summaryrefslogtreecommitdiff
path: root/cfrontend/Cminorgenproof.v
blob: 9dfb57327877778db2ac77c25cefd3839780409f (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
(* *********************************************************************)
(*                                                                     *)
(*              The Compcert verified compiler                         *)
(*                                                                     *)
(*          Xavier Leroy, INRIA Paris-Rocquencourt                     *)
(*                                                                     *)
(*  Copyright Institut National de Recherche en Informatique et en     *)
(*  Automatique.  All rights reserved.  This file is distributed       *)
(*  under the terms of the INRIA Non-Commercial License Agreement.     *)
(*                                                                     *)
(* *********************************************************************)

(** Correctness proof for Cminor generation. *)

Require Import FSets.
Require Import Coqlib.
Require Import Errors.
Require Import Maps.
Require Import AST.
Require Import Integers.
Require Import Floats.
Require Import Values.
Require Import Mem.
Require Import Events.
Require Import Globalenvs.
Require Import Csharpminor.
Require Import Op.
Require Import Cminor.
Require Import Cminorgen.

Open Local Scope error_monad_scope.

Section TRANSLATION.

Variable prog: Csharpminor.program.
Variable tprog: program.
Hypothesis TRANSL: transl_program prog = OK tprog.
Let ge : Csharpminor.genv := Genv.globalenv prog.
Let tge: genv := Genv.globalenv tprog.
Let gce : compilenv := build_global_compilenv prog.

Lemma symbols_preserved:
  forall (s: ident), Genv.find_symbol tge s = Genv.find_symbol ge s.
Proof (Genv.find_symbol_transf_partial2 (transl_fundef gce) transl_globvar _ TRANSL).

Lemma function_ptr_translated:
  forall (b: block) (f: Csharpminor.fundef),
  Genv.find_funct_ptr ge b = Some f ->
  exists tf,
  Genv.find_funct_ptr tge b = Some tf /\ transl_fundef gce f = OK tf.
Proof (Genv.find_funct_ptr_transf_partial2 (transl_fundef gce) transl_globvar TRANSL).


Lemma functions_translated:
  forall (v: val) (f: Csharpminor.fundef),
  Genv.find_funct ge v = Some f ->
  exists tf,
  Genv.find_funct tge v = Some tf /\ transl_fundef gce f = OK tf.
Proof (Genv.find_funct_transf_partial2 (transl_fundef gce) transl_globvar TRANSL).

Lemma sig_preserved:
  forall f tf,
  transl_fundef gce f = OK tf -> 
  Cminor.funsig tf = Csharpminor.funsig f.
Proof.
  intros until tf; destruct f; simpl.
  unfold transl_function. destruct (build_compilenv gce f).
  case (zle z Int.max_signed); simpl; try congruence.
  intros. monadInv H. monadInv EQ. reflexivity.
  intro. inv H. reflexivity.
Qed.

Definition global_compilenv_match (ce: compilenv) (gv: gvarenv) : Prop :=
  forall id,
  match ce!!id with
  | Var_global_scalar chunk => gv!id = Some (Vscalar chunk)
  | Var_global_array => True
  | _ => False
  end.

Lemma global_compilenv_charact:
  global_compilenv_match gce (global_var_env prog).
Proof.
  set (mkgve := fun gv (vars: list (ident * list init_data * var_kind)) =>
         List.fold_left
          (fun gve x => match x with (id, init, k) => PTree.set id k gve end)
          vars gv).
  assert (forall vars gv ce,
            global_compilenv_match ce gv ->
            global_compilenv_match (List.fold_left assign_global_variable vars ce)
                                   (mkgve gv vars)).
  induction vars; simpl; intros.
  auto.
  apply IHvars. intro id1. unfold assign_global_variable.
  destruct a as [[id2 init2] lv2]. destruct lv2; simpl; rewrite PMap.gsspec; rewrite PTree.gsspec.
  case (peq id1 id2); intro. auto. apply H. 
  case (peq id1 id2); intro. auto. apply H.

  change (global_var_env prog) with (mkgve (PTree.empty var_kind) prog.(prog_vars)).
  unfold gce, build_global_compilenv. apply H. 
  intro. rewrite PMap.gi. auto.
Qed.

(** * Correspondence between Csharpminor's and Cminor's environments and memory states *)

(** In Csharpminor, every variable is stored in a separate memory block.
  In the corresponding Cminor code, some of these variables reside in
  the local variable environment; others are sub-blocks of the stack data 
  block.  We capture these changes in memory via a memory injection [f]:
- [f b = None] means that the Csharpminor block [b] no longer exist
  in the execution of the generated Cminor code.  This corresponds to
  a Csharpminor local variable translated to a Cminor local variable.
- [f b = Some(b', ofs)] means that Csharpminor block [b] corresponds
  to a sub-block of Cminor block [b] at offset [ofs].

  A memory injection [f] defines a relation [val_inject f] between
  values and a relation [mem_inject f] between memory states.
  These relations, defined in file [Memory], will be used intensively
  in our proof of simulation between Csharpminor and Cminor executions.

  In the remainder of this section, we define relations between
  Csharpminor and Cminor environments and call stacks. *)

(** Matching for a Csharpminor variable [id].
- If this variable is mapped to a Cminor local variable, the
  corresponding Csharpminor memory block [b] must no longer exist in
  Cminor ([f b = None]).  Moreover, the content of block [b] must
  match the value of [id] found in the Cminor local environment [te].
- If this variable is mapped to a sub-block of the Cminor stack data
  at offset [ofs], the address of this variable in Csharpminor [Vptr b
  Int.zero] must match the address of the sub-block [Vptr sp (Int.repr
  ofs)].
*)

Inductive match_var (f: meminj) (id: ident)
                    (e: Csharpminor.env) (m: mem) (te: env) (sp: block) : 
                    var_info -> Prop :=
  | match_var_local:
      forall chunk b v v',
      PTree.get id e = Some (b, Vscalar chunk) ->
      Mem.load chunk m b 0 = Some v ->
      f b = None ->
      PTree.get id te = Some v' ->
      val_inject f v v' ->
      match_var f id e m te sp (Var_local chunk)
  | match_var_stack_scalar:
      forall chunk ofs b,
      PTree.get id e = Some (b, Vscalar chunk) ->
      val_inject f (Vptr b Int.zero) (Vptr sp (Int.repr ofs)) ->
      match_var f id e m te sp (Var_stack_scalar chunk ofs)
  | match_var_stack_array:
      forall ofs sz b,
      PTree.get id e = Some (b, Varray sz) ->
      val_inject f (Vptr b Int.zero) (Vptr sp (Int.repr ofs)) ->
      match_var f id e m te sp (Var_stack_array ofs)
  | match_var_global_scalar:
      forall chunk,
      PTree.get id e = None ->
      PTree.get id (global_var_env prog) = Some (Vscalar chunk) ->
      match_var f id e m te sp (Var_global_scalar chunk)
  | match_var_global_array:
      PTree.get id e = None ->
      match_var f id e m te sp (Var_global_array).

(** Matching between a Csharpminor environment [e] and a Cminor
  environment [te].  The [lo] and [hi] parameters delimit the range
  of addresses for the blocks referenced from [te]. *)

Record match_env (f: meminj) (cenv: compilenv)
                 (e: Csharpminor.env) (m: mem) (te: env) (sp: block)
                 (lo hi: Z) : Prop :=
  mk_match_env {

(** Each variable mentioned in the compilation environment must match
  as defined above. *)
    me_vars:
      forall id, match_var f id e m te sp (PMap.get id cenv);

(** The range [lo, hi] must not be empty. *)
    me_low_high:
      lo <= hi;

(** Every block appearing in the Csharpminor environment [e] must be
  in the range [lo, hi]. *)
    me_bounded:
      forall id b lv, PTree.get id e = Some(b, lv) -> lo <= b < hi;

(** Distinct Csharpminor local variables must be mapped to distinct blocks. *)
    me_inj:
      forall id1 b1 lv1 id2 b2 lv2,
      PTree.get id1 e = Some(b1, lv1) ->
      PTree.get id2 e = Some(b2, lv2) ->
      id1 <> id2 -> b1 <> b2;

(** All blocks mapped to sub-blocks of the Cminor stack data must be in
  the range [lo, hi]. *)
    me_inv:
      forall b delta,
      f b = Some(sp, delta) -> lo <= b < hi;

(** All Csharpminor blocks below [lo] (i.e. allocated before the blocks
  referenced from [e]) must map to blocks that are below [sp]
  (i.e. allocated before the stack data for the current Cminor function). *)
    me_incr:
      forall b tb delta,
      f b = Some(tb, delta) -> b < lo -> tb < sp
  }.

(** Global environments match if the memory injection [f] leaves unchanged
  the references to global symbols and functions. *)

Record match_globalenvs (f: meminj) : Prop := 
  mk_match_globalenvs {
    mg_symbols:
      forall id b,
      Genv.find_symbol ge id = Some b ->
      f b = Some (b, 0) /\ Genv.find_symbol tge id = Some b;
    mg_functions:
      forall b, b < 0 -> f b = Some(b, 0)
  }.

(** Call stacks represent abstractly the execution state of the current
  Csharpminor and Cminor functions, as well as the states of the
  calling functions.  A call stack is a list of frames, each frame
  collecting information on the current execution state of a Csharpminor
  function and its Cminor translation. *)

Record frame : Set :=
  mkframe {
    fr_cenv: compilenv;
    fr_e: Csharpminor.env;
    fr_te: env;
    fr_sp: block;
    fr_low: Z;
    fr_high: Z
  }.

Definition callstack : Set := list frame.

(** Matching of call stacks imply matching of environments for each of
  the frames, plus matching of the global environments, plus disjointness
  conditions over the memory blocks allocated for local variables
  and Cminor stack data. *)

Inductive match_callstack: meminj -> callstack -> Z -> Z -> mem -> Prop :=
  | mcs_nil:
      forall f bound tbound m,
      match_globalenvs f ->
      match_callstack f nil bound tbound m
  | mcs_cons:
      forall f cenv e te sp lo hi cs bound tbound m,
      hi <= bound ->
      sp < tbound ->
      match_env f cenv e m te sp lo hi ->
      match_callstack f cs lo sp m ->
      match_callstack f (mkframe cenv e te sp lo hi :: cs) bound tbound m.

(** The remainder of this section is devoted to showing preservation
  of the [match_callstack] invariant under various assignments and memory
  stores.  First: preservation by memory stores to ``mapped'' blocks
  (block that have a counterpart in the Cminor execution). *)

Lemma match_env_store_mapped:
  forall f cenv e m1 m2 te sp lo hi chunk b ofs v,
  f b <> None ->
  store chunk m1 b ofs v = Some m2 ->
  match_env f cenv e m1 te sp lo hi ->
  match_env f cenv e m2 te sp lo hi.
Proof.
  intros. inversion H1. constructor; auto.
  (* vars *)
  intros. generalize (me_vars0 id); intro. 
  inversion H2; econstructor; eauto.
  rewrite <- H5. eapply load_store_other; eauto. 
  left. congruence.
Qed.

Lemma match_callstack_mapped:
  forall f cs bound tbound m1,
  match_callstack f cs bound tbound m1 ->
  forall chunk b ofs v m2,
  f b <> None ->
  store chunk m1 b ofs v = Some m2 ->
  match_callstack f cs bound tbound m2.
Proof.
  induction 1; intros; econstructor; eauto.
  eapply match_env_store_mapped; eauto.
Qed.

(** Preservation by assignment to a Csharpminor variable that is 
  translated to a Cminor local variable.  The value being assigned
  must be normalized with respect to the memory chunk of the variable,
  in the following sense. *)

Lemma match_env_store_local:
  forall f cenv e m1 m2 te sp lo hi id b chunk v tv,
  e!id = Some(b, Vscalar chunk) ->
  val_inject f (Val.load_result chunk v) tv ->
  store chunk m1 b 0 v = Some m2 ->
  match_env f cenv e m1 te sp lo hi ->
  match_env f cenv e m2 (PTree.set id tv te) sp lo hi.
Proof.
  intros. inversion H2. constructor; auto.
  intros. generalize (me_vars0 id0); intro.
  inversion H3; subst.
  (* var_local *)
  case (peq id id0); intro.
    (* the stored variable *)
    subst id0. 
    change Csharpminor.var_kind with var_kind in H4. 
    rewrite H in H5. injection H5; clear H5; intros; subst b0 chunk0.
    econstructor. eauto. 
    eapply load_store_same; eauto. auto. 
    rewrite PTree.gss. reflexivity.
    auto.
    (* a different variable *)
    econstructor; eauto.
    rewrite <- H6. eapply load_store_other; eauto. 
    rewrite PTree.gso; auto.
  (* var_stack_scalar *)
  econstructor; eauto.
  (* var_stack_array *)
  econstructor; eauto.
  (* var_global_scalar *)
  econstructor; eauto.
  (* var_global_array *)
  econstructor; eauto.
Qed.

Lemma match_env_store_above:
  forall f cenv e m1 m2 te sp lo hi chunk b v,
  store chunk m1 b 0 v = Some m2 ->
  hi <= b ->
  match_env f cenv e m1 te sp lo hi ->
  match_env f cenv e m2 te sp lo hi.
Proof.
  intros. inversion H1; constructor; auto.
  intros. generalize (me_vars0 id); intro.
  inversion H2; econstructor; eauto.
  rewrite <- H5. eapply load_store_other; eauto.
  left. generalize (me_bounded0 _ _ _ H4). unfold block in *. omega.
Qed.

Lemma match_callstack_store_above:
  forall f cs bound tbound m1,
  match_callstack f cs bound tbound m1 ->
  forall chunk b v m2,
  store chunk m1 b 0 v = Some m2 ->
  bound <= b ->
  match_callstack f cs bound tbound m2.
Proof.
  induction 1; intros; econstructor; eauto.
  eapply match_env_store_above with (b := b); eauto. omega.
  eapply IHmatch_callstack; eauto. 
  inversion H1. omega.
Qed.

