summaryrefslogtreecommitdiff
path: root/cfrontend/Cop.v
blob: a5d4c662ac771b9bdee066fc44e6ce0c1fc49399 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
(* *********************************************************************)
(*                                                                     *)
(*              The Compcert verified compiler                         *)
(*                                                                     *)
(*          Xavier Leroy, INRIA Paris-Rocquencourt                     *)
(*                                                                     *)
(*  Copyright Institut National de Recherche en Informatique et en     *)
(*  Automatique.  All rights reserved.  This file is distributed       *)
(*  under the terms of the GNU General Public License as published by  *)
(*  the Free Software Foundation, either version 2 of the License, or  *)
(*  (at your option) any later version.  This file is also distributed *)
(*  under the terms of the INRIA Non-Commercial License Agreement.     *)
(*                                                                     *)
(* *********************************************************************)

(** Arithmetic and logical operators for the Compcert C and Clight languages *)

Require Import Coqlib.
Require Import AST.
Require Import Integers.
Require Import Floats.
Require Import Values.
Require Import Memory.
Require Import Ctypes.

(** * Syntax of operators. *)

Inductive unary_operation : Type :=
  | Onotbool : unary_operation          (**r boolean negation ([!] in C) *)
  | Onotint : unary_operation           (**r integer complement ([~] in C) *)
  | Oneg : unary_operation              (**r opposite (unary [-]) *)
  | Oabsfloat : unary_operation.        (**r floating-point absolute value *)

Inductive binary_operation : Type :=
  | Oadd : binary_operation             (**r addition (binary [+]) *)
  | Osub : binary_operation             (**r subtraction (binary [-]) *)
  | Omul : binary_operation             (**r multiplication (binary [*]) *)
  | Odiv : binary_operation             (**r division ([/]) *)
  | Omod : binary_operation             (**r remainder ([%]) *)
  | Oand : binary_operation             (**r bitwise and ([&]) *)
  | Oor : binary_operation              (**r bitwise or ([|]) *)
  | Oxor : binary_operation             (**r bitwise xor ([^]) *)
  | Oshl : binary_operation             (**r left shift ([<<]) *)
  | Oshr : binary_operation             (**r right shift ([>>]) *)
  | Oeq: binary_operation               (**r comparison ([==]) *)
  | One: binary_operation               (**r comparison ([!=]) *)
  | Olt: binary_operation               (**r comparison ([<]) *)
  | Ogt: binary_operation               (**r comparison ([>]) *)
  | Ole: binary_operation               (**r comparison ([<=]) *)
  | Oge: binary_operation.              (**r comparison ([>=]) *)

Inductive incr_or_decr : Type := Incr | Decr.

(** * Type classification and semantics of operators. *)

(** Most C operators are overloaded (they apply to arguments of various
  types) and their semantics depend on the types of their arguments.
  The following [classify_*] functions take as arguments the types
  of the arguments of an operation.  They return enough information
  to resolve overloading for this operator applications, such as
  ``both arguments are floats'', or ``the first is a pointer
  and the second is an integer''.  This classification is used in the
  compiler (module [Cshmgen]) to resolve overloading statically.

  The [sem_*] functions below compute the result of an operator
  application.  Since operators are overloaded, the result depends
  both on the static types of the arguments and on their run-time values.
  The corresponding [classify_*] function is first called on the 
  types of the arguments to resolve static overloading.  It is then
  followed by a case analysis on the values of the arguments. *)

(** ** Casts and truth values *)

Inductive classify_cast_cases : Type :=
  | cast_case_neutral                   (**r int|pointer -> int32|pointer *)
  | cast_case_i2i (sz2:intsize) (si2:signedness)   (**r int -> int *)
  | cast_case_f2f                                  (**r double -> double *)
  | cast_case_s2s                                  (**r single -> single *)
  | cast_case_f2s                                  (**r double -> single *)
  | cast_case_s2f                                  (**r single -> double *)
  | cast_case_i2f (si1: signedness)                (**r int -> double *)
  | cast_case_i2s (si1: signedness)                (**r int -> single *)
  | cast_case_f2i (sz2:intsize) (si2:signedness)   (**r double -> int *)
  | cast_case_s2i (sz2:intsize) (si2:signedness)   (**r single -> int *)
  | cast_case_l2l                       (**r long -> long *)
  | cast_case_i2l (si1: signedness)     (**r int -> long *)
  | cast_case_l2i (sz2: intsize) (si2: signedness) (**r long -> int *)
  | cast_case_l2f (si1: signedness)                (**r long -> double *)
  | cast_case_l2s (si1: signedness)                (**r long -> single *)
  | cast_case_f2l (si2:signedness)                 (**r double -> long *)
  | cast_case_s2l (si2:signedness)                 (**r single -> long *)
  | cast_case_f2bool                               (**r double -> bool *)
  | cast_case_s2bool                               (**r single -> bool *)
  | cast_case_l2bool                               (**r long -> bool *)
  | cast_case_p2bool                               (**r pointer -> bool *)
  | cast_case_struct (id1: ident) (fld1: fieldlist) (id2: ident) (fld2: fieldlist) (**r struct -> struct *)
  | cast_case_union (id1: ident) (fld1: fieldlist) (id2: ident) (fld2: fieldlist) (**r union -> union *)
  | cast_case_void                                 (**r any -> void *)
  | cast_case_default.

Definition classify_cast (tfrom tto: type) : classify_cast_cases :=
  match tto, tfrom with
  | Tint I32 si2 _, (Tint _ _ _ | Tpointer _ _ | Tcomp_ptr _ _ | Tarray _ _ _ | Tfunction _ _ _) => cast_case_neutral
  | Tint IBool _ _, Tfloat F64 _ => cast_case_f2bool
  | Tint IBool _ _, Tfloat F32 _ => cast_case_s2bool
  | Tint IBool _ _, (Tpointer _ _ | Tcomp_ptr _ _ | Tarray _ _ _ | Tfunction _ _ _) => cast_case_p2bool
  | Tint sz2 si2 _, Tint sz1 si1 _ => cast_case_i2i sz2 si2
  | Tint sz2 si2 _, Tfloat F64 _ => cast_case_f2i sz2 si2
  | Tint sz2 si2 _, Tfloat F32 _ => cast_case_s2i sz2 si2
  | Tfloat F64 _, Tfloat F64 _ => cast_case_f2f
  | Tfloat F32 _, Tfloat F32 _ => cast_case_s2s
  | Tfloat F64 _, Tfloat F32 _ => cast_case_s2f
  | Tfloat F32 _, Tfloat F64 _ => cast_case_f2s
  | Tfloat F64 _, Tint sz1 si1 _ => cast_case_i2f si1
  | Tfloat F32 _, Tint sz1 si1 _ => cast_case_i2s si1
  | (Tpointer _ _ | Tcomp_ptr _ _), (Tint _ _ _ | Tpointer _ _ | Tcomp_ptr _ _ | Tarray _ _ _ | Tfunction _ _ _) => cast_case_neutral
  | Tlong _ _, Tlong _ _ => cast_case_l2l
  | Tlong _ _, Tint sz1 si1 _ => cast_case_i2l si1
  | Tint IBool _ _, Tlong _ _ => cast_case_l2bool
  | Tint sz2 si2 _, Tlong _ _ => cast_case_l2i sz2 si2
  | Tlong si2 _, Tfloat F64 _ => cast_case_f2l si2
  | Tlong si2 _, Tfloat F32 _ => cast_case_s2l si2
  | Tfloat F64 _, Tlong si1 _ => cast_case_l2f si1
  | Tfloat F32 _, Tlong si1 _ => cast_case_l2s si1
  | (Tpointer _ _ | Tcomp_ptr _ _), Tlong _ _ => cast_case_l2i I32 Unsigned
  | Tlong si2 _, (Tpointer _ _ | Tcomp_ptr _ _ | Tarray _ _ _ | Tfunction _ _ _) => cast_case_i2l si2
  | Tstruct id2 fld2 _, Tstruct id1 fld1 _ => cast_case_struct id1 fld1 id2 fld2
  | Tunion id2 fld2 _, Tunion id1 fld1 _ => cast_case_union id1 fld1 id2 fld2
  | Tvoid, _ => cast_case_void
  | _, _ => cast_case_default
  end.

