply val_casted_normalized; eauto. assumption.
(* access mode By_reference *)
congruence.
(* access mode By_nothing *)
congruence.
Qed.
(****************************
Lemma call_dest_correct:
forall e m lhs loc ofs optid te,
Csem.eval_lvalue ge e m lhs loc ofs ->
transl_lhs_call (Some lhs) = OK optid ->
match_env e te ->
exists id,
optid = Some id
/\ ofs = Int.zero
/\ match access_mode (typeof lhs) with
| By_value chunk => eval_var_ref tge te id loc chunk
| _ => True
end.
Proof.
intros. revert H0. simpl. caseEq (is_variable lhs); try congruence.
intros id ISV EQ. inv EQ.
exploit is_variable_correct; eauto. intro EQ.
rewrite EQ in H. clear EQ.
exists id. split; auto.
inv H.
(* local variable *)
split. auto.
exploit me_local; eauto. intros [vk [A B]].
case_eq (access_mode (typeof lhs)); intros; auto.
assert (vk = Vscalar m0).
exploit var_kind_by_value; eauto. congruence.
subst vk. apply eval_var_ref_local; auto.
(* global variable *)
split. auto.
exploit match_env_globals; eauto. intros [A B].
case_eq (access_mode (typeof lhs)); intros; auto.
exploit B; eauto. intros [gv [C D]].
eapply eval_var_ref_global; eauto.
rewrite symbols_preserved. auto.
Qed.
Lemma set_call_dest_correct:
forall ty m loc v m' e te id,
store_value_of_type ty m loc Int.zero v = Some m' ->
match access_mode ty with
| By_value chunk => eval_var_ref tge te id loc chunk
| _ => True
end ->
match_env e te ->
exec_opt_assign tge te m (Some id) v m'.
Proof.
intros. generalize H. unfold store_value_of_type. case_eq (access_mode ty); intros; try congruence.
rewrite H2 in H0.
constructor. econstructor. eauto. auto.
Qed.
**************************)
(** * Proof of semantic preservation *)
(** ** Semantic preservation for expressions *)
(** The proof of semantic preservation for the translation of expressions
relies on simulation diagrams of the following form:
<<
e, le, m, a ------------------- te, le, m, ta
| |
| |
| |
v v
e, le, m, v ------------------- te, le, m, v
>>
Left: evaluation of r-value expression [a] in Clight.
Right: evaluation of its translation [ta] in Csharpminor.
Top (precondition): matching between environments [e], [te],
plus well-typedness of expression [a].
Bottom (postcondition): the result values [v]
are identical in both evaluations.
We state these diagrams as the following properties, parameterized
by the Clight evaluation. *)
Section EXPR.
Variable e: Clight.env.
Variable le: temp_env.
Variable m: mem.
Variable te: Csharpminor.env.
Hypothesis MENV: match_env e te.
Lemma transl_expr_lvalue_correct:
(forall a v,
Clight.eval_expr ge e le m a v ->
forall ta (TR: transl_expr a = OK ta) ,
Csharpminor.eval_expr tge te le m ta v)
/\(forall a b ofs,
Clight.eval_lvalue ge e le m a b ofs ->
forall ta (TR: transl_lvalue a = OK ta),
Csharpminor.eval_expr tge te le m ta (Vptr b ofs)).
Proof.
apply eval_expr_lvalue_ind; intros; try (monadInv TR).
(* const int *)
apply make_intconst_correct.
(* const float *)
apply make_floatconst_correct.
(* temp var *)
constructor; auto.
(* addrof *)
simpl in TR. auto.
(* sizeof *)
constructor; auto.
(* unop *)
eapply transl_unop_correct; eauto.
(* binop *)
eapply transl_binop_correct; eauto.
(* condition true *)
exploit make_boolean_correct_true. eapply H0; eauto. eauto.
intros [vb [EVAL ISTRUE]].
eapply eval_Econdition; eauto. apply Val.bool_of_true_val; eauto.
simpl. eauto.
(* condition false *)
exploit make_boolean_correct_false. eapply H0; eauto. eauto.
intros [vb [EVAL ISFALSE]].
eapply eval_Econdition; eauto. apply Val.bool_of_false_val; eauto.
simpl. eauto.
(* cast *)
eapply make_cast_correct; eauto.
(* rvalue out of lvalue *)
exploit transl_expr_lvalue; eauto.
intros [[id [ty [EQ VARGET]]] | [tb [TRLVAL MKLOAD]]].
(* Case a is a variable *)
subst a. eapply var_get_correct; eauto.
(* Case a is another lvalue *)
eapply make_load_correct; eauto.