Lemma match_callstack_store_local:
  forall f cenv e te sp lo hi cs bound tbound m1 m2 id b chunk v tv,
  e!id = Some(b, Vscalar chunk) ->
  val_inject f (Val.load_result chunk v) tv ->
  store chunk m1 b 0 v = Some m2 ->
  match_callstack f (mkframe cenv e te sp lo hi :: cs) bound tbound m1 ->
  match_callstack f (mkframe cenv e (PTree.set id tv te) sp lo hi :: cs) bound tbound m2.
Proof.
  intros. inversion H2. constructor; auto.
  eapply match_env_store_local; eauto.
  eapply match_callstack_store_above; eauto.
  inversion H16. 
  generalize (me_bounded0 _ _ _ H). omega.
Qed.

(** A variant of [match_callstack_store_local] where the Cminor environment
  [te] already associates to [id] a value that matches the assigned value.
  In this case, [match_callstack] is preserved even if no assignment
  takes place on the Cminor side. *)

Lemma match_env_extensional:
  forall f cenv e m te1 sp lo hi,
  match_env f cenv e m te1 sp lo hi ->
  forall te2,
  (forall id, te2!id = te1!id) ->
  match_env f cenv e m te2 sp lo hi.
Proof.
  induction 1; intros; econstructor; eauto.
  intros. generalize (me_vars0 id); intro. 
  inversion H0; econstructor; eauto.
  rewrite H. auto.
Qed.

Lemma match_callstack_store_local_unchanged:
  forall f cenv e te sp lo hi cs bound tbound m1 m2 id b chunk v tv,
  e!id = Some(b, Vscalar chunk) ->
  val_inject f (Val.load_result chunk v) tv ->
  store chunk m1 b 0 v = Some m2 ->
  te!id = Some tv ->
  match_callstack f (mkframe cenv e te sp lo hi :: cs) bound tbound m1 ->
  match_callstack f (mkframe cenv e te sp lo hi :: cs) bound tbound m2.
Proof.
  intros. inversion H3. constructor; auto.
  apply match_env_extensional with (PTree.set id tv te).
  eapply match_env_store_local; eauto.
  intros. rewrite PTree.gsspec. 
  case (peq id0 id); intros. congruence. auto.
  eapply match_callstack_store_above; eauto.
  inversion H17. 
  generalize (me_bounded0 _ _ _ H). omega.
Qed.

(** Preservation of [match_callstack] by freeing all blocks allocated
  for local variables at function entry (on the Csharpminor side). *)

Lemma match_callstack_incr_bound:
  forall f cs bound tbound m,
  match_callstack f cs bound tbound m ->
  forall bound' tbound',
  bound <= bound' -> tbound <= tbound' ->
  match_callstack f cs bound' tbound' m.
Proof.
  intros. inversion H; constructor; auto. omega. omega.
Qed.

Lemma load_freelist:
  forall fbl chunk m b ofs,
  (forall b', In b' fbl -> b' <> b) -> 
  load chunk (free_list m fbl) b ofs = load chunk m b ofs.
Proof.
  induction fbl; simpl; intros.
  auto.
  rewrite load_free. apply IHfbl. 
  intros. apply H. tauto.
  apply sym_not_equal. apply H. tauto.
Qed.

Lemma match_env_freelist:
  forall f cenv e m te sp lo hi fbl,
  match_env f cenv e m te sp lo hi ->
  (forall b, In b fbl -> hi <= b) ->
  match_env f cenv e (free_list m fbl) te sp lo hi.
Proof.
  intros. inversion H. econstructor; eauto.
  intros. generalize (me_vars0 id); intro. 
  inversion H1; econstructor; eauto.
  rewrite <- H4. apply load_freelist. 
  intros. generalize (H0 _ H8); intro. 
  generalize (me_bounded0 _ _ _ H3). unfold block; omega.
Qed.  

Lemma match_callstack_freelist_rec:
  forall f cs bound tbound m,
  match_callstack f cs bound tbound m ->
  forall fbl,
  (forall b, In b fbl -> bound <= b) ->
  match_callstack f cs bound tbound (free_list m fbl).
Proof.
  induction 1; intros; constructor; auto.
  eapply match_env_freelist; eauto. 
  intros. generalize (H3 _ H4). omega.
  apply IHmatch_callstack. intros. 
  generalize (H3 _ H4). inversion H1. omega. 
Qed.

Lemma match_callstack_freelist:
  forall f cenv e te sp lo hi cs bound tbound m fbl,
  (forall b, In b fbl -> lo <= b) ->
  match_callstack f (mkframe cenv e te sp lo hi :: cs) bound tbound m ->
  match_callstack f cs bound tbound (free_list m fbl).
Proof.
  intros. inversion H0. inversion H14.
  apply match_callstack_incr_bound with lo sp.
  apply match_callstack_freelist_rec. auto. 
  assumption.
  omega. omega.
Qed.

(** Preservation of [match_callstack] when allocating a block for
  a local variable on the Csharpminor side.  *)

Lemma load_from_alloc_is_undef:
  forall m1 chunk m2 b,
  alloc m1 0 (size_chunk chunk) = (m2, b) ->
  load chunk m2 b 0 = Some Vundef.
Proof.
  intros.
  assert (exists v, load chunk m2 b 0 = Some v).
    apply valid_access_load.
    eapply valid_access_alloc_same; eauto; omega.
  destruct H0 as [v LOAD]. rewrite LOAD. decEq. 
  eapply load_alloc_same; eauto.
Qed.

Lemma match_env_alloc_same:
  forall m1 lv m2 b info f1 cenv1 e1 te sp lo id data tv,
  alloc m1 0 (sizeof lv) = (m2, b) ->
  match info with
    | Var_local chunk => data = None /\ lv = Vscalar chunk
    | Var_stack_scalar chunk pos => data = Some(sp, pos) /\ lv = Vscalar chunk
    | Var_stack_array pos => data = Some(sp, pos) /\ exists sz, lv = Varray sz
    | Var_global_scalar chunk => False
    | Var_global_array => False
  end ->
  match_env f1 cenv1 e1 m1 te sp lo m1.(nextblock) ->
  te!id = Some tv ->
  let f2 := extend_inject b data f1 in
  let cenv2 := PMap.set id info cenv1 in
  let e2 := PTree.set id (b, lv) e1 in
  inject_incr f1 f2 ->
  match_env f2 cenv2 e2 m2 te sp lo m2.(nextblock).
Proof.
  intros. 
  assert (b = m1.(nextblock)).
    injection H; intros. auto.
  assert (m2.(nextblock) = Zsucc m1.(nextblock)).
    injection H; intros. rewrite <- H6; reflexivity.
  inversion H1. constructor.
  (* me_vars *)
  intros id0. unfold cenv2. rewrite PMap.gsspec. case (peq id0 id); intros.
    (* same var *)
    subst id0. destruct info.
      (* info = Var_local chunk *)
      elim H0; intros.
      apply match_var_local with b Vundef tv.
      unfold e2; rewrite PTree.gss. congruence.
      eapply load_from_alloc_is_undef; eauto. 
      rewrite H7 in H. unfold sizeof in H. eauto.
      unfold f2, extend_inject, eq_block. rewrite zeq_true. auto.
      auto.
      constructor.
      (* info = Var_stack_scalar chunk ofs *)
      elim H0; intros.
      apply match_var_stack_scalar with b. 
      unfold e2; rewrite PTree.gss. congruence.
      eapply val_inject_ptr. 
      unfold f2, extend_inject, eq_block. rewrite zeq_true. eauto.
      rewrite Int.add_commut. rewrite Int.add_zero. auto.
      (* info = Var_stack_array z *)
      elim H0; intros A [sz B].
      apply match_var_stack_array with sz b.
      unfold e2; rewrite PTree.gss. congruence.
      eapply val_inject_ptr. 
      unfold f2, extend_inject, eq_block. rewrite zeq_true. eauto.
      rewrite Int.add_commut. rewrite Int.add_zero. auto.
      (* info = Var_global *)
      contradiction.
      contradiction.
    (* other vars *)
    generalize (me_vars0 id0); intros.
    inversion H6.
    eapply match_var_local with (v := v); eauto.
      unfold e2; rewrite PTree.gso; eauto.
      eapply load_alloc_other; eauto. 
      unfold f2, extend_inject, eq_block; rewrite zeq_false; auto.
      generalize (me_bounded0 _ _ _ H8). unfold block in *; omega.
    econstructor; eauto.
      unfold e2; rewrite PTree.gso; eauto.
    econstructor; eauto. 
      unfold e2; rewrite PTree.gso; eauto. 
    econstructor; eauto.
      unfold e2; rewrite PTree.gso; eauto.
    econstructor; eauto. 
      unfold e2; rewrite PTree.gso; eauto. 
  (* lo <= hi *)
  unfold block in *; omega.
  (* me_bounded *)
  intros until lv0. unfold e2; rewrite PTree.gsspec. 
  case (peq id0 id); intros.
  subst id0. inversion H6. subst b0. unfold block in *; omega. 
  generalize (me_bounded0 _ _ _ H6). rewrite H5. omega.
  (* me_inj *)
  intros until lv2. unfold e2; repeat rewrite PTree.gsspec.
  case (peq id1 id); case (peq id2 id); intros.
  congruence.
  inversion H6. subst b1. rewrite H4. 
    generalize (me_bounded0 _ _ _ H7). unfold block; omega.
  inversion H7. subst b2. rewrite H4.
    generalize (me_bounded0 _ _ _ H6). unfold block; omega.
  eauto.
  (* me_inv *)
  intros until delta. unfold f2, extend_inject, eq_block.
  case (zeq b0 b); intros.
  subst b0. rewrite H4; rewrite H5. omega. 
  generalize (me_inv0 _ _ H6). rewrite H5. omega.
  (* me_incr *)
  intros until delta. unfold f2, extend_inject, eq_block.
  case (zeq b0 b); intros.
  subst b0. unfold block in *; omegaContradiction.
  eauto.
Qed.

Lemma match_env_alloc_other:
  forall f1 cenv e m1 m2 te sp lo hi chunk b data,
  alloc m1 0 (sizeof chunk) = (m2, b) ->
  match data with None => True | Some (b', delta') => sp < b' end ->
  hi <= m1.(nextblock) ->
  match_env f1 cenv e m1 te sp lo hi ->
  let f2 := extend_inject b data f1 in
  inject_incr f1 f2 ->
  match_env f2 cenv e m2 te sp lo hi.
Proof.
  intros. 
  assert (b = m1.(nextblock)). injection H; auto.
  rewrite <- H4 in H1.
  inversion H2. constructor; auto.
  (* me_vars *)
  intros. generalize (me_vars0 id); intro. 
  inversion H5.
  eapply match_var_local with (v := v); eauto.
    eapply load_alloc_other; eauto.
    unfold f2, extend_inject, eq_block. rewrite zeq_false. auto.
    generalize (me_bounded0 _ _ _ H7). unfold block in *; omega.
  econstructor; eauto.
  econstructor; eauto.
  econstructor; eauto.
  econstructor; eauto.
  (* me_bounded *)
  intros until delta. unfold f2, extend_inject, eq_block.
  case (zeq b0 b); intros. rewrite H5 in H0. omegaContradiction.
  eauto.
  (* me_incr *)
  intros until delta. unfold f2, extend_inject, eq_block.
  case (zeq b0 b); intros. subst b0. omegaContradiction.
  eauto.
Qed.

Lemma match_callstack_alloc_other:
  forall f1 cs bound tbound m1,
  match_callstack f1 cs bound tbound m1 ->
  forall lv m2 b data,
  alloc m1 0 (sizeof lv) = (m2, b) ->
  match data with None => True | Some (b', delta') => tbound <= b' end ->
  bound <= m1.(nextblock) ->
  let f2 := extend_inject b data f1 in
  inject_incr f1 f2 ->
  match_callstack f2 cs bound tbound m2.
Proof.
  induction 1; intros.
  constructor. 
    inversion H. constructor. 
    intros. auto.
    intros. elim (mg_symbols0 _ _ H4); intros.
    split; auto. elim (H3 b0); intros; congruence.
    intros. generalize (mg_functions0 _ H4). elim (H3 b0); congruence.
  constructor. auto. auto. 
  unfold f2; eapply match_env_alloc_other; eauto. 
  destruct data; auto. destruct p. omega. omega. 
  unfold f2; eapply IHmatch_callstack; eauto. 
  destruct data; auto. destruct p. omega. 
  inversion H1; omega.
Qed.

Lemma match_callstack_alloc_left:
  forall m1 lv m2 b info f1 cenv1 e1 te sp lo id data cs tv tbound,
  alloc m1 0 (sizeof lv) = (m2, b) ->
  match info with
    | Var_local chunk => data = None /\ lv = Vscalar chunk
    | Var_stack_scalar chunk pos => data = Some(sp, pos) /\ lv = Vscalar chunk
    | Var_stack_array pos => data = Some(sp, pos) /\ exists sz, lv = Varray sz
    | Var_global_scalar chunk => False
    | Var_global_array => False
  end ->
  match_callstack f1 (mkframe cenv1 e1 te sp lo m1.(nextblock) :: cs) m1.(nextblock) tbound m1 ->
  te!id = Some tv ->
  let f2 := extend_inject b data f1 in
  let cenv2 := PMap.set id info cenv1 in
  let e2 := PTree.set id (b, lv) e1 in
  inject_incr f1 f2 ->
  match_callstack f2 (mkframe cenv2 e2 te sp lo m2.(nextblock) :: cs) m2.(nextblock) tbound m2.
Proof.
  intros. inversion H1. constructor. omega. auto.
  unfold f2, cenv2, e2. eapply match_env_alloc_same; eauto.
  unfold f2; eapply match_callstack_alloc_other; eauto. 
  destruct info.
  elim H0; intros. rewrite H19. auto.
  elim H0; intros. rewrite H19. omega.
  elim H0; intros. rewrite H19. omega.
  contradiction.
  contradiction.
  inversion H17; omega. 
Qed.