(** Semantics of casts.  [sem_cast v1 t1 t2 = Some v2] if value [v1],
  viewed with static type [t1], can be converted  to type [t2],
  resulting in value [v2].  *)

Definition cast_int_int (sz: intsize) (sg: signedness) (i: int) : int :=
  match sz, sg with
  | I8, Signed => Int.sign_ext 8 i
  | I8, Unsigned => Int.zero_ext 8 i
  | I16, Signed => Int.sign_ext 16 i
  | I16, Unsigned => Int.zero_ext 16 i 
  | I32, _ => i
  | IBool, _ => if Int.eq i Int.zero then Int.zero else Int.one
  end.

Definition cast_int_float (si: signedness) (i: int) : float :=
  match si with
  | Signed => Float.of_int i
  | Unsigned => Float.of_intu i
  end.

Definition cast_float_int (si : signedness) (f: float) : option int :=
  match si with
  | Signed => Float.to_int f
  | Unsigned => Float.to_intu f
  end.

Definition cast_int_single (si: signedness) (i: int) : float32 :=
  match si with
  | Signed => Float32.of_int i
  | Unsigned => Float32.of_intu i
  end.

Definition cast_single_int (si : signedness) (f: float32) : option int :=
  match si with
  | Signed => Float32.to_int f
  | Unsigned => Float32.to_intu f
  end.

Definition cast_int_long (si: signedness) (i: int) : int64 :=
  match si with
  | Signed => Int64.repr (Int.signed i)
  | Unsigned => Int64.repr (Int.unsigned i)
  end.

Definition cast_long_float (si: signedness) (i: int64) : float :=
  match si with
  | Signed => Float.of_long i
  | Unsigned => Float.of_longu i
  end.

Definition cast_long_single (si: signedness) (i: int64) : float32 :=
  match si with
  | Signed => Float32.of_long i
  | Unsigned => Float32.of_longu i
  end.

Definition cast_float_long (si : signedness) (f: float) : option int64 :=
  match si with
  | Signed => Float.to_long f
  | Unsigned => Float.to_longu f
  end.

Definition cast_single_long (si : signedness) (f: float32) : option int64 :=
  match si with
  | Signed => Float32.to_long f
  | Unsigned => Float32.to_longu f
  end.

Definition sem_cast (v: val) (t1 t2: type) : option val :=
  match classify_cast t1 t2 with
  | cast_case_neutral =>
      match v with
      | Vint _ | Vptr _ _ => Some v
      | _ => None
      end
  | cast_case_i2i sz2 si2 =>
      match v with
      | Vint i => Some (Vint (cast_int_int sz2 si2 i))
      | _ => None
      end
  | cast_case_f2f =>
      match v with
      | Vfloat f => Some (Vfloat f)
      | _ => None
      end
  | cast_case_s2s =>
      match v with
      | Vsingle f => Some (Vsingle f)
      | _ => None
      end
  | cast_case_s2f =>
      match v with
      | Vsingle f => Some (Vfloat (Float.of_single f))
      | _ => None
      end
  | cast_case_f2s =>
      match v with
      | Vfloat f => Some (Vsingle (Float.to_single f))
      | _ => None
      end
  | cast_case_i2f si1 =>
      match v with
      | Vint i => Some (Vfloat (cast_int_float si1 i))
      | _ => None
      end
  | cast_case_i2s si1 =>
      match v with
      | Vint i => Some (Vsingle (cast_int_single si1 i))
      | _ => None
      end
  | cast_case_f2i sz2 si2 =>
      match v with
      | Vfloat f =>
          match cast_float_int si2 f with
          | Some i => Some (Vint (cast_int_int sz2 si2 i))
          | None => None
          end
      | _ => None
      end
  | cast_case_s2i sz2 si2 =>
      match v with
      | Vsingle f =>
          match cast_single_int si2 f with
          | Some i => Some (Vint (cast_int_int sz2 si2 i))
          | None => None
          end
      | _ => None
      end
  | cast_case_f2bool =>
      match v with
      | Vfloat f =>
          Some(Vint(if Float.cmp Ceq f Float.zero then Int.zero else Int.one))
      | _ => None
      end
  | cast_case_s2bool =>
      match v with
      | Vsingle f =>
          Some(Vint(if Float32.cmp Ceq f Float32.zero then Int.zero else Int.one))
      | _ => None
      end
  | cast_case_p2bool =>
      match v with
      | Vint i => Some (Vint (cast_int_int IBool Signed i))
      | Vptr _ _ => Some (Vint Int.one)
      | _ => None
      end
  | cast_case_l2l =>
      match v with
      | Vlong n => Some (Vlong n)
      | _ => None
      end
  | cast_case_i2l si =>
      match v with
      | Vint n => Some(Vlong (cast_int_long si n))
      | _ => None
      end
  | cast_case_l2i sz si =>
      match v with
      | Vlong n => Some(Vint (cast_int_int sz si (Int.repr (Int64.unsigned n))))
      | _ => None
      end
  | cast_case_l2bool =>
      match v with
      | Vlong n =>
          Some(Vint(if Int64.eq n Int64.zero then Int.zero else Int.one))
      | _ => None
      end
  | cast_case_l2f si1 =>
      match v with
      | Vlong i => Some (Vfloat (cast_long_float si1 i))
      | _ => None
      end
  | cast_case_l2s si1 =>
      match v with
      | Vlong i => Some (Vsingle (cast_long_single si1 i))
      | _ => None
      end
  | cast_case_f2l si2 =>
      match v with
      | Vfloat f =>
          match cast_float_long si2 f with
          | Some i => Some (Vlong i)
          | None => None
          end
      | _ => None
      end
  | cast_case_s2l si2 =>
      match v with
      | Vsingle f =>
          match cast_single_long si2 f with
          | Some i => Some (Vlong i)
          | None => None
          end
      | _ => None
      end
  | cast_case_struct id1 fld1 id2 fld2 =>
      match v with
      | Vptr b ofs =>
          if ident_eq id1 id2 && fieldlist_eq fld1 fld2 then Some v else None
      | _ => None
      end
  | cast_case_union id1 fld1 id2 fld2 =>
      match v with
      | Vptr b ofs =>
          if ident_eq id1 id2 && fieldlist_eq fld1 fld2 then Some v else None
      | _ => None
      end
  | cast_case_void =>
      Some v
  | cast_case_default =>
      None
  end.

(** The following describes types that can be interpreted as a boolean:
  integers, floats, pointers.  It is used for the semantics of 
  the [!] and [?] operators, as well as the [if], [while], 
  and [for] statements. *)

Inductive classify_bool_cases : Type :=
  | bool_case_i                           (**r integer *)
  | bool_case_f                           (**r double float *)
  | bool_case_s                           (**r single float *)
  | bool_case_p                           (**r pointer *)
  | bool_case_l                           (**r long *)
  | bool_default.

Definition classify_bool (ty: type) : classify_bool_cases :=
  match typeconv ty with
  | Tint _ _ _ => bool_case_i
  | Tpointer _ _ | Tcomp_ptr _ _ => bool_case_p
  | Tfloat F64 _ => bool_case_f
  | Tfloat F32 _ => bool_case_s
  | Tlong _ _ => bool_case_l
  | _ => bool_default
  end.

(** Interpretation of values as truth values.
  Non-zero integers, non-zero floats and non-null pointers are
  considered as true.  The integer zero (which also represents
  the null pointer) and the float 0.0 are false. *)

Definition bool_val (v: val) (t: type) : option bool :=
  match classify_bool t with
  | bool_case_i =>
      match v with
      | Vint n => Some (negb (Int.eq n Int.zero))
      | _ => None
      end
  | bool_case_f =>
      match v with
      | Vfloat f => Some (negb (Float.cmp Ceq f Float.zero))
      | _ => None
      end
  | bool_case_s =>
      match v with
      | Vsingle f => Some (negb (Float32.cmp Ceq f Float32.zero))
      | _ => None
      end
  | bool_case_p =>
      match v with
      | Vint n => Some (negb (Int.eq n Int.zero))
      | Vptr b ofs => Some true
      | _ => None
      end
  | bool_case_l =>
      match v with
      | Vlong n => Some (negb (Int64.eq n Int64.zero))
      | _ => None
      end
  | bool_default => None
  end.


