1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
|
(* *********************************************************************)
(* *)
(* The Compcert verified compiler *)
(* *)
(* Xavier Leroy, INRIA Paris-Rocquencourt *)
(* *)
(* Copyright Institut National de Recherche en Informatique et en *)
(* Automatique. All rights reserved. This file is distributed *)
(* under the terms of the GNU General Public License as published by *)
(* the Free Software Foundation, either version 2 of the License, or *)
(* (at your option) any later version. This file is also distributed *)
(* under the terms of the INRIA Non-Commercial License Agreement. *)
(* *)
(* *********************************************************************)
(** Dynamic semantics for the Compcert C language *)
Require Import Coqlib.
Require Import Errors.
Require Import Maps.
Require Import Integers.
Require Import Floats.
Require Import Values.
Require Import AST.
Require Import Memory.
Require Import Events.
Require Import Globalenvs.
Require Import Csyntax.
Require Import Smallstep.
(** * Semantics of type-dependent operations *)
(** Semantics of casts. [cast v1 t1 t2 v2] holds if value [v1],
viewed with static type [t1], can be cast to type [t2],
resulting in value [v2]. *)
Definition cast_int_int (sz: intsize) (sg: signedness) (i: int) : int :=
match sz, sg with
| I8, Signed => Int.sign_ext 8 i
| I8, Unsigned => Int.zero_ext 8 i
| I16, Signed => Int.sign_ext 16 i
| I16, Unsigned => Int.zero_ext 16 i
| I32, _ => i
end.
Definition cast_int_float (si : signedness) (i: int) : float :=
match si with
| Signed => Float.floatofint i
| Unsigned => Float.floatofintu i
end.
Definition cast_float_int (si : signedness) (f: float) : option int :=
match si with
| Signed => Float.intoffloat f
| Unsigned => Float.intuoffloat f
end.
Definition cast_float_float (sz: floatsize) (f: float) : float :=
match sz with
| F32 => Float.singleoffloat f
| F64 => f
end.
Inductive neutral_for_cast: type -> Prop :=
| nfc_int: forall sg,
neutral_for_cast (Tint I32 sg)
| nfc_ptr: forall ty,
neutral_for_cast (Tpointer ty)
| nfc_array: forall ty sz,
neutral_for_cast (Tarray ty sz)
| nfc_fun: forall targs tres,
neutral_for_cast (Tfunction targs tres).
Inductive cast : val -> type -> type -> val -> Prop :=
| cast_ii: forall i sz2 sz1 si1 si2, (**r int to int *)
cast (Vint i) (Tint sz1 si1) (Tint sz2 si2)
(Vint (cast_int_int sz2 si2 i))
| cast_fi: forall f sz1 sz2 si2 i, (**r float to int *)
cast_float_int si2 f = Some i ->
cast (Vfloat f) (Tfloat sz1) (Tint sz2 si2)
(Vint (cast_int_int sz2 si2 i))
| cast_if: forall i sz1 sz2 si1, (**r int to float *)
cast (Vint i) (Tint sz1 si1) (Tfloat sz2)
(Vfloat (cast_float_float sz2 (cast_int_float si1 i)))
| cast_ff: forall f sz1 sz2, (**r float to float *)
cast (Vfloat f) (Tfloat sz1) (Tfloat sz2)
(Vfloat (cast_float_float sz2 f))
| cast_nn_p: forall b ofs t1 t2, (**r no change in data representation *)
neutral_for_cast t1 -> neutral_for_cast t2 ->
cast (Vptr b ofs) t1 t2 (Vptr b ofs)
| cast_nn_i: forall n t1 t2, (**r no change in data representation *)
neutral_for_cast t1 -> neutral_for_cast t2 ->
cast (Vint n) t1 t2 (Vint n).
(** Interpretation of values as truth values.
Non-zero integers, non-zero floats and non-null pointers are
considered as true. The integer zero (which also represents
the null pointer) and the float 0.0 are false. *)
Inductive is_false: val -> type -> Prop :=
| is_false_int: forall sz sg,
is_false (Vint Int.zero) (Tint sz sg)
| is_false_pointer: forall t,
is_false (Vint Int.zero) (Tpointer t)
| is_false_float: forall sz f,
Float.cmp Ceq f Float.zero = true ->
is_false (Vfloat f) (Tfloat sz).
Inductive is_true: val -> type -> Prop :=
| is_true_int_int: forall n sz sg,
n <> Int.zero ->
is_true (Vint n) (Tint sz sg)
| is_true_pointer_int: forall b ofs sz sg,
is_true (Vptr b ofs) (Tint sz sg)
| is_true_int_pointer: forall n t,
n <> Int.zero ->
is_true (Vint n) (Tpointer t)
| is_true_pointer_pointer: forall b ofs t,
is_true (Vptr b ofs) (Tpointer t)
| is_true_float: forall f sz,
Float.cmp Ceq f Float.zero = false ->
is_true (Vfloat f) (Tfloat sz).
(*
Inductive bool_of_val : val -> type -> val -> Prop :=
| bool_of_val_true: forall v ty,
is_true v ty ->
bool_of_val v ty Vtrue
| bool_of_val_false: forall v ty,
is_false v ty ->
bool_of_val v ty Vfalse.
*)
(** The following [sem_] functions compute the result of an operator
application. Since operators are overloaded, the result depends
both on the static types of the arguments and on their run-time values.
For binary operations, the "usual binary conversions", adapted to a 32-bit
platform, state that:
- If both arguments are of integer type, an integer operation is performed.
For operations that behave differently at unsigned and signed types
(e.g. division, modulus, comparisons), the unsigned operation is selected
if at least one of the arguments is of type "unsigned int 32", otherwise
the signed operation is performed.
- If both arguments are of float type, a float operation is performed.
We choose to perform all float arithmetic in double precision,
even if both arguments are single-precision floats.
- If one argument has integer type and the other has float type,
we convert the integer argument to float, then perform the float operation.
*)
Function sem_neg (v: val) (ty: type) : option val :=
match classify_neg ty with
| neg_case_i sg =>
match v with
| Vint n => Some (Vint (Int.neg n))
| _ => None
end
| neg_case_f =>
match v with
| Vfloat f => Some (Vfloat (Float.neg f))
| _ => None
end
| neg_default => None
end.
