1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
|
(* *********************************************************************)
(* *)
(* The Compcert verified compiler *)
(* *)
(* Xavier Leroy, INRIA Paris-Rocquencourt *)
(* *)
(* Copyright Institut National de Recherche en Informatique et en *)
(* Automatique. All rights reserved. This file is distributed *)
(* under the terms of the GNU General Public License as published by *)
(* the Free Software Foundation, either version 2 of the License, or *)
(* (at your option) any later version. This file is also distributed *)
(* under the terms of the INRIA Non-Commercial License Agreement. *)
(* *)
(* *********************************************************************)
(** Dynamic semantics for the Compcert C language *)
Require Import Coqlib.
Require Import Errors.
Require Import Maps.
Require Import Integers.
Require Import Floats.
Require Import Values.
Require Import AST.
Require Import Memory.
Require Import Events.
Require Import Globalenvs.
Require Import Ctypes.
Require Import Cop.
Require Import Csyntax.
Require Import Smallstep.
(** * Operational semantics *)
(** The semantics uses two environments. The global environment
maps names of functions and global variables to memory block references,
and function pointers to their definitions. (See module [Globalenvs].) *)
Definition genv := Genv.t fundef type.
(** The local environment maps local variables to block references and types.
The current value of the variable is stored in the associated memory
block. *)
Definition env := PTree.t (block * type). (* map variable -> location & type *)
Definition empty_env: env := (PTree.empty (block * type)).
(** [deref_loc ty m b ofs t v] computes the value of a datum
of type [ty] residing in memory [m] at block [b], offset [ofs].
If the type [ty] indicates an access by value, the corresponding
memory load is performed. If the type [ty] indicates an access by
reference, the pointer [Vptr b ofs] is returned. [v] is the value
returned, and [t] the trace of observables (nonempty if this is
a volatile access). *)
Inductive deref_loc {F V: Type} (ge: Genv.t F V) (ty: type) (m: mem) (b: block) (ofs: int) : trace -> val -> Prop :=
| deref_loc_value: forall chunk v,
access_mode ty = By_value chunk ->
type_is_volatile ty = false ->
Mem.loadv chunk m (Vptr b ofs) = Some v ->
deref_loc ge ty m b ofs E0 v
| deref_loc_volatile: forall chunk t v,
access_mode ty = By_value chunk -> type_is_volatile ty = true ->
volatile_load ge chunk m b ofs t v ->
deref_loc ge ty m b ofs t v
| deref_loc_reference:
access_mode ty = By_reference ->
deref_loc ge ty m b ofs E0 (Vptr b ofs)
| deref_loc_copy:
access_mode ty = By_copy ->
deref_loc ge ty m b ofs E0 (Vptr b ofs).
(** Symmetrically, [assign_loc ty m b ofs v t m'] returns the
memory state after storing the value [v] in the datum
of type [ty] residing in memory [m] at block [b], offset [ofs].
This is allowed only if [ty] indicates an access by value or by copy.
[m'] is the updated memory state and [t] the trace of observables
(nonempty if this is a volatile store). *)
Inductive assign_loc {F V: Type} (ge: Genv.t F V) (ty: type) (m: mem) (b: block) (ofs: int):
val -> trace -> mem -> Prop :=
| assign_loc_value: forall v chunk m',
access_mode ty = By_value chunk ->
type_is_volatile ty = false ->
Mem.storev chunk m (Vptr b ofs) v = Some m' ->
assign_loc ge ty m b ofs v E0 m'
| assign_loc_volatile: forall v chunk t m',
access_mode ty = By_value chunk -> type_is_volatile ty = true ->
volatile_store ge chunk m b ofs v t m' ->
assign_loc ge ty m b ofs v t m'
| assign_loc_copy: forall b' ofs' bytes m',
access_mode ty = By_copy ->
(alignof_blockcopy ty | Int.unsigned ofs') ->
(alignof_blockcopy ty | Int.unsigned ofs) ->
b' <> b \/ Int.unsigned ofs' = Int.unsigned ofs
\/ Int.unsigned ofs' + sizeof ty <= Int.unsigned ofs
\/ Int.unsigned ofs + sizeof ty <= Int.unsigned ofs' ->
Mem.loadbytes m b' (Int.unsigned ofs') (sizeof ty) = Some bytes ->
Mem.storebytes m b (Int.unsigned ofs) bytes = Some m' ->
assign_loc ge ty m b ofs (Vptr b' ofs') E0 m'.
(** Allocation of function-local variables.