(** ** Unary operators *)

(** *** Boolean negation *)

Definition sem_notbool (v: val) (ty: type) : option val :=
  match classify_bool ty with
  | bool_case_i =>
      match v with
      | Vint n => Some (Val.of_bool (Int.eq n Int.zero))
      | _ => None
      end
  | bool_case_f =>
      match v with
      | Vfloat f => Some (Val.of_bool (Float.cmp Ceq f Float.zero))
      | _ => None
      end
  | bool_case_s =>
      match v with
      | Vsingle f => Some (Val.of_bool (Float32.cmp Ceq f Float32.zero))
      | _ => None
      end
  | bool_case_p =>
      match v with
      | Vint n => Some (Val.of_bool (Int.eq n Int.zero))
      | Vptr _ _ => Some Vfalse
      | _ => None
      end
  | bool_case_l =>
      match v with
      | Vlong n => Some (Val.of_bool (Int64.eq n Int64.zero))
      | _ => None
      end
  | bool_default => None
  end.

(** *** Opposite and absolute value *)

Inductive classify_neg_cases : Type :=
  | neg_case_i(s: signedness)              (**r int *)
  | neg_case_f                             (**r double float *)
  | neg_case_s                             (**r single float *)
  | neg_case_l(s: signedness)              (**r long *)
  | neg_default.

Definition classify_neg (ty: type) : classify_neg_cases :=
  match ty with
  | Tint I32 Unsigned _ => neg_case_i Unsigned
  | Tint _ _ _ => neg_case_i Signed
  | Tfloat F64 _ => neg_case_f
  | Tfloat F32 _ => neg_case_s
  | Tlong si _ => neg_case_l si
  | _ => neg_default
  end.

Definition sem_neg (v: val) (ty: type) : option val :=
  match classify_neg ty with
  | neg_case_i sg =>
      match v with
      | Vint n => Some (Vint (Int.neg n))
      | _ => None
      end
  | neg_case_f =>
      match v with
      | Vfloat f => Some (Vfloat (Float.neg f))
      | _ => None
      end
  | neg_case_s =>
      match v with
      | Vsingle f => Some (Vsingle (Float32.neg f))
      | _ => None
      end
  | neg_case_l sg =>
      match v with
      | Vlong n => Some (Vlong (Int64.neg n))
      | _ => None
      end
  | neg_default => None
  end.

Definition sem_absfloat (v: val) (ty: type) : option val :=
  match classify_neg ty with
  | neg_case_i sg =>
      match v with
      | Vint n => Some (Vfloat (Float.abs (cast_int_float sg n)))
      | _ => None
      end
  | neg_case_f =>
      match v with
      | Vfloat f => Some (Vfloat (Float.abs f))
      | _ => None
      end
  | neg_case_s =>
      match v with
      | Vsingle f => Some (Vfloat (Float.abs (Float.of_single f)))
      | _ => None
      end
  | neg_case_l sg =>
      match v with
      | Vlong n => Some (Vfloat (Float.abs (cast_long_float sg n)))
      | _ => None
      end
  | neg_default => None
  end.

(** *** Bitwise complement *)

Inductive classify_notint_cases : Type :=
  | notint_case_i(s: signedness)              (**r int *)
  | notint_case_l(s: signedness)              (**r long *)
  | notint_default.

Definition classify_notint (ty: type) : classify_notint_cases :=
  match ty with
  | Tint I32 Unsigned _ => notint_case_i Unsigned
  | Tint _ _ _ => notint_case_i Signed
  | Tlong si _ => notint_case_l si
  | _ => notint_default
  end.

Definition sem_notint (v: val) (ty: type): option val :=
  match classify_notint ty with
  | notint_case_i sg =>
      match v with
      | Vint n => Some (Vint (Int.not n))
      | _ => None
      end
  | notint_case_l sg =>
      match v with
      | Vlong n => Some (Vlong (Int64.not n))
      | _ => None
      end
  | notint_default => None
  end.

(** ** Binary operators *)

(** For binary operations, the "usual binary conversions" consist in
- determining the type at which the operation is to be performed
  (a form of least upper bound of the types of the two arguments);
- casting the two arguments to this common type;
- performing the operation at that type.
*)

Inductive binarith_cases: Type :=
  | bin_case_i (s: signedness)         (**r at int type *)
  | bin_case_l (s: signedness)         (**r at long int type *)
  | bin_case_f                         (**r at double float type *)
  | bin_case_s                         (**r at single float type *)
  | bin_default.                       (**r error *)

Definition classify_binarith (ty1: type) (ty2: type) : binarith_cases :=
  match ty1, ty2 with
  | Tint I32 Unsigned _, Tint _ _ _ => bin_case_i Unsigned
  | Tint _ _ _, Tint I32 Unsigned _ => bin_case_i Unsigned
  | Tint _ _ _, Tint _ _ _ => bin_case_i Signed
  | Tlong Signed _, Tlong Signed _ => bin_case_l Signed
  | Tlong _ _, Tlong _ _ => bin_case_l Unsigned
  | Tlong sg _, Tint _ _ _ => bin_case_l sg
  | Tint _ _ _, Tlong sg _ => bin_case_l sg
  | Tfloat F32 _, Tfloat F32 _ => bin_case_s
  | Tfloat _ _, Tfloat _ _ => bin_case_f
  | Tfloat F64 _, (Tint _ _ _ | Tlong _ _) => bin_case_f
  | (Tint _ _ _ | Tlong _ _), Tfloat F64 _ => bin_case_f
  | Tfloat F32 _, (Tint _ _ _ | Tlong _ _) => bin_case_s
  | (Tint _ _ _ | Tlong _ _), Tfloat F32 _ => bin_case_s
  | _, _ => bin_default
  end.

(** The static type of the result. Both arguments are converted to this type
    before the actual computation. *)

Definition binarith_type (c: binarith_cases) : type :=
  match c with
  | bin_case_i sg => Tint I32 sg noattr
  | bin_case_l sg => Tlong sg noattr
  | bin_case_f    => Tfloat F64 noattr
  | bin_case_s    => Tfloat F32 noattr
  | bin_default   => Tvoid
  end.

Definition sem_binarith
    (sem_int: signedness -> int -> int -> option val)
    (sem_long: signedness -> int64 -> int64 -> option val)
    (sem_float: float -> float -> option val)
    (sem_single: float32 -> float32 -> option val)
    (v1: val) (t1: type) (v2: val) (t2: type) : option val :=
  let c := classify_binarith t1 t2 in
  let t := binarith_type c in
  match sem_cast v1 t1 t with
  | None => None
  | Some v1' =>
  match sem_cast v2 t2 t with
  | None => None
  | Some v2' =>
  match c with
  | bin_case_i sg =>
      match v1', v2' with
      | Vint n1, Vint n2 => sem_int sg n1 n2
      | _,  _ => None
      end
  | bin_case_f =>
      match v1', v2' with
      | Vfloat n1, Vfloat n2 => sem_float n1 n2
      | _,  _ => None
      end
  | bin_case_s =>
      match v1', v2' with
      | Vsingle n1, Vsingle n2 => sem_single n1 n2
      | _,  _ => None
      end
  | bin_case_l sg =>
      match v1', v2' with
      | Vlong n1, Vlong n2 => sem_long sg n1 n2
      | _,  _ => None
      end
  | bin_default => None
  end end end.