Function sem_notint (v: val) (ty: type): option val :=
match classify_notint ty with
| notint_case_i sg =>
match v with
| Vint n => Some (Vint (Int.xor n Int.mone))
| _ => None
end
| notint_default => None
end.
Function sem_notbool (v: val) (ty: type) : option val :=
match classify_bool ty with
| bool_case_ip =>
match v with
| Vint n => Some (Val.of_bool (Int.eq n Int.zero))
| Vptr _ _ => Some Vfalse
| _ => None
end
| bool_case_f =>
match v with
| Vfloat f => Some (Val.of_bool (Float.cmp Ceq f Float.zero))
| _ => None
end
| bool_default => None
end.
Function sem_add (v1:val) (t1:type) (v2: val) (t2:type) : option val :=
match classify_add t1 t2 with
| add_case_ii sg => (**r integer addition *)
match v1, v2 with
| Vint n1, Vint n2 => Some (Vint (Int.add n1 n2))
| _, _ => None
end
| add_case_ff => (**r float addition *)
match v1, v2 with
| Vfloat n1, Vfloat n2 => Some (Vfloat (Float.add n1 n2))
| _, _ => None
end
| add_case_if sg => (**r int plus float *)
match v1, v2 with
| Vint n1, Vfloat n2 => Some (Vfloat (Float.add (cast_int_float sg n1) n2))
| _, _ => None
end
| add_case_fi sg => (**r float plus int *)
match v1, v2 with
| Vfloat n1, Vint n2 => Some (Vfloat (Float.add n1 (cast_int_float sg n2)))
| _, _ => None
end
| add_case_pi ty => (**r pointer plus integer *)
match v1,v2 with
| Vptr b1 ofs1, Vint n2 =>
Some (Vptr b1 (Int.add ofs1 (Int.mul (Int.repr (sizeof ty)) n2)))
| _, _ => None
end
| add_case_ip ty => (**r integer plus pointer *)
match v1,v2 with
| Vint n1, Vptr b2 ofs2 =>
Some (Vptr b2 (Int.add ofs2 (Int.mul (Int.repr (sizeof ty)) n1)))
| _, _ => None
end
| add_default => None
end.
Function sem_sub (v1:val) (t1:type) (v2: val) (t2:type) : option val :=
match classify_sub t1 t2 with
| sub_case_ii sg => (**r integer subtraction *)
match v1,v2 with
| Vint n1, Vint n2 => Some (Vint (Int.sub n1 n2))
| _, _ => None
end
| sub_case_ff => (**r float subtraction *)
match v1,v2 with
| Vfloat f1, Vfloat f2 => Some (Vfloat(Float.sub f1 f2))
| _, _ => None
end
| sub_case_if sg => (**r int minus float *)
match v1, v2 with
| Vint n1, Vfloat n2 => Some (Vfloat (Float.sub (cast_int_float sg n1) n2))
| _, _ => None
end
| sub_case_fi sg => (**r float minus int *)
match v1, v2 with
| Vfloat n1, Vint n2 => Some (Vfloat (Float.sub n1 (cast_int_float sg n2)))
| _, _ => None
end
| sub_case_pi ty => (**r pointer minus integer *)
match v1,v2 with
| Vptr b1 ofs1, Vint n2 =>
Some (Vptr b1 (Int.sub ofs1 (Int.mul (Int.repr (sizeof ty)) n2)))
| _, _ => None
end
| sub_case_pp ty => (**r pointer minus pointer *)
match v1,v2 with
| Vptr b1 ofs1, Vptr b2 ofs2 =>
if zeq b1 b2 then
if Int.eq (Int.repr (sizeof ty)) Int.zero then None
else Some (Vint (Int.divu (Int.sub ofs1 ofs2) (Int.repr (sizeof ty))))
else None
| _, _ => None
end
| sub_default => None
end.
Function sem_mul (v1:val) (t1:type) (v2: val) (t2:type) : option val :=
match classify_mul t1 t2 with
| mul_case_ii sg =>
match v1,v2 with
| Vint n1, Vint n2 => Some (Vint (Int.mul n1 n2))
| _, _ => None
end
| mul_case_ff =>
match v1,v2 with
| Vfloat f1, Vfloat f2 => Some (Vfloat (Float.mul f1 f2))
| _, _ => None
end
| mul_case_if sg =>
match v1, v2 with
| Vint n1, Vfloat n2 => Some (Vfloat (Float.mul (cast_int_float sg n1) n2))
| _, _ => None
end
| mul_case_fi sg =>
match v1, v2 with
| Vfloat n1, Vint n2 => Some (Vfloat (Float.mul n1 (cast_int_float sg n2)))
| _, _ => None
end
| mul_default =>
None
end.
Function sem_div (v1:val) (t1:type) (v2: val) (t2:type) : option val :=
match classify_div t1 t2 with
| div_case_ii Unsigned =>
match v1,v2 with
| Vint n1, Vint n2 =>
if Int.eq n2 Int.zero then None else Some (Vint (Int.divu n1 n2))
| _,_ => None
end
| div_case_ii Signed =>
match v1,v2 with
| Vint n1, Vint n2 =>
if Int.eq n2 Int.zero then None else Some (Vint(Int.divs n1 n2))
| _,_ => None
end
| div_case_ff =>
match v1,v2 with
| Vfloat f1, Vfloat f2 => Some (Vfloat(Float.div f1 f2))
| _, _ => None
end
| div_case_if sg =>
match v1, v2 with
| Vint n1, Vfloat n2 => Some (Vfloat (Float.div (cast_int_float sg n1) n2))
| _, _ => None
end
| div_case_fi sg =>
match v1, v2 with
| Vfloat n1, Vint n2 => Some (Vfloat (Float.div n1 (cast_int_float sg n2)))
| _, _ => None
end
| div_default =>
None
end.
