summaryrefslogtreecommitdiff
path: root/cfrontend/Cshmgenproof.v
blob: fdf5b06dd46434c0643b8d61927a0baf43f56dda (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
(* *********************************************************************)
(*                                                                     *)
(*              The Compcert verified compiler                         *)
(*                                                                     *)
(*          Xavier Leroy, INRIA Paris-Rocquencourt                     *)
(*                                                                     *)
(*  Copyright Institut National de Recherche en Informatique et en     *)
(*  Automatique.  All rights reserved.  This file is distributed       *)
(*  under the terms of the INRIA Non-Commercial License Agreement.     *)
(*                                                                     *)
(* *********************************************************************)

(** * Correctness of the translation from Clight to C#minor. *)

Require Import Coqlib.
Require Import Errors.
Require Import Maps.
Require Import Integers.
Require Import Floats.
Require Import AST.
Require Import Values.
Require Import Events.
Require Import Memory.
Require Import Globalenvs.
Require Import Smallstep.
Require Import Ctypes.
Require Import Cop.
Require Import Clight.
Require Import Cminor.
Require Import Csharpminor.
Require Import Cshmgen.

(** * Properties of operations over types *)

Remark transl_params_types:
  forall params,
  map typ_of_type (map snd params) = typlist_of_typelist (type_of_params params).
Proof.
  induction params; simpl. auto. destruct a as [id ty]; simpl. f_equal; auto.
Qed.

Lemma transl_fundef_sig1:
  forall f tf args res cc,
  transl_fundef f = OK tf ->
  classify_fun (type_of_fundef f) = fun_case_f args res cc ->
  funsig tf = signature_of_type args res cc.
Proof.
  intros. destruct f; simpl in *. 
  monadInv H. monadInv EQ. simpl. inversion H0.    
  unfold signature_of_function, signature_of_type.
  f_equal. apply transl_params_types.
  destruct (signature_eq (ef_sig e) (signature_of_type t t0 c)); inv H.
  simpl. congruence.
Qed.

Lemma transl_fundef_sig2:
  forall f tf args res cc,
  transl_fundef f = OK tf ->
  type_of_fundef f = Tfunction args res cc ->
  funsig tf = signature_of_type args res cc.
Proof.
  intros. eapply transl_fundef_sig1; eauto.
  rewrite H0; reflexivity.
Qed.

(** * Properties of the translation functions *)

(** Transformation of expressions and statements. *)

Lemma transl_expr_lvalue:
  forall ge e le m a loc ofs ta,
  Clight.eval_lvalue ge e le m a loc ofs ->
  transl_expr a = OK ta ->
  (exists tb, transl_lvalue a = OK tb /\ make_load tb (typeof a) = OK ta).
Proof.
  intros until ta; intros EVAL TR. inv EVAL; simpl in TR.
  (* var local *)
  exists (Eaddrof id); auto.
  (* var global *)
  exists (Eaddrof id); auto.
  (* deref *)
  monadInv TR. exists x; auto.
  (* field struct *)
  rewrite H0 in TR. monadInv TR.
  econstructor; split. simpl. rewrite H0.
  rewrite EQ; rewrite EQ1; simpl; eauto. auto.
  (* field union *)
  rewrite H0 in TR. monadInv TR.
  econstructor; split. simpl. rewrite H0. rewrite EQ; simpl; eauto. auto.
Qed.

(** Properties of labeled statements *)

Lemma transl_lbl_stmt_1:
  forall tyret nbrk ncnt n sl tsl,
  transl_lbl_stmt tyret nbrk ncnt sl = OK tsl ->
  transl_lbl_stmt tyret nbrk ncnt (Clight.select_switch n sl) = OK (select_switch n tsl).
Proof.
  intros until n.
  assert (DFL: forall sl tsl,
    transl_lbl_stmt tyret nbrk ncnt sl = OK tsl ->
    transl_lbl_stmt tyret nbrk ncnt (Clight.select_switch_default sl) = OK (select_switch_default tsl)).
  {
    induction sl; simpl; intros. 
    inv H; auto.
    monadInv H. simpl. destruct o; eauto. simpl; rewrite EQ; simpl; rewrite EQ1; auto.
  }
  assert (CASE: forall sl tsl,
    transl_lbl_stmt tyret nbrk ncnt sl = OK tsl ->
    match Clight.select_switch_case n sl with
    | None =>
        select_switch_case n tsl = None
    | Some sl' =>
        exists tsl',
           select_switch_case n tsl = Some tsl'
        /\ transl_lbl_stmt tyret nbrk ncnt sl' = OK tsl'
    end).
  {
    induction sl; simpl; intros.
    inv H; auto. 
    monadInv H; simpl. destruct o. destruct (zeq z n).
    econstructor; split; eauto. simpl; rewrite EQ; simpl; rewrite EQ1; auto.
    apply IHsl; auto.
    apply IHsl; auto.
  }
  intros. specialize (CASE _ _ H). unfold Clight.select_switch, select_switch. 
  destruct (Clight.select_switch_case n sl) as [sl'|]. 
  destruct CASE as [tsl' [P Q]]. rewrite P, Q. auto.
  rewrite CASE. auto. 
Qed.

Lemma transl_lbl_stmt_2:
  forall tyret nbrk ncnt sl tsl,
  transl_lbl_stmt tyret nbrk ncnt sl = OK tsl ->
  transl_statement tyret nbrk ncnt (seq_of_labeled_statement sl) = OK (seq_of_lbl_stmt tsl).
Proof.
  induction sl; intros.
  monadInv H. auto. 
  monadInv H. simpl. rewrite EQ; simpl. rewrite (IHsl _ EQ1). simpl. auto.
Qed.

(** * Correctness of Csharpminor construction functions *)

Section CONSTRUCTORS.

Variable ge: genv.

Lemma make_intconst_correct:
  forall n e le m,
  eval_expr ge e le m (make_intconst n) (Vint n).
Proof.
  intros. unfold make_intconst. econstructor. reflexivity. 
Qed.

Lemma make_floatconst_correct:
  forall n e le m,
  eval_expr ge e le m (make_floatconst n) (Vfloat n).
Proof.
  intros. unfold make_floatconst. econstructor. reflexivity. 
Qed.

Lemma make_singleconst_correct:
  forall n e le m,
  eval_expr ge e le m (make_singleconst n) (Vsingle n).
Proof.
  intros. unfold make_singleconst. econstructor. reflexivity. 
Qed.

Lemma make_longconst_correct:
  forall n e le m,
  eval_expr ge e le m (make_longconst n) (Vlong n).
Proof.
  intros. unfold make_floatconst. econstructor. reflexivity. 
Qed.

Lemma make_singleoffloat_correct:
  forall a n e le m,
  eval_expr ge e le m a (Vfloat n) ->
  eval_expr ge e le m (make_singleoffloat a) (Vsingle (Float.to_single n)).
Proof.
  intros. econstructor. eauto. auto.
Qed.

Lemma make_floatofsingle_correct:
  forall a n e le m,
  eval_expr ge e le m a (Vsingle n) ->
  eval_expr ge e le m (make_floatofsingle a) (Vfloat (Float.of_single n)).
Proof.
  intros. econstructor. eauto. auto.
Qed.

Lemma make_floatofint_correct:
  forall a n sg e le m,
  eval_expr ge e le m a (Vint n) ->
  eval_expr ge e le m (make_floatofint a sg) (Vfloat(cast_int_float sg n)).
Proof.
  intros. unfold make_floatofint, cast_int_float.
  destruct sg; econstructor; eauto. 
Qed.

Hint Resolve make_intconst_correct make_floatconst_correct make_longconst_correct
             make_singleconst_correct make_singleoffloat_correct make_floatofsingle_correct
             make_floatofint_correct: cshm.
Hint Constructors eval_expr eval_exprlist: cshm.
Hint Extern 2 (@eq trace _ _) => traceEq: cshm.