(** *** Addition *)

Inductive classify_add_cases : Type :=
  | add_case_pi(ty: type)     (**r pointer, int *)
  | add_case_ip(ty: type)     (**r int, pointer *)
  | add_case_pl(ty: type)     (**r pointer, long *)
  | add_case_lp(ty: type)     (**r long, pointer *)
  | add_default.                       (**r numerical type, numerical type *)

Definition classify_add (ty1: type) (ty2: type) :=
  match typeconv ty1, typeconv ty2 with
  | Tpointer ty _, Tint _ _ _ => add_case_pi ty
  | Tint _ _ _, Tpointer ty _ => add_case_ip ty
  | Tpointer ty _, Tlong _ _ => add_case_pl ty
  | Tlong _ _, Tpointer ty _ => add_case_lp ty
  | _, _ => add_default
  end.

Definition sem_add (v1:val) (t1:type) (v2: val) (t2:type) : option val :=
  match classify_add t1 t2 with 
  | add_case_pi ty =>                 (**r pointer plus integer *)
      match v1,v2 with
      | Vptr b1 ofs1, Vint n2 => 
        Some (Vptr b1 (Int.add ofs1 (Int.mul (Int.repr (sizeof ty)) n2)))
      | _,  _ => None
      end   
  | add_case_ip ty =>                 (**r integer plus pointer *)
      match v1,v2 with
      | Vint n1, Vptr b2 ofs2 => 
        Some (Vptr b2 (Int.add ofs2 (Int.mul (Int.repr (sizeof ty)) n1)))
      | _,  _ => None
      end   
  | add_case_pl ty =>                 (**r pointer plus long *)
      match v1,v2 with
      | Vptr b1 ofs1, Vlong n2 => 
        let n2 := Int.repr (Int64.unsigned n2) in
        Some (Vptr b1 (Int.add ofs1 (Int.mul (Int.repr (sizeof ty)) n2)))
      | _,  _ => None
      end   
  | add_case_lp ty =>                 (**r long plus pointer *)
      match v1,v2 with
      | Vlong n1, Vptr b2 ofs2 => 
        let n1 := Int.repr (Int64.unsigned n1) in
        Some (Vptr b2 (Int.add ofs2 (Int.mul (Int.repr (sizeof ty)) n1)))
      | _,  _ => None
      end   
  | add_default =>
      sem_binarith
        (fun sg n1 n2 => Some(Vint(Int.add n1 n2)))
        (fun sg n1 n2 => Some(Vlong(Int64.add n1 n2)))
        (fun n1 n2 => Some(Vfloat(Float.add n1 n2)))
        (fun n1 n2 => Some(Vsingle(Float32.add n1 n2)))
        v1 t1 v2 t2
  end.

(** *** Subtraction *)

Inductive classify_sub_cases : Type :=
  | sub_case_pi(ty: type)               (**r pointer, int *)
  | sub_case_pp(ty: type)               (**r pointer, pointer *)
  | sub_case_pl(ty: type)               (**r pointer, long *)
  | sub_default.                        (**r numerical type, numerical type *)

Definition classify_sub (ty1: type) (ty2: type) :=
  match typeconv ty1, typeconv ty2 with
  | Tpointer ty _, Tint _ _ _ => sub_case_pi ty
  | Tpointer ty _ , Tpointer _ _ => sub_case_pp ty
  | Tpointer ty _, Tlong _ _ => sub_case_pl ty
  | _, _ => sub_default
  end.

Definition sem_sub (v1:val) (t1:type) (v2: val) (t2:type) : option val :=
  match classify_sub t1 t2 with
  | sub_case_pi ty =>            (**r pointer minus integer *)
      match v1,v2 with
      | Vptr b1 ofs1, Vint n2 => 
          Some (Vptr b1 (Int.sub ofs1 (Int.mul (Int.repr (sizeof ty)) n2)))
      | _,  _ => None
      end
  | sub_case_pl ty =>            (**r pointer minus long *)
      match v1,v2 with
      | Vptr b1 ofs1, Vlong n2 => 
          let n2 := Int.repr (Int64.unsigned n2) in
          Some (Vptr b1 (Int.sub ofs1 (Int.mul (Int.repr (sizeof ty)) n2)))
      | _,  _ => None
      end
  | sub_case_pp ty =>          (**r pointer minus pointer *)
      match v1,v2 with
      | Vptr b1 ofs1, Vptr b2 ofs2 =>
          if eq_block b1 b2 then
            if Int.eq (Int.repr (sizeof ty)) Int.zero then None
            else Some (Vint (Int.divu (Int.sub ofs1 ofs2) (Int.repr (sizeof ty))))
          else None
      | _, _ => None
      end
  | sub_default =>
      sem_binarith
        (fun sg n1 n2 => Some(Vint(Int.sub n1 n2)))
        (fun sg n1 n2 => Some(Vlong(Int64.sub n1 n2)))
        (fun n1 n2 => Some(Vfloat(Float.sub n1 n2)))
        (fun n1 n2 => Some(Vsingle(Float32.sub n1 n2)))
        v1 t1 v2 t2
  end.
 
(** *** Multiplication, division, modulus *)

Definition sem_mul (v1:val) (t1:type) (v2: val) (t2:type) : option val :=
  sem_binarith
    (fun sg n1 n2 => Some(Vint(Int.mul n1 n2)))
    (fun sg n1 n2 => Some(Vlong(Int64.mul n1 n2)))
    (fun n1 n2 => Some(Vfloat(Float.mul n1 n2)))
    (fun n1 n2 => Some(Vsingle(Float32.mul n1 n2)))
    v1 t1 v2 t2.

Definition sem_div (v1:val) (t1:type) (v2: val) (t2:type) : option val :=
  sem_binarith
    (fun sg n1 n2 =>
      match sg with
      | Signed =>
          if Int.eq n2 Int.zero
          || Int.eq n1 (Int.repr Int.min_signed) && Int.eq n2 Int.mone
          then None else Some(Vint(Int.divs n1 n2))
      | Unsigned =>
          if Int.eq n2 Int.zero
          then None else Some(Vint(Int.divu n1 n2))
      end)
    (fun sg n1 n2 =>
      match sg with
      | Signed =>
          if Int64.eq n2 Int64.zero
          || Int64.eq n1 (Int64.repr Int64.min_signed) && Int64.eq n2 Int64.mone
          then None else Some(Vlong(Int64.divs n1 n2))
      | Unsigned =>
          if Int64.eq n2 Int64.zero
          then None else Some(Vlong(Int64.divu n1 n2))
      end)
    (fun n1 n2 => Some(Vfloat(Float.div n1 n2)))
    (fun n1 n2 => Some(Vsingle(Float32.div n1 n2)))
    v1 t1 v2 t2.

Definition sem_mod (v1:val) (t1:type) (v2: val) (t2:type) : option val :=
  sem_binarith
    (fun sg n1 n2 =>
      match sg with
      | Signed =>
          if Int.eq n2 Int.zero
          || Int.eq n1 (Int.repr Int.min_signed) && Int.eq n2 Int.mone
          then None else Some(Vint(Int.mods n1 n2))
      | Unsigned =>
          if Int.eq n2 Int.zero
          then None else Some(Vint(Int.modu n1 n2))
      end)
    (fun sg n1 n2 =>
      match sg with
      | Signed =>
          if Int64.eq n2 Int64.zero
          || Int64.eq n1 (Int64.repr Int64.min_signed) && Int64.eq n2 Int64.mone
          then None else Some(Vlong(Int64.mods n1 n2))
      | Unsigned =>
          if Int64.eq n2 Int64.zero
          then None else Some(Vlong(Int64.modu n1 n2))
      end)
    (fun n1 n2 => None)
    (fun n1 n2 => None)
    v1 t1 v2 t2.

Definition sem_and (v1:val) (t1:type) (v2: val) (t2:type) : option val :=
  sem_binarith
    (fun sg n1 n2 => Some(Vint(Int.and n1 n2)))
    (fun sg n1 n2 => Some(Vlong(Int64.and n1 n2)))
    (fun n1 n2 => None)
    (fun n1 n2 => None)
    v1 t1 v2 t2.

Definition sem_or (v1:val) (t1:type) (v2: val) (t2:type) : option val :=
  sem_binarith
    (fun sg n1 n2 => Some(Vint(Int.or n1 n2)))
    (fun sg n1 n2 => Some(Vlong(Int64.or n1 n2)))
    (fun n1 n2 => None)
    (fun n1 n2 => None)
    v1 t1 v2 t2.