Function sem_mod (v1:val) (t1:type) (v2: val) (t2:type) : option val :=
match classify_binint t1 t2 with
| binint_case_ii Unsigned =>
match v1, v2 with
| Vint n1, Vint n2 =>
if Int.eq n2 Int.zero then None else Some (Vint (Int.modu n1 n2))
| _, _ => None
end
| binint_case_ii Signed =>
match v1,v2 with
| Vint n1, Vint n2 =>
if Int.eq n2 Int.zero then None else Some (Vint (Int.mods n1 n2))
| _, _ => None
end
| binint_default =>
None
end.
Function sem_and (v1:val) (t1:type) (v2: val) (t2:type) : option val :=
match classify_binint t1 t2 with
| binint_case_ii sg =>
match v1, v2 with
| Vint n1, Vint n2 => Some (Vint(Int.and n1 n2))
| _, _ => None
end
| binint_default => None
end.
Function sem_or (v1:val) (t1:type) (v2: val) (t2:type) : option val :=
match classify_binint t1 t2 with
| binint_case_ii sg =>
match v1, v2 with
| Vint n1, Vint n2 => Some (Vint(Int.or n1 n2))
| _, _ => None
end
| binint_default => None
end.
Function sem_xor (v1:val) (t1:type) (v2: val) (t2:type) : option val :=
match classify_binint t1 t2 with
| binint_case_ii sg =>
match v1, v2 with
| Vint n1, Vint n2 => Some (Vint(Int.xor n1 n2))
| _, _ => None
end
| binint_default => None
end.
Function sem_shl (v1:val) (t1:type) (v2: val) (t2:type) : option val :=
match classify_shift t1 t2 with
| shift_case_ii sg =>
match v1, v2 with
| Vint n1, Vint n2 =>
if Int.ltu n2 Int.iwordsize then Some (Vint(Int.shl n1 n2)) else None
| _, _ => None
end
| shift_default => None
end.
Function sem_shr (v1: val) (t1: type) (v2: val) (t2: type): option val :=
match classify_shift t1 t2 with
| shift_case_ii Unsigned =>
match v1,v2 with
| Vint n1, Vint n2 =>
if Int.ltu n2 Int.iwordsize then Some (Vint (Int.shru n1 n2)) else None
| _,_ => None
end
| shift_case_ii Signed =>
match v1,v2 with
| Vint n1, Vint n2 =>
if Int.ltu n2 Int.iwordsize then Some (Vint (Int.shr n1 n2)) else None
| _, _ => None
end
| shift_default =>
None
end.
Function sem_cmp_mismatch (c: comparison): option val :=
match c with
| Ceq => Some Vfalse
| Cne => Some Vtrue
| _ => None
end.
Function sem_cmp (c:comparison)
(v1: val) (t1: type) (v2: val) (t2: type)
(m: mem): option val :=
match classify_cmp t1 t2 with
| cmp_case_ii Signed =>
match v1,v2 with
| Vint n1, Vint n2 => Some (Val.of_bool (Int.cmp c n1 n2))
| _, _ => None
end
| cmp_case_ii Unsigned =>
match v1,v2 with
| Vint n1, Vint n2 => Some (Val.of_bool (Int.cmpu c n1 n2))
| _, _ => None
end
| cmp_case_pp =>
match v1,v2 with
| Vint n1, Vint n2 => Some (Val.of_bool (Int.cmpu c n1 n2))
| Vptr b1 ofs1, Vptr b2 ofs2 =>
if Mem.valid_pointer m b1 (Int.unsigned ofs1)
&& Mem.valid_pointer m b2 (Int.unsigned ofs2) then
if zeq b1 b2
then Some (Val.of_bool (Int.cmpu c ofs1 ofs2))
else sem_cmp_mismatch c
else None
| Vptr b ofs, Vint n =>
if Int.eq n Int.zero then sem_cmp_mismatch c else None
| Vint n, Vptr b ofs =>
if Int.eq n Int.zero then sem_cmp_mismatch c else None
| _, _ => None
end
| cmp_case_ff =>
match v1,v2 with
| Vfloat f1, Vfloat f2 => Some (Val.of_bool (Float.cmp c f1 f2))
| _, _ => None
end
| cmp_case_if sg =>
match v1, v2 with
| Vint n1, Vfloat n2 => Some (Val.of_bool (Float.cmp c (cast_int_float sg n1) n2))
| _, _ => None
end
| cmp_case_fi sg =>
match v1, v2 with
| Vfloat n1, Vint n2 => Some (Val.of_bool (Float.cmp c n1 (cast_int_float sg n2)))
| _, _ => None
end
| cmp_default => None
end.
Definition sem_unary_operation
(op: unary_operation) (v: val) (ty: type): option val :=
match op with
| Onotbool => sem_notbool v ty
| Onotint => sem_notint v ty
| Oneg => sem_neg v ty
end.
Definition sem_binary_operation
(op: binary_operation)
(v1: val) (t1: type) (v2: val) (t2:type)
(m: mem): option val :=
match op with
| Oadd => sem_add v1 t1 v2 t2
| Osub => sem_sub v1 t1 v2 t2
| Omul => sem_mul v1 t1 v2 t2
| Omod => sem_mod v1 t1 v2 t2
| Odiv => sem_div v1 t1 v2 t2
| Oand => sem_and v1 t1 v2 t2
| Oor => sem_or v1 t1 v2 t2
| Oxor => sem_xor v1 t1 v2 t2
| Oshl => sem_shl v1 t1 v2 t2
| Oshr => sem_shr v1 t1 v2 t2
| Oeq => sem_cmp Ceq v1 t1 v2 t2 m
| One => sem_cmp Cne v1 t1 v2 t2 m
| Olt => sem_cmp Clt v1 t1 v2 t2 m
| Ogt => sem_cmp Cgt v1 t1 v2 t2 m
| Ole => sem_cmp Cle v1 t1 v2 t2 m
| Oge => sem_cmp Cge v1 t1 v2 t2 m
end.
Definition sem_incrdecr (id: incr_or_decr) (v: val) (ty: type) :=
match id with
| Incr => sem_add v ty (Vint Int.one) (Tint I32 Signed)
| Decr => sem_sub v ty (Vint Int.one) (Tint I32 Signed)
end.