[alloc_variables e1 m1 vars e2 m2] allocates one memory block
for each variable declared in [vars], and associates the variable
name with this block. [e1] and [m1] are the initial local environment
and memory state. [e2] and [m2] are the final local environment
and memory state. *)
Inductive alloc_variables: env -> mem ->
list (ident * type) ->
env -> mem -> Prop :=
| alloc_variables_nil:
forall e m,
alloc_variables e m nil e m
| alloc_variables_cons:
forall e m id ty vars m1 b1 m2 e2,
Mem.alloc m 0 (sizeof ty) = (m1, b1) ->
alloc_variables (PTree.set id (b1, ty) e) m1 vars e2 m2 ->
alloc_variables e m ((id, ty) :: vars) e2 m2.
(** Initialization of local variables that are parameters to a function.
[bind_parameters e m1 params args m2] stores the values [args]
in the memory blocks corresponding to the variables [params].
[m1] is the initial memory state and [m2] the final memory state. *)
Inductive bind_parameters {F V: Type} (ge: Genv.t F V) (e: env):
mem -> list (ident * type) -> list val ->
mem -> Prop :=
| bind_parameters_nil:
forall m,
bind_parameters ge e m nil nil m
| bind_parameters_cons:
forall m id ty params v1 vl b m1 m2,
PTree.get id e = Some(b, ty) ->
assign_loc ge ty m b Int.zero v1 E0 m1 ->
bind_parameters ge e m1 params vl m2 ->
bind_parameters ge e m ((id, ty) :: params) (v1 :: vl) m2.
(** Return the list of blocks in the codomain of [e], with low and high bounds. *)
Definition block_of_binding (id_b_ty: ident * (block * type)) :=
match id_b_ty with (id, (b, ty)) => (b, 0, sizeof ty) end.
Definition blocks_of_env (e: env) : list (block * Z * Z) :=
List.map block_of_binding (PTree.elements e).
(** Selection of the appropriate case of a [switch], given the value [n]
of the selector expression. *)
Fixpoint select_switch_default (sl: labeled_statements): labeled_statements :=
match sl with
| LSnil => sl
| LScons None s sl' => sl
| LScons (Some i) s sl' => select_switch_default sl'
end.
Fixpoint select_switch_case (n: int) (sl: labeled_statements): option labeled_statements :=
match sl with
| LSnil => None
| LScons None s sl' => select_switch_case n sl'
| LScons (Some c) s sl' => if Int.eq c n then Some sl else select_switch_case n sl'
end.
Definition select_switch (n: int) (sl: labeled_statements): labeled_statements :=
match select_switch_case n sl with
| Some sl' => sl'
| None => select_switch_default sl
end.
(** Turn a labeled statement into a sequence *)
Fixpoint seq_of_labeled_statement (sl: labeled_statements) : statement :=
match sl with
| LSnil => Sskip
| LScons _ s sl' => Ssequence s (seq_of_labeled_statement sl')
end.
(** Extract the values from a list of function arguments *)
Inductive cast_arguments: exprlist -> typelist -> list val -> Prop :=
| cast_args_nil:
cast_arguments Enil Tnil nil
| cast_args_cons: forall v ty el targ1 targs v1 vl,
sem_cast v ty targ1 = Some v1 -> cast_arguments el targs vl ->
cast_arguments (Econs (Eval v ty) el) (Tcons targ1 targs) (v1 :: vl).
Section SEMANTICS.
Variable ge: genv.
(** ** Reduction semantics for expressions *)
Section EXPR.
Variable e: env.
(** The semantics of expressions follows the popular Wright-Felleisen style.
It is a small-step semantics that reduces one redex at a time.
We first define head reductions (at the top of an expression, then
use reduction contexts to define reduction within an expression. *)
(** Head reduction for l-values. *)
Inductive lred: expr -> mem -> expr -> mem -> Prop :=
| red_var_local: forall x ty m b,
e!x = Some(b, ty) ->
lred (Evar x ty) m
(Eloc b Int.zero ty) m
| red_var_global: forall x ty m b,
e!x = None ->
Genv.find_symbol ge x = Some b ->
lred (Evar x ty) m
(Eloc b Int.zero ty) m
| red_deref: forall b ofs ty1 ty m,
lred (Ederef (Eval (Vptr b ofs) ty1) ty) m
(Eloc b ofs ty) m
| red_field_struct: forall b ofs id fList a f ty m delta,
field_offset f fList = OK delta ->
lred (Efield (Eval (Vptr b ofs) (Tstruct id fList a)) f ty) m
(Eloc b (Int.add ofs (Int.repr delta)) ty) m
| red_field_union: forall b ofs id fList a f ty m,
lred (Efield (Eval (Vptr b ofs) (Tunion id fList a)) f ty) m
(Eloc b ofs ty) m.