(* var local *)
exploit (me_local _ _ MENV); eauto.
intros [vk [A B]].
econstructor. eapply eval_var_addr_local. eauto.
(* var global *)
exploit match_env_globals; eauto. intros [A B].
econstructor. eapply eval_var_addr_global. eauto.
rewrite symbols_preserved. auto.
(* deref *)
simpl in TR. eauto.
(* field struct *)
simpl in TR. rewrite H1 in TR. monadInv TR.
eapply eval_Ebinop; eauto.
apply make_intconst_correct.
simpl. congruence.
(* field union *)
simpl in TR. rewrite H1 in TR. eauto.
Qed.
Lemma transl_expr_correct:
forall a v,
Clight.eval_expr ge e le m a v ->
forall ta, transl_expr a = OK ta ->
Csharpminor.eval_expr tge te le m ta v.
Proof (proj1 transl_expr_lvalue_correct).
Lemma transl_lvalue_correct:
forall a b ofs,
Clight.eval_lvalue ge e le m a b ofs ->
forall ta, transl_lvalue a = OK ta ->
Csharpminor.eval_expr tge te le m ta (Vptr b ofs).
Proof (proj2 transl_expr_lvalue_correct).
Lemma transl_exprlist_correct:
forall al tyl vl,
Clight.eval_exprlist ge e le m al tyl vl ->
forall tal, transl_exprlist al tyl = OK tal ->
Csharpminor.eval_exprlist tge te le m tal vl.
Proof.
induction 1; intros.
monadInv H. constructor.
monadInv H2. constructor.
eapply make_cast_correct. eapply transl_expr_correct; eauto. auto.
eauto.
Qed.
End EXPR.
Lemma is_constant_bool_true:
forall te le m a v ty,
Csharpminor.eval_expr tge te le m a v ->
is_true v ty ->
is_constant_bool a <> Some false.
Proof.
intros. unfold is_constant_bool. destruct a; try congruence. destruct c; try congruence.
inv H. simpl in H2. inv H2. rewrite Int.eq_false. simpl; congruence.
inv H0; auto.
Qed.
Lemma is_constant_bool_false:
forall te le m a v ty,
Csharpminor.eval_expr tge te le m a v ->
is_false v ty ->
is_constant_bool a <> Some true.
Proof.
intros. unfold is_constant_bool. destruct a; try congruence. destruct c; try congruence.
inv H. simpl in H2. inv H2.
assert (i = Int.zero). inv H0; auto.
subst i. simpl. congruence.
Qed.
Lemma exit_if_false_true:
forall a ts e le m v te f tk,
exit_if_false a = OK ts ->
Clight.eval_expr ge e le m a v ->
is_true v (typeof a) ->
match_env e te ->
star step tge (State f ts tk te le m) E0 (State f Sskip tk te le m).
Proof.
intros. monadInv H.
exploit transl_expr_correct; eauto. intros EV.
generalize (is_constant_bool_true _ _ _ _ _ _ EV H1); intros ICB.
destruct (is_constant_bool x). destruct b.
inv EQ0. apply star_refl.
congruence.
inv EQ0.
exploit make_boolean_correct_true; eauto. intros [vb [EVAL ISTRUE]].
apply star_one.
change Sskip with (if true then Sskip else Sexit 0).
eapply step_ifthenelse; eauto.
apply Val.bool_of_true_val; eauto.
Qed.
Lemma exit_if_false_false:
forall a ts e le m v te f tk,
exit_if_false a = OK ts ->
Clight.eval_expr ge e le m a v ->
is_false v (typeof a) ->
match_env e te ->
star step tge (State f ts tk te le m) E0 (State f (Sexit 0) tk te le m).
Proof.
intros. monadInv H.
exploit transl_expr_correct; eauto. intros EV.
generalize (is_constant_bool_false _ _ _ _ _ _ EV H1); intros ICB.
destruct (is_constant_bool x). destruct b.
congruence.
inv EQ0. apply star_refl.
inv EQ0.
exploit make_boolean_correct_false; eauto. intros [vb [EVAL ISFALSE]].
apply star_one.
change (Sexit 0) with (if false then Sskip else Sexit 0).
eapply step_ifthenelse; eauto.
apply Val.bool_of_false_val; eauto.
Qed.
(** ** Semantic preservation for statements *)
(** The simulation diagram for the translation of statements and functions
is a "plus" diagram of the form
<<
I
S1 ------- R1
| |
t | + | t
v v
S2 ------- R2
I I
>>
The invariant [I] is the [match_states] predicate that we now define.
*)
Inductive match_transl: stmt -> cont -> stmt -> cont -> Prop :=
| match_transl_0: forall ts tk,
match_transl ts tk ts tk
| match_transl_1: forall ts tk,
match_transl (Sblock ts) tk ts (Kblock tk).