(** * Operational semantics *)
(** The semantics uses two environments. The global environment
maps names of functions and global variables to memory block references,
and function pointers to their definitions. (See module [Globalenvs].) *)
Definition genv := Genv.t fundef type.
(** The local environment maps local variables to block references and types.
The current value of the variable is stored in the associated memory
block. *)
Definition env := PTree.t (block * type). (* map variable -> location & type *)
Definition empty_env: env := (PTree.empty (block * type)).
(** [load_value_of_type ty m b ofs] computes the value of a datum
of type [ty] residing in memory [m] at block [b], offset [ofs].
If the type [ty] indicates an access by value, the corresponding
memory load is performed. If the type [ty] indicates an access by
reference, the pointer [Vptr b ofs] is returned. *)
Definition load_value_of_type (ty: type) (m: mem) (b: block) (ofs: int) : option val :=
match access_mode ty with
| By_value chunk => Mem.loadv chunk m (Vptr b ofs)
| By_reference => Some (Vptr b ofs)
| By_nothing => None
end.
(** Symmetrically, [store_value_of_type ty m b ofs v] returns the
memory state after storing the value [v] in the datum
of type [ty] residing in memory [m] at block [b], offset [ofs].
This is allowed only if [ty] indicates an access by value. *)
Definition store_value_of_type (ty_dest: type) (m: mem) (loc: block) (ofs: int) (v: val) : option mem :=
match access_mode ty_dest with
| By_value chunk => Mem.storev chunk m (Vptr loc ofs) v
| By_reference => None
| By_nothing => None
end.
(** Allocation of function-local variables.
[alloc_variables e1 m1 vars e2 m2] allocates one memory block
for each variable declared in [vars], and associates the variable
name with this block. [e1] and [m1] are the initial local environment
and memory state. [e2] and [m2] are the final local environment
and memory state. *)
Inductive alloc_variables: env -> mem ->
list (ident * type) ->
env -> mem -> Prop :=
| alloc_variables_nil:
forall e m,
alloc_variables e m nil e m
| alloc_variables_cons:
forall e m id ty vars m1 b1 m2 e2,
Mem.alloc m 0 (sizeof ty) = (m1, b1) ->
alloc_variables (PTree.set id (b1, ty) e) m1 vars e2 m2 ->
alloc_variables e m ((id, ty) :: vars) e2 m2.
(** Initialization of local variables that are parameters to a function.
[bind_parameters e m1 params args m2] stores the values [args]
in the memory blocks corresponding to the variables [params].
[m1] is the initial memory state and [m2] the final memory state. *)
Inductive bind_parameters: env ->
mem -> list (ident * type) -> list val ->
mem -> Prop :=
| bind_parameters_nil:
forall e m,
bind_parameters e m nil nil m
| bind_parameters_cons:
forall e m id ty params v1 vl b m1 m2,
PTree.get id e = Some(b, ty) ->
store_value_of_type ty m b Int.zero v1 = Some m1 ->
bind_parameters e m1 params vl m2 ->
bind_parameters e m ((id, ty) :: params) (v1 :: vl) m2.
(** Return the list of blocks in the codomain of [e], with low and high bounds. *)
Definition block_of_binding (id_b_ty: ident * (block * type)) :=
match id_b_ty with (id, (b, ty)) => (b, 0, sizeof ty) end.
Definition blocks_of_env (e: env) : list (block * Z * Z) :=
List.map block_of_binding (PTree.elements e).
(** Selection of the appropriate case of a [switch], given the value [n]
of the selector expression. *)
Fixpoint select_switch (n: int) (sl: labeled_statements)
{struct sl}: labeled_statements :=
match sl with
| LSdefault _ => sl
| LScase c s sl' => if Int.eq c n then sl else select_switch n sl'
end.
(** Turn a labeled statement into a sequence *)
Fixpoint seq_of_labeled_statement (sl: labeled_statements) : statement :=
match sl with
| LSdefault s => s
| LScase c s sl' => Ssequence s (seq_of_labeled_statement sl')
end.
Section SEMANTICS.
Variable ge: genv.
(** [type_of_global b] returns the type of the global variable or function
at address [b]. *)
Definition type_of_global (b: block) : option type :=
match Genv.find_var_info ge b with
| Some gv => Some gv.(gvar_info)
| None =>
match Genv.find_funct_ptr ge b with
| Some fd => Some(type_of_fundef fd)
| None => None
end
end.
(** ** Reduction semantics for expressions *)
Section EXPR.
Variable e: env.
(** The semantics of expressions follows the popular Wright-Felleisen style.
It is a small-step semantics that reduces one redex at a time.
We first define head reductions (at the top of an expression, then
use reduction contexts to define reduction within an expression. *)
(** Head reduction for l-values. *)
Inductive lred: expr -> mem -> expr -> mem -> Prop :=
| red_var_local: forall x ty m b,
e!x = Some(b, ty) ->
lred (Evar x ty) m
(Eloc b Int.zero ty) m
| red_var_global: forall x ty m b,
e!x = None ->
Genv.find_symbol ge x = Some b ->
type_of_global b = Some ty ->
lred (Evar x ty) m
(Eloc b Int.zero ty) m
| red_deref: forall b ofs ty1 ty m,
lred (Ederef (Eval (Vptr b ofs) ty1) ty) m
(Eloc b ofs ty) m
| red_field_struct: forall b ofs id fList f ty m delta,
field_offset f fList = OK delta ->
lred (Efield (Eloc b ofs (Tstruct id fList)) f ty) m
(Eloc b (Int.add ofs (Int.repr delta)) ty) m
| red_field_union: forall b ofs id fList f ty m,
lred (Efield (Eloc b ofs (Tunion id fList)) f ty) m
(Eloc b ofs ty) m.