Lemma match_callstack_alloc_right:
  forall f cs bound tm1 m tm2 lo hi b,
  alloc tm1 lo hi = (tm2, b) ->
  match_callstack f cs bound tm1.(nextblock) m ->
  match_callstack f cs bound tm2.(nextblock) m.
Proof.
  intros. eapply match_callstack_incr_bound; eauto. omega.
  injection H; intros. rewrite <- H2; simpl. omega.
Qed.

Lemma match_env_alloc:
  forall m1 l h m2 b tm1 tm2 tb f1 ce e te sp lo hi,
  alloc m1 l h = (m2, b) ->
  alloc tm1 l h = (tm2, tb) ->
  match_env f1 ce e m1 te sp lo hi ->
  hi <= m1.(nextblock) ->
  sp < tm1.(nextblock) ->
  let f2 := extend_inject b (Some(tb, 0)) f1 in
  inject_incr f1 f2 ->
  match_env f2 ce e m2 te sp lo hi.
Proof.
  intros. 
  assert (BEQ: b = m1.(nextblock)). injection H; auto.
  assert (TBEQ: tb = tm1.(nextblock)). injection H0; auto.
  inversion H1. constructor; auto.
  (* me_vars *)
  intros. generalize (me_vars0 id); intro. inversion H5.
    (* var_local *)
    eapply match_var_local with (v := v); eauto.
    eapply load_alloc_other; eauto. 
    generalize (me_bounded0 _ _ _ H7). intro. 
    unfold f2, extend_inject. case (zeq b0 b); intro. 
    subst b0. rewrite BEQ in H12. omegaContradiction. 
    auto.
    (* var_stack_scalar *)
    econstructor; eauto.
    (* var_stack_array *)
    econstructor; eauto.
    (* var_global_scalar *)
    econstructor; eauto.
    (* var_global_array *)
    econstructor; eauto.
  (* me_bounded *)
  intros until delta. unfold f2, extend_inject. case (zeq b0 b); intro.
  intro. injection H5; clear H5; intros. 
  rewrite H6 in TBEQ. rewrite TBEQ in H3. omegaContradiction.
  eauto.
  (* me_inj *)
  intros until delta. unfold f2, extend_inject. case (zeq b0 b); intros.
  injection H5; clear H5; intros; subst b0 tb0 delta.
  rewrite BEQ in H6. omegaContradiction. 
  eauto.
Qed.

Lemma match_callstack_alloc_rec:
  forall f1 cs bound tbound m1,
  match_callstack f1 cs bound tbound m1 ->
  forall l h m2 b tm1 tm2 tb,
  alloc m1 l h = (m2, b) ->
  alloc tm1 l h = (tm2, tb) ->
  bound <= m1.(nextblock) ->
  tbound <= tm1.(nextblock) ->
  let f2 := extend_inject b (Some(tb, 0)) f1 in
  inject_incr f1 f2 ->
  match_callstack f2 cs bound tbound m2.
Proof.
  induction 1; intros.
  constructor. 
    inversion H. constructor.
    intros. elim (mg_symbols0 _ _ H5); intros.
    split; auto. elim (H4 b0); intros; congruence.
    intros. generalize (mg_functions0 _ H5). elim (H4 b0); congruence.
  constructor. auto. auto. 
  unfold f2. eapply match_env_alloc; eauto. omega. omega. 
  unfold f2; eapply IHmatch_callstack; eauto.
  inversion H1; omega.
  omega.
Qed.

Lemma match_callstack_alloc:
  forall f1 cs m1 tm1 l h m2 b tm2 tb,
  match_callstack f1 cs m1.(nextblock) tm1.(nextblock) m1 ->
  alloc m1 l h = (m2, b) ->
  alloc tm1 l h = (tm2, tb) ->
  let f2 := extend_inject b (Some(tb, 0)) f1 in
  inject_incr f1 f2 ->
  match_callstack f2 cs m2.(nextblock) tm2.(nextblock) m2.
Proof.
  intros. unfold f2 in *. 
  apply match_callstack_incr_bound with m1.(nextblock) tm1.(nextblock).
  eapply match_callstack_alloc_rec; eauto. omega. omega. 
  injection H0; intros; subst m2; simpl; omega. 
  injection H1; intros; subst tm2; simpl; omega. 
Qed.

(** [match_callstack] implies [match_globalenvs]. *)

Lemma match_callstack_match_globalenvs:
  forall f cs bound tbound m,
  match_callstack f cs bound tbound m ->
  match_globalenvs f.
Proof.
  induction 1; eauto.
Qed.

(** * Correctness of Cminor construction functions *)

Remark val_inject_val_of_bool:
  forall f b, val_inject f (Val.of_bool b) (Val.of_bool b).
Proof.
  intros; destruct b; unfold Val.of_bool, Vtrue, Vfalse; constructor.
Qed.

Remark val_inject_eval_compare_mismatch:
  forall f c v,  
  eval_compare_mismatch c = Some v ->
  val_inject f v v.
Proof.
  unfold eval_compare_mismatch; intros.
  destruct c; inv H; unfold Vfalse, Vtrue; constructor.
Qed.

Remark val_inject_eval_compare_null:
  forall f i c v,  
  (if Int.eq i Int.zero then eval_compare_mismatch c else None) = Some v ->
  val_inject f v v.
Proof.
  intros. destruct (Int.eq i Int.zero). 
  eapply val_inject_eval_compare_mismatch; eauto. 
  discriminate.
Qed.

Hint Resolve eval_Econst eval_Eunop eval_Ebinop eval_Eload: evalexpr.

Ltac TrivialOp :=
  match goal with
  | [ |- exists y, _ /\ val_inject _ (Vint ?x) _ ] =>
      exists (Vint x); split;
      [eauto with evalexpr | constructor]
  | [ |- exists y, _ /\ val_inject _ (Vfloat ?x) _ ] =>
      exists (Vfloat x); split;
      [eauto with evalexpr | constructor]
  | [ |- exists y, _ /\ val_inject _ (Val.of_bool ?x) _ ] =>
      exists (Val.of_bool x); split;
      [eauto with evalexpr | apply val_inject_val_of_bool]
  | [ |- exists y, Some ?x = Some y /\ val_inject _ _ _ ] =>
      exists x; split; [auto | econstructor; eauto]
  | _ => idtac
  end.

(** Correctness of [transl_constant]. *)

Lemma transl_constant_correct:
  forall f sp cst v,
  Csharpminor.eval_constant cst = Some v ->
  exists tv,
     eval_constant tge sp (transl_constant cst) = Some tv
  /\ val_inject f v tv.
Proof.
  destruct cst; simpl; intros; inv H; TrivialOp.
Qed.

(** Compatibility of [eval_unop] with respect to [val_inject]. *)

Lemma eval_unop_compat:
  forall f op v1 tv1 v,
  eval_unop op v1 = Some v ->
  val_inject f v1 tv1 ->
  exists tv,
     eval_unop op tv1 = Some tv
  /\ val_inject f v tv.
Proof.
  destruct op; simpl; intros.
  inv H; inv H0; simpl; TrivialOp.
  inv H; inv H0; simpl; TrivialOp.
  inv H; inv H0; simpl; TrivialOp.
  inv H; inv H0; simpl; TrivialOp.
  inv H0; inv H. TrivialOp. unfold Vfalse; TrivialOp.
  inv H0; inv H. TrivialOp. unfold Vfalse; TrivialOp.
  inv H0; inv H; TrivialOp.
  inv H0; inv H; TrivialOp.
  inv H0; inv H; TrivialOp.
  inv H0; inv H; TrivialOp.
  inv H0; inv H; TrivialOp.
  inv H0; inv H; TrivialOp.
  inv H0; inv H; TrivialOp.
  inv H0; inv H; TrivialOp.
Qed.

(** Compatibility of [eval_binop] with respect to [val_inject]. *)

Lemma eval_binop_compat:
  forall f op v1 tv1 v2 tv2 v m tm,
  eval_binop op v1 v2 m = Some v ->
  val_inject f v1 tv1 ->
  val_inject f v2 tv2 ->
  mem_inject f m tm ->
  exists tv,
     eval_binop op tv1 tv2 tm = Some tv
  /\ val_inject f v tv.
Proof.
  destruct op; simpl; intros.
  inv H0; try discriminate; inv H1; inv H; TrivialOp.
    repeat rewrite Int.add_assoc. decEq. apply Int.add_commut.
    repeat rewrite Int.add_assoc. decEq. apply Int.add_commut.
  inv H0; try discriminate; inv H1; inv H; TrivialOp.
    apply Int.sub_add_l.
    destruct (eq_block b1 b0); inv H4. 
    assert (b3 = b2) by congruence. subst b3. 
    unfold eq_block; rewrite zeq_true. TrivialOp.
    replace x0 with x by congruence. decEq. decEq. 
    apply Int.sub_shifted.
  inv H0; try discriminate; inv H1; inv H; TrivialOp.
  inv H0; try discriminate; inv H1; inv H; TrivialOp.
    destruct (Int.eq i0 Int.zero); inv H1. TrivialOp.
  inv H0; try discriminate; inv H1; inv H; TrivialOp.
    destruct (Int.eq i0 Int.zero); inv H1. TrivialOp.
  inv H0; try discriminate; inv H1; inv H; TrivialOp.
    destruct (Int.eq i0 Int.zero); inv H1. TrivialOp.
  inv H0; try discriminate; inv H1; inv H; TrivialOp.
    destruct (Int.eq i0 Int.zero); inv H1. TrivialOp.
  inv H0; try discriminate; inv H1; inv H; TrivialOp.
  inv H0; try discriminate; inv H1; inv H; TrivialOp.
  inv H0; try discriminate; inv H1; inv H; TrivialOp.
  inv H0; try discriminate; inv H1; inv H; TrivialOp.
    destruct (Int.ltu i0 (Int.repr 32)); inv H1. TrivialOp.
  inv H0; try discriminate; inv H1; inv H; TrivialOp.
    destruct (Int.ltu i0 (Int.repr 32)); inv H1. TrivialOp.
  inv H0; try discriminate; inv H1; inv H; TrivialOp.
    destruct (Int.ltu i0 (Int.repr 32)); inv H1. TrivialOp.
  inv H0; try discriminate; inv H1; inv H; TrivialOp.
  inv H0; try discriminate; inv H1; inv H; TrivialOp.
  inv H0; try discriminate; inv H1; inv H; TrivialOp.
  inv H0; try discriminate; inv H1; inv H; TrivialOp.
  inv H0; try discriminate; inv H1; inv H; TrivialOp.
    exists v; split; auto. eapply val_inject_eval_compare_null; eauto.
    exists v; split; auto. eapply val_inject_eval_compare_null; eauto.
  (* cmp ptr ptr *)
  caseEq (valid_pointer m b1 (Int.signed ofs1) && valid_pointer m b0 (Int.signed ofs0)); 
  intro EQ; rewrite EQ in H4; try discriminate.
  elim (andb_prop _ _ EQ); intros.
  exploit (Mem.valid_pointer_inject f m tm b0 ofs0); eauto. 
  intro VP; rewrite VP; clear VP.
  exploit (Mem.valid_pointer_inject f m tm b1 ofs1); eauto. 
  intro VP; rewrite VP; clear VP.
  destruct (eq_block b1 b0); inv H4.
  (* same blocks in source *)
  assert (b3 = b2) by congruence. subst b3.
  assert (x0 = x) by congruence. subst x0.
  exists (Val.of_bool (Int.cmp c ofs1 ofs0)); split.
  unfold eq_block; rewrite zeq_true; simpl.
  decEq. decEq. rewrite Int.translate_cmp. auto. 
  eapply valid_pointer_inject_no_overflow; eauto.
  eapply valid_pointer_inject_no_overflow; eauto.
  apply val_inject_val_of_bool.
  (* different blocks in source *)
  simpl. exists v; split; [idtac | eapply val_inject_eval_compare_mismatch; eauto].
  destruct (eq_block b2 b3); auto.
  exploit different_pointers_inject; eauto. intros [A|A]. 
  congruence.
  decEq. destruct c; simpl in H6; inv H6; unfold Int.cmp.
  predSpec Int.eq Int.eq_spec (Int.add ofs1 (Int.repr x)) (Int.add ofs0 (Int.repr x0)).
  congruence. auto.
  predSpec Int.eq Int.eq_spec (Int.add ofs1 (Int.repr x)) (Int.add ofs0 (Int.repr x0)).
  congruence. auto.
  (* cmpu *)
  inv H0; try discriminate; inv H1; inv H; TrivialOp.
  (* cmpf *)
  inv H0; try discriminate; inv H1; inv H; TrivialOp.
Qed.

(** Correctness of [make_cast].  Note that the resulting Cminor value is
  normalized according to the given memory chunk. *)

Lemma make_cast_correct:
  forall f sp te tm a v tv chunk,
  eval_expr tge sp te tm a tv ->
  val_inject f v tv ->
  exists tv',
     eval_expr tge sp te tm (make_cast chunk a) tv'
  /\ val_inject f (Val.load_result chunk v) tv'.
Proof.
  intros. destruct chunk; simpl make_cast.

  exists (Val.cast8signed tv). 
  split. eauto with evalexpr. inversion H0; simpl; constructor.

  exists (Val.cast8unsigned tv). 
  split. eauto with evalexpr. inversion H0; simpl; constructor.

  exists (Val.cast16signed tv). 
  split. eauto with evalexpr. inversion H0; simpl; constructor.

  exists (Val.cast16unsigned tv). 
  split. eauto with evalexpr. inversion H0; simpl; constructor.

  exists tv.
  split. auto. inversion H0; simpl; econstructor; eauto.

  exists (Val.singleoffloat tv). 
  split. eauto with evalexpr. inversion H0; simpl; constructor.

  exists tv.
  split. auto. inversion H0; simpl; econstructor; eauto.
Qed.