Lemma match_transl_step:
forall ts tk ts' tk' f te le m,
match_transl (Sblock ts) tk ts' tk' ->
star step tge (State f ts' tk' te le m) E0 (State f ts (Kblock tk) te le m).
Proof.
intros. inv H.
apply star_one. constructor.
apply star_refl.
Qed.
Inductive match_cont: type -> nat -> nat -> Clight.cont -> Csharpminor.cont -> Prop :=
| match_Kstop: forall tyret nbrk ncnt,
match_cont tyret nbrk ncnt Clight.Kstop Kstop
| match_Kseq: forall tyret nbrk ncnt s k ts tk,
transl_statement tyret nbrk ncnt s = OK ts ->
match_cont tyret nbrk ncnt k tk ->
match_cont tyret nbrk ncnt
(Clight.Kseq s k)
(Kseq ts tk)
| match_Kwhile: forall tyret nbrk ncnt a s k ta ts tk,
exit_if_false a = OK ta ->
transl_statement tyret 1%nat 0%nat s = OK ts ->
match_cont tyret nbrk ncnt k tk ->
match_cont tyret 1%nat 0%nat
(Clight.Kwhile a s k)
(Kblock (Kseq (Sloop (Sseq ta (Sblock ts))) (Kblock tk)))
| match_Kdowhile: forall tyret nbrk ncnt a s k ta ts tk,
exit_if_false a = OK ta ->
transl_statement tyret 1%nat 0%nat s = OK ts ->
match_cont tyret nbrk ncnt k tk ->
match_cont tyret 1%nat 0%nat
(Clight.Kdowhile a s k)
(Kblock (Kseq ta (Kseq (Sloop (Sseq (Sblock ts) ta)) (Kblock tk))))
| match_Kfor2: forall tyret nbrk ncnt a2 a3 s k ta2 ta3 ts tk,
exit_if_false a2 = OK ta2 ->
transl_statement tyret 0%nat (S ncnt) a3 = OK ta3 ->
transl_statement tyret 1%nat 0%nat s = OK ts ->
match_cont tyret nbrk ncnt k tk ->
match_cont tyret 1%nat 0%nat
(Clight.Kfor2 a2 a3 s k)
(Kblock (Kseq ta3 (Kseq (Sloop (Sseq ta2 (Sseq (Sblock ts) ta3))) (Kblock tk))))
| match_Kfor3: forall tyret nbrk ncnt a2 a3 s k ta2 ta3 ts tk,
exit_if_false a2 = OK ta2 ->
transl_statement tyret 0%nat (S ncnt) a3 = OK ta3 ->
transl_statement tyret 1%nat 0%nat s = OK ts ->
match_cont tyret nbrk ncnt k tk ->
match_cont tyret 0%nat (S ncnt)
(Clight.Kfor3 a2 a3 s k)
(Kseq (Sloop (Sseq ta2 (Sseq (Sblock ts) ta3))) (Kblock tk))
| match_Kswitch: forall tyret nbrk ncnt k tk,
match_cont tyret nbrk ncnt k tk ->
match_cont tyret 0%nat (S ncnt)
(Clight.Kswitch k)
(Kblock tk)
| match_Kcall_some: forall tyret nbrk ncnt nbrk' ncnt' f e k id tf te le tk,
transl_function f = OK tf ->
match_env e te ->
match_cont (Clight.fn_return f) nbrk' ncnt' k tk ->
match_cont tyret nbrk ncnt
(Clight.Kcall id f e le k)
(Kcall id tf te le tk).
Inductive match_states: Clight.state -> Csharpminor.state -> Prop :=
| match_state:
forall f nbrk ncnt s k e le m tf ts tk te ts' tk'
(TRF: transl_function f = OK tf)
(TR: transl_statement (Clight.fn_return f) nbrk ncnt s = OK ts)
(MTR: match_transl ts tk ts' tk')
(MENV: match_env e te)
(MK: match_cont (Clight.fn_return f) nbrk ncnt k tk),
match_states (Clight.State f s k e le m)
(State tf ts' tk' te le m)
| match_callstate:
forall fd args k m tfd tk targs tres
(TR: transl_fundef fd = OK tfd)
(MK: match_cont Tvoid 0%nat 0%nat k tk)
(ISCC: Clight.is_call_cont k)
(TY: type_of_fundef fd = Tfunction targs tres)
(VCAST: val_casted_list args targs),
match_states (Clight.Callstate fd args k m)
(Callstate tfd args tk m)
| match_returnstate:
forall res k m tk
(MK: match_cont Tvoid 0%nat 0%nat k tk),
match_states (Clight.Returnstate res k m)
(Returnstate res tk m).