(** Head reductions for r-values *)
Inductive rred: expr -> mem -> expr -> mem -> Prop :=
| red_rvalof: forall b ofs ty m v,
load_value_of_type ty m b ofs = Some v ->
rred (Evalof (Eloc b ofs ty) ty) m
(Eval v ty) m
| red_addrof: forall b ofs ty1 ty m,
rred (Eaddrof (Eloc b ofs ty1) ty) m
(Eval (Vptr b ofs) ty) m
| red_unop: forall op v1 ty1 ty m v,
sem_unary_operation op v1 ty1 = Some v ->
rred (Eunop op (Eval v1 ty1) ty) m
(Eval v ty) m
| red_binop: forall op v1 ty1 v2 ty2 ty m v,
sem_binary_operation op v1 ty1 v2 ty2 m = Some v ->
rred (Ebinop op (Eval v1 ty1) (Eval v2 ty2) ty) m
(Eval v ty) m
| red_cast: forall ty v1 ty1 m v,
cast v1 ty1 ty v ->
rred (Ecast (Eval v1 ty1) ty) m
(Eval v ty) m
| red_condition_true: forall v1 ty1 r1 r2 ty m,
is_true v1 ty1 -> typeof r1 = ty ->
rred (Econdition (Eval v1 ty1) r1 r2 ty) m
(Eparen r1 ty) m
| red_condition_false: forall v1 ty1 r1 r2 ty m,
is_false v1 ty1 -> typeof r2 = ty ->
rred (Econdition (Eval v1 ty1) r1 r2 ty) m
(Eparen r2 ty) m
| red_sizeof: forall ty1 ty m,
rred (Esizeof ty1 ty) m
(Eval (Vint (Int.repr (sizeof ty1))) ty) m
| red_assign: forall b ofs ty1 v2 ty2 m v m',
cast v2 ty2 ty1 v ->
store_value_of_type ty1 m b ofs v = Some m' ->
rred (Eassign (Eloc b ofs ty1) (Eval v2 ty2) ty1) m
(Eval v ty1) m'
| red_assignop: forall op b ofs ty1 v2 ty2 tyres m v1 v v' m',
load_value_of_type ty1 m b ofs = Some v1 ->
sem_binary_operation op v1 ty1 v2 ty2 m = Some v ->
cast v tyres ty1 v' ->
store_value_of_type ty1 m b ofs v' = Some m' ->
rred (Eassignop op (Eloc b ofs ty1) (Eval v2 ty2) tyres ty1) m
(Eval v' ty1) m'
| red_postincr: forall id b ofs ty m v1 v2 v3 m',
load_value_of_type ty m b ofs = Some v1 ->
sem_incrdecr id v1 ty = Some v2 ->
cast v2 (typeconv ty) ty v3 ->
store_value_of_type ty m b ofs v3 = Some m' ->
rred (Epostincr id (Eloc b ofs ty) ty) m
(Eval v1 ty) m'
| red_comma: forall v ty1 r2 ty m,
typeof r2 = ty ->
rred (Ecomma (Eval v ty1) r2 ty) m
r2 m
| red_paren: forall r ty m,
typeof r = ty ->
rred (Eparen r ty) m
r m.
(** Head reduction for function calls.
(More exactly, identification of function calls that can reduce.) *)
Inductive cast_arguments: exprlist -> typelist -> list val -> Prop :=
| cast_args_nil:
cast_arguments Enil Tnil nil
| cast_args_cons: forall v ty el targ1 targs v1 vl,
cast v ty targ1 v1 -> cast_arguments el targs vl ->
cast_arguments (Econs (Eval v ty) el) (Tcons targ1 targs) (v1 :: vl).
Inductive callred: expr -> fundef -> list val -> type -> Prop :=
| red_Ecall: forall vf tyargs tyres el ty fd vargs,
Genv.find_funct ge vf = Some fd ->
cast_arguments el tyargs vargs ->
type_of_fundef fd = Tfunction tyargs tyres ->
callred (Ecall (Eval vf (Tfunction tyargs tyres)) el ty)
fd vargs ty.
(** Reduction contexts. In accordance with C's nondeterministic semantics,
we allow reduction both to the left and to the right of a binary operator.
To enforce C's notion of sequence point, reductions within a conditional
[a ? b : c] can only take place in [a], not in [b] nor [c];
and reductions within a sequence [a, b] can only take place in [a], not in [b].
Reduction contexts are represented by functions [C] from expressions to expressions,
suitably constrained by the [context from to C] predicate below.
Contexts are "kinded" with respect to l-values and r-values:
[from] is the kind of the hole in the context and [to] is the kind of
the term resulting from filling the hole.
*)
Inductive kind : Type := LV | RV.
Inductive context: kind -> kind -> (expr -> expr) -> Prop :=
| ctx_top: forall k,
context k k (fun x => x)
| ctx_deref: forall k C ty,
context k RV C -> context k LV (fun x => Ederef (C x) ty)
| ctx_field: forall k C f ty,
context k LV C -> context k LV (fun x => Efield (C x) f ty)
| ctx_rvalof: forall k C ty,
context k LV C -> context k RV (fun x => Evalof (C x) ty)
| ctx_addrof: forall k C ty,
context k LV C -> context k RV (fun x => Eaddrof (C x) ty)
| ctx_unop: forall k C op ty,
context k RV C -> context k RV (fun x => Eunop op (C x) ty)
| ctx_binop_left: forall k C op e2 ty,
context k RV C -> context k RV (fun x => Ebinop op (C x) e2 ty)
| ctx_binop_right: forall k C op e1 ty,
context k RV C -> context k RV (fun x => Ebinop op e1 (C x) ty)
| ctx_cast: forall k C ty,
context k RV C -> context k RV (fun x => Ecast (C x) ty)
| ctx_condition: forall k C r2 r3 ty,
context k RV C -> context k RV (fun x => Econdition (C x) r2 r3 ty)
| ctx_assign_left: forall k C e2 ty,
context k LV C -> context k RV (fun x => Eassign (C x) e2 ty)
| ctx_assign_right: forall k C e1 ty,
context k RV C -> context k RV (fun x => Eassign e1 (C x) ty)
| ctx_assignop_left: forall k C op e2 tyres ty,
context k LV C -> context k RV (fun x => Eassignop op (C x) e2 tyres ty)
| ctx_assignop_right: forall k C op e1 tyres ty,
context k RV C -> context k RV (fun x => Eassignop op e1 (C x) tyres ty)
| ctx_postincr: forall k C id ty,
context k LV C -> context k RV (fun x => Epostincr id (C x) ty)
| ctx_call_left: forall k C el ty,
context k RV C -> context k RV (fun x => Ecall (C x) el ty)
| ctx_call_right: forall k C e1 ty,
contextlist k C -> context k RV (fun x => Ecall e1 (C x) ty)
| ctx_comma: forall k C e2 ty,
context k RV C -> context k RV (fun x => Ecomma (C x) e2 ty)
| ctx_paren: forall k C ty,
context k RV C -> context k RV (fun x => Eparen (C x) ty)
with contextlist: kind -> (expr -> exprlist) -> Prop :=
| ctx_list_head: forall k C el,
context k RV C -> contextlist k (fun x => Econs (C x) el)
| ctx_list_tail: forall k C e1,
contextlist k C -> contextlist k (fun x => Econs e1 (C x)).