Lemma make_cmp_ne_zero_correct:
  forall e le m a n,
  eval_expr ge e le m a (Vint n) ->
  eval_expr ge e le m (make_cmp_ne_zero a) (Vint (if Int.eq n Int.zero then Int.zero else Int.one)).
Proof.
  intros. 
  assert (DEFAULT: eval_expr ge e le m (Ebinop (Ocmp Cne) a (make_intconst Int.zero))
                                       (Vint (if Int.eq n Int.zero then Int.zero else Int.one))).
    econstructor; eauto with cshm. simpl. unfold Val.cmp, Val.cmp_bool. 
    unfold Int.cmp. destruct (Int.eq n Int.zero); auto. 
  assert (CMP: forall ob,
               Val.of_optbool ob = Vint n ->
               n = (if Int.eq n Int.zero then Int.zero else Int.one)).
    intros. destruct ob; simpl in H0; inv H0. destruct b; inv H2. 
    rewrite Int.eq_false. auto. apply Int.one_not_zero.
    rewrite Int.eq_true. auto.
  destruct a; simpl; auto. destruct b; auto. 
  inv H. econstructor; eauto. rewrite H6. decEq. decEq. 
  simpl in H6. inv H6. unfold Val.cmp in H0. eauto.
  inv H. econstructor; eauto. rewrite H6. decEq. decEq. 
  simpl in H6. inv H6. unfold Val.cmp in H0. eauto.
  inv H. econstructor; eauto. rewrite H6. decEq. decEq. 
  simpl in H6. inv H6. unfold Val.cmp in H0. eauto.
  inv H. econstructor; eauto. rewrite H6. decEq. decEq. 
  simpl in H6. unfold Val.cmpfs in H6.
  destruct (Val.cmpfs_bool c v1 v2) as [[]|]; inv H6; reflexivity. 
  inv H. econstructor; eauto. rewrite H6. decEq. decEq. 
  simpl in H6. unfold Val.cmpl in H6.
  destruct (Val.cmpl_bool c v1 v2) as [[]|]; inv H6; reflexivity. 
  inv H. econstructor; eauto. rewrite H6. decEq. decEq. 
  simpl in H6. unfold Val.cmplu in H6.
  destruct (Val.cmplu_bool c v1 v2) as [[]|]; inv H6; reflexivity. 
Qed.

Lemma make_cast_int_correct:
  forall e le m a n sz si,
  eval_expr ge e le m a (Vint n) ->
  eval_expr ge e le m (make_cast_int a sz si) (Vint (cast_int_int sz si n)).
Proof.
  intros. unfold make_cast_int, cast_int_int. 
  destruct sz.
  destruct si; eauto with cshm.
  destruct si; eauto with cshm.
  auto.
  apply make_cmp_ne_zero_correct; auto.
Qed.

Hint Resolve make_cast_int_correct: cshm.

Lemma make_cast_correct:
  forall e le m a b v ty1 ty2 v',
  make_cast ty1 ty2 a = OK b ->
  eval_expr ge e le m a v ->
  sem_cast v ty1 ty2 = Some v' ->
  eval_expr ge e le m b v'.
Proof.
  intros. unfold make_cast, sem_cast in *;
  destruct (classify_cast ty1 ty2); inv H; destruct v; inv H1; eauto with cshm.
  (* single -> int *)
  unfold make_singleofint, cast_int_float. destruct si1; eauto with cshm. 
  (* float -> int *)
  destruct (cast_float_int si2 f) as [i|] eqn:E; inv H2.
  apply make_cast_int_correct. 
  unfold cast_float_int in E. unfold make_intoffloat.
  destruct si2; econstructor; eauto; simpl; rewrite E; auto.
  (* single -> int *)
  destruct (cast_single_int si2 f) as [i|] eqn:E; inv H2.
  apply make_cast_int_correct. 
  unfold cast_single_int in E. unfold make_intofsingle.
  destruct si2; econstructor; eauto with cshm; simpl; rewrite E; auto.
  (* long -> int *)
  unfold make_longofint, cast_int_long. destruct si1; eauto with cshm.
  (* long -> float *)
  unfold make_floatoflong, cast_long_float. destruct si1; eauto with cshm.
  (* long -> single *)
  unfold make_singleoflong, cast_long_single. destruct si1; eauto with cshm.
  (* float -> long *)
  destruct (cast_float_long si2 f) as [i|] eqn:E; inv H2.
  unfold cast_float_long in E. unfold make_longoffloat.
  destruct si2; econstructor; eauto; simpl; rewrite E; auto.
  (* single -> long *)
  destruct (cast_single_long si2 f) as [i|] eqn:E; inv H2.
  unfold cast_single_long in E. unfold make_longofsingle.
  destruct si2; econstructor; eauto with cshm; simpl; rewrite E; auto.
  (* float -> bool *)
  econstructor; eauto with cshm.
  simpl. unfold Val.cmpf, Val.cmpf_bool. rewrite Float.cmp_ne_eq.
  destruct (Float.cmp Ceq f Float.zero); auto.
  (* single -> bool *)
  econstructor; eauto with cshm.
  simpl. unfold Val.cmpfs, Val.cmpfs_bool. rewrite Float32.cmp_ne_eq.
  destruct (Float32.cmp Ceq f Float32.zero); auto.
  (* long -> bool *)
  econstructor; eauto with cshm.
  simpl. unfold Val.cmpl, Val.cmpl_bool, Int64.cmp.
  destruct (Int64.eq i Int64.zero); auto.
  (* int -> bool *)
  econstructor; eauto with cshm.
  simpl. unfold Val.cmpu, Val.cmpu_bool, Int.cmpu.
  destruct (Int.eq i Int.zero); auto.
  (* struct *)
  destruct (ident_eq id1 id2 && fieldlist_eq fld1 fld2); inv H2; auto.
  (* union *)
  destruct (ident_eq id1 id2 && fieldlist_eq fld1 fld2); inv H2; auto.
Qed.

Lemma make_boolean_correct:
 forall e le m a v ty b,
  eval_expr ge e le m a v ->
  bool_val v ty = Some b ->
  exists vb,
    eval_expr ge e le m (make_boolean a ty) vb
    /\ Val.bool_of_val vb b.
Proof.
  intros. unfold make_boolean. unfold bool_val in H0. 
  destruct (classify_bool ty); destruct v; inv H0.
(* int *)
  econstructor; split. apply make_cmp_ne_zero_correct with (n := i); auto. 
  destruct (Int.eq i Int.zero); simpl; constructor. 
(* float *)
  econstructor; split. econstructor; eauto with cshm. simpl. eauto. 
  unfold Val.cmpf, Val.cmpf_bool. simpl. rewrite <- Float.cmp_ne_eq. 
  destruct (Float.cmp Cne f Float.zero); constructor. 
(* single *)
  econstructor; split. econstructor; eauto with cshm. simpl. eauto. 
  unfold Val.cmpfs, Val.cmpfs_bool. simpl. rewrite <- Float32.cmp_ne_eq. 
  destruct (Float32.cmp Cne f Float32.zero); constructor. 
(* pointer *)
  econstructor; split. econstructor; eauto with cshm. simpl. eauto. 
  unfold Val.cmpu, Val.cmpu_bool. simpl.
  destruct (Int.eq i Int.zero); simpl; constructor.
  exists Vtrue; split. econstructor; eauto with cshm. constructor.
(* long *)
  econstructor; split. econstructor; eauto with cshm. simpl. unfold Val.cmpl. simpl. eauto. 
  destruct (Int64.eq i Int64.zero); simpl; constructor. 
Qed.

Lemma make_neg_correct:
  forall a tya c va v e le m,
  sem_neg va tya = Some v ->
  make_neg a tya = OK c ->  
  eval_expr ge e le m a va ->
  eval_expr ge e le m c v.
Proof.
  unfold sem_neg, make_neg; intros until m; intros SEM MAKE EV1;
  destruct (classify_neg tya); inv MAKE; destruct va; inv SEM; eauto with cshm.
Qed.

Lemma make_absfloat_correct:
  forall a tya c va v e le m,
  sem_absfloat va tya = Some v ->
  make_absfloat a tya = OK c ->  
  eval_expr ge e le m a va ->
  eval_expr ge e le m c v.
Proof.
  unfold sem_absfloat, make_absfloat; intros until m; intros SEM MAKE EV1;
  destruct (classify_neg tya); inv MAKE; destruct va; inv SEM; eauto with cshm.
  unfold make_floatoflong, cast_long_float. destruct s.
  econstructor. econstructor; simpl; eauto. simpl; eauto. simpl; eauto. 
  econstructor. econstructor; simpl; eauto. simpl; eauto. simpl; eauto. 
Qed.