Remark match_states_skip:
forall f e le te nbrk ncnt k tf tk m,
transl_function f = OK tf ->
match_env e te ->
match_cont (Clight.fn_return f) nbrk ncnt k tk ->
match_states (Clight.State f Clight.Sskip k e le m) (State tf Sskip tk te le m).
Proof.
intros. econstructor; eauto. simpl; reflexivity. constructor.
Qed.
(** Commutation between label resolution and compilation *)
Section FIND_LABEL.
Variable lbl: label.
Variable tyret: type.
Remark exit_if_false_no_label:
forall a s, exit_if_false a = OK s -> forall k, find_label lbl s k = None.
Proof.
intros. unfold exit_if_false in H. monadInv H.
destruct (is_constant_bool x). destruct b; inv EQ0; auto. inv EQ0; auto.
Qed.
Lemma transl_find_label:
forall s nbrk ncnt k ts tk
(TR: transl_statement tyret nbrk ncnt s = OK ts)
(MC: match_cont tyret nbrk ncnt k tk),
match Clight.find_label lbl s k with
| None => find_label lbl ts tk = None
| Some (s', k') =>
exists ts', exists tk', exists nbrk', exists ncnt',
find_label lbl ts tk = Some (ts', tk')
/\ transl_statement tyret nbrk' ncnt' s' = OK ts'
/\ match_cont tyret nbrk' ncnt' k' tk'
end
with transl_find_label_ls:
forall ls nbrk ncnt k tls tk
(TR: transl_lbl_stmt tyret nbrk ncnt ls = OK tls)
(MC: match_cont tyret nbrk ncnt k tk),
match Clight.find_label_ls lbl ls k with
| None => find_label_ls lbl tls tk = None
| Some (s', k') =>
exists ts', exists tk', exists nbrk', exists ncnt',
find_label_ls lbl tls tk = Some (ts', tk')
/\ transl_statement tyret nbrk' ncnt' s' = OK ts'
/\ match_cont tyret nbrk' ncnt' k' tk'
end.
Proof.
intro s; case s; intros; try (monadInv TR); simpl.
(* skip *)
auto.
(* assign *)
simpl in TR. destruct (is_variable e); monadInv TR.
unfold var_set in EQ0. destruct (access_mode (typeof e)); inv EQ0. auto.
unfold make_store in EQ2. destruct (access_mode (typeof e)); inv EQ2. auto.
(* set *)
auto.
(* call *)
simpl in TR. destruct (classify_fun (typeof e)); monadInv TR. auto.
(* seq *)
exploit (transl_find_label s0 nbrk ncnt (Clight.Kseq s1 k)); eauto. constructor; eauto.
destruct (Clight.find_label lbl s0 (Clight.Kseq s1 k)) as [[s' k'] | ].
intros [ts' [tk' [nbrk' [ncnt' [A [B C]]]]]].
rewrite A. exists ts'; exists tk'; exists nbrk'; exists ncnt'; auto.
intro. rewrite H. eapply transl_find_label; eauto.
(* ifthenelse *)
exploit (transl_find_label s0); eauto.
destruct (Clight.find_label lbl s0 k) as [[s' k'] | ].
intros [ts' [tk' [nbrk' [ncnt' [A [B C]]]]]].
rewrite A. exists ts'; exists tk'; exists nbrk'; exists ncnt'; auto.
intro. rewrite H. eapply transl_find_label; eauto.
(* while *)
rewrite (exit_if_false_no_label _ _ EQ).
eapply transl_find_label; eauto. econstructor; eauto.
(* dowhile *)
exploit (transl_find_label s0 1%nat 0%nat (Clight.Kdowhile e s0 k)); eauto. econstructor; eauto.
destruct (Clight.find_label lbl s0 (Kdowhile e s0 k)) as [[s' k'] | ].
intros [ts' [tk' [nbrk' [ncnt' [A [B C]]]]]].
rewrite A. exists ts'; exists tk'; exists nbrk'; exists ncnt'; auto.
intro. rewrite H. eapply exit_if_false_no_label; eauto.
(* for *)
rewrite (exit_if_false_no_label _ _ EQ).
exploit (transl_find_label s1 1%nat 0%nat (Kfor2 e s0 s1 k)); eauto. econstructor; eauto.
destruct (Clight.find_label lbl s1 (Kfor2 e s0 s1 k)) as [[s' k'] | ].
intros [ts' [tk' [nbrk' [ncnt' [A [B C]]]]]].
rewrite A. exists ts'; exists tk'; exists nbrk'; exists ncnt'; auto.
intro. rewrite H.
eapply transl_find_label; eauto. econstructor; eauto.