(** In a nondeterministic semantics, expressions can go wrong according
to one reduction order while being defined according to another.
Consider for instance [(x = 1) + (10 / x)] where [x] is initially [0].
This expression goes wrong if evaluated right-to-left, but is defined
if evaluated left-to-right. Since our compiler is going to pick one
particular evaluation order, we must make sure that all orders are safe,
i.e. never evaluate a subexpression that goes wrong.
Being safe is a stronger requirement than just not getting stuck during
reductions. Consider [f() + (10 / x)], where [f()] does not terminate.
This expression is never stuck because the evaluation of [f()] can make
infinitely many transitions. Yet it contains a subexpression [10 / x]
that can go wrong if [x = 0], and the compiler may choose to evaluate
[10 / x] first, before calling [f()].
Therefore, we must make sure that not only an expression cannot get stuck,
but none of its subexpressions can either. We say that a subexpression
is not immediately stuck if it is a value (of the appropriate kind)
or it can reduce (at head or within). *)
Inductive not_imm_stuck: kind -> expr -> mem -> Prop :=
| not_stuck_val: forall v ty m,
not_imm_stuck RV (Eval v ty) m
| not_stuck_loc: forall b ofs ty m,
not_imm_stuck LV (Eloc b ofs ty) m
| not_stuck_lred: forall to C e m e' m',
lred e m e' m' ->
context LV to C ->
not_imm_stuck to (C e) m
| not_stuck_rred: forall to C e m e' m',
rred e m e' m' ->
context RV to C ->
not_imm_stuck to (C e) m
| not_stuck_callred: forall to C e m fd args ty,
callred e fd args ty ->
context RV to C ->
not_imm_stuck to (C e) m.
(* An expression is not stuck if none of the potential redexes contained within
is immediately stuck. *)
Definition not_stuck (e: expr) (m: mem) : Prop :=
forall k C e' ,
context k RV C -> e = C e' -> not_imm_stuck k e' m.
End EXPR.
(** ** Transition semantics. *)
(** Continuations describe the computations that remain to be performed
after the statement or expression under consideration has
evaluated completely. *)
Inductive cont: Type :=
| Kstop: cont
| Kdo: cont -> cont (**r [Kdo k] = after [x] in [x;] *)
| Kseq: statement -> cont -> cont (**r [Kseq s2 k] = after [s1] in [s1;s2] *)
| Kifthenelse: statement -> statement -> cont -> cont (**r [Kifthenelse s1 s2 k] = after [x] in [if (x) { s1 } else { s2 }] *)
| Kwhile1: expr -> statement -> cont -> cont (**r [Kwhile1 x s k] = after [x] in [while(x) s] *)
| Kwhile2: expr -> statement -> cont -> cont (**r [Kwhile x s k] = after [s] in [while (x) s] *)
| Kdowhile1: expr -> statement -> cont -> cont (**r [Kdowhile1 x s k] = after [s] in [do s while (x)] *)
| Kdowhile2: expr -> statement -> cont -> cont (**r [Kdowhile2 x s k] = after [x] in [do s while (x)] *)
| Kfor2: expr -> statement -> statement -> cont -> cont (**r [Kfor2 e2 e3 s k] = after [e2] in [for(e1;e2;e3) s] *)
| Kfor3: expr -> statement -> statement -> cont -> cont (**r [Kfor3 e2 e3 s k] = after [s] in [for(e1;e2;e3) s] *)
| Kfor4: expr -> statement -> statement -> cont -> cont (**r [Kfor3 e2 e3 s k] = after [e3] in [for(e1;e2;e3) s] *)
| Kswitch1: labeled_statements -> cont -> cont (**r [Kswitch1 ls k] = after [e] in [switch(e) { ls }] *)
| Kswitch2: cont -> cont (**r catches [break] statements arising out of [switch] *)
| Kreturn: cont -> cont (**r [Kreturn k] = after [e] in [return e;] *)
| Kcall: function -> (**r calling function *)
env -> (**r local env of calling function *)
(expr -> expr) -> (**r context of the call *)
type -> (**r type of call expression *)
cont -> cont.
(** Pop continuation until a call or stop *)
Fixpoint call_cont (k: cont) : cont :=
match k with
| Kstop => k
| Kdo k => k
| Kseq s k => call_cont k
| Kifthenelse s1 s2 k => call_cont k
| Kwhile1 e s k => call_cont k
| Kwhile2 e s k => call_cont k
| Kdowhile1 e s k => call_cont k
| Kdowhile2 e s k => call_cont k
| Kfor2 e2 e3 s k => call_cont k
| Kfor3 e2 e3 s k => call_cont k
| Kfor4 e2 e3 s k => call_cont k
| Kswitch1 ls k => call_cont k
| Kswitch2 k => call_cont k
| Kreturn k => call_cont k
| Kcall _ _ _ _ _ => k
end.
Definition is_call_cont (k: cont) : Prop :=
match k with
| Kstop => True
| Kcall _ _ _ _ _ => True
| _ => False
end.