Lemma make_notbool_correct:
  forall a tya c va v e le m,
  sem_notbool va tya = Some v ->
  make_notbool a tya = OK c ->  
  eval_expr ge e le m a va ->
  eval_expr ge e le m c v.
Proof.
  unfold sem_notbool, make_notbool; intros until m; intros SEM MAKE EV1;
  destruct (classify_bool tya); inv MAKE; destruct va; inv SEM; eauto with cshm.
Qed.

Lemma make_notint_correct:
  forall a tya c va v e le m,
  sem_notint va tya = Some v ->
  make_notint a tya = OK c ->  
  eval_expr ge e le m a va ->
  eval_expr ge e le m c v.
Proof.
  unfold sem_notint, make_notint; intros until m; intros SEM MAKE EV1;
  destruct (classify_notint tya); inv MAKE; destruct va; inv SEM; eauto with cshm.
Qed.

Definition binary_constructor_correct
    (make: expr -> type -> expr -> type -> res expr)
    (sem: val -> type -> val -> type -> option val): Prop :=
  forall a tya b tyb c va vb v e le m,
  sem va tya vb tyb = Some v ->
  make a tya b tyb = OK c ->  
  eval_expr ge e le m a va ->
  eval_expr ge e le m b vb ->
  eval_expr ge e le m c v.

Section MAKE_BIN.

Variable sem_int: signedness -> int -> int -> option val.
Variable sem_long: signedness -> int64 -> int64 -> option val.
Variable sem_float: float -> float -> option val.
Variable sem_single: float32 -> float32 -> option val.
Variables iop iopu fop sop lop lopu: binary_operation.

Hypothesis iop_ok:
  forall x y m, eval_binop iop (Vint x) (Vint y) m = sem_int Signed x y.
Hypothesis iopu_ok:
  forall x y m, eval_binop iopu (Vint x) (Vint y) m = sem_int Unsigned x y.
Hypothesis lop_ok:
  forall x y m, eval_binop lop (Vlong x) (Vlong y) m = sem_long Signed x y.
Hypothesis lopu_ok:
  forall x y m, eval_binop lopu (Vlong x) (Vlong y) m = sem_long Unsigned x y.
Hypothesis fop_ok:
  forall x y m, eval_binop fop (Vfloat x) (Vfloat y) m = sem_float x y.
Hypothesis sop_ok:
  forall x y m, eval_binop sop (Vsingle x) (Vsingle y) m = sem_single x y.

Lemma make_binarith_correct:
  binary_constructor_correct
    (make_binarith iop iopu fop sop lop lopu)
    (sem_binarith sem_int sem_long sem_float sem_single).
Proof.
  red; unfold make_binarith, sem_binarith;
  intros until m; intros SEM MAKE EV1 EV2.
  set (cls := classify_binarith tya tyb) in *.
  set (ty := binarith_type cls) in *.
  monadInv MAKE.
  destruct (sem_cast va tya ty) as [va'|] eqn:Ca; try discriminate.
  destruct (sem_cast vb tyb ty) as [vb'|] eqn:Cb; try discriminate.
  exploit make_cast_correct. eexact EQ. eauto. eauto. intros EV1'.
  exploit make_cast_correct. eexact EQ1. eauto. eauto. intros EV2'.
  destruct cls; inv EQ2; destruct va'; try discriminate; destruct vb'; try discriminate.
- destruct s; inv H0; econstructor; eauto with cshm. 
  rewrite iop_ok; auto. rewrite iopu_ok; auto.
- destruct s; inv H0; econstructor; eauto with cshm. 
  rewrite lop_ok; auto. rewrite lopu_ok; auto.
- erewrite <- fop_ok in SEM; eauto with cshm.
- erewrite <- sop_ok in SEM; eauto with cshm.
Qed.

Lemma make_binarith_int_correct:
  binary_constructor_correct
    (make_binarith_int iop iopu lop lopu)
    (sem_binarith sem_int sem_long (fun x y => None) (fun x y => None)).
Proof.
  red; unfold make_binarith_int, sem_binarith;
  intros until m; intros SEM MAKE EV1 EV2.
  set (cls := classify_binarith tya tyb) in *.
  set (ty := binarith_type cls) in *.
  monadInv MAKE.
  destruct (sem_cast va tya ty) as [va'|] eqn:Ca; try discriminate.
  destruct (sem_cast vb tyb ty) as [vb'|] eqn:Cb; try discriminate.
  exploit make_cast_correct. eexact EQ. eauto. eauto. intros EV1'.
  exploit make_cast_correct. eexact EQ1. eauto. eauto. intros EV2'.
  destruct cls; inv EQ2; destruct va'; try discriminate; destruct vb'; try discriminate.
- destruct s; inv H0; econstructor; eauto with cshm. 
  rewrite iop_ok; auto. rewrite iopu_ok; auto.
- destruct s; inv H0; econstructor; eauto with cshm. 
  rewrite lop_ok; auto. rewrite lopu_ok; auto.
Qed.

End MAKE_BIN.

Hint Extern 2 (@eq (option val) _ _) => (simpl; reflexivity) : cshm.

Lemma make_add_correct: binary_constructor_correct make_add sem_add.
Proof.
  red; unfold make_add, sem_add;
  intros until m; intros SEM MAKE EV1 EV2;
  destruct (classify_add tya tyb); inv MAKE.
- destruct va; try discriminate; destruct vb; inv SEM; eauto with cshm.
- destruct va; try discriminate; destruct vb; inv SEM; eauto with cshm.
- destruct va; try discriminate; destruct vb; inv SEM; eauto with cshm.
- destruct va; try discriminate; destruct vb; inv SEM; eauto with cshm.
- eapply make_binarith_correct; eauto; intros; auto.
Qed.

Lemma make_sub_correct: binary_constructor_correct make_sub sem_sub.
Proof.
  red; unfold make_sub, sem_sub;
  intros until m; intros SEM MAKE EV1 EV2;
  destruct (classify_sub tya tyb); inv MAKE.
- destruct va; try discriminate; destruct vb; inv SEM; eauto with cshm.
- destruct va; try discriminate; destruct vb; inv SEM.
  destruct (eq_block b0 b1); try discriminate. destruct (Int.eq (Int.repr (sizeof ty)) Int.zero) eqn:E; inv H0.
  econstructor; eauto with cshm. rewrite dec_eq_true. simpl. rewrite E; auto. 
- destruct va; try discriminate; destruct vb; inv SEM; eauto with cshm.
- eapply make_binarith_correct; eauto; intros; auto.
Qed.

Lemma make_mul_correct: binary_constructor_correct make_mul sem_mul.
Proof.
  apply make_binarith_correct; intros; auto.
Qed.

Lemma make_div_correct: binary_constructor_correct make_div sem_div.
Proof.
  apply make_binarith_correct; intros; auto.
Qed.

Lemma make_mod_correct: binary_constructor_correct make_mod sem_mod.
Proof.
  apply make_binarith_int_correct; intros; auto.
Qed.

Lemma make_and_correct: binary_constructor_correct make_and sem_and.
Proof.
  apply make_binarith_int_correct; intros; auto.
Qed.

Lemma make_or_correct: binary_constructor_correct make_or sem_or.
Proof.
  apply make_binarith_int_correct; intros; auto.
Qed.

Lemma make_xor_correct: binary_constructor_correct make_xor sem_xor.
Proof.
  apply make_binarith_int_correct; intros; auto.
Qed.

Ltac comput val :=
  let x := fresh in set val as x in *; vm_compute in x; subst x.

Remark small_shift_amount_1:
  forall i,
  Int64.ltu i Int64.iwordsize = true ->
  Int.ltu (Int64.loword i) Int64.iwordsize' = true
  /\ Int64.unsigned i = Int.unsigned (Int64.loword i).
Proof.
  intros. apply Int64.ltu_inv in H. comput (Int64.unsigned Int64.iwordsize). 
  assert (Int64.unsigned i = Int.unsigned (Int64.loword i)).
  {
    unfold Int64.loword. rewrite Int.unsigned_repr; auto. 
    comput Int.max_unsigned; omega.
  }
  split; auto. unfold Int.ltu. apply zlt_true. rewrite <- H0. tauto.
Qed.