(* break *)
auto.
(* continue *)
auto.
(* return *)
simpl in TR. destruct o; monadInv TR. auto. auto.
(* switch *)
eapply transl_find_label_ls with (k := Clight.Kswitch k); eauto. econstructor; eauto.
(* label *)
destruct (ident_eq lbl l).
exists x; exists tk; exists nbrk; exists ncnt; auto.
eapply transl_find_label; eauto.
(* goto *)
auto.
intro ls; case ls; intros; monadInv TR; simpl.
(* default *)
eapply transl_find_label; eauto.
(* case *)
exploit (transl_find_label s nbrk ncnt (Clight.Kseq (seq_of_labeled_statement l) k)); eauto.
econstructor; eauto. apply transl_lbl_stmt_2; eauto.
destruct (Clight.find_label lbl s (Clight.Kseq (seq_of_labeled_statement l) k)) as [[s' k'] | ].
intros [ts' [tk' [nbrk' [ncnt' [A [B C]]]]]].
rewrite A. exists ts'; exists tk'; exists nbrk'; exists ncnt'; auto.
intro. rewrite H.
eapply transl_find_label_ls; eauto.
Qed.
End FIND_LABEL.
(** Properties of call continuations *)
Lemma match_cont_call_cont:
forall tyret' nbrk' ncnt' tyret nbrk ncnt k tk,
match_cont tyret nbrk ncnt k tk ->
match_cont tyret' nbrk' ncnt' (Clight.call_cont k) (call_cont tk).
Proof.
induction 1; simpl; auto.
constructor.
econstructor; eauto.
Qed.
Lemma match_cont_is_call_cont:
forall tyret nbrk ncnt k tk tyret' nbrk' ncnt',
match_cont tyret nbrk ncnt k tk ->
Clight.is_call_cont k ->
match_cont tyret' nbrk' ncnt' k tk /\ is_call_cont tk.
Proof.
intros. inv H; simpl in H0; try contradiction; simpl.
split; auto; constructor.
split; auto; econstructor; eauto.
Qed.
(** The simulation proof *)
Lemma transl_step:
forall S1 t S2, Clight.step ge S1 t S2 ->
forall T1, match_states S1 T1 ->
exists T2, plus step tge T1 t T2 /\ match_states S2 T2.
Proof.
induction 1; intros T1 MST; inv MST.
(* assign *)
revert TR. simpl. case_eq (is_variable a1); intros; monadInv TR.
exploit is_variable_correct; eauto. intro EQ1. rewrite EQ1 in H.
assert (ts' = ts /\ tk' = tk).
inversion MTR. auto.
subst ts. unfold var_set in EQ0. destruct (access_mode (typeof a1)); congruence.
destruct H4; subst ts' tk'.
econstructor; split.
apply plus_one. eapply var_set_correct; eauto. exists v2; exists (typeof a2); auto.
eapply make_cast_correct; eauto. eapply transl_expr_correct; eauto.
eapply match_states_skip; eauto.
assert (ts' = ts /\ tk' = tk).
inversion MTR. auto.
subst ts. unfold make_store in EQ2. destruct (access_mode (typeof a1)); congruence.
destruct H4; subst ts' tk'.
econstructor; split.
apply plus_one. eapply make_store_correct; eauto.
exploit transl_lvalue_correct; eauto.
eapply make_cast_correct; eauto. eapply transl_expr_correct; eauto.
eapply match_states_skip; eauto.
(* set *)
monadInv TR. inv MTR. econstructor; split.
apply plus_one. econstructor. eapply transl_expr_correct; eauto.
eapply match_states_skip; eauto.
(* call *)
revert TR. simpl. case_eq (classify_fun (typeof a)); try congruence.
intros targs tres CF TR. monadInv TR. inv MTR.
exploit functions_translated; eauto. intros [tfd [FIND TFD]].
rewrite H in CF. simpl in CF. inv CF.
econstructor; split.
apply plus_one. econstructor; eauto.
exploit transl_expr_correct; eauto.
exploit transl_exprlist_correct; eauto.
eapply transl_fundef_sig1; eauto.
rewrite H3. rewrite H. auto.
econstructor; eauto.
econstructor; eauto.
simpl. auto.
rewrite H3; rewrite H; eauto.
eapply eval_exprlist_casted; eauto.
(* seq *)
monadInv TR. inv MTR.
econstructor; split.
apply plus_one. constructor.
econstructor; eauto. constructor.
econstructor; eauto.
(* skip seq *)
monadInv TR. inv MTR. inv MK.
econstructor; split.
apply plus_one. apply step_skip_seq.
econstructor; eauto. constructor.