Definition sem_xor (v1:val) (t1:type) (v2: val) (t2:type) : option val :=
  sem_binarith
    (fun sg n1 n2 => Some(Vint(Int.xor n1 n2)))
    (fun sg n1 n2 => Some(Vlong(Int64.xor n1 n2)))
    (fun n1 n2 => None)
    (fun n1 n2 => None)
    v1 t1 v2 t2.

(** *** Shifts *)

(** Shifts do not perform the usual binary conversions.  Instead,
  each argument is converted independently, and the signedness
  of the result is always that of the first argument. *)

Inductive classify_shift_cases : Type:=
  | shift_case_ii(s: signedness)         (**r int , int *)
  | shift_case_ll(s: signedness)         (**r long, long *)
  | shift_case_il(s: signedness)         (**r int, long *)
  | shift_case_li(s: signedness)         (**r long, int *)
  | shift_default.

Definition classify_shift (ty1: type) (ty2: type) :=
  match typeconv ty1, typeconv ty2 with
  | Tint I32 Unsigned _, Tint _ _ _ => shift_case_ii Unsigned
  | Tint _ _ _, Tint _ _ _ => shift_case_ii Signed
  | Tint I32 Unsigned _, Tlong _ _ => shift_case_il Unsigned
  | Tint _ _ _, Tlong _ _ => shift_case_il Signed
  | Tlong s _, Tint _ _ _ => shift_case_li s
  | Tlong s _, Tlong _ _ => shift_case_ll s
  | _,_  => shift_default
  end.

Definition sem_shift
    (sem_int: signedness -> int -> int -> int)
    (sem_long: signedness -> int64 -> int64 -> int64)
    (v1: val) (t1: type) (v2: val) (t2: type) : option val :=
  match classify_shift t1 t2 with
  | shift_case_ii sg =>
      match v1, v2 with
      | Vint n1, Vint n2 => 
          if Int.ltu n2 Int.iwordsize
          then Some(Vint(sem_int sg n1 n2)) else None
      | _, _ => None
      end
  | shift_case_il sg =>
      match v1, v2 with
      | Vint n1, Vlong n2 => 
          if Int64.ltu n2 (Int64.repr 32)
          then Some(Vint(sem_int sg n1 (Int64.loword n2))) else None
      | _, _ => None
      end
  | shift_case_li sg =>
      match v1, v2 with
      | Vlong n1, Vint n2 => 
          if Int.ltu n2 Int64.iwordsize'
          then Some(Vlong(sem_long sg n1 (Int64.repr (Int.unsigned n2)))) else None
      | _, _ => None
      end
  | shift_case_ll sg =>
      match v1, v2 with
      | Vlong n1, Vlong n2 => 
          if Int64.ltu n2 Int64.iwordsize
          then Some(Vlong(sem_long sg n1 n2)) else None
      | _, _ => None
      end
  | shift_default => None
  end.

Definition sem_shl (v1:val) (t1:type) (v2: val) (t2:type) : option val :=
  sem_shift
    (fun sg n1 n2 => Int.shl n1 n2)
    (fun sg n1 n2 => Int64.shl n1 n2)
    v1 t1 v2 t2.

Definition sem_shr (v1:val) (t1:type) (v2: val) (t2:type) : option val :=
  sem_shift
    (fun sg n1 n2 => match sg with Signed => Int.shr n1 n2 | Unsigned => Int.shru n1 n2 end)
    (fun sg n1 n2 => match sg with Signed => Int64.shr n1 n2 | Unsigned => Int64.shru n1 n2 end)
    v1 t1 v2 t2.

(** *** Comparisons *)

Inductive classify_cmp_cases : Type :=
  | cmp_case_pp                       (**r pointer, pointer *)
  | cmp_case_pl                       (**r pointer, long *)
  | cmp_case_lp                       (**r long, pointer *)
  | cmp_default.                      (**r numerical, numerical *)

Definition classify_cmp (ty1: type) (ty2: type) :=
  match typeconv ty1, typeconv ty2 with 
  | Tpointer _ _ , Tpointer _ _ => cmp_case_pp
  | Tpointer _ _ , Tint _ _ _ => cmp_case_pp
  | Tint _ _ _, Tpointer _ _ => cmp_case_pp
  | Tpointer _ _ , Tlong _ _ => cmp_case_pl
  | Tlong _ _ , Tpointer _ _ => cmp_case_lp
  | _, _ => cmp_default
  end.

Definition sem_cmp (c:comparison)
                  (v1: val) (t1: type) (v2: val) (t2: type)
                  (m: mem): option val :=
  match classify_cmp t1 t2 with
  | cmp_case_pp =>
      option_map Val.of_bool (Val.cmpu_bool (Mem.valid_pointer m) c v1 v2)
  | cmp_case_pl =>
      match v2 with
      | Vlong n2 => 
          let n2 := Int.repr (Int64.unsigned n2) in
          option_map Val.of_bool (Val.cmpu_bool (Mem.valid_pointer m) c v1 (Vint n2))
      | _ => None
      end
  | cmp_case_lp =>
      match v1 with
      | Vlong n1 => 
          let n1 := Int.repr (Int64.unsigned n1) in
          option_map Val.of_bool (Val.cmpu_bool (Mem.valid_pointer m) c (Vint n1) v2)
      | _ => None
      end
  | cmp_default =>
      sem_binarith
        (fun sg n1 n2 =>
            Some(Val.of_bool(match sg with Signed => Int.cmp c n1 n2 | Unsigned => Int.cmpu c n1 n2 end)))
        (fun sg n1 n2 =>
            Some(Val.of_bool(match sg with Signed => Int64.cmp c n1 n2 | Unsigned => Int64.cmpu c n1 n2 end)))
        (fun n1 n2 =>
            Some(Val.of_bool(Float.cmp c n1 n2)))
        (fun n1 n2 =>
            Some(Val.of_bool(Float32.cmp c n1 n2)))
        v1 t1 v2 t2
  end.

(** ** Function applications *)

Inductive classify_fun_cases : Type :=
  | fun_case_f (targs: typelist) (tres: type) (cc: calling_convention) (**r (pointer to) function *)
  | fun_default.

Definition classify_fun (ty: type) :=
  match ty with 
  | Tfunction args res cc => fun_case_f args res cc
  | Tpointer (Tfunction args res cc) _ => fun_case_f args res cc
  | _ => fun_default
  end.

(** ** Argument of a [switch] statement *)

Inductive classify_switch_cases : Type :=
  | switch_case_i
  | switch_case_l
  | switch_default.

Definition classify_switch (ty: type) :=
  match ty with
  | Tint _ _ _ => switch_case_i
  | Tlong _ _ => switch_case_l
  | _ => switch_default
  end.

Definition sem_switch_arg (v: val) (ty: type): option Z :=
  match classify_switch ty with
  | switch_case_i =>
      match v with Vint n => Some(Int.unsigned n) | _ => None end
  | switch_case_l =>
      match v with Vlong n => Some(Int64.unsigned n) | _ => None end
  | switch_default =>
      None
  end.

(** * Combined semantics of unary and binary operators *)

Definition sem_unary_operation
            (op: unary_operation) (v: val) (ty: type): option val :=
  match op with
  | Onotbool => sem_notbool v ty
  | Onotint => sem_notint v ty
  | Oneg => sem_neg v ty
  | Oabsfloat => sem_absfloat v ty
  end.