(** Head reductions for r-values *)
Inductive rred: expr -> mem -> trace -> expr -> mem -> Prop :=
| red_rvalof: forall b ofs ty m t v,
deref_loc ge ty m b ofs t v ->
rred (Evalof (Eloc b ofs ty) ty) m
t (Eval v ty) m
| red_addrof: forall b ofs ty1 ty m,
rred (Eaddrof (Eloc b ofs ty1) ty) m
E0 (Eval (Vptr b ofs) ty) m
| red_unop: forall op v1 ty1 ty m v,
sem_unary_operation op v1 ty1 = Some v ->
rred (Eunop op (Eval v1 ty1) ty) m
E0 (Eval v ty) m
| red_binop: forall op v1 ty1 v2 ty2 ty m v,
sem_binary_operation op v1 ty1 v2 ty2 m = Some v ->
rred (Ebinop op (Eval v1 ty1) (Eval v2 ty2) ty) m
E0 (Eval v ty) m
| red_cast: forall ty v1 ty1 m v,
sem_cast v1 ty1 ty = Some v ->
rred (Ecast (Eval v1 ty1) ty) m
E0 (Eval v ty) m
| red_seqand_true: forall v1 ty1 r2 ty m,
bool_val v1 ty1 = Some true ->
rred (Eseqand (Eval v1 ty1) r2 ty) m
E0 (Eparen (Eparen r2 type_bool) ty) m
| red_seqand_false: forall v1 ty1 r2 ty m,
bool_val v1 ty1 = Some false ->
rred (Eseqand (Eval v1 ty1) r2 ty) m
E0 (Eval (Vint Int.zero) ty) m
| red_seqor_true: forall v1 ty1 r2 ty m,
bool_val v1 ty1 = Some true ->
rred (Eseqor (Eval v1 ty1) r2 ty) m
E0 (Eval (Vint Int.one) ty) m
| red_seqor_false: forall v1 ty1 r2 ty m,
bool_val v1 ty1 = Some false ->
rred (Eseqor (Eval v1 ty1) r2 ty) m
E0 (Eparen (Eparen r2 type_bool) ty) m
| red_condition: forall v1 ty1 r1 r2 ty b m,
bool_val v1 ty1 = Some b ->
rred (Econdition (Eval v1 ty1) r1 r2 ty) m
E0 (Eparen (if b then r1 else r2) ty) m
| red_sizeof: forall ty1 ty m,
rred (Esizeof ty1 ty) m
E0 (Eval (Vint (Int.repr (sizeof ty1))) ty) m
| red_alignof: forall ty1 ty m,
rred (Ealignof ty1 ty) m
E0 (Eval (Vint (Int.repr (alignof ty1))) ty) m
| red_assign: forall b ofs ty1 v2 ty2 m v t m',
sem_cast v2 ty2 ty1 = Some v ->
assign_loc ge ty1 m b ofs v t m' ->
rred (Eassign (Eloc b ofs ty1) (Eval v2 ty2) ty1) m
t (Eval v ty1) m'
| red_assignop: forall op b ofs ty1 v2 ty2 tyres m t v1,
deref_loc ge ty1 m b ofs t v1 ->
rred (Eassignop op (Eloc b ofs ty1) (Eval v2 ty2) tyres ty1) m
t (Eassign (Eloc b ofs ty1)
(Ebinop op (Eval v1 ty1) (Eval v2 ty2) tyres) ty1) m
| red_postincr: forall id b ofs ty m t v1 op,
deref_loc ge ty m b ofs t v1 ->
op = match id with Incr => Oadd | Decr => Osub end ->
rred (Epostincr id (Eloc b ofs ty) ty) m
t (Ecomma (Eassign (Eloc b ofs ty)
(Ebinop op (Eval v1 ty) (Eval (Vint Int.one) type_int32s) (typeconv ty))
ty)
(Eval v1 ty) ty) m
| red_comma: forall v ty1 r2 ty m,
typeof r2 = ty ->
rred (Ecomma (Eval v ty1) r2 ty) m
E0 r2 m
| red_paren: forall v1 ty1 ty m v,
sem_cast v1 ty1 ty = Some v ->
rred (Eparen (Eval v1 ty1) ty) m
E0 (Eval v ty) m
| red_builtin: forall ef tyargs el ty m vargs t vres m',
cast_arguments el tyargs vargs ->
external_call ef ge vargs m t vres m' ->
rred (Ebuiltin ef tyargs el ty) m
t (Eval vres ty) m'.