Lemma make_stackaddr_correct:
  forall sp te tm ofs,
  eval_expr tge (Vptr sp Int.zero) te tm
            (make_stackaddr ofs) (Vptr sp (Int.repr ofs)).
Proof.
  intros; unfold make_stackaddr.
  eapply eval_Econst. simpl. decEq. decEq.
  rewrite Int.add_commut. apply Int.add_zero.
Qed.

Lemma make_globaladdr_correct:
  forall sp te tm id b,
  Genv.find_symbol tge id = Some b ->
  eval_expr tge (Vptr sp Int.zero) te tm
            (make_globaladdr id) (Vptr b Int.zero).
Proof.
  intros; unfold make_globaladdr.
  eapply eval_Econst. simpl. rewrite H. auto.
Qed.

(** Correctness of [make_store]. *)

Lemma store_arg_content_inject:
  forall f sp te tm a v va chunk,
  eval_expr tge sp te tm a va ->
  val_inject f v va ->
  exists vb,
     eval_expr tge sp te tm (store_arg chunk a) vb
  /\ val_content_inject f chunk v vb.
Proof.
  intros. 
  assert (exists vb,
       eval_expr tge sp te tm a vb  
    /\ val_content_inject f chunk v vb).
  exists va; split. assumption. constructor. assumption.
  destruct a; simpl store_arg; trivial;
  destruct u; trivial;
  destruct chunk; trivial;
  inv H; simpl in H6; inv H6;
  econstructor; (split; [eauto|idtac]);
  destruct v1; simpl in H0; inv H0; try (constructor; constructor).
  apply val_content_inject_8. auto. apply Int.cast8_unsigned_idem.
  apply val_content_inject_8; auto. apply Int.cast8_unsigned_signed. 
  apply val_content_inject_16; auto. apply Int.cast16_unsigned_idem. 
  apply val_content_inject_16; auto. apply Int.cast16_unsigned_signed. 
  apply val_content_inject_32. apply Float.singleoffloat_idem. 
Qed.

Lemma make_store_correct:
  forall f sp te tm addr tvaddr rhs tvrhs chunk m vaddr vrhs m',
  eval_expr tge sp te tm addr tvaddr ->
  eval_expr tge sp te tm rhs tvrhs ->
  Mem.storev chunk m vaddr vrhs = Some m' ->
  mem_inject f m tm ->
  val_inject f vaddr tvaddr ->
  val_inject f vrhs tvrhs ->
  exists tm',
  exec_stmt tge sp te tm (make_store chunk addr rhs)
                E0 te tm' Out_normal
  /\ mem_inject f m' tm'
  /\ nextblock tm' = nextblock tm.
Proof.
  intros. unfold make_store.
  exploit store_arg_content_inject. eexact H0. eauto. 
  intros [tv [EVAL VCINJ]].
  exploit storev_mapped_inject_1; eauto.
  intros [tm' [STORE MEMINJ]].
  exists tm'.
  split. eapply exec_Sstore; eauto. 
  split. auto.
  unfold storev in STORE; destruct tvaddr; try discriminate.
  eapply nextblock_store; eauto.
Qed.

(** Correctness of the variable accessors [var_get], [var_addr],
  and [var_set]. *)

Lemma var_get_correct:
  forall cenv id a f e te sp lo hi m cs tm b chunk v,
  var_get cenv id = OK a ->
  match_callstack f (mkframe cenv e te sp lo hi :: cs) m.(nextblock) tm.(nextblock) m ->
  mem_inject f m tm ->
  eval_var_ref prog e id b chunk ->
  load chunk m b 0 = Some v ->
  exists tv,
    eval_expr tge (Vptr sp Int.zero) te tm a tv /\
    val_inject f v tv.
Proof.
  unfold var_get; intros.
  assert (match_var f id e m te sp cenv!!id).
    inversion H0. inversion H17. auto.
  inversion H4; subst; rewrite <- H5 in H; inversion H; subst.
  (* var_local *)
  inversion H2; [subst|congruence].
  exists v'; split.
  apply eval_Evar. auto. 
  replace v with v0. auto. congruence.
  (* var_stack_scalar *)
  inversion H2; [subst|congruence].
  assert (b0 = b). congruence. subst b0.
  assert (chunk0 = chunk). congruence. subst chunk0.
  exploit loadv_inject; eauto.
    unfold loadv. eexact H3. 
  intros [tv [LOAD INJ]].
  exists tv; split. 
  eapply eval_Eload; eauto. eapply make_stackaddr_correct; eauto.
  auto.
  (* var_global_scalar *)
  inversion H2; [congruence|subst]. 
  assert (match_globalenvs f). eapply match_callstack_match_globalenvs; eauto.
  inversion H11. destruct (mg_symbols0 _ _ H9) as [A B].
  assert (chunk0 = chunk). congruence. subst chunk0.
  assert (loadv chunk m (Vptr b Int.zero) = Some v). assumption.
  assert (val_inject f (Vptr b Int.zero) (Vptr b Int.zero)).
    econstructor; eauto. 
  generalize (loadv_inject _ _ _ _ _ _ _ H1 H12 H13).
  intros [tv [LOAD INJ]].
  exists tv; split. 
  eapply eval_Eload; eauto. eapply make_globaladdr_correct; eauto.
  auto.
Qed.

Lemma var_addr_correct:
  forall cenv id a f e te sp lo hi m cs tm b,
  match_callstack f (mkframe cenv e te sp lo hi :: cs) m.(nextblock) tm.(nextblock) m ->
  var_addr cenv id = OK a ->
  eval_var_addr prog e id b ->
  exists tv,
    eval_expr tge (Vptr sp Int.zero) te tm a tv /\
    val_inject f (Vptr b Int.zero) tv.
Proof.
  unfold var_addr; intros.
  assert (match_var f id e m te sp cenv!!id).
    inversion H. inversion H15. auto.
  inversion H2; subst; rewrite <- H3 in H0; inversion H0; subst; clear H0.
  (* var_stack_scalar *)
  inversion H1; [subst|congruence]. 
  exists (Vptr sp (Int.repr ofs)); split.
  eapply make_stackaddr_correct.
  replace b with b0. auto. congruence.
  (* var_stack_array *)
  inversion H1; [subst|congruence]. 
  exists (Vptr sp (Int.repr ofs)); split.
  eapply make_stackaddr_correct.
  replace b with b0. auto. congruence.
  (* var_global_scalar *)
  inversion H1; [congruence|subst].
  assert (match_globalenvs f). eapply match_callstack_match_globalenvs; eauto.
  inversion H7. destruct (mg_symbols0 _ _ H6) as [A B].
  exists (Vptr b Int.zero); split.
  eapply make_globaladdr_correct. eauto.
  econstructor; eauto. 
  (* var_global_array *)
  inversion H1; [congruence|subst].
  assert (match_globalenvs f). eapply match_callstack_match_globalenvs; eauto.
  inversion H6. destruct (mg_symbols0 _ _ H5) as [A B].
  exists (Vptr b Int.zero); split.
  eapply make_globaladdr_correct. eauto.
  econstructor; eauto. 
Qed.

Lemma var_set_correct:
  forall cenv id rhs a f e te sp lo hi m cs tm tv v m',
  var_set cenv id rhs = OK a ->
  match_callstack f (mkframe cenv e te sp lo hi :: cs) m.(nextblock) tm.(nextblock) m ->
  eval_expr tge (Vptr sp Int.zero) te tm rhs tv ->
  val_inject f v tv ->
  mem_inject f m tm ->
  exec_assign prog e m id v m' ->
  exists te', exists tm',
    exec_stmt tge (Vptr sp Int.zero) te tm a E0 te' tm' Out_normal /\
    mem_inject f m' tm' /\
    match_callstack f (mkframe cenv e te' sp lo hi :: cs) m'.(nextblock) tm'.(nextblock) m' /\
    (forall id', id' <> id -> te'!id' = te!id').
Proof.
  unfold var_set; intros.
  inv H4. 
  assert (NEXTBLOCK: nextblock m' = nextblock m).
    eapply nextblock_store; eauto.
  inversion H0; subst.
  assert (match_var f id e m te sp cenv!!id). inversion H19; auto.
  inv H4; rewrite <- H7 in H; inv H.
  (* var_local *)
  inversion H5; [subst|congruence]. 
  assert (b0 = b) by congruence. subst b0.
  assert (chunk0 = chunk) by congruence. subst chunk0.
  exploit make_cast_correct; eauto.  
  intros [tv' [EVAL INJ]].
  exists (PTree.set id tv' te); exists tm.
  split. eapply exec_Sassign. eauto. 
  split. eapply store_unmapped_inject; eauto. 
  split. rewrite NEXTBLOCK. eapply match_callstack_store_local; eauto.
  intros. apply PTree.gso; auto.
  (* var_stack_scalar *)
  inversion H5; [subst|congruence].
  assert (b0 = b) by congruence. subst b0.
  assert (chunk0 = chunk) by congruence. subst chunk0.
  assert (storev chunk m (Vptr b Int.zero) v = Some m'). assumption.
  exploit make_store_correct.
    eapply make_stackaddr_correct.
    eauto. eauto. eauto. eauto. eauto. 
  intros [tm' [EVAL [MEMINJ TNEXTBLOCK]]].
  exists te; exists tm'.
  split. auto. split. auto.  
  split. rewrite NEXTBLOCK; rewrite TNEXTBLOCK.
  eapply match_callstack_mapped; eauto. 
  inversion H9; congruence.
  auto.
  (* var_global_scalar *)
  inversion H5; [congruence|subst]. 
  assert (chunk0 = chunk) by congruence. subst chunk0.  
  assert (storev chunk m (Vptr b Int.zero) v = Some m'). assumption.
  assert (match_globalenvs f). eapply match_callstack_match_globalenvs; eauto.
  inversion H12. destruct (mg_symbols0 _ _ H4) as [A B].
  exploit make_store_correct.
    eapply make_globaladdr_correct; eauto.
    eauto. eauto. eauto. eauto. eauto. 
  intros [tm' [EVAL [MEMINJ TNEXTBLOCK]]].
  exists te; exists tm'.
  split. auto. split. auto. 
  split. rewrite NEXTBLOCK; rewrite TNEXTBLOCK.
  eapply match_callstack_mapped; eauto. congruence.
  auto.
Qed.

Lemma match_env_extensional':
  forall f cenv e m te1 sp lo hi,
  match_env f cenv e m te1 sp lo hi ->
  forall te2,
  (forall id, 
     match cenv!!id with
     | Var_local _ => te2!id = te1!id
     | _ => True
     end) ->
  match_env f cenv e m te2 sp lo hi.
Proof.
  induction 1; intros; econstructor; eauto.
  intros. generalize (me_vars0 id); intro. 
  inversion H0; econstructor; eauto.
  generalize (H id). rewrite <- H1. congruence. 
Qed.


Lemma match_callstack_extensional:
  forall f cenv e te1 te2 sp lo hi cs bound tbound m,
  (forall id, 
     match cenv!!id with
     | Var_local _ => te2!id = te1!id
     | _ => True
     end) ->
  match_callstack f (mkframe cenv e te1 sp lo hi :: cs) bound tbound m ->
  match_callstack f (mkframe cenv e te2 sp lo hi :: cs) bound tbound m.
Proof.
  intros. inv H0. constructor; auto. 
  apply match_env_extensional' with te1; auto.
Qed.

Lemma var_set_self_correct:
  forall cenv id a f e te sp lo hi m cs tm tv v m',
  var_set cenv id (Evar id) = OK a ->
  match_callstack f (mkframe cenv e te sp lo hi :: cs) m.(nextblock) tm.(nextblock) m ->
  val_inject f v tv ->
  mem_inject f m tm ->
  exec_assign prog e m id v m' ->
  exists te', exists tm',
    exec_stmt tge (Vptr sp Int.zero) (PTree.set id tv te) tm a E0 te' tm' Out_normal /\
    mem_inject f m' tm' /\
    match_callstack f (mkframe cenv e te' sp lo hi :: cs) m'.(nextblock) tm'.(nextblock) m'.
Proof.
  unfold var_set; intros.
  inv H3. 
  assert (NEXTBLOCK: nextblock m' = nextblock m).
    eapply nextblock_store; eauto.
  inversion H0; subst.
  assert (EVAR: eval_expr tge (Vptr sp Int.zero) (PTree.set id tv te) tm (Evar id) tv).
    constructor. apply PTree.gss.
  assert (match_var f id e m te sp cenv!!id). inversion H18; auto.
  inv H3; rewrite <- H6 in H; inv H.
  (* var_local *)
  inversion H4; [subst|congruence]. 
  assert (b0 = b) by congruence. subst b0.
  assert (chunk0 = chunk) by congruence. subst chunk0.
  exploit make_cast_correct; eauto. 
  intros [tv' [EVAL INJ]].
  exists (PTree.set id tv' (PTree.set id tv te)); exists tm.
  split. eapply exec_Sassign. eauto. 
  split. eapply store_unmapped_inject; eauto. 
  rewrite NEXTBLOCK.
  apply match_callstack_extensional with (PTree.set id tv' te).
  intros. destruct (cenv!!id0); auto. 
  repeat rewrite PTree.gsspec. destruct (peq id0 id); auto. 
  eapply match_callstack_store_local; eauto.
  (* var_stack_scalar *)
  inversion H4; [subst|congruence].
  assert (b0 = b) by congruence. subst b0.
  assert (chunk0 = chunk) by congruence. subst chunk0.
  assert (storev chunk m (Vptr b Int.zero) v = Some m'). assumption.
  exploit make_store_correct.
    eapply make_stackaddr_correct.
    eauto. eauto. eauto. eauto. eauto. 
  intros [tm' [EVAL [MEMINJ TNEXTBLOCK]]].
  exists (PTree.set id tv te); exists tm'.
  split. auto. split. auto.  
  rewrite NEXTBLOCK; rewrite TNEXTBLOCK.
  apply match_callstack_extensional with te.
  intros. caseEq (cenv!!id0); intros; auto.
  rewrite PTree.gsspec. destruct (peq id0 id). congruence. auto.
  eapply match_callstack_mapped; eauto. 
  inversion H8; congruence.
  (* var_global_scalar *)
  inversion H4; [congruence|subst]. 
  assert (chunk0 = chunk) by congruence. subst chunk0.  
  assert (storev chunk m (Vptr b Int.zero) v = Some m'). assumption.
  assert (match_globalenvs f). eapply match_callstack_match_globalenvs; eauto.
  inversion H11. destruct (mg_symbols0 _ _ H3) as [A B].
  exploit make_store_correct.
    eapply make_globaladdr_correct; eauto.
    eauto. eauto. eauto. eauto. eauto. 
  intros [tm' [EVAL [MEMINJ TNEXTBLOCK]]].
  exists (PTree.set id tv te); exists tm'.
  split. auto. split. auto. 
  rewrite NEXTBLOCK; rewrite TNEXTBLOCK.
  apply match_callstack_extensional with te.
  intros. caseEq (cenv!!id0); intros; auto.
  rewrite PTree.gsspec. destruct (peq id0 id). congruence. auto.
  eapply match_callstack_mapped; eauto. congruence.
Qed.