Remark small_shift_amount_2:
  forall i,
  Int64.ltu i (Int64.repr 32) = true ->
  Int.ltu (Int64.loword i) Int.iwordsize = true.
Proof.
  intros. apply Int64.ltu_inv in H. comput (Int64.unsigned (Int64.repr 32)).
  assert (Int64.unsigned i = Int.unsigned (Int64.loword i)).
  {
    unfold Int64.loword. rewrite Int.unsigned_repr; auto. 
    comput Int.max_unsigned; omega.
  }
  unfold Int.ltu. apply zlt_true. rewrite <- H0. tauto.
Qed.

Lemma small_shift_amount_3:
  forall i,
  Int.ltu i Int64.iwordsize' = true ->
  Int64.unsigned (Int64.repr (Int.unsigned i)) = Int.unsigned i.
Proof.
  intros. apply Int.ltu_inv in H. comput (Int.unsigned Int64.iwordsize'). 
  apply Int64.unsigned_repr. comput Int64.max_unsigned; omega.
Qed.

Lemma make_shl_correct: binary_constructor_correct make_shl sem_shl.
Proof.
  red; unfold make_shl, sem_shl, sem_shift;
  intros until m; intros SEM MAKE EV1 EV2;
  destruct (classify_shift tya tyb); inv MAKE;
  destruct va; try discriminate; destruct vb; try discriminate.
- destruct (Int.ltu i0 Int.iwordsize) eqn:E; inv SEM.
  econstructor; eauto. simpl; rewrite E; auto.
- destruct (Int64.ltu i0 Int64.iwordsize) eqn:E; inv SEM.
  exploit small_shift_amount_1; eauto. intros [A B].
  econstructor; eauto with cshm. simpl. rewrite A. 
  f_equal; f_equal. unfold Int64.shl', Int64.shl. rewrite B; auto.
- destruct (Int64.ltu i0 (Int64.repr 32)) eqn:E; inv SEM.
  econstructor; eauto with cshm. simpl. rewrite small_shift_amount_2; auto. 
- destruct (Int.ltu i0 Int64.iwordsize') eqn:E; inv SEM. 
  econstructor; eauto with cshm. simpl. rewrite E. 
  unfold Int64.shl', Int64.shl. rewrite small_shift_amount_3; auto.
Qed.

Lemma make_shr_correct: binary_constructor_correct make_shr sem_shr.
Proof.
  red; unfold make_shr, sem_shr, sem_shift;
  intros until m; intros SEM MAKE EV1 EV2;
  destruct (classify_shift tya tyb); inv MAKE;
  destruct va; try discriminate; destruct vb; try discriminate.
- destruct (Int.ltu i0 Int.iwordsize) eqn:E; inv SEM.
  destruct s; inv H0; econstructor; eauto; simpl; rewrite E; auto.
- destruct (Int64.ltu i0 Int64.iwordsize) eqn:E; inv SEM.
  exploit small_shift_amount_1; eauto. intros [A B].
  destruct s; inv H0; econstructor; eauto with cshm; simpl; rewrite A;
  f_equal; f_equal.
  unfold Int64.shr', Int64.shr; rewrite B; auto.
  unfold Int64.shru', Int64.shru; rewrite B; auto.
- destruct (Int64.ltu i0 (Int64.repr 32)) eqn:E; inv SEM.
  destruct s; inv H0; econstructor; eauto with cshm; simpl; rewrite small_shift_amount_2; auto. 
- destruct (Int.ltu i0 Int64.iwordsize') eqn:E; inv SEM.
  destruct s; inv H0; econstructor; eauto with cshm; simpl; rewrite E. 
  unfold Int64.shr', Int64.shr; rewrite small_shift_amount_3; auto.
  unfold Int64.shru', Int64.shru; rewrite small_shift_amount_3; auto.
Qed.

Lemma make_cmp_correct:
  forall cmp a tya b tyb c va vb v e le m,
  sem_cmp cmp va tya vb tyb m = Some v ->
  make_cmp cmp a tya b tyb = OK c ->  
  eval_expr ge e le m a va ->
  eval_expr ge e le m b vb ->
  eval_expr ge e le m c v.
Proof.
  unfold sem_cmp, make_cmp; intros until m; intros SEM MAKE EV1 EV2;
  destruct (classify_cmp tya tyb).
- inv MAKE. destruct (Val.cmpu_bool (Mem.valid_pointer m) cmp va vb) as [bv|] eqn:E;
  simpl in SEM; inv SEM.
  econstructor; eauto. simpl. unfold Val.cmpu. rewrite E. auto.
- inv MAKE. destruct vb; try discriminate. 
  set (vb := Vint (Int.repr (Int64.unsigned i))) in *.
  destruct (Val.cmpu_bool (Mem.valid_pointer m) cmp va vb) as [bv|] eqn:E;
  simpl in SEM; inv SEM.
  econstructor; eauto with cshm. simpl. change (Vint (Int64.loword i)) with vb. 
  unfold Val.cmpu. rewrite E. auto.
- inv MAKE. destruct va; try discriminate. 
  set (va := Vint (Int.repr (Int64.unsigned i))) in *.
  destruct (Val.cmpu_bool (Mem.valid_pointer m) cmp va vb) as [bv|] eqn:E;
  simpl in SEM; inv SEM.
  econstructor; eauto with cshm. simpl. change (Vint (Int64.loword i)) with va. 
  unfold Val.cmpu. rewrite E. auto.
- eapply make_binarith_correct; eauto; intros; auto.
Qed.

Lemma transl_unop_correct:
  forall op a tya c va v e le m, 
  transl_unop op a tya = OK c ->
  sem_unary_operation op va tya = Some v ->
  eval_expr ge e le m a va ->
  eval_expr ge e le m c v.
Proof.
  intros. destruct op; simpl in *.
  eapply make_notbool_correct; eauto. 
  eapply make_notint_correct; eauto. 
  eapply make_neg_correct; eauto.
  eapply make_absfloat_correct; eauto.
Qed.

Lemma transl_binop_correct:
  forall op a tya b tyb c va vb v e le m,
  transl_binop op a tya b tyb = OK c ->  
  sem_binary_operation op va tya vb tyb m = Some v ->
  eval_expr ge e le m a va ->
  eval_expr ge e le m b vb ->
  eval_expr ge e le m c v.
Proof.
  intros. destruct op; simpl in *.
  eapply make_add_correct; eauto.
  eapply make_sub_correct; eauto.
  eapply make_mul_correct; eauto.
  eapply make_div_correct; eauto.
  eapply make_mod_correct; eauto.
  eapply make_and_correct; eauto.
  eapply make_or_correct; eauto.
  eapply make_xor_correct; eauto.
  eapply make_shl_correct; eauto.
  eapply make_shr_correct; eauto.
  eapply make_cmp_correct; eauto.
  eapply make_cmp_correct; eauto.
  eapply make_cmp_correct; eauto.
  eapply make_cmp_correct; eauto.
  eapply make_cmp_correct; eauto.
  eapply make_cmp_correct; eauto.
Qed. 

Lemma make_load_correct:
  forall addr ty code b ofs v e le m,
  make_load addr ty = OK code ->
  eval_expr ge e le m addr (Vptr b ofs) ->
  deref_loc ty m b ofs v ->
  eval_expr ge e le m code v.
Proof.
  unfold make_load; intros until m; intros MKLOAD EVEXP DEREF.
  inv DEREF. 
  (* scalar *)
  rewrite H in MKLOAD. inv MKLOAD. apply eval_Eload with (Vptr b ofs); auto.
  (* by reference *)
  rewrite H in MKLOAD. inv MKLOAD. auto.
  (* by copy *)
  rewrite H in MKLOAD. inv MKLOAD. auto.
Qed.