(** Head reduction for function calls.
(More exactly, identification of function calls that can reduce.) *)
Inductive callred: expr -> fundef -> list val -> type -> Prop :=
| red_Ecall: forall vf tyf tyargs tyres cconv el ty fd vargs,
Genv.find_funct ge vf = Some fd ->
cast_arguments el tyargs vargs ->
type_of_fundef fd = Tfunction tyargs tyres cconv ->
classify_fun tyf = fun_case_f tyargs tyres cconv ->
callred (Ecall (Eval vf tyf) el ty)
fd vargs ty.
(** Reduction contexts. In accordance with C's nondeterministic semantics,
we allow reduction both to the left and to the right of a binary operator.
To enforce C's notion of sequence point, reductions within a conditional
[a ? b : c] can only take place in [a], not in [b] nor [c];
reductions within a sequential "or" / "and" [a && b] or [a || b] can
only take place in [a], not in [b];
and reductions within a sequence [a, b] can only take place in [a],
not in [b].
Reduction contexts are represented by functions [C] from expressions
to expressions, suitably constrained by the [context from to C]
predicate below. Contexts are "kinded" with respect to l-values and
r-values: [from] is the kind of the hole in the context and [to] is
the kind of the term resulting from filling the hole.
*)
Inductive kind : Type := LV | RV.
Inductive context: kind -> kind -> (expr -> expr) -> Prop :=
| ctx_top: forall k,
context k k (fun x => x)
| ctx_deref: forall k C ty,
context k RV C -> context k LV (fun x => Ederef (C x) ty)
| ctx_field: forall k C f ty,
context k RV C -> context k LV (fun x => Efield (C x) f ty)
| ctx_rvalof: forall k C ty,
context k LV C -> context k RV (fun x => Evalof (C x) ty)
| ctx_addrof: forall k C ty,
context k LV C -> context k RV (fun x => Eaddrof (C x) ty)
| ctx_unop: forall k C op ty,
context k RV C -> context k RV (fun x => Eunop op (C x) ty)
| ctx_binop_left: forall k C op e2 ty,
context k RV C -> context k RV (fun x => Ebinop op (C x) e2 ty)
| ctx_binop_right: forall k C op e1 ty,
context k RV C -> context k RV (fun x => Ebinop op e1 (C x) ty)
| ctx_cast: forall k C ty,
context k RV C -> context k RV (fun x => Ecast (C x) ty)
| ctx_seqand: forall k C r2 ty,
context k RV C -> context k RV (fun x => Eseqand (C x) r2 ty)
| ctx_seqor: forall k C r2 ty,
context k RV C -> context k RV (fun x => Eseqor (C x) r2 ty)
| ctx_condition: forall k C r2 r3 ty,
context k RV C -> context k RV (fun x => Econdition (C x) r2 r3 ty)
| ctx_assign_left: forall k C e2 ty,
context k LV C -> context k RV (fun x => Eassign (C x) e2 ty)
| ctx_assign_right: forall k C e1 ty,
context k RV C -> context k RV (fun x => Eassign e1 (C x) ty)
| ctx_assignop_left: forall k C op e2 tyres ty,
context k LV C -> context k RV (fun x => Eassignop op (C x) e2 tyres ty)
| ctx_assignop_right: forall k C op e1 tyres ty,
context k RV C -> context k RV (fun x => Eassignop op e1 (C x) tyres ty)
| ctx_postincr: forall k C id ty,
context k LV C -> context k RV (fun x => Epostincr id (C x) ty)
| ctx_call_left: forall k C el ty,
context k RV C -> context k RV (fun x => Ecall (C x) el ty)
| ctx_call_right: forall k C e1 ty,
contextlist k C -> context k RV (fun x => Ecall e1 (C x) ty)
| ctx_builtin: forall k C ef tyargs ty,
contextlist k C -> context k RV (fun x => Ebuiltin ef tyargs (C x) ty)
| ctx_comma: forall k C e2 ty,
context k RV C -> context k RV (fun x => Ecomma (C x) e2 ty)
| ctx_paren: forall k C ty,
context k RV C -> context k RV (fun x => Eparen (C x) ty)
with contextlist: kind -> (expr -> exprlist) -> Prop :=
| ctx_list_head: forall k C el,
context k RV C -> contextlist k (fun x => Econs (C x) el)
| ctx_list_tail: forall k C e1,
contextlist k C -> contextlist k (fun x => Econs e1 (C x)).
(** In a nondeterministic semantics, expressions can go wrong according
to one reduction order while being defined according to another.