(** * Correctness of stack allocation of local variables *)

(** This section shows the correctness of the translation of Csharpminor
  local variables, either as Cminor local variables or as sub-blocks
  of the Cminor stack data.  This is the most difficult part of the proof. *)

Remark assign_variables_incr:
  forall atk vars cenv sz cenv' sz',
  assign_variables atk vars (cenv, sz) = (cenv', sz') -> sz <= sz'.
Proof.
  induction vars; intros until sz'; simpl.
  intro. replace sz' with sz. omega. congruence.
  destruct a. destruct v. case (Identset.mem i atk); intros.
  generalize (IHvars _ _ _ _ H). 
  generalize (size_chunk_pos m). intro.
  generalize (align_le sz (size_chunk m) H0). omega.
  eauto.
  intro. generalize (IHvars _ _ _ _ H). 
  assert (8 > 0). omega. generalize (align_le sz 8 H0).
  assert (0 <= Zmax 0 z). apply Zmax_bound_l. omega.
  omega.
Qed.

Lemma match_callstack_alloc_variables_rec:
  forall tm sp cenv' sz' te lo cs atk,
  valid_block tm sp ->
  low_bound tm sp = 0 ->
  high_bound tm sp = sz' ->
  sz' <= Int.max_signed ->
  forall e m vars e' m' lb,
  alloc_variables e m vars e' m' lb ->
  forall f cenv sz,
  assign_variables atk vars (cenv, sz) = (cenv', sz') ->
  match_callstack f (mkframe cenv e te sp lo m.(nextblock) :: cs)
                    m.(nextblock) tm.(nextblock) m ->
  mem_inject f m tm ->
  0 <= sz ->
  (forall b delta, f b = Some(sp, delta) -> high_bound m b + delta <= sz) ->
  (forall id lv, In (id, lv) vars -> te!id <> None) ->
  exists f',
     inject_incr f f'
  /\ mem_inject f' m' tm
  /\ match_callstack f' (mkframe cenv' e' te sp lo m'.(nextblock) :: cs)
                        m'.(nextblock) tm.(nextblock) m'.
Proof.
  intros until atk. intros VB LB HB NOOV.
  induction 1.
  (* base case *)
  intros. simpl in H. inversion H; subst cenv sz.
  exists f. split. apply inject_incr_refl. split. auto. auto.
  (* inductive case *)
  intros until sz.
  change (assign_variables atk ((id, lv) :: vars) (cenv, sz))
  with (assign_variables atk vars (assign_variable atk (id, lv) (cenv, sz))).
  caseEq (assign_variable atk (id, lv) (cenv, sz)).
  intros cenv1 sz1 ASV1 ASVS MATCH MINJ SZPOS BOUND DEFINED.
  assert (DEFINED1: forall id0 lv0, In (id0, lv0) vars -> te!id0 <> None).
    intros. eapply DEFINED. simpl. right. eauto.
  assert (exists tv, te!id = Some tv).
    assert (te!id <> None). eapply DEFINED. simpl; left; auto.
    destruct (te!id). exists v; auto. congruence.
  elim H1; intros tv TEID; clear H1.
  generalize ASV1. unfold assign_variable.
  caseEq lv.
  (* 1. lv = LVscalar chunk *)
  intros chunk LV. case (Identset.mem id atk).
  (* 1.1 info = Var_stack_scalar chunk ... *)
    set (ofs := align sz (size_chunk chunk)).
    intro EQ; injection EQ; intros; clear EQ.
    set (f1 := extend_inject b1 (Some (sp, ofs)) f).
    generalize (size_chunk_pos chunk); intro SIZEPOS.
    generalize (align_le sz (size_chunk chunk) SIZEPOS). fold ofs. intro SZOFS.
    assert (mem_inject f1 m1 tm /\ inject_incr f f1).
      assert (Int.min_signed < 0). compute; auto.
      generalize (assign_variables_incr _ _ _ _ _ _ ASVS). intro.
      unfold f1; eapply alloc_mapped_inject; eauto.
      omega. omega. omega. omega. unfold sizeof; rewrite LV. omega. 
      intros. left. generalize (BOUND _ _ H5). omega. 
    elim H3; intros MINJ1 INCR1; clear H3.
    exploit IHalloc_variables; eauto.
      unfold f1; rewrite <- H2; eapply match_callstack_alloc_left; eauto.
      rewrite <- H1. omega.
      intros until delta; unfold f1, extend_inject, eq_block.
      rewrite (high_bound_alloc _ _ _ _ _ H b).
      case (zeq b b1); intros. 
      inversion H3. unfold sizeof; rewrite LV. omega.
      generalize (BOUND _ _ H3). omega. 
    intros [f' [INCR2 [MINJ2 MATCH2]]].
    exists f'; intuition. eapply inject_incr_trans; eauto. 
  (* 1.2 info = Var_local chunk *)
    intro EQ; injection EQ; intros; clear EQ. subst sz1.
    exploit alloc_unmapped_inject; eauto.
    set (f1 := extend_inject b1 None f). intros [MINJ1 INCR1].
    exploit IHalloc_variables; eauto.
      unfold f1; rewrite <- H2; eapply match_callstack_alloc_left; eauto.
      intros until delta; unfold f1, extend_inject, eq_block.
      rewrite (high_bound_alloc _ _ _ _ _ H b).
      case (zeq b b1); intros. discriminate.
      eapply BOUND; eauto.
    intros [f' [INCR2 [MINJ2 MATCH2]]].
    exists f'; intuition. eapply inject_incr_trans; eauto. 
  (* 2. lv = LVarray dim, info = Var_stack_array *)
  intros dim LV EQ. injection EQ; clear EQ; intros.
  assert (0 <= Zmax 0 dim). apply Zmax1. 
  assert (8 > 0). omega.
  generalize (align_le sz 8 H4). intro.
  set (ofs := align sz 8) in *.
  set (f1 := extend_inject b1 (Some (sp, ofs)) f).
  assert (mem_inject f1 m1 tm /\ inject_incr f f1).
    assert (Int.min_signed < 0). compute; auto.
    generalize (assign_variables_incr _ _ _ _ _ _ ASVS). intro.
    unfold f1; eapply alloc_mapped_inject; eauto.
    omega. omega. omega. omega. unfold sizeof; rewrite LV. omega. 
    intros. left. generalize (BOUND _ _ H8). omega. 
  destruct H6 as [MINJ1 INCR1].
  exploit IHalloc_variables; eauto.  
    unfold f1; rewrite <- H2; eapply match_callstack_alloc_left; eauto.
    rewrite <- H1. omega.
    intros until delta; unfold f1, extend_inject, eq_block.
    rewrite (high_bound_alloc _ _ _ _ _ H b).
    case (zeq b b1); intros. 
    inversion H6. unfold sizeof; rewrite LV. omega.
    generalize (BOUND _ _ H6). omega. 
    intros [f' [INCR2 [MINJ2 MATCH2]]].
    exists f'; intuition. eapply inject_incr_trans; eauto. 
Qed.

Lemma set_params_defined:
  forall params args id,
  In id params -> (set_params args params)!id <> None.
Proof.
  induction params; simpl; intros.
  elim H.
  destruct args.
  rewrite PTree.gsspec. case (peq id a); intro.
  congruence. eapply IHparams. elim H; intro. congruence. auto.
  rewrite PTree.gsspec. case (peq id a); intro.
  congruence. eapply IHparams. elim H; intro. congruence. auto.
Qed.

Lemma set_locals_defined:
  forall e vars id,
  In id vars \/ e!id <> None -> (set_locals vars e)!id <> None.
Proof.
  induction vars; simpl; intros.
  tauto.
  rewrite PTree.gsspec. case (peq id a); intro.
  congruence.
  apply IHvars. assert (a <> id). congruence. tauto.
Qed.

Lemma set_locals_params_defined:
  forall args params vars id,
  In id (params ++ vars) ->
  (set_locals vars (set_params args params))!id <> None.
Proof.
  intros. apply set_locals_defined. 
  elim (in_app_or _ _ _ H); intro. 
  right. apply set_params_defined; auto.
  left; auto.
Qed.

(** Preservation of [match_callstack] by simultaneous allocation
  of Csharpminor local variables and of the Cminor stack data block. *)

Lemma match_callstack_alloc_variables:
  forall fn cenv sz m e m' lb tm tm' sp f cs targs,
  build_compilenv gce fn = (cenv, sz) ->
  sz <= Int.max_signed ->
  alloc_variables Csharpminor.empty_env m (fn_variables fn) e m' lb ->
  Mem.alloc tm 0 sz = (tm', sp) ->
  match_callstack f cs m.(nextblock) tm.(nextblock) m ->
  mem_inject f m tm ->
  let tparams := List.map (@fst ident memory_chunk) fn.(Csharpminor.fn_params) in
  let tvars := List.map (@fst ident var_kind) fn.(Csharpminor.fn_vars) in
  let te := set_locals tvars (set_params targs tparams) in
  exists f',
     inject_incr f f'
  /\ mem_inject f' m' tm'
  /\ match_callstack f' (mkframe cenv e te sp m.(nextblock) m'.(nextblock) :: cs)
                        m'.(nextblock) tm'.(nextblock) m'.
Proof.
  intros. 
  assert (SP: sp = nextblock tm). injection H2; auto.
  unfold build_compilenv in H. 
  eapply match_callstack_alloc_variables_rec with (sz' := sz); eauto with mem.
  eapply low_bound_alloc_same; eauto.
  eapply high_bound_alloc_same; eauto.
  (* match_callstack *)
  constructor. omega. change (valid_block tm' sp). eapply valid_new_block; eauto.
  constructor. 
    (* me_vars *)
    intros. generalize (global_compilenv_charact id).
    destruct (gce!!id); intro; try contradiction.
    constructor.
      unfold Csharpminor.empty_env. apply PTree.gempty. auto.
    constructor.
      unfold Csharpminor.empty_env. apply PTree.gempty. 
    (* me_low_high *)
    omega.
    (* me_bounded *)
    intros until lv. unfold Csharpminor.empty_env. rewrite PTree.gempty. congruence.
    (* me_inj *)
    intros until lv2. unfold Csharpminor.empty_env; rewrite PTree.gempty; congruence.
    (* me_inv *)
    intros. exploit mi_mappedblocks; eauto. intro A.
    elim (fresh_block_alloc _ _ _ _ _ H2 A).
    (* me_incr *)
    intros. exploit mi_mappedblocks; eauto. intro A.
    rewrite SP; auto.
  rewrite SP; auto.
  eapply alloc_right_inject; eauto.
  omega.
  intros. exploit mi_mappedblocks; eauto. unfold valid_block; intro.
  unfold block in SP; omegaContradiction.
  (* defined *)
  intros. unfold te. apply set_locals_params_defined. 
  unfold tparams, tvars. unfold fn_variables in H5.
  change Csharpminor.fn_params with Csharpminor.fn_params in H5. 
  change Csharpminor.fn_vars with Csharpminor.fn_vars in H5. 
  elim (in_app_or _ _ _ H5); intros.
  elim (list_in_map_inv _ _ _ H6). intros x [A B].
  apply in_or_app; left. inversion A. apply List.in_map. auto.
  apply in_or_app; right. 
  change id with (fst (id, lv)). apply List.in_map; auto.
Qed.

(** Characterization of the range of addresses for the blocks allocated
  to hold Csharpminor local variables. *)

Lemma alloc_variables_nextblock_incr:
  forall e1 m1 vars e2 m2 lb,
  alloc_variables e1 m1 vars e2 m2 lb ->
  nextblock m1 <= nextblock m2.
Proof.
  induction 1; intros.
  omega.
  inversion H; subst m1; simpl in IHalloc_variables. omega.
Qed.