(* continue seq *)
monadInv TR. inv MTR. inv MK.
econstructor; split.
apply plus_one. constructor.
econstructor; eauto. simpl. reflexivity. constructor.
(* break seq *)
monadInv TR. inv MTR. inv MK.
econstructor; split.
apply plus_one. constructor.
econstructor; eauto. simpl. reflexivity. constructor.
(* ifthenelse true *)
monadInv TR. inv MTR.
exploit make_boolean_correct_true; eauto.
exploit transl_expr_correct; eauto.
intros [v [A B]].
econstructor; split.
apply plus_one. apply step_ifthenelse with (v := v) (b := true).
auto. apply Val.bool_of_true_val. auto.
econstructor; eauto. constructor.
(* ifthenelse false *)
monadInv TR. inv MTR.
exploit make_boolean_correct_false; eauto.
exploit transl_expr_correct; eauto.
intros [v [A B]].
econstructor; split.
apply plus_one. apply step_ifthenelse with (v := v) (b := false).
auto. apply Val.bool_of_false_val. auto.
econstructor; eauto. constructor.
(* while false *)
monadInv TR.
econstructor; split.
eapply star_plus_trans. eapply match_transl_step; eauto.
eapply plus_left. constructor.
eapply star_left. constructor.
eapply star_trans. eapply exit_if_false_false; eauto.
eapply star_left. constructor.
eapply star_left. constructor.
apply star_one. constructor.
reflexivity. reflexivity. reflexivity. reflexivity. reflexivity. traceEq.
eapply match_states_skip; eauto.
(* while true *)
monadInv TR.
econstructor; split.
eapply star_plus_trans. eapply match_transl_step; eauto.
eapply plus_left. constructor.
eapply star_left. constructor.
eapply star_trans. eapply exit_if_false_true; eauto.
eapply star_left. constructor.
apply star_one. constructor.
reflexivity. reflexivity. reflexivity. reflexivity. traceEq.
econstructor; eauto. constructor.
econstructor; eauto.
(* skip or continue while *)
assert ((ts' = Sskip \/ ts' = Sexit ncnt) /\ tk' = tk).
destruct H; subst x; monadInv TR; inv MTR; auto.
destruct H0. inv MK.
econstructor; split.
eapply plus_left.
destruct H0; subst ts'; constructor.
apply star_one. constructor. traceEq.
econstructor; eauto.
simpl. rewrite H8; simpl. rewrite H10; simpl. reflexivity.
constructor.
(* break while *)
monadInv TR. inv MTR. inv MK.
econstructor; split.
eapply plus_left. constructor.
eapply star_left. constructor.
apply star_one. constructor.
reflexivity. traceEq.
eapply match_states_skip; eauto.
(* dowhile *)
monadInv TR.
econstructor; split.
eapply star_plus_trans. eapply match_transl_step; eauto.
eapply plus_left. constructor.
eapply star_left. constructor.
apply star_one. constructor.
reflexivity. reflexivity. traceEq.
econstructor; eauto. constructor.
econstructor; eauto.
(* skip or continue dowhile false *)
assert ((ts' = Sskip \/ ts' = Sexit ncnt) /\ tk' = tk).
destruct H; subst x; monadInv TR; inv MTR; auto.
destruct H2. inv MK.
econstructor; split.
eapply plus_left. destruct H2; subst ts'; constructor.
eapply star_left. constructor.
eapply star_trans. eapply exit_if_false_false; eauto.
eapply star_left. constructor.
apply star_one. constructor.
reflexivity. reflexivity. reflexivity. traceEq.
eapply match_states_skip; eauto.
(* skip or continue dowhile true *)
assert ((ts' = Sskip \/ ts' = Sexit ncnt) /\ tk' = tk).
destruct H; subst x; monadInv TR; inv MTR; auto.
destruct H2. inv MK.
econstructor; split.
eapply plus_left. destruct H2; subst ts'; constructor.
eapply star_left. constructor.
eapply star_trans. eapply exit_if_false_true; eauto.
apply star_one. constructor.
reflexivity. reflexivity. traceEq.
econstructor; eauto.
simpl. rewrite H10; simpl. rewrite H12; simpl. reflexivity. constructor.
(* break dowhile *)
monadInv TR. inv MTR. inv MK.
econstructor; split.
eapply plus_left. constructor.
eapply star_left. constructor.
eapply star_left. constructor.
apply star_one. constructor.
reflexivity. reflexivity. traceEq.
eapply match_states_skip; eauto.