(** Execution states of the program are grouped in 4 classes corresponding
to the part of the program we are currently executing. It can be
a statement ([State]), an expression ([ExprState]), a transition
from a calling function to a called function ([Callstate]), or
the symmetrical transition from a function back to its caller
([Returnstate]). *)
Inductive state: Type :=
| State (**r execution of a statement *)
(f: function)
(s: statement)
(k: cont)
(e: env)
(m: mem) : state
| ExprState (**r reduction of an expression *)
(f: function)
(r: expr)
(k: cont)
(e: env)
(m: mem) : state
| Callstate (**r calling a function *)
(fd: fundef)
(args: list val)
(k: cont)
(m: mem) : state
| Returnstate (**r returning from a function *)
(res: val)
(k: cont)
(m: mem) : state.
(** Find the statement and manufacture the continuation
corresponding to a label. *)
Fixpoint find_label (lbl: label) (s: statement) (k: cont)
{struct s}: option (statement * cont) :=
match s with
| Ssequence s1 s2 =>
match find_label lbl s1 (Kseq s2 k) with
| Some sk => Some sk
| None => find_label lbl s2 k
end
| Sifthenelse a s1 s2 =>
match find_label lbl s1 k with
| Some sk => Some sk
| None => find_label lbl s2 k
end
| Swhile a s1 =>
find_label lbl s1 (Kwhile2 a s1 k)
| Sdowhile a s1 =>
find_label lbl s1 (Kdowhile1 a s1 k)
| Sfor a1 a2 a3 s1 =>
match find_label lbl a1 (Kseq (Sfor Sskip a2 a3 s1) k) with
| Some sk => Some sk
| None =>
match find_label lbl s1 (Kfor3 a2 a3 s1 k) with
| Some sk => Some sk
| None => find_label lbl a3 (Kfor4 a2 a3 s1 k)
end
end
| Sswitch e sl =>
find_label_ls lbl sl (Kswitch2 k)
| Slabel lbl' s' =>
if ident_eq lbl lbl' then Some(s', k) else find_label lbl s' k
| _ => None
end
with find_label_ls (lbl: label) (sl: labeled_statements) (k: cont)
{struct sl}: option (statement * cont) :=
match sl with
| LSdefault s => find_label lbl s k
| LScase _ s sl' =>
match find_label lbl s (Kseq (seq_of_labeled_statement sl') k) with
| Some sk => Some sk
| None => find_label_ls lbl sl' k
end
end.
(** We separate the transition rules in two groups:
- one group that deals with reductions over expressions;
- the other group that deals with everything else: statements, function calls, etc.
This makes it easy to express different reduction strategies for expressions:
the second group of rules can be reused as is. *)
Inductive estep: state -> trace -> state -> Prop :=
| step_lred: forall C f a k e m a' m',
lred e a m a' m' ->
not_stuck e (C a) m ->
context LV RV C ->
estep (ExprState f (C a) k e m)
E0 (ExprState f (C a') k e m')
| step_rred: forall C f a k e m a' m',
rred a m a' m' ->
not_stuck e (C a) m ->
context RV RV C ->
estep (ExprState f (C a) k e m)
E0 (ExprState f (C a') k e m')
| step_call: forall C f a k e m fd vargs ty,
callred a fd vargs ty ->
not_stuck e (C a) m ->
context RV RV C ->
estep (ExprState f (C a) k e m)
E0 (Callstate fd vargs (Kcall f e C ty k) m).
Inductive sstep: state -> trace -> state -> Prop :=
| step_do_1: forall f x k e m,
sstep (State f (Sdo x) k e m)
E0 (ExprState f x (Kdo k) e m)
| step_do_2: forall f v ty k e m,
sstep (ExprState f (Eval v ty) (Kdo k) e m)
E0 (State f Sskip k e m)
| step_seq: forall f s1 s2 k e m,
sstep (State f (Ssequence s1 s2) k e m)
E0 (State f s1 (Kseq s2 k) e m)
| step_skip_seq: forall f s k e m,
sstep (State f Sskip (Kseq s k) e m)
E0 (State f s k e m)
| step_continue_seq: forall f s k e m,
sstep (State f Scontinue (Kseq s k) e m)
E0 (State f Scontinue k e m)
| step_break_seq: forall f s k e m,
sstep (State f Sbreak (Kseq s k) e m)
E0 (State f Sbreak k e m)
| step_ifthenelse: forall f a s1 s2 k e m,
sstep (State f (Sifthenelse a s1 s2) k e m)
E0 (ExprState f a (Kifthenelse s1 s2 k) e m)
| step_ifthenelse_true: forall f v ty s1 s2 k e m,
is_true v ty ->
sstep (ExprState f (Eval v ty) (Kifthenelse s1 s2 k) e m)
E0 (State f s1 k e m)
| step_ifthenelse_false: forall f v ty s1 s2 k e m,
is_false v ty ->
sstep (ExprState f (Eval v ty) (Kifthenelse s1 s2 k) e m)
E0 (State f s2 k e m)
| step_while: forall f x s k e m,
sstep (State f (Swhile x s) k e m)
E0 (ExprState f x (Kwhile1 x s k) e m)
| step_while_false: forall f v ty x s k e m,
is_false v ty ->
sstep (ExprState f (Eval v ty) (Kwhile1 x s k) e m)
E0 (State f Sskip k e m)
| step_while_true: forall f v ty x s k e m ,
is_true v ty ->
sstep (ExprState f (Eval v ty) (Kwhile1 x s k) e m)
E0 (State f s (Kwhile2 x s k) e m)
| step_skip_or_continue_while: forall f s0 x s k e m,
s0 = Sskip \/ s0 = Scontinue ->
sstep (State f s0 (Kwhile2 x s k) e m)
E0 (State f (Swhile x s) k e m)
| step_break_while: forall f x s k e m,
sstep (State f Sbreak (Kwhile2 x s k) e m)
E0 (State f Sskip k e m)
| step_dowhile: forall f a s k e m,
sstep (State f (Sdowhile a s) k e m)
E0 (State f s (Kdowhile1 a s k) e m)
| step_skip_or_continue_dowhile: forall f s0 x s k e m,
s0 = Sskip \/ s0 = Scontinue ->