Lemma alloc_variables_list_block:
  forall e1 m1 vars e2 m2 lb,
  alloc_variables e1 m1 vars e2 m2 lb ->
  forall b, m1.(nextblock) <= b < m2.(nextblock) <-> In b lb.
Proof.
  induction 1; intros.
  simpl; split; intro. omega. contradiction.
  elim (IHalloc_variables b); intros A B.
  assert (nextblock m = b1). injection H; intros. auto.
  assert (nextblock m1 = Zsucc (nextblock m)).
    injection H; intros; subst m1; reflexivity.
  simpl; split; intro. 
  assert (nextblock m = b \/ nextblock m1 <= b < nextblock m2).
    unfold block; rewrite H2; omega.
  elim H4; intro. left; congruence. right; auto.
  elim H3; intro. subst b b1. 
  generalize (alloc_variables_nextblock_incr _ _ _ _ _ _ H0).
  rewrite H2. omega.
  generalize (B H4). rewrite H2. omega.
Qed.

(** Correctness of the code generated by [store_parameters]
  to store in memory the values of parameters that are stack-allocated. *)

Inductive vars_vals_match:
    meminj -> list (ident * memory_chunk) -> list val -> env -> Prop :=
  | vars_vals_nil:
      forall f te,
      vars_vals_match f nil nil te
  | vars_vals_cons:
      forall f te id chunk vars v vals tv,
      te!id = Some tv ->
      val_inject f v tv ->
      vars_vals_match f vars vals te ->
      vars_vals_match f ((id, chunk) :: vars) (v :: vals) te.

Lemma vars_vals_match_extensional:
  forall f vars vals te,
  vars_vals_match f vars vals te ->
  forall te',
  (forall id lv, In (id, lv) vars -> te'!id = te!id) ->
  vars_vals_match f vars vals te'.
Proof.
  induction 1; intros.
  constructor.
  econstructor; eauto. rewrite <- H. eapply H2. left. reflexivity.
  apply IHvars_vals_match. intros. eapply H2; eauto. right. eauto.
Qed.

Lemma store_parameters_correct:
  forall e m1 params vl m2,
  bind_parameters e m1 params vl m2 ->
  forall s f te1 cenv sp lo hi cs tm1,
  vars_vals_match f params vl te1 ->
  list_norepet (List.map (@fst ident memory_chunk) params) ->
  mem_inject f m1 tm1 ->
  match_callstack f (mkframe cenv e te1 sp lo hi :: cs) m1.(nextblock) tm1.(nextblock) m1 ->
  store_parameters cenv params = OK s ->
  exists te2, exists tm2,
     exec_stmt tge (Vptr sp Int.zero)
                   te1 tm1 s
                E0 te2 tm2 Out_normal
  /\ mem_inject f m2 tm2
  /\ match_callstack f (mkframe cenv e te2 sp lo hi :: cs) m2.(nextblock) tm2.(nextblock) m2.
Proof.
  induction 1.
  (* base case *)
  intros; simpl. monadInv H3.
  exists te1; exists tm1. split. constructor. tauto.
  (* inductive case *)
  intros until tm1.  intros VVM NOREPET MINJ MATCH STOREP.
  monadInv STOREP.
  inversion VVM. subst f0 id0 chunk0 vars v vals te.
  inversion NOREPET. subst hd tl.
  exploit var_set_correct; eauto.
    constructor; auto.
    econstructor; eauto.
    econstructor; eauto.
  intros [te2 [tm2 [EXEC1 [MINJ1 [MATCH1 UNCHANGED1]]]]].
  assert (vars_vals_match f params vl te2).
    apply vars_vals_match_extensional with te1; auto.
    intros. apply UNCHANGED1. red; intro; subst id0.
    elim H4. change id with (fst (id, lv)). apply List.in_map. auto.
  exploit IHbind_parameters; eauto.
  intros [te3 [tm3 [EXEC2 [MINJ2 MATCH2]]]].
  exists te3; exists tm3.
  split. econstructor; eauto.
  auto.
Qed.

Lemma vars_vals_match_holds_1:
  forall f params args targs,
  list_norepet (List.map (@fst ident memory_chunk) params) ->
  List.length params = List.length args ->
  val_list_inject f args targs ->
  vars_vals_match f params args
    (set_params targs (List.map (@fst ident memory_chunk) params)).
Proof.
  induction params; destruct args; simpl; intros; try discriminate.
  constructor.
  inversion H1. subst v0 vl targs. 
  inversion H. subst hd tl.
  destruct a as [id chunk]. econstructor. 
  simpl. rewrite PTree.gss. reflexivity.
  auto. 
  apply vars_vals_match_extensional
  with (set_params vl' (map (@fst ident memory_chunk) params)).
  eapply IHparams; eauto. 
  intros. simpl. apply PTree.gso. red; intro; subst id0.
  elim H5. change (fst (id, chunk)) with (fst (id, lv)). 
  apply List.in_map; auto.
Qed.

Lemma vars_vals_match_holds:
  forall f params args targs,
  List.length params = List.length args ->
  val_list_inject f args targs ->
  forall vars,
  list_norepet (List.map (@fst ident var_kind) vars
             ++ List.map (@fst ident memory_chunk) params) ->
  vars_vals_match f params args
    (set_locals (List.map (@fst ident var_kind) vars)
      (set_params targs (List.map (@fst ident memory_chunk) params))).
Proof.
  induction vars; simpl; intros.
  eapply vars_vals_match_holds_1; eauto.
  inversion H1. subst hd tl.
  eapply vars_vals_match_extensional; eauto.
  intros. apply PTree.gso. red; intro; subst id; elim H4.
  apply in_or_app. right. change (fst a) with (fst (fst a, lv)).
  apply List.in_map; auto.
Qed.

Lemma bind_parameters_length:
  forall e m1 params args m2,
  bind_parameters e m1 params args m2 ->
  List.length params = List.length args.
Proof.
  induction 1; simpl; eauto.
Qed.

(** The final result in this section: the behaviour of function entry
  in the generated Cminor code (allocate stack data block and store
  parameters whose address is taken) simulates what happens at function
  entry in the original Csharpminor (allocate one block per local variable
  and initialize the blocks corresponding to function parameters). *)

Lemma function_entry_ok:
  forall fn m e m1 lb vargs m2 f cs tm cenv sz tm1 sp tvargs s,
  alloc_variables empty_env m (fn_variables fn) e m1 lb ->
  bind_parameters e m1 fn.(Csharpminor.fn_params) vargs m2 ->
  match_callstack f cs m.(nextblock) tm.(nextblock) m ->
  build_compilenv gce fn = (cenv, sz) ->
  sz <= Int.max_signed ->
  Mem.alloc tm 0 sz = (tm1, sp) ->
  let te :=
    set_locals (fn_vars_names fn) (set_params tvargs (fn_params_names fn)) in
  val_list_inject f vargs tvargs ->
  mem_inject f m tm ->
  list_norepet (fn_params_names fn ++ fn_vars_names fn) ->
  store_parameters cenv fn.(Csharpminor.fn_params) = OK s ->
  exists f2, exists te2, exists tm2,
     exec_stmt tge (Vptr sp Int.zero)
               te tm1 s
            E0 te2 tm2 Out_normal
  /\ mem_inject f2 m2 tm2
  /\ inject_incr f f2
  /\ match_callstack f2
       (mkframe cenv e te2 sp m.(nextblock) m1.(nextblock) :: cs)
       m2.(nextblock) tm2.(nextblock) m2
  /\ (forall b, m.(nextblock) <= b < m1.(nextblock) <-> In b lb).
Proof.
  intros. 
  exploit bind_parameters_length; eauto. intro LEN1.
  exploit match_callstack_alloc_variables; eauto.
  intros [f1 [INCR1 [MINJ1 MATCH1]]].
  exploit vars_vals_match_holds.
    eauto. apply val_list_inject_incr with f. eauto. eauto. 
    apply list_norepet_append_commut. 
    unfold fn_vars_names in H7. eexact H7.
  intro VVM.
  exploit store_parameters_correct.
    eauto. eauto. 
    unfold fn_params_names in H7. eapply list_norepet_append_left; eauto.
    eexact MINJ1. eauto. eauto. 
  intros [te2 [tm2 [EXEC [MINJ2 MATCH2]]]].
  exists f1; exists te2; exists tm2.
  split; auto. split; auto. split; auto. split; auto.
  intros; eapply alloc_variables_list_block; eauto. 
Qed.

(** * Semantic preservation for the translation *)

(** The proof of semantic preservation uses simulation diagrams of the
  following form:
<<
       e, m1, s ----------------- sp, te1, tm1, ts
          |                                |
         t|                                |t
          v                                v
       e, m2, out --------------- sp, te2, tm2, tout
>>
  where [ts] is the Cminor statement obtained by translating the
  Csharpminor statement [s].  The left vertical arrow is an execution
  of a Csharpminor statement.  The right vertical arrow is an execution
  of a Cminor statement.  The precondition (top vertical bar)
  includes a [mem_inject] relation between the memory states [m1] and [tm1],
  and a [match_callstack] relation for any callstack having
  [e], [te1], [sp] as top frame.  The postcondition (bottom vertical bar)
  is the existence of a memory injection [f2] that extends the injection
  [f1] we started with, preserves the [match_callstack] relation for
  the transformed callstack at the final state, and validates a
  [outcome_inject] relation between the outcomes [out] and [tout].
*)

(** ** Semantic preservation for expressions *)

Remark bool_of_val_inject:
  forall f v tv b,
  Val.bool_of_val v b -> val_inject f v tv -> Val.bool_of_val tv b.
Proof.
  intros. inv H0; inv H; constructor; auto.
Qed.

Lemma transl_expr_correct:
  forall f m tm cenv e te sp lo hi cs
    (MINJ: mem_inject f m tm)
    (MATCH: match_callstack f
             (mkframe cenv e te sp lo hi :: cs)
             m.(nextblock) tm.(nextblock) m),
  forall a v,
  Csharpminor.eval_expr prog e m a v ->
  forall ta
    (TR: transl_expr cenv a = OK ta),
  exists tv,
     eval_expr tge (Vptr sp Int.zero) te tm ta tv
  /\ val_inject f v tv.
Proof.
  induction 3; intros; simpl in TR; try (monadInv TR).
  (* Evar *)
  eapply var_get_correct; eauto.
  (* Eaddrof *)
  eapply var_addr_correct; eauto.
  (* Econst *)
  exploit transl_constant_correct; eauto. intros [tv [A B]].
  exists tv; split. constructor; eauto. eauto.
  (* Eunop *)
  exploit IHeval_expr; eauto. intros [tv1 [EVAL1 INJ1]].
  exploit eval_unop_compat; eauto. intros [tv [EVAL INJ]].
  exists tv; split. econstructor; eauto. auto.
  (* Ebinop *)
  exploit IHeval_expr1; eauto. intros [tv1 [EVAL1 INJ1]].
  exploit IHeval_expr2; eauto. intros [tv2 [EVAL2 INJ2]].
  exploit eval_binop_compat; eauto. intros [tv [EVAL INJ]].
  exists tv; split. econstructor; eauto. auto.
  (* Eload *)
  exploit IHeval_expr; eauto. intros [tv1 [EVAL1 INJ1]].
  exploit loadv_inject; eauto. intros [tv [LOAD INJ]].
  exists tv; split. econstructor; eauto. auto.
  (* Econdition *)
  exploit IHeval_expr1; eauto. intros [tv1 [EVAL1 INJ1]].
  assert (transl_expr cenv (if vb1 then b else c) =
          OK (if vb1 then x0 else x1)).
    destruct vb1; auto.
  exploit IHeval_expr2; eauto. intros [tv2 [EVAL2 INJ2]].
  exists tv2; split. eapply eval_Econdition; eauto.
  eapply bool_of_val_inject; eauto. auto.
Qed.

Lemma transl_exprlist_correct:
  forall f m tm cenv e te sp lo hi cs
    (MINJ: mem_inject f m tm)
    (MATCH: match_callstack f
             (mkframe cenv e te sp lo hi :: cs)
             m.(nextblock) tm.(nextblock) m),
  forall a v,
  Csharpminor.eval_exprlist prog e m a v ->
  forall ta
    (TR: transl_exprlist cenv a = OK ta),
  exists tv,
     eval_exprlist tge (Vptr sp Int.zero) te tm ta tv
  /\ val_list_inject f v tv.
Proof.
  induction 3; intros; monadInv TR.
  exists (@nil val); split. constructor. constructor.
  exploit transl_expr_correct; eauto. intros [tv1 [EVAL1 VINJ1]].
  exploit IHeval_exprlist; eauto. intros [tv2 [EVAL2 VINJ2]].
  exists (tv1 :: tv2); split. constructor; auto. constructor; auto.
Qed.

(** ** Semantic preservation for statements and functions *)

Definition eval_funcall_prop
    (m1: mem) (fn: Csharpminor.fundef) (args: list val) (t: trace) (m2: mem) (res: val) : Prop :=
  forall tfn f1 tm1 cs targs
  (TR: transl_fundef gce fn = OK tfn)
  (MINJ: mem_inject f1 m1 tm1)
  (MATCH: match_callstack f1 cs m1.(nextblock) tm1.(nextblock) m1)
  (ARGSINJ: val_list_inject f1 args targs),
  exists f2, exists tm2, exists tres,
     eval_funcall tge tm1 tfn targs t tm2 tres
  /\ val_inject f2 res tres
  /\ mem_inject f2 m2 tm2
  /\ inject_incr f1 f2
  /\ match_callstack f2 cs m2.(nextblock) tm2.(nextblock) m2.

Inductive outcome_inject (f: meminj) : Csharpminor.outcome -> outcome -> Prop :=
  | outcome_inject_normal:
      outcome_inject f Csharpminor.Out_normal Out_normal
  | outcome_inject_exit:
      forall n, outcome_inject f (Csharpminor.Out_exit n) (Out_exit n)
  | outcome_inject_return_none:
      outcome_inject f (Csharpminor.Out_return None) (Out_return None)
  | outcome_inject_return_some:
      forall v1 v2,
      val_inject f v1 v2 ->
      outcome_inject f (Csharpminor.Out_return (Some v1)) (Out_return (Some v2)).