(* for false *)
monadInv TR.
econstructor; split.
eapply star_plus_trans. eapply match_transl_step; eauto.
eapply plus_left. constructor.
eapply star_left. constructor.
eapply star_trans. eapply exit_if_false_false; eauto.
eapply star_left. constructor.
eapply star_left. constructor.
apply star_one. constructor.
reflexivity. reflexivity. reflexivity. reflexivity. reflexivity. reflexivity.
eapply match_states_skip; eauto.
(* for true *)
monadInv TR.
econstructor; split.
eapply star_plus_trans. eapply match_transl_step; eauto.
eapply plus_left. constructor.
eapply star_left. constructor.
eapply star_trans. eapply exit_if_false_true; eauto.
eapply star_left. constructor.
eapply star_left. constructor.
apply star_one. constructor.
reflexivity. reflexivity. reflexivity. reflexivity. reflexivity. reflexivity.
econstructor; eauto. constructor.
econstructor; eauto.
(* skip or continue for2 *)
assert ((ts' = Sskip \/ ts' = Sexit ncnt) /\ tk' = tk).
destruct H; subst x; monadInv TR; inv MTR; auto.
destruct H0. inv MK.
econstructor; split.
eapply plus_left. destruct H0; subst ts'; constructor.
apply star_one. constructor. reflexivity.
econstructor; eauto. constructor.
econstructor; eauto.
(* break for2 *)
monadInv TR. inv MTR. inv MK.
econstructor; split.
eapply plus_left. constructor.
eapply star_left. constructor.
eapply star_left. constructor.
apply star_one. constructor.
reflexivity. reflexivity. traceEq.
eapply match_states_skip; eauto.
(* skip for3 *)
monadInv TR. inv MTR. inv MK.
econstructor; split.
apply plus_one. constructor.
econstructor; eauto.
simpl. rewrite H6; simpl. rewrite H8; simpl. rewrite H9; simpl. reflexivity.
constructor.
(* break for3 *)
monadInv TR. inv MTR. inv MK.
econstructor; split.
eapply plus_left. constructor. apply star_one. constructor.
econstructor; eauto.
eapply match_states_skip; eauto.
(* return none *)
monadInv TR. inv MTR.
econstructor; split.
apply plus_one. constructor.
eapply match_env_free_blocks; eauto.
econstructor; eauto.
eapply match_cont_call_cont. eauto.
(* return some *)
monadInv TR. inv MTR.
econstructor; split.
apply plus_one. constructor.
(* monadInv TRF. simpl.
unfold opttyp_of_type. destruct (Clight.fn_return f); try congruence.
inv H0. inv H3. inv H3.
*)
eapply make_cast_correct. eapply transl_expr_correct; eauto. eauto.
eapply match_env_free_blocks; eauto.
econstructor; eauto.
eapply match_cont_call_cont. eauto.
(* skip call *)
monadInv TR. inv MTR.
exploit match_cont_is_call_cont; eauto. intros [A B].
econstructor; split.
apply plus_one. apply step_skip_call. auto.
monadInv TRF. simpl. rewrite H0. auto.
eapply match_env_free_blocks; eauto.
constructor. eauto.
(* switch *)
monadInv TR.
exploit transl_expr_correct; eauto. intro EV.
econstructor; split.
eapply star_plus_trans. eapply match_transl_step; eauto.
apply plus_one. econstructor. eauto. traceEq.
econstructor; eauto.
apply transl_lbl_stmt_2. apply transl_lbl_stmt_1. eauto.
constructor.
econstructor. eauto.
(* skip or break switch *)
assert ((ts' = Sskip \/ ts' = Sexit nbrk) /\ tk' = tk).
destruct H; subst x; monadInv TR; inv MTR; auto.
destruct H0. inv MK.
econstructor; split.
apply plus_one. destruct H0; subst ts'; constructor.
eapply match_states_skip; eauto.
(* continue switch *)
monadInv TR. inv MTR. inv MK.
econstructor; split.
apply plus_one. constructor.
econstructor; eauto. simpl. reflexivity. constructor.
(* label *)
monadInv TR. inv MTR.
econstructor; split.
apply plus_one. constructor.
econstructor; eauto. constructor.
(* goto *)
monadInv TR. inv MTR.
generalize TRF. unfold transl_function. intro TRF'. monadInv TRF'.
exploit (transl_find_label lbl). eexact EQ0. eapply match_cont_call_cont. eauto.
rewrite H.
intros [ts' [tk'' [nbrk' [ncnt' [A [B C]]]]]].
econstructor; split.
apply plus_one. constructor. simpl. eexact A.
econstructor; eauto. constructor.