Lemma make_memcpy_correct:
  forall f dst src ty k e le m b ofs v m',
  eval_expr ge e le m dst (Vptr b ofs) ->
  eval_expr ge e le m src v ->
  assign_loc ty m b ofs v m' ->
  access_mode ty = By_copy ->
  step ge (State f (make_memcpy dst src ty) k e le m) E0 (State f Sskip k e le m').
Proof.
  intros. inv H1; try congruence. 
  unfold make_memcpy. change le with (set_optvar None Vundef le) at 2. 
  econstructor.
  econstructor. eauto. econstructor. eauto. constructor. 
  econstructor; eauto. 
  apply alignof_blockcopy_1248.
  apply sizeof_pos.
  apply sizeof_alignof_blockcopy_compat.
Qed.
 
Lemma make_store_correct:
  forall addr ty rhs code e le m b ofs v m' f k,
  make_store addr ty rhs = OK code ->
  eval_expr ge e le m addr (Vptr b ofs) ->
  eval_expr ge e le m rhs v ->
  assign_loc ty m b ofs v m' ->
  step ge (State f code k e le m) E0 (State f Sskip k e le m').
Proof.
  unfold make_store. intros until k; intros MKSTORE EV1 EV2 ASSIGN.
  inversion ASSIGN; subst.
  (* nonvolatile scalar *)
  rewrite H in MKSTORE; inv MKSTORE.
  econstructor; eauto. 
  (* by copy *)
  rewrite H in MKSTORE; inv MKSTORE. 
  eapply make_memcpy_correct; eauto. 
Qed.

End CONSTRUCTORS.

(** * Basic preservation invariants *)

Section CORRECTNESS.

Variable prog: Clight.program.
Variable tprog: Csharpminor.program.
Hypothesis TRANSL: transl_program prog = OK tprog.

Let ge := Genv.globalenv prog.
Let tge := Genv.globalenv tprog.

Lemma symbols_preserved:
  forall s, Genv.find_symbol tge s = Genv.find_symbol ge s.
Proof (Genv.find_symbol_transf_partial2 transl_fundef transl_globvar _ TRANSL).

Lemma functions_translated:
  forall v f,
  Genv.find_funct ge v = Some f ->
  exists tf, Genv.find_funct tge v = Some tf /\ transl_fundef f = OK tf.
Proof (Genv.find_funct_transf_partial2 transl_fundef transl_globvar _ TRANSL).

Lemma function_ptr_translated:
  forall b f,
  Genv.find_funct_ptr ge b = Some f ->
  exists tf, Genv.find_funct_ptr tge b = Some tf /\ transl_fundef f = OK tf.
Proof (Genv.find_funct_ptr_transf_partial2 transl_fundef transl_globvar _ TRANSL).

Lemma var_info_translated:
  forall b v,
  Genv.find_var_info ge b = Some v ->
  exists tv, Genv.find_var_info tge b = Some tv /\ transf_globvar transl_globvar v = OK tv.
Proof (Genv.find_var_info_transf_partial2 transl_fundef transl_globvar _ TRANSL).

Lemma var_info_rev_translated:
  forall b tv,
  Genv.find_var_info tge b = Some tv ->
  exists v, Genv.find_var_info ge b = Some v /\ transf_globvar transl_globvar v = OK tv.
Proof (Genv.find_var_info_rev_transf_partial2 transl_fundef transl_globvar _ TRANSL).

Lemma block_is_volatile_preserved:
  forall b, block_is_volatile tge b = block_is_volatile ge b.
Proof.
  intros. unfold block_is_volatile.
  destruct (Genv.find_var_info ge b) eqn:?.
  exploit var_info_translated; eauto. intros [tv [A B]]. rewrite A. 
  unfold transf_globvar in B. monadInv B. auto.
  destruct (Genv.find_var_info tge b) eqn:?.
  exploit var_info_rev_translated; eauto. intros [tv [A B]]. congruence.
  auto.
Qed.

(** * Matching between environments *)

(** In this section, we define a matching relation between
  a Clight local environment and a Csharpminor local environment. *)

Record match_env (e: Clight.env) (te: Csharpminor.env) : Prop :=
  mk_match_env {
    me_local:
      forall id b ty,
      e!id = Some (b, ty) -> te!id = Some(b, sizeof ty);
    me_local_inv:
      forall id b sz,
      te!id = Some (b, sz) -> exists ty, e!id = Some(b, ty)
  }.

Lemma match_env_globals:
  forall e te id,
  match_env e te ->
  e!id = None ->
  te!id = None.
Proof.
  intros. destruct (te!id) as [[b sz] | ] eqn:?; auto.
  exploit me_local_inv; eauto. intros [ty EQ]. congruence.
Qed.

Lemma match_env_same_blocks:
  forall e te,
  match_env e te ->
  blocks_of_env te = Clight.blocks_of_env e.
Proof.
  intros.
  set (R := fun (x: (block * type)) (y: (block * Z)) =>
         match x, y with
         | (b1, ty), (b2, sz) => b2 = b1 /\ sz = sizeof ty
         end).
  assert (list_forall2 
            (fun i_x i_y => fst i_x = fst i_y /\ R (snd i_x) (snd i_y))
            (PTree.elements e) (PTree.elements te)).
  apply PTree.elements_canonical_order.
  intros id [b ty] GET. exists (b, sizeof ty); split. eapply me_local; eauto. red; auto.
  intros id [b sz] GET. exploit me_local_inv; eauto. intros [ty EQ].
  exploit me_local; eauto. intros EQ1. 
  exists (b, ty); split. auto. red; split; congruence.

  unfold blocks_of_env, Clight.blocks_of_env.
  generalize H0. induction 1. auto. 
  simpl. f_equal; auto.
  unfold block_of_binding, Clight.block_of_binding. 
  destruct a1 as [id1 [blk1 ty1]]. destruct b1 as [id2 [blk2 sz2]].
  simpl in *. destruct H1 as [A [B C]]. congruence.
Qed.

Lemma match_env_free_blocks:
  forall e te m m',
  match_env e te ->
  Mem.free_list m (Clight.blocks_of_env e) = Some m' ->
  Mem.free_list m (blocks_of_env te) = Some m'.
Proof.
  intros. rewrite (match_env_same_blocks _ _ H). auto.
Qed.

Lemma match_env_empty:
  match_env Clight.empty_env Csharpminor.empty_env.
Proof.
  unfold Clight.empty_env, Csharpminor.empty_env.
  constructor.
  intros until ty. repeat rewrite PTree.gempty. congruence.
  intros until sz. rewrite PTree.gempty. congruence.
Qed.

(** The following lemmas establish the [match_env] invariant at
  the beginning of a function invocation, after allocation of
  local variables and initialization of the parameters. *)

Lemma match_env_alloc_variables:
  forall e1 m1 vars e2 m2,
  Clight.alloc_variables e1 m1 vars e2 m2 ->
  forall te1,
  match_env e1 te1 ->
  exists te2,
  Csharpminor.alloc_variables te1 m1 (map transl_var vars) te2 m2
  /\ match_env e2 te2.
Proof.
  induction 1; intros; simpl.
  exists te1; split. constructor. auto.
  exploit (IHalloc_variables (PTree.set id (b1, sizeof ty) te1)).
  constructor.
    (* me_local *)
    intros until ty0. repeat rewrite PTree.gsspec.
    destruct (peq id0 id); intros. congruence. eapply me_local; eauto. 
    (* me_local_inv *)
    intros until sz. repeat rewrite PTree.gsspec. 
    destruct (peq id0 id); intros. exists ty; congruence. eapply me_local_inv; eauto. 
  intros [te2 [ALLOC MENV]].
  exists te2; split. econstructor; eauto. auto.
Qed. 

Lemma create_undef_temps_match:
  forall temps,
  create_undef_temps (map fst temps) = Clight.create_undef_temps temps.
Proof.
  induction temps; simpl. auto. 
  destruct a as [id ty]. simpl. decEq. auto.
Qed.

Lemma bind_parameter_temps_match:
  forall vars vals le1 le2,
  Clight.bind_parameter_temps vars vals le1 = Some le2 ->
  bind_parameters (map fst vars) vals le1 = Some le2.
Proof.
  induction vars; simpl; intros.
  destruct vals; inv H. auto. 
  destruct a as [id ty]. destruct vals; try discriminate. auto. 
Qed.