Definition sem_binary_operation
    (op: binary_operation)
    (v1: val) (t1: type) (v2: val) (t2:type)
    (m: mem): option val :=
  match op with
  | Oadd => sem_add v1 t1 v2 t2
  | Osub => sem_sub v1 t1 v2 t2 
  | Omul => sem_mul v1 t1 v2 t2
  | Omod => sem_mod v1 t1 v2 t2
  | Odiv => sem_div v1 t1 v2 t2 
  | Oand => sem_and v1 t1 v2 t2
  | Oor  => sem_or v1 t1 v2 t2
  | Oxor  => sem_xor v1 t1 v2 t2
  | Oshl => sem_shl v1 t1 v2 t2
  | Oshr  => sem_shr v1 t1 v2 t2   
  | Oeq => sem_cmp Ceq v1 t1 v2 t2 m
  | One => sem_cmp Cne v1 t1 v2 t2 m
  | Olt => sem_cmp Clt v1 t1 v2 t2 m
  | Ogt => sem_cmp Cgt v1 t1 v2 t2 m
  | Ole => sem_cmp Cle v1 t1 v2 t2 m
  | Oge => sem_cmp Cge v1 t1 v2 t2 m
  end.

Definition sem_incrdecr (id: incr_or_decr) (v: val) (ty: type) :=
  match id with
  | Incr => sem_add v ty (Vint Int.one) type_int32s
  | Decr => sem_sub v ty (Vint Int.one) type_int32s
  end.

Definition incrdecr_type (ty: type) :=
  match typeconv ty with
  | Tpointer ty a => Tpointer ty a
  | Tint sz sg a => Tint sz sg noattr
  | Tlong sg a => Tlong sg noattr
  | Tfloat sz a => Tfloat sz noattr
  | _ => Tvoid
  end.

(** * Compatibility with extensions and injections *)

Section GENERIC_INJECTION.

Variable f: meminj.
Variables m m': mem.

Hypothesis valid_pointer_inj:
  forall b1 ofs b2 delta,
  f b1 = Some(b2, delta) ->
  Mem.valid_pointer m b1 (Int.unsigned ofs) = true ->
  Mem.valid_pointer m' b2 (Int.unsigned (Int.add ofs (Int.repr delta))) = true.

Hypothesis weak_valid_pointer_inj:
  forall b1 ofs b2 delta,
  f b1 = Some(b2, delta) ->
  Mem.weak_valid_pointer m b1 (Int.unsigned ofs) = true ->
  Mem.weak_valid_pointer m' b2 (Int.unsigned (Int.add ofs (Int.repr delta))) = true.

Hypothesis weak_valid_pointer_no_overflow:
  forall b1 ofs b2 delta,
  f b1 = Some(b2, delta) ->
  Mem.weak_valid_pointer m b1 (Int.unsigned ofs) = true ->
  0 <= Int.unsigned ofs + Int.unsigned (Int.repr delta) <= Int.max_unsigned.

Hypothesis valid_different_pointers_inj:
  forall b1 ofs1 b2 ofs2 b1' delta1 b2' delta2,
  b1 <> b2 ->
  Mem.valid_pointer m b1 (Int.unsigned ofs1) = true ->
  Mem.valid_pointer m b2 (Int.unsigned ofs2) = true ->
  f b1 = Some (b1', delta1) ->
  f b2 = Some (b2', delta2) ->
  b1' <> b2' \/
  Int.unsigned (Int.add ofs1 (Int.repr delta1)) <> Int.unsigned (Int.add ofs2 (Int.repr delta2)).

Remark val_inject_vtrue: forall f, val_inject f Vtrue Vtrue.
Proof. unfold Vtrue; auto. Qed.

Remark val_inject_vfalse: forall f, val_inject f Vfalse Vfalse.
Proof. unfold Vfalse; auto. Qed.

Remark val_inject_of_bool: forall f b, val_inject f (Val.of_bool b) (Val.of_bool b).
Proof. intros. unfold Val.of_bool. destruct b; [apply val_inject_vtrue|apply val_inject_vfalse]. 
Qed.

Hint Resolve val_inject_vtrue val_inject_vfalse val_inject_of_bool.

Ltac TrivialInject :=
  match goal with
  | |- exists v', Some ?v = Some v' /\ _ => exists v; split; auto
  | _ => idtac
  end.

Lemma sem_cast_inject:
  forall v1 ty1 ty v tv1,
  sem_cast v1 ty1 ty = Some v ->
  val_inject f v1 tv1 ->
  exists tv, sem_cast tv1 ty1 ty = Some tv /\ val_inject f v tv.
Proof.
  unfold sem_cast; intros; destruct (classify_cast ty1 ty);
  inv H0; inv H; TrivialInject.
- econstructor; eauto. 
- destruct (cast_float_int si2 f0); inv H1; TrivialInject.
- destruct (cast_single_int si2 f0); inv H1; TrivialInject.
- destruct (cast_float_long si2 f0); inv H1; TrivialInject.
- destruct (cast_single_long si2 f0); inv H1; TrivialInject.
- destruct (ident_eq id1 id2 && fieldlist_eq fld1 fld2); inv H2; TrivialInject. econstructor; eauto.
- destruct (ident_eq id1 id2 && fieldlist_eq fld1 fld2); inv H2; TrivialInject. econstructor; eauto.
- econstructor; eauto.
Qed.

Lemma sem_unary_operation_inject:
  forall op v1 ty v tv1,
  sem_unary_operation op v1 ty = Some v ->
  val_inject f v1 tv1 ->
  exists tv, sem_unary_operation op tv1 ty = Some tv /\ val_inject f v tv.
Proof.
  unfold sem_unary_operation; intros. destruct op.
  (* notbool *)
  unfold sem_notbool in *; destruct (classify_bool ty); inv H0; inv H; TrivialInject.
  (* notint *)
  unfold sem_notint in *; destruct (classify_notint ty); inv H0; inv H; TrivialInject.
  (* neg *)
  unfold sem_neg in *; destruct (classify_neg ty); inv H0; inv H; TrivialInject.
  (* absfloat *)
  unfold sem_absfloat in *; destruct (classify_neg ty); inv H0; inv H; TrivialInject.
Qed.

Definition optval_self_injects (ov: option val) : Prop :=
  match ov with
  | Some (Vptr b ofs) => False
  | _ => True
  end.

Remark sem_binarith_inject:
  forall sem_int sem_long sem_float sem_single v1 t1 v2 t2 v v1' v2',
  sem_binarith sem_int sem_long sem_float sem_single v1 t1 v2 t2 = Some v ->
  val_inject f v1 v1' -> val_inject f v2 v2' ->
  (forall sg n1 n2, optval_self_injects (sem_int sg n1 n2)) ->
  (forall sg n1 n2, optval_self_injects (sem_long sg n1 n2)) ->
  (forall n1 n2, optval_self_injects (sem_float n1 n2)) ->
  (forall n1 n2, optval_self_injects (sem_single n1 n2)) ->
  exists v', sem_binarith sem_int sem_long sem_float sem_single v1' t1 v2' t2 = Some v' /\ val_inject f v v'.
Proof.
  intros. 
  assert (SELF: forall ov v, ov = Some v -> optval_self_injects ov -> val_inject f v v).
  {
    intros. subst ov; simpl in H7. destruct v0; contradiction || constructor.
  }
  unfold sem_binarith in *.
  set (c := classify_binarith t1 t2) in *.
  set (t := binarith_type c) in *.
  destruct (sem_cast v1 t1 t) as [w1|] eqn:C1; try discriminate.
  destruct (sem_cast v2 t2 t) as [w2|] eqn:C2; try discriminate.
  exploit (sem_cast_inject v1); eauto. intros (w1' & C1' & INJ1).
  exploit (sem_cast_inject v2); eauto. intros (w2' & C2' & INJ2).
  rewrite C1'; rewrite C2'.
  destruct c; inv INJ1; inv INJ2; discriminate || eauto.
Qed.

Remark sem_shift_inject:
  forall sem_int sem_long v1 t1 v2 t2 v v1' v2',
  sem_shift sem_int sem_long v1 t1 v2 t2 = Some v ->
  val_inject f v1 v1' -> val_inject f v2 v2' ->
  exists v', sem_shift sem_int sem_long v1' t1 v2' t2 = Some v' /\ val_inject f v v'.
Proof.
  intros. exists v.
  unfold sem_shift in *; destruct (classify_shift t1 t2); inv H0; inv H1; try discriminate.
  destruct (Int.ltu i0 Int.iwordsize); inv H; auto.
  destruct (Int64.ltu i0 Int64.iwordsize); inv H; auto.
  destruct (Int64.ltu i0 (Int64.repr 32)); inv H; auto.
  destruct (Int.ltu i0 Int64.iwordsize'); inv H; auto.
Qed.