sstep (State f s0 (Kdowhile1 x s k) e m)
E0 (ExprState f x (Kdowhile2 x s k) e m)
| step_dowhile_false: forall f v ty x s k e m,
is_false v ty ->
sstep (ExprState f (Eval v ty) (Kdowhile2 x s k) e m)
E0 (State f Sskip k e m)
| step_dowhile_true: forall f v ty x s k e m,
is_true v ty ->
sstep (ExprState f (Eval v ty) (Kdowhile2 x s k) e m)
E0 (State f (Sdowhile x s) k e m)
| step_break_dowhile: forall f a s k e m,
sstep (State f Sbreak (Kdowhile1 a s k) e m)
E0 (State f Sskip k e m)
| step_for_start: forall f a1 a2 a3 s k e m,
a1 <> Sskip ->
sstep (State f (Sfor a1 a2 a3 s) k e m)
E0 (State f a1 (Kseq (Sfor Sskip a2 a3 s) k) e m)
| step_for: forall f a2 a3 s k e m,
sstep (State f (Sfor Sskip a2 a3 s) k e m)
E0 (ExprState f a2 (Kfor2 a2 a3 s k) e m)
| step_for_false: forall f v ty a2 a3 s k e m,
is_false v ty ->
sstep (ExprState f (Eval v ty) (Kfor2 a2 a3 s k) e m)
E0 (State f Sskip k e m)
| step_for_true: forall f v ty a2 a3 s k e m,
is_true v ty ->
sstep (ExprState f (Eval v ty) (Kfor2 a2 a3 s k) e m)
E0 (State f s (Kfor3 a2 a3 s k) e m)
| step_skip_or_continue_for3: forall f x a2 a3 s k e m,
x = Sskip \/ x = Scontinue ->
sstep (State f x (Kfor3 a2 a3 s k) e m)
E0 (State f a3 (Kfor4 a2 a3 s k) e m)
| step_break_for3: forall f a2 a3 s k e m,
sstep (State f Sbreak (Kfor3 a2 a3 s k) e m)
E0 (State f Sskip k e m)
| step_skip_for4: forall f a2 a3 s k e m,
sstep (State f Sskip (Kfor4 a2 a3 s k) e m)
E0 (State f (Sfor Sskip a2 a3 s) k e m)
| step_return_0: forall f k e m m',
Mem.free_list m (blocks_of_env e) = Some m' ->
sstep (State f (Sreturn None) k e m)
E0 (Returnstate Vundef (call_cont k) m')
| step_return_1: forall f x k e m,
sstep (State f (Sreturn (Some x)) k e m)
E0 (ExprState f x (Kreturn k) e m)
| step_return_2: forall f v1 ty k e m v2 m',
cast v1 ty f.(fn_return) v2 ->
Mem.free_list m (blocks_of_env e) = Some m' ->
sstep (ExprState f (Eval v1 ty) (Kreturn k) e m)
E0 (Returnstate v2 (call_cont k) m')
| step_skip_call: forall f k e m m',
is_call_cont k ->
f.(fn_return) = Tvoid ->
Mem.free_list m (blocks_of_env e) = Some m' ->
sstep (State f Sskip k e m)
E0 (Returnstate Vundef k m')
| step_switch: forall f x sl k e m,
sstep (State f (Sswitch x sl) k e m)
E0 (ExprState f x (Kswitch1 sl k) e m)
| step_expr_switch: forall f n ty sl k e m,
sstep (ExprState f (Eval (Vint n) ty) (Kswitch1 sl k) e m)
E0 (State f (seq_of_labeled_statement (select_switch n sl)) (Kswitch2 k) e m)
| step_skip_break_switch: forall f x k e m,
x = Sskip \/ x = Sbreak ->
sstep (State f x (Kswitch2 k) e m)
E0 (State f Sskip k e m)
| step_continue_switch: forall f k e m,
sstep (State f Scontinue (Kswitch2 k) e m)
E0 (State f Scontinue k e m)
| step_label: forall f lbl s k e m,
sstep (State f (Slabel lbl s) k e m)
E0 (State f s k e m)
| step_goto: forall f lbl k e m s' k',
find_label lbl f.(fn_body) (call_cont k) = Some (s', k') ->
sstep (State f (Sgoto lbl) k e m)
E0 (State f s' k' e m)
| step_internal_function: forall f vargs k m e m1 m2,
list_norepet (var_names (fn_params f) ++ var_names (fn_vars f)) ->
alloc_variables empty_env m (f.(fn_params) ++ f.(fn_vars)) e m1 ->
bind_parameters e m1 f.(fn_params) vargs m2 ->
sstep (Callstate (Internal f) vargs k m)
E0 (State f f.(fn_body) k e m2)
| step_external_function: forall ef targs tres vargs k m vres t m',
external_call ef ge vargs m t vres m' ->
sstep (Callstate (External ef targs tres) vargs k m)
t (Returnstate vres k m')
| step_returnstate: forall v f e C ty k m,
sstep (Returnstate v (Kcall f e C ty k) m)
E0 (ExprState f (C (Eval v ty)) k e m).
Definition step (S: state) (t: trace) (S': state) : Prop :=
estep S t S' \/ sstep S t S'.
End SEMANTICS.
(** * Whole-program semantics *)
(** Execution of whole programs are described as sequences of transitions
from an initial state to a final state. An initial state is a [Callstate]
corresponding to the invocation of the ``main'' function of the program
without arguments and with an empty continuation. *)
Inductive initial_state (p: program): state -> Prop :=
| initial_state_intro: forall b f m0,
let ge := Genv.globalenv p in
Genv.init_mem p = Some m0 ->
Genv.find_symbol ge p.(prog_main) = Some b ->
Genv.find_funct_ptr ge b = Some f ->
type_of_fundef f = Tfunction Tnil (Tint I32 Signed) ->
initial_state p (Callstate f nil Kstop m0).
(** A final state is a [Returnstate] with an empty continuation. *)
Inductive final_state: state -> int -> Prop :=
| final_state_intro: forall r m,
final_state (Returnstate (Vint r) Kstop m) r.
(** Execution of a whole program: [exec_program p beh]
holds if the application of [p]'s main function to no arguments
in the initial memory state for [p] has [beh] as observable
behavior. *)
Definition exec_program (p: program) (beh: program_behavior) : Prop :=
program_behaves step (initial_state p) final_state (Genv.globalenv p) beh.
|