Consider for instance [(x = 1) + (10 / x)] where [x] is initially [0].
This expression goes wrong if evaluated right-to-left, but is defined
if evaluated left-to-right. Since our compiler is going to pick one
particular evaluation order, we must make sure that all orders are safe,
i.e. never evaluate a subexpression that goes wrong.
Being safe is a stronger requirement than just not getting stuck during
reductions. Consider [f() + (10 / x)], where [f()] does not terminate.
This expression is never stuck because the evaluation of [f()] can make
infinitely many transitions. Yet it contains a subexpression [10 / x]
that can go wrong if [x = 0], and the compiler may choose to evaluate
[10 / x] first, before calling [f()].
Therefore, we must make sure that not only an expression cannot get stuck,
but none of its subexpressions can either. We say that a subexpression
is not immediately stuck if it is a value (of the appropriate kind)
or it can reduce (at head or within). *)
Inductive imm_safe: kind -> expr -> mem -> Prop :=
| imm_safe_val: forall v ty m,
imm_safe RV (Eval v ty) m
| imm_safe_loc: forall b ofs ty m,
imm_safe LV (Eloc b ofs ty) m
| imm_safe_lred: forall to C e m e' m',
lred e m e' m' ->
context LV to C ->
imm_safe to (C e) m
| imm_safe_rred: forall to C e m t e' m',
rred e m t e' m' ->
context RV to C ->
imm_safe to (C e) m
| imm_safe_callred: forall to C e m fd args ty,
callred e fd args ty ->
context RV to C ->
imm_safe to (C e) m.
(* An expression is not stuck if none of the potential redexes contained within
is immediately stuck. *)
(*
Definition not_stuck (e: expr) (m: mem) : Prop :=
forall k C e' ,
context k RV C -> e = C e' -> not_imm_stuck k e' m.
*)
End EXPR.
(** ** Transition semantics. *)
(** Continuations describe the computations that remain to be performed
after the statement or expression under consideration has
evaluated completely. *)
Inductive cont: Type :=
| Kstop: cont
| Kdo: cont -> cont (**r [Kdo k] = after [x] in [x;] *)
| Kseq: statement -> cont -> cont (**r [Kseq s2 k] = after [s1] in [s1;s2] *)
| Kifthenelse: statement -> statement -> cont -> cont (**r [Kifthenelse s1 s2 k] = after [x] in [if (x) { s1 } else { s2 }] *)
| Kwhile1: expr -> statement -> cont -> cont (**r [Kwhile1 x s k] = after [x] in [while(x) s] *)
| Kwhile2: expr -> statement -> cont -> cont (**r [Kwhile x s k] = after [s] in [while (x) s] *)
| Kdowhile1: expr -> statement -> cont -> cont (**r [Kdowhile1 x s k] = after [s] in [do s while (x)] *)
| Kdowhile2: expr -> statement -> cont -> cont (**r [Kdowhile2 x s k] = after [x] in [do s while (x)] *)
| Kfor2: expr -> statement -> statement -> cont -> cont (**r [Kfor2 e2 e3 s k] = after [e2] in [for(e1;e2;e3) s] *)
| Kfor3: expr -> statement -> statement -> cont -> cont (**r [Kfor3 e2 e3 s k] = after [s] in [for(e1;e2;e3) s] *)
| Kfor4: expr -> statement -> statement -> cont -> cont (**r [Kfor4 e2 e3 s k] = after [e3] in [for(e1;e2;e3) s] *)
| Kswitch1: labeled_statements -> cont -> cont (**r [Kswitch1 ls k] = after [e] in [switch(e) { ls }] *)
| Kswitch2: cont -> cont (**r catches [break] statements arising out of [switch] *)
| Kreturn: cont -> cont (**r [Kreturn k] = after [e] in [return e;] *)
| Kcall: function -> (**r calling function *)
env -> (**r local env of calling function *)
(expr -> expr) -> (**r context of the call *)
type -> (**r type of call expression *)
cont -> cont.
(** Pop continuation until a call or stop *)
Fixpoint call_cont (k: cont) : cont :=
match k with
| Kstop => k
| Kdo k => k
| Kseq s k => call_cont k
| Kifthenelse s1 s2 k => call_cont k
| Kwhile1 e s k => call_cont k
| Kwhile2 e s k => call_cont k
| Kdowhile1 e s k => call_cont k
| Kdowhile2 e s k => call_cont k
| Kfor2 e2 e3 s k => call_cont k
| Kfor3 e2 e3 s k => call_cont k
| Kfor4 e2 e3 s k => call_cont k
| Kswitch1 ls k => call_cont k
| Kswitch2 k => call_cont k
| Kreturn k => call_cont k
| Kcall _ _ _ _ _ => k
end.