Remark sem_cmp_inj:
  forall cmp v1 tv1 ty1 v2 tv2 ty2 v,
  sem_cmp cmp v1 ty1 v2 ty2 m = Some v ->
  val_inject f v1 tv1 ->
  val_inject f v2 tv2 ->
  exists tv, sem_cmp cmp tv1 ty1 tv2 ty2 m' = Some tv /\ val_inject f v tv.
Proof.
  intros.
  unfold sem_cmp in *; destruct (classify_cmp ty1 ty2).
- (* pointer - pointer *)
  destruct (Val.cmpu_bool (Mem.valid_pointer m) cmp v1 v2) as [b|] eqn:E; simpl in H; inv H.
  replace (Val.cmpu_bool (Mem.valid_pointer m') cmp tv1 tv2) with (Some b).
  simpl. TrivialInject. 
  symmetry. eapply val_cmpu_bool_inject; eauto. 
- (* pointer - long *)
  destruct v2; try discriminate. inv H1. 
  set (v2 := Vint (Int.repr (Int64.unsigned i))) in *.
  destruct (Val.cmpu_bool (Mem.valid_pointer m) cmp v1 v2) as [b|] eqn:E; simpl in H; inv H.
  replace (Val.cmpu_bool (Mem.valid_pointer m') cmp tv1 v2) with (Some b).
  simpl. TrivialInject. 
  symmetry. eapply val_cmpu_bool_inject with (v2 := v2); eauto. constructor. 
- (* long - pointer *)
  destruct v1; try discriminate. inv H0. 
  set (v1 := Vint (Int.repr (Int64.unsigned i))) in *.
  destruct (Val.cmpu_bool (Mem.valid_pointer m) cmp v1 v2) as [b|] eqn:E; simpl in H; inv H.
  replace (Val.cmpu_bool (Mem.valid_pointer m') cmp v1 tv2) with (Some b).
  simpl. TrivialInject. 
  symmetry. eapply val_cmpu_bool_inject with (v1 := v1); eauto. constructor. 
- (* numerical - numerical *)
  assert (SELF: forall b, optval_self_injects (Some (Val.of_bool b))).
  {
    destruct b; exact I.
  }
  eapply sem_binarith_inject; eauto.
Qed.

Lemma sem_binary_operation_inj:
  forall op v1 ty1 v2 ty2 v tv1 tv2,
  sem_binary_operation op v1 ty1 v2 ty2 m = Some v ->
  val_inject f v1 tv1 -> val_inject f v2 tv2 ->
  exists tv, sem_binary_operation op tv1 ty1 tv2 ty2 m' = Some tv /\ val_inject f v tv.
Proof.
  unfold sem_binary_operation; intros; destruct op.
- (* add *)
  unfold sem_add in *; destruct (classify_add ty1 ty2).
  + inv H0; inv H1; inv H. TrivialInject. 
    econstructor. eauto. repeat rewrite Int.add_assoc. decEq. apply Int.add_commut.
  + inv H0; inv H1; inv H. TrivialInject. 
    econstructor. eauto. repeat rewrite Int.add_assoc. decEq. apply Int.add_commut.
  + inv H0; inv H1; inv H. TrivialInject. 
    econstructor. eauto. repeat rewrite Int.add_assoc. decEq. apply Int.add_commut.
  + inv H0; inv H1; inv H. TrivialInject. 
    econstructor. eauto. repeat rewrite Int.add_assoc. decEq. apply Int.add_commut.
  + eapply sem_binarith_inject; eauto; intros; exact I.
- (* sub *)
  unfold sem_sub in *; destruct (classify_sub ty1 ty2).
  + inv H0; inv H1; inv H. TrivialInject.
    econstructor. eauto. rewrite Int.sub_add_l. auto.
  + inv H0; inv H1; inv H. TrivialInject.
    destruct (eq_block b1 b0); try discriminate. subst b1. 
    rewrite H0 in H2; inv H2. rewrite dec_eq_true. 
    destruct (Int.eq (Int.repr (sizeof ty)) Int.zero); inv H3.
    rewrite Int.sub_shifted. TrivialInject.
  + inv H0; inv H1; inv H. TrivialInject.
    econstructor. eauto. rewrite Int.sub_add_l. auto.
  + eapply sem_binarith_inject; eauto; intros; exact I.
- (* mul *)
  eapply sem_binarith_inject; eauto; intros; exact I.
- (* div *)
  eapply sem_binarith_inject; eauto; intros.
  destruct sg.
  destruct (Int.eq n2 Int.zero
            || Int.eq n1 (Int.repr Int.min_signed) && Int.eq n2 Int.mone); exact I.
  destruct (Int.eq n2 Int.zero); exact I.
  destruct sg.
  destruct (Int64.eq n2 Int64.zero
            || Int64.eq n1 (Int64.repr Int64.min_signed) && Int64.eq n2 Int64.mone); exact I.
  destruct (Int64.eq n2 Int64.zero); exact I.
  exact I.
  exact I.
- (* mod *)
  eapply sem_binarith_inject; eauto; intros.
  destruct sg.
  destruct (Int.eq n2 Int.zero
            || Int.eq n1 (Int.repr Int.min_signed) && Int.eq n2 Int.mone); exact I.
  destruct (Int.eq n2 Int.zero); exact I.
  destruct sg.
  destruct (Int64.eq n2 Int64.zero
            || Int64.eq n1 (Int64.repr Int64.min_signed) && Int64.eq n2 Int64.mone); exact I.
  destruct (Int64.eq n2 Int64.zero); exact I.
  exact I.
  exact I.
- (* and *)
  eapply sem_binarith_inject; eauto; intros; exact I.
- (* or *)
  eapply sem_binarith_inject; eauto; intros; exact I.
- (* xor *)
  eapply sem_binarith_inject; eauto; intros; exact I.
- (* shl *)
  eapply sem_shift_inject; eauto.
- (* shr *)
  eapply sem_shift_inject; eauto.
  (* comparisons *)
- eapply sem_cmp_inj; eauto.
- eapply sem_cmp_inj; eauto.
- eapply sem_cmp_inj; eauto.
- eapply sem_cmp_inj; eauto.
- eapply sem_cmp_inj; eauto.
- eapply sem_cmp_inj; eauto.
Qed.

Lemma bool_val_inject:
  forall v ty b tv,
  bool_val v ty = Some b ->
  val_inject f v tv ->
  bool_val tv ty = Some b.
Proof.
  unfold bool_val; intros. 
  destruct (classify_bool ty); inv H0; congruence.
Qed.

End GENERIC_INJECTION.

Lemma sem_binary_operation_inject:
  forall f m m' op v1 ty1 v2 ty2 v tv1 tv2,
  sem_binary_operation op v1 ty1 v2 ty2 m = Some v ->
  val_inject f v1 tv1 -> val_inject f v2 tv2 ->
  Mem.inject f m m' ->
  exists tv, sem_binary_operation op tv1 ty1 tv2 ty2 m' = Some tv /\ val_inject f v tv.
Proof.
  intros. eapply sem_binary_operation_inj; eauto. 
  intros; eapply Mem.valid_pointer_inject_val; eauto.
  intros; eapply Mem.weak_valid_pointer_inject_val; eauto.
  intros; eapply Mem.weak_valid_pointer_inject_no_overflow; eauto.
  intros; eapply Mem.different_pointers_inject; eauto.
Qed.