Definition exec_stmt_prop
    (e: Csharpminor.env) (m1: mem) (s: Csharpminor.stmt) (t: trace) (m2: mem) (out: Csharpminor.outcome): Prop :=
  forall cenv ts f1 te1 tm1 sp lo hi cs
  (TR: transl_stmt cenv s = OK ts)
  (MINJ: mem_inject f1 m1 tm1)
  (MATCH: match_callstack f1
           (mkframe cenv e te1 sp lo hi :: cs)
           m1.(nextblock) tm1.(nextblock) m1),
  exists f2, exists te2, exists tm2, exists tout,
     exec_stmt tge (Vptr sp Int.zero) te1 tm1 ts t te2 tm2 tout
  /\ outcome_inject f2 out tout
  /\ mem_inject f2 m2 tm2
  /\ inject_incr f1 f2
  /\ match_callstack f2
        (mkframe cenv e te2 sp lo hi :: cs)
        m2.(nextblock) tm2.(nextblock) m2.

(* Check (Csharpminor.eval_funcall_ind2 prog eval_funcall_prop exec_stmt_prop). *)

(** There are as many cases in the inductive proof as there are evaluation
  rules in the Csharpminor semantics.  We treat each case as a separate
  lemma. *)

Lemma transl_funcall_internal_correct:
   forall (m : mem) (f : Csharpminor.function) (vargs : list val)
     (e : Csharpminor.env) (m1 : mem) (lb : list block) (m2: mem)
     (t: trace) (m3 : mem) (out : Csharpminor.outcome) (vres : val),
   list_norepet (fn_params_names f ++ fn_vars_names f) ->
   alloc_variables empty_env m (fn_variables f) e m1 lb ->
   bind_parameters e m1 (Csharpminor.fn_params f) vargs m2 ->
   Csharpminor.exec_stmt prog e m2 (Csharpminor.fn_body f) t m3 out ->
   exec_stmt_prop e m2 (Csharpminor.fn_body f) t m3 out ->
   Csharpminor.outcome_result_value out (sig_res (Csharpminor.fn_sig f)) vres ->
   eval_funcall_prop m (Internal f) vargs t (free_list m3 lb) vres.
Proof.
  intros; red. intros tfn f1 tm; intros.
  monadInv TR. generalize EQ.
  unfold transl_function.
  caseEq (build_compilenv gce f); intros cenv stacksize CENV.
  destruct (zle stacksize Int.max_signed); try congruence.
  intro TR. monadInv TR.
  caseEq (alloc tm 0 stacksize). intros tm1 sp ALLOC.
  exploit function_entry_ok; eauto. 
  intros [f2 [te2 [tm2 [STOREPARAM [MINJ2 [INCR12 [MATCH2 BLOCKS]]]]]]].
  red in H3; exploit H3; eauto. 
  intros [f3 [te3 [tm3 [tout [EXECBODY [OUTINJ [MINJ3 [INCR23 MATCH3]]]]]]]].
  assert (exists tvres, 
           outcome_result_value tout f.(Csharpminor.fn_sig).(sig_res) tvres /\
           val_inject f3 vres tvres).
    generalize H4. unfold Csharpminor.outcome_result_value, outcome_result_value.
    inversion OUTINJ. 
    destruct (sig_res (Csharpminor.fn_sig f)); intro. contradiction.
      exists Vundef; split. auto. subst vres; constructor.
    tauto.
    destruct (sig_res (Csharpminor.fn_sig f)); intro. contradiction.
      exists Vundef; split. auto. subst vres; constructor.
    destruct (sig_res (Csharpminor.fn_sig f)); intro. 
      exists v2; split. auto. subst vres; auto.
      contradiction.
  destruct H5 as [tvres [TOUT VINJRES]].
  assert (outcome_free_mem tout tm3 sp = Mem.free tm3 sp).
    inversion OUTINJ; auto.
  exists f3; exists (Mem.free tm3 sp); exists tvres.
  (* execution *)
  split. rewrite <- H5. econstructor; simpl; eauto.
  apply exec_Sseq_continue with E0 te2 tm2 t.
  exact STOREPARAM.
  eexact EXECBODY.
  traceEq.
  (* val_inject *)
  split. assumption.
  (* mem_inject *)
  split. apply free_inject; auto. 
  intros. elim (BLOCKS b1); intros B1 B2. apply B1. inversion MATCH3. inversion H20.
  eapply me_inv0. eauto. 
  (* inject_incr *)
  split. eapply inject_incr_trans; eauto.
  (* match_callstack *)
  assert (forall bl mm, nextblock (free_list mm bl) = nextblock mm).
    induction bl; intros. reflexivity. simpl. auto.
  unfold free; simpl nextblock. rewrite H6. 
  eapply match_callstack_freelist; eauto. 
  intros. elim (BLOCKS b); intros B1 B2. generalize (B2 H7). omega.
Qed.

Lemma transl_funcall_external_correct:
  forall (m : mem) (ef : external_function) (vargs : list val)
         (t : trace) (vres : val),
  event_match ef vargs t vres ->
  eval_funcall_prop m (External ef) vargs t m vres.
Proof.
  intros; red; intros. monadInv TR. 
  exploit event_match_inject; eauto. intros [A B].
  exists f1; exists tm1; exists vres; intuition.
  constructor; auto. 
Qed.

Lemma transl_stmt_Sskip_correct:
  forall (e : Csharpminor.env) (m : mem),
  exec_stmt_prop e m Csharpminor.Sskip E0 m Csharpminor.Out_normal.
Proof.
  intros; red; intros. monadInv TR. 
  exists f1; exists te1; exists tm1; exists Out_normal.
  intuition. constructor. constructor.
Qed.

Lemma transl_stmt_Sassign_correct:
  forall (e : Csharpminor.env) (m : mem) (id : ident)
         (a : Csharpminor.expr) (v : val) (m' : mem),
  Csharpminor.eval_expr prog e m a v ->
  exec_assign prog e m id v m' ->
  exec_stmt_prop e m (Csharpminor.Sassign id a) E0 m' Csharpminor.Out_normal.
Proof.
  intros; red; intros. monadInv TR.
  exploit transl_expr_correct; eauto. intros [tv1 [EVAL1 VINJ1]].
  exploit var_set_correct; eauto. 
  intros [te2 [tm2 [EVAL2 [MINJ2 MATCH2]]]].
  exists f1; exists te2; exists tm2; exists Out_normal.
  intuition. constructor.
Qed.

Lemma transl_stmt_Sstore_correct:
  forall (e : Csharpminor.env) (m : mem) (chunk : memory_chunk)
         (a b : Csharpminor.expr) (v1 v2 : val) (m' : mem),
  Csharpminor.eval_expr prog e m a v1 ->
  Csharpminor.eval_expr prog e m b v2 ->
  storev chunk m v1 v2 = Some m' ->
  exec_stmt_prop e m (Csharpminor.Sstore chunk a b) E0 m' Csharpminor.Out_normal.
Proof.
  intros; red; intros. monadInv TR.
  exploit transl_expr_correct.
    eauto. eauto. eexact H. eauto. 
  intros [tv1 [EVAL1 INJ1]].
  exploit transl_expr_correct.
    eauto. eauto. eexact H0. eauto. 
  intros [tv2 [EVAL2 INJ2]].
  exploit make_store_correct.
    eexact EVAL1. eexact EVAL2. eauto. eauto. eauto. eauto.
  intros [tm2 [EXEC [MINJ2 NEXTBLOCK]]].
  exists f1; exists te1; exists tm2; exists Out_normal.
  intuition. 
  constructor.
  unfold storev in H1; destruct v1; try discriminate.
  inv INJ1.
  rewrite NEXTBLOCK. replace (nextblock m') with (nextblock m).
  eapply match_callstack_mapped; eauto. congruence.
  symmetry. eapply nextblock_store; eauto. 
Qed.

Lemma transl_stmt_Scall_correct:
  forall (e : Csharpminor.env) (m : mem) (optid : option ident)
         (sig : signature) (a : Csharpminor.expr)
         (bl : list Csharpminor.expr) (vf : val) (vargs : list val)
         (f : Csharpminor.fundef) (t : trace) (m1 : mem) (vres : val)
         (m2 : mem),
  Csharpminor.eval_expr prog e m a vf ->
  Csharpminor.eval_exprlist prog e m bl vargs ->
  Genv.find_funct (Genv.globalenv prog) vf = Some f ->
  Csharpminor.funsig f = sig ->
  Csharpminor.eval_funcall prog m f vargs t m1 vres ->
  eval_funcall_prop m f vargs t m1 vres ->
  exec_opt_assign prog e m1 optid vres m2 ->
  exec_stmt_prop e m (Csharpminor.Scall optid sig a bl) t m2 Csharpminor.Out_normal.
Proof.
  intros;red;intros.
  assert (forall tv, val_inject f1 vf tv -> tv = vf).
    intros.
    elim (Genv.find_funct_inv H1). intros bf VF. rewrite VF in H1.
    rewrite Genv.find_funct_find_funct_ptr in H1. 
    generalize (Genv.find_funct_ptr_negative H1). intro.
    assert (match_globalenvs f1). eapply match_callstack_match_globalenvs; eauto.
    generalize (mg_functions _ H8 _ H7). intro.
    rewrite VF in H6. inv H6.  
    decEq. congruence. 
    replace x with 0. reflexivity. congruence.
  inv H5; monadInv TR.
  (* optid = None *)
  exploit transl_expr_correct; eauto. intros [tv1 [EVAL1 VINJ1]].
  exploit transl_exprlist_correct; eauto. intros [tv2 [EVAL2 VINJ2]].
  rewrite <- (H6 _ VINJ1) in H1. 
  elim (functions_translated _ _ H1). intros tf [FIND TRF].
  exploit H4; eauto.
  intros [f2 [tm2 [tres [EVAL3 [VINJ3 [MINJ3 [INCR3 MATCH3]]]]]]].
  exists f2; exists te1; exists tm2; exists Out_normal.
  intuition. eapply exec_Scall; eauto. 
  apply sig_preserved; auto.
  constructor.
  (* optid = Some id *)
  exploit transl_expr_correct; eauto. intros [tv1 [EVAL1 VINJ1]].
  exploit transl_exprlist_correct; eauto. intros [tv2 [EVAL2 VINJ2]].
  rewrite <- (H6 _ VINJ1) in H1. 
  elim (functions_translated _ _ H1). intros tf [FIND TRF].
  exploit H4; eauto.
  intros [f2 [tm2 [tres [EVAL3 [VINJ3 [MINJ3 [INCR3 MATCH3]]]]]]].
  exploit var_set_self_correct.
    eauto. eexact MATCH3. eauto. eauto. eauto. 
  intros [te3 [tm3 [EVAL4 [MINJ4 MATCH4]]]].  
  exists f2; exists te3; exists tm3; exists Out_normal. intuition.
  eapply exec_Sseq_continue. eapply exec_Scall; eauto. 
  apply sig_preserved; auto.
  simpl. eexact EVAL4. traceEq.
  constructor.
Qed.

Lemma transl_stmt_Sseq_continue_correct:
  forall (e : Csharpminor.env) (m : mem) (s1 s2 : Csharpminor.stmt)
         (t1 t2: trace) (m1 m2 : mem) (t: trace) (out : Csharpminor.outcome),
  Csharpminor.exec_stmt prog e m s1 t1 m1 Csharpminor.Out_normal ->
  exec_stmt_prop e m s1 t1 m1 Csharpminor.Out_normal ->
  Csharpminor.exec_stmt prog e m1 s2 t2 m2 out ->
  exec_stmt_prop e m1 s2 t2 m2 out ->
  t = t1 ** t2 ->
  exec_stmt_prop e m (Csharpminor.Sseq s1 s2) t m2 out.
Proof.
  intros; red; intros; monadInv TR.
  exploit H0; eauto.
  intros [f2 [te2 [tm2 [tout1 [EXEC1 [OINJ1 [MINJ2 [INCR2 MATCH2]]]]]]]].
  exploit H2; eauto.
  intros [f3 [te3 [tm3 [tout2 [EXEC2 [OINJ2 [MINJ3 [INCR3 MATCH3]]]]]]]].
  exists f3; exists te3; exists tm3; exists tout2.
  intuition. eapply exec_Sseq_continue; eauto.
  inversion OINJ1. subst tout1. auto.
  eapply inject_incr_trans; eauto.
Qed.

Lemma transl_stmt_Sseq_stop_correct:
  forall (e : Csharpminor.env) (m : mem) (s1 s2 : Csharpminor.stmt)
         (t1: trace) (m1 : mem) (out : Csharpminor.outcome),
  Csharpminor.exec_stmt prog e m s1 t1 m1 out ->
  exec_stmt_prop e m s1 t1 m1 out ->
  out <> Csharpminor.Out_normal ->
  exec_stmt_prop e m (Csharpminor.Sseq s1 s2) t1 m1 out.
Proof.
  intros; red; intros; monadInv TR.
  exploit H0; eauto.
  intros [f2 [te2 [tm2 [tout1 [EXEC1 [OINJ1 [MINJ2 [INCR2 MATCH2]]]]]]]].
  exists f2; exists te2; exists tm2; exists tout1.
  intuition. eapply exec_Sseq_stop; eauto.
  inversion OINJ1; subst out tout1; congruence.
Qed.