Definition is_call_cont (k: cont) : Prop :=
match k with
| Kstop => True
| Kcall _ _ _ _ _ => True
| _ => False
end.
(** Execution states of the program are grouped in 4 classes corresponding
to the part of the program we are currently executing. It can be
a statement ([State]), an expression ([ExprState]), a transition
from a calling function to a called function ([Callstate]), or
the symmetrical transition from a function back to its caller
([Returnstate]). *)
Inductive state: Type :=
| State (**r execution of a statement *)
(f: function)
(s: statement)
(k: cont)
(e: env)
(m: mem) : state
| ExprState (**r reduction of an expression *)
(f: function)
(r: expr)
(k: cont)
(e: env)
(m: mem) : state
| Callstate (**r calling a function *)
(fd: fundef)
(args: list val)
(k: cont)
(m: mem) : state
| Returnstate (**r returning from a function *)
(res: val)
(k: cont)
(m: mem) : state
| Stuckstate. (**r undefined behavior occurred *)
(** Find the statement and manufacture the continuation
corresponding to a label. *)
Fixpoint find_label (lbl: label) (s: statement) (k: cont)
{struct s}: option (statement * cont) :=
match s with
| Ssequence s1 s2 =>
match find_label lbl s1 (Kseq s2 k) with
| Some sk => Some sk
| None => find_label lbl s2 k
end
| Sifthenelse a s1 s2 =>
match find_label lbl s1 k with
| Some sk => Some sk
| None => find_label lbl s2 k
end
| Swhile a s1 =>
find_label lbl s1 (Kwhile2 a s1 k)
| Sdowhile a s1 =>
find_label lbl s1 (Kdowhile1 a s1 k)
| Sfor a1 a2 a3 s1 =>
match find_label lbl a1 (Kseq (Sfor Sskip a2 a3 s1) k) with
| Some sk => Some sk
| None =>
match find_label lbl s1 (Kfor3 a2 a3 s1 k) with
| Some sk => Some sk
| None => find_label lbl a3 (Kfor4 a2 a3 s1 k)
end
end
| Sswitch e sl =>
find_label_ls lbl sl (Kswitch2 k)
| Slabel lbl' s' =>
if ident_eq lbl lbl' then Some(s', k) else find_label lbl s' k
| _ => None
end
with find_label_ls (lbl: label) (sl: labeled_statements) (k: cont)
{struct sl}: option (statement * cont) :=
match sl with
| LSnil => None
| LScons _ s sl' =>
match find_label lbl s (Kseq (seq_of_labeled_statement sl') k) with
| Some sk => Some sk
| None => find_label_ls lbl sl' k
end
end.
(** We separate the transition rules in two groups:
- one group that deals with reductions over expressions;
- the other group that deals with everything else: statements, function calls, etc.
This makes it easy to express different reduction strategies for expressions:
the second group of rules can be reused as is. *)
Inductive estep: state -> trace -> state -> Prop :=
| step_lred: forall C f a k e m a' m',
lred e a m a' m' ->
context LV RV C ->
estep (ExprState f (C a) k e m)
E0 (ExprState f (C a') k e m')
| step_rred: forall C f a k e m t a' m',
rred a m t a' m' ->
context RV RV C ->
estep (ExprState f (C a) k e m)
t (ExprState f (C a') k e m')
| step_call: forall C f a k e m fd vargs ty,
callred a fd vargs ty ->
context RV RV C ->
estep (ExprState f (C a) k e m)
E0 (Callstate fd vargs (Kcall f e C ty k) m)
| step_stuck: forall C f a k e m K,
context K RV C -> ~(imm_safe e K a m) ->
estep (ExprState f (C a) k e m)
E0 Stuckstate.