(** * Proof of semantic preservation *)

(** ** Semantic preservation for expressions *)

(** The proof of semantic preservation for the translation of expressions
  relies on simulation diagrams of the following form:
<<
         e, le, m, a ------------------- te, le, m, ta
            |                                |
            |                                |
            |                                |
            v                                v
         e, le, m, v ------------------- te, le, m, v
>>
  Left: evaluation of r-value expression [a] in Clight.
  Right: evaluation of its translation [ta] in Csharpminor.
  Top (precondition): matching between environments [e], [te], 
    plus well-typedness of expression [a].
  Bottom (postcondition): the result values [v] 
    are identical in both evaluations.

  We state these diagrams as the following properties, parameterized
  by the Clight evaluation. *)

Section EXPR.

Variable e: Clight.env.
Variable le: temp_env.
Variable m: mem.
Variable te: Csharpminor.env.
Hypothesis MENV: match_env e te.

Lemma transl_expr_lvalue_correct:
  (forall a v,
   Clight.eval_expr ge e le m a v ->
   forall ta (TR: transl_expr a = OK ta) ,
   Csharpminor.eval_expr tge te le m ta v)
/\(forall a b ofs,
   Clight.eval_lvalue ge e le m a b ofs ->
   forall ta (TR: transl_lvalue a = OK ta),
   Csharpminor.eval_expr tge te le m ta (Vptr b ofs)).
Proof.
  apply eval_expr_lvalue_ind; intros; try (monadInv TR).
(* const int *)
  apply make_intconst_correct.
(* const float *)
  apply make_floatconst_correct.
(* const single *)
  apply make_singleconst_correct.
(* const long *)
  apply make_longconst_correct.
(* temp var *)
  constructor; auto.
(* addrof *)
  simpl in TR. auto. 
(* unop *)
  eapply transl_unop_correct; eauto.
(* binop *)
  eapply transl_binop_correct; eauto.
(* cast *)
  eapply make_cast_correct; eauto.
(* rvalue out of lvalue *)
  exploit transl_expr_lvalue; eauto. intros [tb [TRLVAL MKLOAD]].
  eapply make_load_correct; eauto.  
(* var local *)
  exploit (me_local _ _ MENV); eauto. intros EQ.
  econstructor. eapply eval_var_addr_local. eauto.
(* var global *)
  econstructor. eapply eval_var_addr_global. 
  eapply match_env_globals; eauto.
  rewrite symbols_preserved. auto.
(* deref *)
  simpl in TR. eauto. 
(* field struct *)
  simpl in TR. rewrite H1 in TR. monadInv TR.
  eapply eval_Ebinop; eauto.
  apply make_intconst_correct. 
  simpl. congruence.
(* field union *)
  simpl in TR. rewrite H1 in TR. eauto.
Qed.

Lemma transl_expr_correct:
   forall a v,
   Clight.eval_expr ge e le m a v ->
   forall ta, transl_expr a = OK ta ->
   Csharpminor.eval_expr tge te le m ta v.
Proof (proj1 transl_expr_lvalue_correct).

Lemma transl_lvalue_correct:
   forall a b ofs,
   Clight.eval_lvalue ge e le m a b ofs ->
   forall ta, transl_lvalue a = OK ta ->
   Csharpminor.eval_expr tge te le m ta (Vptr b ofs).
Proof (proj2 transl_expr_lvalue_correct).

Lemma transl_arglist_correct:
  forall al tyl vl,
  Clight.eval_exprlist ge e le m al tyl vl ->
  forall tal, transl_arglist al tyl = OK tal ->
  Csharpminor.eval_exprlist tge te le m tal vl.
Proof.
  induction 1; intros.
  monadInv H. constructor.
  monadInv H2. constructor. 
  eapply make_cast_correct; eauto. eapply transl_expr_correct; eauto. auto. 
Qed.

Lemma typlist_of_arglist_eq:
  forall al tyl vl,
  Clight.eval_exprlist ge e le m al tyl vl ->
  typlist_of_arglist al tyl = typlist_of_typelist tyl.
Proof.
  induction 1; simpl.
  auto.
  f_equal; auto.
Qed.

End EXPR.

(** ** Semantic preservation for statements *)

(** The simulation diagram for the translation of statements and functions
  is a "plus" diagram of the form
<<
           I
     S1 ------- R1
     |          | 
   t |        + | t
     v          v  
     S2 ------- R2
           I                         I
>>

The invariant [I] is the [match_states] predicate that we now define.
*)

Inductive match_transl: stmt -> cont -> stmt -> cont -> Prop :=
  | match_transl_0: forall ts tk,
      match_transl ts tk ts tk
  | match_transl_1: forall ts tk,
      match_transl (Sblock ts) tk ts (Kblock tk).

Lemma match_transl_step:
  forall ts tk ts' tk' f te le m,
  match_transl (Sblock ts) tk ts' tk' ->
  star step tge (State f ts' tk' te le m) E0 (State f ts (Kblock tk) te le m).
Proof.
  intros. inv H. 
  apply star_one. constructor. 
  apply star_refl.
Qed.

Inductive match_cont: type -> nat -> nat -> Clight.cont -> Csharpminor.cont -> Prop :=
  | match_Kstop: forall tyret nbrk ncnt,
      match_cont tyret nbrk ncnt Clight.Kstop Kstop
  | match_Kseq: forall tyret nbrk ncnt s k ts tk,
      transl_statement tyret nbrk ncnt s = OK ts ->
      match_cont tyret nbrk ncnt k tk ->
      match_cont tyret nbrk ncnt
                 (Clight.Kseq s k)
                 (Kseq ts tk)
  | match_Kloop1: forall tyret s1 s2 k ts1 ts2 nbrk ncnt tk,
      transl_statement tyret 1%nat 0%nat s1 = OK ts1 ->
      transl_statement tyret 0%nat (S ncnt) s2 = OK ts2 ->
      match_cont tyret nbrk ncnt k tk ->
      match_cont tyret 1%nat 0%nat
                 (Clight.Kloop1 s1 s2 k)
                 (Kblock (Kseq ts2 (Kseq (Sloop (Sseq (Sblock ts1) ts2)) (Kblock tk))))
  | match_Kloop2: forall tyret s1 s2 k ts1 ts2 nbrk ncnt tk,
      transl_statement tyret 1%nat 0%nat s1 = OK ts1 ->
      transl_statement tyret 0%nat (S ncnt) s2 = OK ts2 ->
      match_cont tyret nbrk ncnt k tk ->
      match_cont tyret 0%nat (S ncnt)
                 (Clight.Kloop2 s1 s2 k)
                 (Kseq (Sloop (Sseq (Sblock ts1) ts2)) (Kblock tk))
  | match_Kswitch: forall tyret nbrk ncnt k tk,
      match_cont tyret nbrk ncnt k tk ->
      match_cont tyret 0%nat (S ncnt)
                 (Clight.Kswitch k)
                 (Kblock tk)
  | match_Kcall_some: forall tyret nbrk ncnt nbrk' ncnt' f e k id tf te le tk,
      transl_function f = OK tf ->
      match_env e te ->
      match_cont (Clight.fn_return f) nbrk' ncnt' k tk ->
      match_cont tyret nbrk ncnt 
                 (Clight.Kcall id f e le k)
                 (Kcall id tf te le tk).

Inductive match_states: Clight.state -> Csharpminor.state -> Prop :=
  | match_state:
      forall f nbrk ncnt s k e le m tf ts tk te ts' tk'
          (TRF: transl_function f = OK tf)
          (TR: transl_statement (Clight.fn_return f) nbrk ncnt s = OK ts)
          (MTR: match_transl ts tk ts' tk')
          (MENV: match_env e te)
          (MK: match_cont (Clight.fn_return f) nbrk ncnt k tk),
      match_states (Clight.State f s k e le m)
                   (State tf ts' tk' te le m)
  | match_callstate:
      forall fd args k m tfd tk targs tres cconv
          (TR: transl_fundef fd = OK tfd)
          (MK: match_cont Tvoid 0%nat 0%nat k tk)
          (ISCC: Clight.is_call_cont k)
          (TY: type_of_fundef fd = Tfunction targs tres cconv),
      match_states (Clight.Callstate fd args k m)
                   (Callstate tfd args tk m)
  | match_returnstate:
      forall res k m tk 
          (MK: match_cont Tvoid 0%nat 0%nat k tk),
      match_states (Clight.Returnstate res k m)
                   (Returnstate res tk m).