(* internal function *)
monadInv TR. monadInv EQ.
exploit match_cont_is_call_cont; eauto. intros [A B].
exploit match_env_alloc_variables; eauto.
apply match_env_empty.
apply transl_fn_variables. eauto. eauto.
intros [te1 [C D]].
econstructor; split.
apply plus_one. econstructor.
eapply transl_names_norepet; eauto.
eexact C. eapply bind_parameters_match; eauto.
simpl in TY. unfold type_of_function in TY. congruence.
econstructor; eauto.
unfold transl_function. rewrite EQ0; simpl. rewrite EQ; simpl. rewrite EQ1; auto.
constructor.
(* external function *)
simpl in TR.
destruct (list_typ_eq (sig_args (ef_sig ef)) (typlist_of_typelist targs) &&
opt_typ_eq (sig_res (ef_sig ef)) (opttyp_of_type tres));
monadInv TR.
exploit match_cont_is_call_cont; eauto. intros [A B].
econstructor; split.
apply plus_one. constructor. eauto.
eapply external_call_symbols_preserved_2; eauto.
exact symbols_preserved.
eexact (Genv.find_var_info_transf_partial2 transl_fundef transl_globvar _ TRANSL).
eexact (Genv.find_var_info_rev_transf_partial2 transl_fundef transl_globvar _ TRANSL).
econstructor; eauto.
(* returnstate *)
inv MK.
econstructor; split.
apply plus_one. constructor.
econstructor; eauto. simpl; reflexivity. constructor.
inv MK.
econstructor; split.
apply plus_one. constructor.
econstructor; eauto. simpl; reflexivity. constructor.
Qed.
Lemma transl_initial_states:
forall S t S', Clight.initial_state prog S -> Clight.step ge S t S' ->
exists R, initial_state tprog R /\ match_states S R.
Proof.
intros. inv H.
exploit function_ptr_translated; eauto. intros [tf [A B]].
assert (C: Genv.find_symbol tge (prog_main tprog) = Some b).
rewrite symbols_preserved. replace (prog_main tprog) with (prog_main prog).
exact H2. symmetry. unfold transl_program in TRANSL.
eapply transform_partial_program2_main; eauto.
assert (funsig tf = signature_of_type Tnil (Tint I32 Signed)).
eapply transl_fundef_sig2; eauto.
econstructor; split.
econstructor; eauto. eapply Genv.init_mem_transf_partial2; eauto.
econstructor; eauto. constructor; auto. exact I. red; auto.
Qed.
Lemma transl_final_states:
forall S R r,
match_states S R -> Clight.final_state S r -> final_state R r.
Proof.
intros. inv H0. inv H. inv MK. constructor.
Qed.
Theorem transl_program_correct:
forall (beh: program_behavior),
not_wrong beh -> Clight.exec_program prog beh ->
Csharpminor.exec_program tprog beh.
Proof.
set (order := fun (S1 S2: Clight.state) => False).
assert (WF: well_founded order).
unfold order; red. intros. constructor; intros. contradiction.
assert (transl_step':
forall S1 t S2, Clight.step ge S1 t S2 ->
forall T1, match_states S1 T1 ->
exists T2,
(plus step tge T1 t T2 \/ star step tge T1 t T2 /\ order S2 S1)
/\ match_states S2 T2).
intros. exploit transl_step; eauto. intros [T2 [A B]].
exists T2; split. auto. auto.
intros. inv H0.
(* Terminates *)
assert (exists t1, exists s1, Clight.step (Genv.globalenv prog) s t1 s1).
inv H3. inv H2. inv H1. exists t1; exists s2; auto.
destruct H0 as [t1 [s1 ST]].
exploit transl_initial_states; eauto. intros [R [A B]].
exploit simulation_star_star; eauto. intros [R' [C D]].
econstructor; eauto. eapply transl_final_states; eauto.
(* Diverges *)
assert (exists t1, exists s1, Clight.step (Genv.globalenv prog) s t1 s1).
inv H2. inv H3. exists E0; exists s2; auto. exists t1; exists s2; auto.
destruct H0 as [t1 [s1 ST]].
exploit transl_initial_states; eauto. intros [R [A B]].
exploit simulation_star_star; eauto. intros [R' [C D]].
econstructor; eauto. eapply simulation_star_forever_silent; eauto.
(* Reacts *)
assert (exists t1, exists s1, Clight.step (Genv.globalenv prog) s t1 s1).
inv H2. inv H0. congruence. exists t1; exists s0; auto.
destruct H0 as [t1 [s1 ST]].
exploit transl_initial_states; eauto. intros [R [A B]].
exploit simulation_star_forever_reactive; eauto.
intro C.
econstructor; eauto.
(* Goes wrong *)
contradiction. contradiction.
Qed.
End CORRECTNESS.
|