Inductive sstep: state -> trace -> state -> Prop :=
| step_do_1: forall f x k e m,
sstep (State f (Sdo x) k e m)
E0 (ExprState f x (Kdo k) e m)
| step_do_2: forall f v ty k e m,
sstep (ExprState f (Eval v ty) (Kdo k) e m)
E0 (State f Sskip k e m)
| step_seq: forall f s1 s2 k e m,
sstep (State f (Ssequence s1 s2) k e m)
E0 (State f s1 (Kseq s2 k) e m)
| step_skip_seq: forall f s k e m,
sstep (State f Sskip (Kseq s k) e m)
E0 (State f s k e m)
| step_continue_seq: forall f s k e m,
sstep (State f Scontinue (Kseq s k) e m)
E0 (State f Scontinue k e m)
| step_break_seq: forall f s k e m,
sstep (State f Sbreak (Kseq s k) e m)
E0 (State f Sbreak k e m)
| step_ifthenelse_1: forall f a s1 s2 k e m,
sstep (State f (Sifthenelse a s1 s2) k e m)
E0 (ExprState f a (Kifthenelse s1 s2 k) e m)
| step_ifthenelse_2: forall f v ty s1 s2 k e m b,
bool_val v ty = Some b ->
sstep (ExprState f (Eval v ty) (Kifthenelse s1 s2 k) e m)
E0 (State f (if b then s1 else s2) k e m)
| step_while: forall f x s k e m,
sstep (State f (Swhile x s) k e m)
E0 (ExprState f x (Kwhile1 x s k) e m)
| step_while_false: forall f v ty x s k e m,
bool_val v ty = Some false ->
sstep (ExprState f (Eval v ty) (Kwhile1 x s k) e m)
E0 (State f Sskip k e m)
| step_while_true: forall f v ty x s k e m ,
bool_val v ty = Some true ->
sstep (ExprState f (Eval v ty) (Kwhile1 x s k) e m)
E0 (State f s (Kwhile2 x s k) e m)
| step_skip_or_continue_while: forall f s0 x s k e m,
s0 = Sskip \/ s0 = Scontinue ->
sstep (State f s0 (Kwhile2 x s k) e m)
E0 (State f (Swhile x s) k e m)
| step_break_while: forall f x s k e m,
sstep (State f Sbreak (Kwhile2 x s k) e m)
E0 (State f Sskip k e m)
| step_dowhile: forall f a s k e m,
sstep (State f (Sdowhile a s) k e m)
E0 (State f s (Kdowhile1 a s k) e m)
| step_skip_or_continue_dowhile: forall f s0 x s k e m,
s0 = Sskip \/ s0 = Scontinue ->
sstep (State f s0 (Kdowhile1 x s k) e m)
E0 (ExprState f x (Kdowhile2 x s k) e m)
| step_dowhile_false: forall f v ty x s k e m,
bool_val v ty = Some false ->
sstep (ExprState f (Eval v ty) (Kdowhile2 x s k) e m)
E0 (State f Sskip k e m)
| step_dowhile_true: forall f v ty x s k e m,
bool_val v ty = Some true ->
sstep (ExprState f (Eval v ty) (Kdowhile2 x s k) e m)
E0 (State f (Sdowhile x s) k e m)
| step_break_dowhile: forall f a s k e m,
sstep (State f Sbreak (Kdowhile1 a s k) e m)
E0 (State f Sskip k e m)
| step_for_start: forall f a1 a2 a3 s k e m,
a1 <> Sskip ->
sstep (State f (Sfor a1 a2 a3 s) k e m)
E0 (State f a1 (Kseq (Sfor Sskip a2 a3 s) k) e m)
| step_for: forall f a2 a3 s k e m,
sstep (State f (Sfor Sskip a2 a3 s) k e m)
E0 (ExprState f a2 (Kfor2 a2 a3 s k) e m)
| step_for_false: forall f v ty a2 a3 s k e m,
bool_val v ty = Some false ->
sstep (ExprState f (Eval v ty) (Kfor2 a2 a3 s k) e m)
E0 (State f Sskip k e m)
| step_for_true: forall f v ty a2 a3 s k e m,
bool_val v ty = Some true ->
sstep (ExprState f (Eval v ty) (Kfor2 a2 a3 s k) e m)
E0 (State f s (Kfor3 a2 a3 s k) e m)
| step_skip_or_continue_for3: forall f x a2 a3 s k e m,
x = Sskip \/ x = Scontinue ->
sstep (State f x (Kfor3 a2 a3 s k) e m)
E0 (State f a3 (Kfor4 a2 a3 s k) e m)
| step_break_for3: forall f a2 a3 s k e m,
sstep (State f Sbreak (Kfor3 a2 a3 s k) e m)
E0 (State f Sskip k e m)
| step_skip_for4: forall f a2 a3 s k e m,
sstep (State f Sskip (Kfor4 a2 a3 s k) e m)
E0 (State f (Sfor Sskip a2 a3 s) k e m)
| step_return_0: forall f k e m m',
Mem.free_list m (blocks_of_env e) = Some m' ->
sstep (State f (Sreturn None) k e m)
E0 (Returnstate Vundef (call_cont k) m')
| step_return_1: forall f x k e m,
sstep (State f (Sreturn (Some x)) k e m)
E0 (ExprState f x (Kreturn k) e m)