Remark match_states_skip:
  forall f e le te nbrk ncnt k tf tk m,
  transl_function f = OK tf ->
  match_env e te ->
  match_cont (Clight.fn_return f) nbrk ncnt k tk ->
  match_states (Clight.State f Clight.Sskip k e le m) (State tf Sskip tk te le m).
Proof.
  intros. econstructor; eauto. simpl; reflexivity. constructor. 
Qed.

(** Commutation between label resolution and compilation *)

Section FIND_LABEL.
Variable lbl: label.
Variable tyret: type.

Lemma transl_find_label:
  forall s nbrk ncnt k ts tk
  (TR: transl_statement tyret nbrk ncnt s = OK ts)
  (MC: match_cont tyret nbrk ncnt k tk),
  match Clight.find_label lbl s k with
  | None => find_label lbl ts tk = None
  | Some (s', k') =>
      exists ts', exists tk', exists nbrk', exists ncnt',
      find_label lbl ts tk = Some (ts', tk')
      /\ transl_statement tyret nbrk' ncnt' s' = OK ts'
      /\ match_cont tyret nbrk' ncnt' k' tk'
  end

with transl_find_label_ls:
  forall ls nbrk ncnt k tls tk
  (TR: transl_lbl_stmt tyret nbrk ncnt ls = OK tls)
  (MC: match_cont tyret nbrk ncnt k tk),
  match Clight.find_label_ls lbl ls k with
  | None => find_label_ls lbl tls tk = None
  | Some (s', k') =>
      exists ts', exists tk', exists nbrk', exists ncnt',
      find_label_ls lbl tls tk = Some (ts', tk')
      /\ transl_statement tyret nbrk' ncnt' s' = OK ts'
      /\ match_cont tyret nbrk' ncnt' k' tk'
  end.

Proof.
  intro s; case s; intros; try (monadInv TR); simpl.
(* skip *)
  auto.
(* assign *)
  unfold make_store, make_memcpy in EQ3.
  destruct (access_mode (typeof e)); inv EQ3; auto.
(* set *)
  auto.
(* call *)
  simpl in TR. destruct (classify_fun (typeof e)); monadInv TR. auto.
(* builtin *)
  auto.
(* seq *)
  exploit (transl_find_label s0 nbrk ncnt (Clight.Kseq s1 k)); eauto. constructor; eauto. 
  destruct (Clight.find_label lbl s0 (Clight.Kseq s1 k)) as [[s' k'] | ].
  intros [ts' [tk' [nbrk' [ncnt' [A [B C]]]]]].
  rewrite A. exists ts'; exists tk'; exists nbrk'; exists ncnt'; auto.
  intro. rewrite H. eapply transl_find_label; eauto.
(* ifthenelse *)
  exploit (transl_find_label s0); eauto. 
  destruct (Clight.find_label lbl s0 k) as [[s' k'] | ].
  intros [ts' [tk' [nbrk' [ncnt' [A [B C]]]]]].
  rewrite A. exists ts'; exists tk'; exists nbrk'; exists ncnt'; auto.
  intro. rewrite H. eapply transl_find_label; eauto.
(* loop *)
  exploit (transl_find_label s0 1%nat 0%nat (Kloop1 s0 s1 k)); eauto. econstructor; eauto.
  destruct (Clight.find_label lbl s0 (Kloop1 s0 s1 k)) as [[s' k'] | ].
  intros [ts' [tk' [nbrk' [ncnt' [A [B C]]]]]].
  rewrite A. exists ts'; exists tk'; exists nbrk'; exists ncnt'; auto.
  intro. rewrite H.
  eapply transl_find_label; eauto. econstructor; eauto. 
(* break *)
  auto.
(* continue *)
  auto.
(* return *)
  simpl in TR. destruct o; monadInv TR. auto. auto. 
(* switch *)
  assert (exists b, ts = Sblock (Sswitch b x x0)).
  { destruct (classify_switch (typeof e)); inv EQ2; econstructor; eauto. }
  destruct H as [b EQ3]; rewrite EQ3; simpl.
  eapply transl_find_label_ls with (k := Clight.Kswitch k); eauto. econstructor; eauto. 
(* label *)
  destruct (ident_eq lbl l). 
  exists x; exists tk; exists nbrk; exists ncnt; auto.
  eapply transl_find_label; eauto.
(* goto *)
  auto.

  intro ls; case ls; intros; monadInv TR; simpl.
(* nil *)
  auto.
(* cons *)
  exploit (transl_find_label s nbrk ncnt (Clight.Kseq (seq_of_labeled_statement l) k)); eauto. 
  econstructor; eauto. apply transl_lbl_stmt_2; eauto.
  destruct (Clight.find_label lbl s (Clight.Kseq (seq_of_labeled_statement l) k)) as [[s' k'] | ].
  intros [ts' [tk' [nbrk' [ncnt' [A [B C]]]]]].
  rewrite A. exists ts'; exists tk'; exists nbrk'; exists ncnt'; auto.
  intro. rewrite H.
  eapply transl_find_label_ls; eauto.
Qed.

End FIND_LABEL.

(** Properties of call continuations *)

Lemma match_cont_call_cont:
  forall tyret' nbrk' ncnt' tyret nbrk ncnt k tk,
  match_cont tyret nbrk ncnt k tk ->
  match_cont tyret' nbrk' ncnt' (Clight.call_cont k) (call_cont tk).
Proof.
  induction 1; simpl; auto.
  constructor.
  econstructor; eauto. 
Qed.

Lemma match_cont_is_call_cont:
  forall tyret nbrk ncnt k tk tyret' nbrk' ncnt',
  match_cont tyret nbrk ncnt k tk ->
  Clight.is_call_cont k ->
  match_cont tyret' nbrk' ncnt' k tk /\ is_call_cont tk.
Proof.
  intros. inv H; simpl in H0; try contradiction; simpl.
  split; auto; constructor.
  split; auto; econstructor; eauto.
Qed.

(** The simulation proof *)

Lemma transl_step:
  forall S1 t S2, Clight.step2 ge S1 t S2 ->
  forall T1, match_states S1 T1 ->
  exists T2, plus step tge T1 t T2 /\ match_states S2 T2.
Proof.
  induction 1; intros T1 MST; inv MST.

(* assign *)
  monadInv TR.
  assert (SAME: ts' = ts /\ tk' = tk).
    inversion MTR. auto. 
    subst ts. unfold make_store, make_memcpy in EQ3. destruct (access_mode (typeof a1)); congruence.
  destruct SAME; subst ts' tk'.
  econstructor; split.
  apply plus_one. eapply make_store_correct; eauto.
  eapply transl_lvalue_correct; eauto. eapply make_cast_correct; eauto.
  eapply transl_expr_correct; eauto.  
  eapply match_states_skip; eauto.

(* set *)
  monadInv TR. inv MTR. econstructor; split.
  apply plus_one. econstructor. eapply transl_expr_correct; eauto. 
  eapply match_states_skip; eauto.

(* call *)
  revert TR. simpl. case_eq (classify_fun (typeof a)); try congruence.
  intros targs tres cc CF TR. monadInv TR. inv MTR. 
  exploit functions_translated; eauto. intros [tfd [FIND TFD]].
  rewrite H in CF. simpl in CF. inv CF.
  econstructor; split.
  apply plus_one. econstructor; eauto. 
  exploit transl_expr_correct; eauto.
  exploit transl_arglist_correct; eauto.
  erewrite typlist_of_arglist_eq by eauto. 
  eapply transl_fundef_sig1; eauto.
  rewrite H3. auto.
  econstructor; eauto.  
  econstructor; eauto.
  simpl. auto.

(* builtin *)
  monadInv TR. inv MTR. 
  econstructor; split.
  apply plus_one. econstructor. 
  eapply transl_arglist_correct; eauto. 
  eapply external_call_symbols_preserved_2; eauto.
  exact symbols_preserved.
  eexact (Genv.find_var_info_transf_partial2 transl_fundef transl_globvar _ TRANSL).
  eexact (Genv.find_var_info_rev_transf_partial2 transl_fundef transl_globvar _ TRANSL).
  eapply match_states_skip; eauto.