(** * Some properties of operator semantics *)

(** This section collects some common-sense properties about the type
  classification and semantic functions above.  These properties are
  not used in the CompCert semantics preservation proofs, but increase
  confidence in the specification and its relation with the ISO C99 standard. *)

(** Relation between Boolean value and casting to [_Bool] type. *)

Lemma cast_bool_bool_val:
  forall v t,
  sem_cast v t (Tint IBool Signed noattr) =
  match bool_val v t with None => None | Some b => Some(Val.of_bool b) end.
Proof.
  intros.
  assert (A: classify_bool t =
    match t with
    | Tint _ _ _ => bool_case_i
    | Tpointer _ _ | Tcomp_ptr _ _ | Tarray _ _ _ | Tfunction _ _ _ => bool_case_p
    | Tfloat F64 _ => bool_case_f
    | Tfloat F32 _ => bool_case_s
    | Tlong _ _ => bool_case_l
    | _ => bool_default
    end).
  {
    unfold classify_bool; destruct t; simpl; auto. destruct i; auto.
  }
  unfold bool_val. rewrite A. unfold sem_cast. destruct t; simpl; auto; destruct v; auto.
  destruct (Int.eq i0 Int.zero); auto.
  destruct (Int64.eq i Int64.zero); auto.
  destruct f; auto.
  destruct f; auto.
  destruct f; auto.
  destruct f; auto.
  destruct (Float.cmp Ceq f0 Float.zero); auto.
  destruct f; auto.
  destruct (Float32.cmp Ceq f0 Float32.zero); auto.
  destruct f; auto.
  destruct (Int.eq i Int.zero); auto. 
  destruct (Int.eq i Int.zero); auto. 
  destruct (Int.eq i Int.zero); auto. 
  destruct (Int.eq i0 Int.zero); auto. 
Qed.

(** Relation between Boolean value and Boolean negation. *)

Lemma notbool_bool_val:
  forall v t,
  sem_notbool v t =
  match bool_val v t with None => None | Some b => Some(Val.of_bool (negb b)) end.
Proof.
  intros. unfold sem_notbool, bool_val. 
  destruct (classify_bool t); auto; destruct v; auto; rewrite negb_involutive; auto.
Qed.

(** Relation with the arithmetic conversions of ISO C99, section 6.3.1 *)

Module ArithConv.

(** This is the ISO C algebra of arithmetic types, without qualifiers.
    [S] stands for "signed" and [U] for "unsigned".  *)

Inductive int_type : Type :=
  | _Bool
  | Char | SChar | UChar
  | Short | UShort
  | Int | UInt
  | Long | ULong
  | Longlong | ULonglong.

Inductive arith_type : Type :=
  | I (it: int_type)
  | Float
  | Double
  | Longdouble.

Definition eq_int_type: forall (x y: int_type), {x=y} + {x<>y}.
Proof. decide equality. Defined.

Definition is_unsigned (t: int_type) : bool :=
  match t with
  | _Bool => true
  | Char => false    (**r as in most of CompCert's target ABIs *)
  | SChar => false
  | UChar => true
  | Short => false
  | UShort => true
  | Int => false
  | UInt => true
  | Long => false
  | ULong => true
  | Longlong => false
  | ULonglong => true
  end.

Definition unsigned_type (t: int_type) : int_type :=
  match t with
  | Char => UChar
  | SChar => UChar
  | Short => UShort
  | Int => UInt
  | Long => ULong
  | Longlong => ULonglong
  | _ => t
  end.

Definition int_sizeof (t: int_type) : Z :=
  match t with
  | _Bool | Char | SChar | UChar => 1
  | Short | UShort => 2
  | Int | UInt | Long | ULong => 4
  | Longlong | ULonglong => 8
  end.

(** 6.3.1.1 para 1: integer conversion rank *)

Definition rank (t: int_type) : Z :=
  match t with
  | _Bool => 1
  | Char | SChar | UChar => 2
  | Short | UShort => 3
  | Int | UInt => 4
  | Long | ULong => 5
  | Longlong | ULonglong => 6
  end.

(** 6.3.1.1 para 2: integer promotions, a.k.a. usual unary conversions *)

Definition integer_promotion (t: int_type) : int_type :=
  if zlt (rank t) (rank Int) then Int else t.

(** 6.3.1.8: Usual arithmetic conversions, a.k.a. binary conversions.
  This function returns the type to which the two operands must be
  converted. *)

Definition usual_arithmetic_conversion (t1 t2: arith_type) : arith_type :=
  match t1, t2 with
  (* First, if the corresponding real type of either operand is long
     double, the other operand is converted, without change of type domain,
     to a type whose corresponding real type is long double. *)
  | Longdouble, _ | _, Longdouble => Longdouble
  (* Otherwise, if the corresponding real type of either operand is
     double, the other operand is converted, without change of type domain,
     to a type whose corresponding real type is double. *)
  | Double, _ | _, Double => Double
  (* Otherwise, if the corresponding real type of either operand is
     float, the other operand is converted, without change of type domain,
     to a type whose corresponding real type is float. *)
  | Float, _ | _, Float => Float
  (* Otherwise, the integer promotions are performed on both operands. *)
  | I i1, I i2 =>
    let j1 := integer_promotion i1 in
    let j2 := integer_promotion i2 in
    (* Then the following rules are applied to the promoted operands:
       If both operands have the same type, then no further conversion
       is needed. *)
    if eq_int_type j1 j2 then I j1 else
    match is_unsigned j1, is_unsigned j2 with
    (* Otherwise, if both operands have signed integer types or both
       have unsigned integer types, the operand with the type of lesser
       integer conversion rank is converted to the type of the operand with
       greater rank. *)
    | true, true | false, false =>
        if zlt (rank j1) (rank j2) then I j2 else I j1
    | true, false =>
    (* Otherwise, if the operand that has unsigned integer type has
       rank greater or equal to the rank of the type of the other operand,
       then the operand with signed integer type is converted to the type of
       the operand with unsigned integer type. *)
        if zle (rank j2) (rank j1) then I j1 else
    (* Otherwise, if the type of the operand with signed integer type
       can represent all of the values of the type of the operand with
       unsigned integer type, then the operand with unsigned integer type is
       converted to the type of the operand with signed integer type. *)
        if zlt (int_sizeof j1) (int_sizeof j2) then I j2 else
    (* Otherwise, both operands are converted to the unsigned integer type
       corresponding to the type of the operand with signed integer type. *)
        I (unsigned_type j2)
    | false, true =>
    (* Same logic as above, swapping the roles of j1 and j2 *)
        if zle (rank j1) (rank j2) then I j2 else
        if zlt (int_sizeof j2) (int_sizeof j1) then I j1 else
        I (unsigned_type j1)
    end
  end.

(** Mapping ISO arithmetic types to CompCert types *)

Definition proj_type (t: arith_type) : type :=
  match t with
  | I _Bool => Tint IBool Unsigned noattr
  | I Char => Tint I8 Unsigned noattr
  | I SChar => Tint I8 Signed noattr
  | I UChar => Tint I8 Unsigned noattr
  | I Short => Tint I16 Signed noattr
  | I UShort => Tint I16 Unsigned noattr
  | I Int => Tint I32 Signed noattr
  | I UInt => Tint I32 Unsigned noattr
  | I Long => Tint I32 Signed noattr
  | I ULong => Tint I32 Unsigned noattr
  | I Longlong => Tlong Signed noattr
  | I ULonglong => Tlong Unsigned noattr
  | Float => Tfloat F32 noattr
  | Double => Tfloat F64 noattr
  | Longdouble => Tfloat F64 noattr
  end.

(** Relation between [typeconv] and integer promotion. *)

Lemma typeconv_integer_promotion:
  forall i, typeconv (proj_type (I i)) = proj_type (I (integer_promotion i)).
Proof.
  destruct i; reflexivity.
Qed.

(** Relation between [classify_binarith] and arithmetic conversion. *)

Lemma classify_binarith_arithmetic_conversion:
  forall t1 t2,
  binarith_type (classify_binarith (proj_type t1) (proj_type t2)) =
  proj_type (usual_arithmetic_conversion t1 t2).
Proof.
  destruct t1; destruct t2; try reflexivity.
- destruct it; destruct it0; reflexivity.
- destruct it; reflexivity.
- destruct it; reflexivity.
- destruct it; reflexivity.
- destruct it; reflexivity.
- destruct it; reflexivity.
- destruct it; reflexivity.
Qed.

End ArithConv.