| step_return_2: forall f v1 ty k e m v2 m',
sem_cast v1 ty f.(fn_return) = Some v2 ->
Mem.free_list m (blocks_of_env e) = Some m' ->
sstep (ExprState f (Eval v1 ty) (Kreturn k) e m)
E0 (Returnstate v2 (call_cont k) m')
| step_skip_call: forall f k e m m',
is_call_cont k ->
Mem.free_list m (blocks_of_env e) = Some m' ->
sstep (State f Sskip k e m)
E0 (Returnstate Vundef k m')
| step_switch: forall f x sl k e m,
sstep (State f (Sswitch x sl) k e m)
E0 (ExprState f x (Kswitch1 sl k) e m)
| step_expr_switch: forall f n ty sl k e m,
sstep (ExprState f (Eval (Vint n) ty) (Kswitch1 sl k) e m)
E0 (State f (seq_of_labeled_statement (select_switch n sl)) (Kswitch2 k) e m)
| step_skip_break_switch: forall f x k e m,
x = Sskip \/ x = Sbreak ->
sstep (State f x (Kswitch2 k) e m)
E0 (State f Sskip k e m)
| step_continue_switch: forall f k e m,
sstep (State f Scontinue (Kswitch2 k) e m)
E0 (State f Scontinue k e m)
| step_label: forall f lbl s k e m,
sstep (State f (Slabel lbl s) k e m)
E0 (State f s k e m)
| step_goto: forall f lbl k e m s' k',
find_label lbl f.(fn_body) (call_cont k) = Some (s', k') ->
sstep (State f (Sgoto lbl) k e m)
E0 (State f s' k' e m)
| step_internal_function: forall f vargs k m e m1 m2,
list_norepet (var_names (fn_params f) ++ var_names (fn_vars f)) ->
alloc_variables empty_env m (f.(fn_params) ++ f.(fn_vars)) e m1 ->
bind_parameters ge e m1 f.(fn_params) vargs m2 ->
sstep (Callstate (Internal f) vargs k m)
E0 (State f f.(fn_body) k e m2)
| step_external_function: forall ef targs tres cc vargs k m vres t m',
external_call ef ge vargs m t vres m' ->
sstep (Callstate (External ef targs tres cc) vargs k m)
t (Returnstate vres k m')
| step_returnstate: forall v f e C ty k m,
sstep (Returnstate v (Kcall f e C ty k) m)
E0 (ExprState f (C (Eval v ty)) k e m).
Definition step (S: state) (t: trace) (S': state) : Prop :=
estep S t S' \/ sstep S t S'.
End SEMANTICS.
(** * Whole-program semantics *)
(** Execution of whole programs are described as sequences of transitions
from an initial state to a final state. An initial state is a [Callstate]
corresponding to the invocation of the ``main'' function of the program
without arguments and with an empty continuation. *)
Inductive initial_state (p: program): state -> Prop :=
| initial_state_intro: forall b f m0,
let ge := Genv.globalenv p in
Genv.init_mem p = Some m0 ->
Genv.find_symbol ge p.(prog_main) = Some b ->
Genv.find_funct_ptr ge b = Some f ->
type_of_fundef f = Tfunction Tnil type_int32s cc_default ->
initial_state p (Callstate f nil Kstop m0).
(** A final state is a [Returnstate] with an empty continuation. *)
Inductive final_state: state -> int -> Prop :=
| final_state_intro: forall r m,
final_state (Returnstate (Vint r) Kstop m) r.
(** Wrapping up these definitions in a small-step semantics. *)
Definition semantics (p: program) :=
Semantics step (initial_state p) final_state (Genv.globalenv p).
(** This semantics has the single-event property. *)
Lemma semantics_single_events:
forall p, single_events (semantics p).
Proof.
intros; red; intros. destruct H.
set (ge := globalenv (semantics p)) in *.
assert (DEREF: forall chunk m b ofs t v, deref_loc ge chunk m b ofs t v -> (length t <= 1)%nat).
intros. inv H0; simpl; try omega. inv H3; simpl; try omega.
assert (ASSIGN: forall chunk m b ofs t v m', assign_loc ge chunk m b ofs v t m' -> (length t <= 1)%nat).
intros. inv H0; simpl; try omega. inv H3; simpl; try omega.
inv H; simpl; try omega. inv H0; eauto; simpl; try omega.
eapply external_call_trace_length; eauto.
inv H; simpl; try omega. eapply external_call_trace_length; eauto.
Qed.
|