(* seq *)
  monadInv TR. inv MTR.
  econstructor; split.
  apply plus_one. constructor. 
  econstructor; eauto. constructor. 
  econstructor; eauto.

(* skip seq *)
  monadInv TR. inv MTR. inv MK.
  econstructor; split.
  apply plus_one. apply step_skip_seq. 
  econstructor; eauto. constructor.

(* continue seq *)
  monadInv TR. inv MTR. inv MK.
  econstructor; split.
  apply plus_one. constructor. 
  econstructor; eauto. simpl. reflexivity. constructor.

(* break seq *)
  monadInv TR. inv MTR. inv MK.
  econstructor; split.
  apply plus_one. constructor. 
  econstructor; eauto. simpl. reflexivity. constructor.

(* ifthenelse *)
  monadInv TR. inv MTR.
  exploit make_boolean_correct; eauto. 
  exploit transl_expr_correct; eauto.
  intros [v [A B]].
  econstructor; split.
  apply plus_one. apply step_ifthenelse with (v := v) (b := b); auto.
  destruct b; econstructor; eauto; constructor.

(* loop *)
  monadInv TR.
  econstructor; split.
  eapply star_plus_trans. eapply match_transl_step; eauto. 
  eapply plus_left. constructor. 
  eapply star_left. constructor.
  apply star_one. constructor.
  reflexivity. reflexivity. traceEq.
  econstructor; eauto. constructor. econstructor; eauto. 

(* skip-or-continue loop *)
  assert ((ts' = Sskip \/ ts' = Sexit ncnt) /\ tk' = tk).
    destruct H; subst x; monadInv TR; inv MTR; auto.
  destruct H0. inv MK.
  econstructor; split.
  eapply plus_left.
  destruct H0; subst ts'. 2:constructor. constructor.
  apply star_one. constructor. traceEq.
  econstructor; eauto. constructor. econstructor; eauto. 

(* break loop1 *)
  monadInv TR. inv MTR. inv MK.
  econstructor; split.
  eapply plus_left. constructor.
  eapply star_left. constructor.
  eapply star_left. constructor.
  apply star_one. constructor.
  reflexivity. reflexivity. traceEq.
  eapply match_states_skip; eauto.

(* skip loop2 *)
  monadInv TR. inv MTR. inv MK.
  econstructor; split.
  apply plus_one. constructor.
  econstructor; eauto. 
  simpl. rewrite H5; simpl. rewrite H7; simpl. eauto. 
  constructor. 

(* break loop2 *)
  monadInv TR. inv MTR. inv MK.
  econstructor; split.
  eapply plus_left. constructor.
  apply star_one. constructor.
  traceEq.
  eapply match_states_skip; eauto.

(* return none *)
  monadInv TR. inv MTR. 
  econstructor; split.
  apply plus_one. constructor.
  eapply match_env_free_blocks; eauto. 
  econstructor; eauto.
  eapply match_cont_call_cont. eauto. 

(* return some *)
  monadInv TR. inv MTR. 
  econstructor; split.
  apply plus_one. constructor.
  eapply make_cast_correct; eauto. eapply transl_expr_correct; eauto.
  eapply match_env_free_blocks; eauto.
  econstructor; eauto.
  eapply match_cont_call_cont. eauto. 

(* skip call *)
  monadInv TR. inv MTR.
  exploit match_cont_is_call_cont; eauto. intros [A B].
  econstructor; split.
  apply plus_one. apply step_skip_call. auto.
  eapply match_env_free_blocks; eauto.
  constructor. eauto.

(* switch *)
  monadInv TR.
  assert (E: exists b, ts = Sblock (Sswitch b x x0) /\ Switch.switch_argument b v n).
  { unfold sem_switch_arg in H0.
    destruct (classify_switch (typeof a)); inv EQ2; econstructor; split; eauto;
    destruct v; inv H0; constructor. }
  destruct E as (b & A & B). subst ts. 
  exploit transl_expr_correct; eauto. intro EV.
  econstructor; split.
  eapply star_plus_trans. eapply match_transl_step; eauto.
  apply plus_one. econstructor; eauto. traceEq. 
  econstructor; eauto.
  apply transl_lbl_stmt_2. apply transl_lbl_stmt_1. eauto. 
  constructor.
  econstructor. eauto.

(* skip or break switch *)
  assert ((ts' = Sskip \/ ts' = Sexit nbrk) /\ tk' = tk).
    destruct H; subst x; monadInv TR; inv MTR; auto.
  destruct H0. inv MK.
  econstructor; split.
  apply plus_one. destruct H0; subst ts'. 2:constructor. constructor.
  eapply match_states_skip; eauto.


(* continue switch *)
  monadInv TR. inv MTR. inv MK.
  econstructor; split.
  apply plus_one. constructor. 
  econstructor; eauto. simpl. reflexivity. constructor.

(* label *)
  monadInv TR. inv MTR. 
  econstructor; split.
  apply plus_one. constructor. 
  econstructor; eauto. constructor.

(* goto *)
  monadInv TR. inv MTR.
  generalize TRF. unfold transl_function. intro TRF'. monadInv TRF'.
  exploit (transl_find_label lbl). eexact EQ. eapply match_cont_call_cont. eauto.
  rewrite H. 
  intros [ts' [tk'' [nbrk' [ncnt' [A [B C]]]]]].
  econstructor; split.
  apply plus_one. constructor. simpl. eexact A. 
  econstructor; eauto. constructor.

(* internal function *)
  inv H. monadInv TR. monadInv EQ.
  exploit match_cont_is_call_cont; eauto. intros [A B].
  exploit match_env_alloc_variables; eauto. 
  apply match_env_empty.
  intros [te1 [C D]].
  econstructor; split.
  apply plus_one. eapply step_internal_function.
  simpl. rewrite list_map_compose. simpl. assumption.
  simpl. auto.
  simpl. auto.
  simpl. eauto.
  simpl. rewrite create_undef_temps_match. eapply bind_parameter_temps_match; eauto.
  simpl. econstructor; eauto.
  unfold transl_function. rewrite EQ0; simpl. auto.
  constructor.

(* external function *)
  simpl in TR. 
  destruct (signature_eq (ef_sig ef) (signature_of_type targs tres cconv)); inv TR.
  exploit match_cont_is_call_cont; eauto. intros [A B].
  econstructor; split.
  apply plus_one. constructor. eauto. 
  eapply external_call_symbols_preserved_2; eauto.
  exact symbols_preserved.
  eexact (Genv.find_var_info_transf_partial2 transl_fundef transl_globvar _ TRANSL).
  eexact (Genv.find_var_info_rev_transf_partial2 transl_fundef transl_globvar _ TRANSL).
  econstructor; eauto.

(* returnstate *)
  inv MK. 
  econstructor; split.
  apply plus_one. constructor.
  econstructor; eauto. simpl; reflexivity. constructor.
Qed.

Lemma transl_initial_states:
  forall S, Clight.initial_state prog S ->
  exists R, initial_state tprog R /\ match_states S R.
Proof.
  intros. inv H.
  exploit function_ptr_translated; eauto. intros [tf [A B]].
  assert (C: Genv.find_symbol tge (prog_main tprog) = Some b).
    rewrite symbols_preserved. replace (prog_main tprog) with (prog_main prog).
    auto. symmetry. unfold transl_program in TRANSL. 
    eapply transform_partial_program2_main; eauto.
  assert (funsig tf = signature_of_type Tnil type_int32s cc_default).
    eapply transl_fundef_sig2; eauto. 
  econstructor; split.
  econstructor; eauto. eapply Genv.init_mem_transf_partial2; eauto. 
  econstructor; eauto. constructor; auto. exact I. 
Qed.

Lemma transl_final_states:
  forall S R r,
  match_states S R -> Clight.final_state S r -> final_state R r.
Proof.
  intros. inv H0. inv H. inv MK. constructor.
Qed.

Theorem transl_program_correct:
  forward_simulation (Clight.semantics2 prog) (Csharpminor.semantics tprog).
Proof.
  eapply forward_simulation_plus.
  eexact symbols_preserved.
  eexact transl_initial_states.
  eexact transl_final_states.
  eexact transl_step.
Qed.

End CORRECTNESS.