Lemma transl_stmt_Sifthenelse_correct:
  forall (e : Csharpminor.env) (m : mem) (a : Csharpminor.expr)
         (sl1 sl2 : Csharpminor.stmt) (v : val) (vb : bool) (t : trace)
         (m' : mem) (out : Csharpminor.outcome),
  Csharpminor.eval_expr prog e m a v ->
  Val.bool_of_val v vb ->
  Csharpminor.exec_stmt prog e m (if vb then sl1 else sl2) t m' out ->
  exec_stmt_prop e m (if vb then sl1 else sl2) t m' out ->
  exec_stmt_prop e m (Csharpminor.Sifthenelse a sl1 sl2) t m' out.
Proof.
  intros; red; intros. monadInv TR.
  exploit transl_expr_correct; eauto.
  intros [tv1 [EVAL1 VINJ1]].
  assert (transl_stmt cenv (if vb then sl1 else sl2) =
          OK (if vb then x0 else x1)). destruct vb; auto.
  exploit H2; eauto.
  intros [f2 [te2 [tm2 [tout [EVAL2 [OINJ [MINJ2 [INCR2 MATCH2]]]]]]]].
  exists f2; exists te2; exists tm2; exists tout.
  intuition. 
  eapply exec_Sifthenelse; eauto.
  eapply bool_of_val_inject; eauto.
Qed.

Lemma transl_stmt_Sloop_loop_correct:
   forall (e : Csharpminor.env) (m : mem) (sl : Csharpminor.stmt)
     (t1: trace) (m1: mem) (t2: trace) (m2 : mem)
     (out : Csharpminor.outcome) (t: trace),
   Csharpminor.exec_stmt prog e m sl t1 m1 Csharpminor.Out_normal ->
   exec_stmt_prop e m sl t1 m1 Csharpminor.Out_normal ->
   Csharpminor.exec_stmt prog e m1 (Csharpminor.Sloop sl) t2 m2 out ->
   exec_stmt_prop e m1 (Csharpminor.Sloop sl) t2 m2 out ->
   t = t1 ** t2 ->
   exec_stmt_prop e m (Csharpminor.Sloop sl) t m2 out.
Proof.
  intros; red; intros. generalize TR; intro TR'; monadInv TR'.
  exploit H0; eauto.
  intros [f2 [te2 [tm2 [tout1 [EVAL1 [OINJ1 [MINJ2 [INCR2 MATCH2]]]]]]]].
  exploit H2; eauto.
  intros [f3 [te3 [tm3 [tout2 [EVAL2 [OINJ2 [MINJ3 [INCR3 MATCH3]]]]]]]].
  exists f3; exists te3; exists tm3; exists tout2.
  intuition. 
  eapply exec_Sloop_loop; eauto.
  inversion OINJ1; subst tout1; eauto.
  eapply inject_incr_trans; eauto.
Qed.

Lemma transl_stmt_Sloop_exit_correct:
   forall (e : Csharpminor.env) (m : mem) (sl : Csharpminor.stmt)
     (t1: trace) (m1 : mem) (out : Csharpminor.outcome),
   Csharpminor.exec_stmt prog e m sl t1 m1 out ->
   exec_stmt_prop e m sl t1 m1 out ->
   out <> Csharpminor.Out_normal ->
   exec_stmt_prop e m (Csharpminor.Sloop sl) t1 m1 out.
Proof.
  intros; red; intros. monadInv TR.
  exploit H0; eauto.
  intros [f2 [te2 [tm2 [tout1 [EVAL1 [OINJ1 [MINJ2 [INCR2 MATCH2]]]]]]]].
  exists f2; exists te2; exists tm2; exists tout1.
  intuition. eapply exec_Sloop_stop; eauto.
  inversion OINJ1; subst out tout1; congruence.
Qed.

Remark outcome_block_inject:
  forall f out tout,
  outcome_inject f out tout ->
  outcome_inject f (Csharpminor.outcome_block out) (outcome_block tout).
Proof.
  induction 1; simpl.
  constructor.
  destruct n; constructor.
  constructor.
  constructor; auto.
Qed.

Lemma transl_stmt_Sblock_correct:
   forall (e : Csharpminor.env) (m : mem) (sl : Csharpminor.stmt)
     (t1: trace) (m1 : mem) (out : Csharpminor.outcome),
   Csharpminor.exec_stmt prog e m sl t1 m1 out ->
   exec_stmt_prop e m sl t1 m1 out ->
   exec_stmt_prop e m (Csharpminor.Sblock sl) t1 m1
     (Csharpminor.outcome_block out).
Proof.
  intros; red; intros. monadInv TR.
  exploit H0; eauto.
  intros [f2 [te2 [tm2 [tout1 [EVAL1 [OINJ1 [MINJ2 [INCR2 MATCH2]]]]]]]].
  exists f2; exists te2; exists tm2; exists (outcome_block tout1).
  intuition. eapply exec_Sblock; eauto.
  apply outcome_block_inject; auto.
Qed.

Lemma transl_stmt_Sexit_correct:
   forall (e : Csharpminor.env) (m : mem) (n : nat),
   exec_stmt_prop e m (Csharpminor.Sexit n) E0 m (Csharpminor.Out_exit n).
Proof.
  intros; red; intros. monadInv TR.
  exists f1; exists te1; exists tm1; exists (Out_exit n).
  intuition. constructor. constructor.
Qed.

Lemma transl_stmt_Sswitch_correct:
  forall (e : Csharpminor.env) (m : mem) (a : Csharpminor.expr)
         (cases : list (int * nat)) (default : nat) (n : int),
  Csharpminor.eval_expr prog e m a (Vint n) ->
  exec_stmt_prop e m (Csharpminor.Sswitch a cases default) E0 m
                     (Csharpminor.Out_exit (switch_target n default cases)).
Proof.
  intros; red; intros. monadInv TR.
  exploit transl_expr_correct; eauto.
  intros [tv1 [EVAL VINJ1]].
  inv VINJ1.
  exists f1; exists te1; exists tm1; exists (Out_exit (switch_target n default cases)).
  split. constructor. auto.
  split. constructor.
  split. auto.
  split. apply inject_incr_refl.
  auto.
Qed.

Lemma transl_stmt_Sreturn_none_correct:
   forall (e : Csharpminor.env) (m : mem),
   exec_stmt_prop e m (Csharpminor.Sreturn None) E0 m
     (Csharpminor.Out_return None).
Proof.
  intros; red; intros. monadInv TR.
  exists f1; exists te1; exists tm1; exists (Out_return None).
  intuition. constructor. constructor.
Qed.

Lemma transl_stmt_Sreturn_some_correct:
  forall (e : Csharpminor.env) (m : mem) (a : Csharpminor.expr)
         (v : val),
  Csharpminor.eval_expr prog e m a v ->
  exec_stmt_prop e m (Csharpminor.Sreturn (Some a)) E0 m
                     (Csharpminor.Out_return (Some v)).
Proof.
  intros; red; intros; monadInv TR.
  exploit transl_expr_correct; eauto.
  intros [tv1 [EVAL VINJ1]].
  exists f1; exists te1; exists tm1; exists (Out_return (Some tv1)).
  intuition. econstructor; eauto. constructor; auto.
Qed.

(** We conclude by an induction over the structure of the Csharpminor
  evaluation derivation, using the lemmas above for each case. *)

Lemma transl_function_correct:
   forall m1 f vargs t m2 vres,
   Csharpminor.eval_funcall prog m1 f vargs t m2 vres ->
   eval_funcall_prop m1 f vargs t m2 vres.
Proof
  (Csharpminor.eval_funcall_ind2 prog
     eval_funcall_prop
     exec_stmt_prop

     transl_funcall_internal_correct
     transl_funcall_external_correct
     transl_stmt_Sskip_correct
     transl_stmt_Sassign_correct
     transl_stmt_Sstore_correct
     transl_stmt_Scall_correct
     transl_stmt_Sseq_continue_correct
     transl_stmt_Sseq_stop_correct
     transl_stmt_Sifthenelse_correct
     transl_stmt_Sloop_loop_correct
     transl_stmt_Sloop_exit_correct
     transl_stmt_Sblock_correct
     transl_stmt_Sexit_correct
     transl_stmt_Sswitch_correct
     transl_stmt_Sreturn_none_correct
     transl_stmt_Sreturn_some_correct).

Lemma transl_stmt_correct:
   forall e m1 s t m2 out,
   Csharpminor.exec_stmt prog e m1 s t m2 out ->
   exec_stmt_prop e m1 s t m2 out.
Proof
  (Csharpminor.exec_stmt_ind2 prog
     eval_funcall_prop
     exec_stmt_prop

     transl_funcall_internal_correct
     transl_funcall_external_correct
     transl_stmt_Sskip_correct
     transl_stmt_Sassign_correct
     transl_stmt_Sstore_correct
     transl_stmt_Scall_correct
     transl_stmt_Sseq_continue_correct
     transl_stmt_Sseq_stop_correct
     transl_stmt_Sifthenelse_correct
     transl_stmt_Sloop_loop_correct
     transl_stmt_Sloop_exit_correct
     transl_stmt_Sblock_correct
     transl_stmt_Sexit_correct
     transl_stmt_Sswitch_correct
     transl_stmt_Sreturn_none_correct
     transl_stmt_Sreturn_some_correct).

(** ** Semantic preservation for divergence *)

Definition evalinf_funcall_prop
    (m1: mem) (fn: Csharpminor.fundef) (args: list val) (t: traceinf) : Prop :=
  forall tfn f1 tm1 cs targs
  (TR: transl_fundef gce fn = OK tfn)
  (MINJ: mem_inject f1 m1 tm1)
  (MATCH: match_callstack f1 cs m1.(nextblock) tm1.(nextblock) m1)
  (ARGSINJ: val_list_inject f1 args targs),
  evalinf_funcall tge tm1 tfn targs t.

Definition execinf_stmt_prop
    (e: Csharpminor.env) (m1: mem) (s: Csharpminor.stmt) (t: traceinf): Prop :=
  forall cenv ts f1 te1 tm1 sp lo hi cs
  (TR: transl_stmt cenv s = OK ts)
  (MINJ: mem_inject f1 m1 tm1)
  (MATCH: match_callstack f1
           (mkframe cenv e te1 sp lo hi :: cs)
           m1.(nextblock) tm1.(nextblock) m1),
  execinf_stmt tge (Vptr sp Int.zero) te1 tm1 ts t.

Theorem transl_function_divergence_correct:
  forall m1 fn args t,
  Csharpminor.evalinf_funcall prog m1 fn args t ->
  evalinf_funcall_prop m1 fn args t.
Proof.
  unfold evalinf_funcall_prop; cofix FUNCALL.
  assert (STMT: forall e m1 s t,
          Csharpminor.execinf_stmt prog e m1 s t ->
          execinf_stmt_prop e m1 s t).
  unfold execinf_stmt_prop; cofix STMT.
  intros. inv H; simpl in TR; try (monadInv TR).
  (* Scall *)
  assert (forall tv, val_inject f1 vf tv -> tv = vf).
    intros.
    elim (Genv.find_funct_inv H2). intros bf VF. rewrite VF in H2.
    rewrite Genv.find_funct_find_funct_ptr in H2. 
    generalize (Genv.find_funct_ptr_negative H2). intro.
    assert (match_globalenvs f1). eapply match_callstack_match_globalenvs; eauto.
    generalize (mg_functions _ H5 _ H3). intro.
    rewrite VF in H. inv H.  
    decEq. congruence. 
    replace x with 0. reflexivity. congruence.
  destruct optid; monadInv TR.
  (* optid = Some i *)
  destruct (transl_expr_correct _ _ _ _ _ _ _ _ _ _ MINJ MATCH _ _ H0 _ EQ)
  as [tv1 [EVAL1 VINJ1]].
  destruct (transl_exprlist_correct _ _ _ _ _ _ _ _ _ _ MINJ MATCH _ _ H1 _ EQ1)
  as [tv2 [EVAL2 VINJ2]].
  rewrite <- (H _ VINJ1) in H2. 
  elim (functions_translated _ _ H2). intros tf [FIND TRF].
  apply execinf_Sseq_1. eapply execinf_Scall.
  eauto. eauto. eauto. apply sig_preserved; auto. 
  eapply FUNCALL; eauto.
  (* optid = None *)
  destruct (transl_expr_correct _ _ _ _ _ _ _ _ _ _ MINJ MATCH _ _ H0 _ EQ)
  as [tv1 [EVAL1 VINJ1]].
  destruct (transl_exprlist_correct _ _ _ _ _ _ _ _ _ _ MINJ MATCH _ _ H1 _ EQ1)
  as [tv2 [EVAL2 VINJ2]].
  rewrite <- (H _ VINJ1) in H2. 
  elim (functions_translated _ _ H2). intros tf [FIND TRF].
  eapply execinf_Scall.
  eauto. eauto. eauto. apply sig_preserved; auto. 
  eapply FUNCALL; eauto.
  (* Sseq, 1 *)
  apply execinf_Sseq_1. eapply STMT; eauto. 
  (* Sseq, 2 *)
  destruct (transl_stmt_correct _ _ _ _ _ _ H0
            _ _ _ _ _ _ _ _ _ EQ MINJ MATCH)
  as [f2 [te2 [tm2 [tout [EXEC1 [OUT [MINJ2 [INCR12 MATCH2]]]]]]]].
  inv OUT.
  eapply execinf_Sseq_2. eexact EXEC1.
  eapply STMT; eauto. 
  auto.
  (* Sifthenelse, true *)
  destruct (transl_expr_correct _ _ _ _ _ _ _ _ _ _ MINJ MATCH _ _ H0 _ EQ)
  as [tv1 [EVAL1 VINJ1]].
  assert (transl_stmt cenv (if vb then sl1 else sl2) =
          OK (if vb then x0 else x1)). destruct vb; auto.
  eapply execinf_Sifthenelse. eexact EVAL1. 
  eapply bool_of_val_inject; eauto.
  eapply STMT; eauto.
  (* Sloop, body *)
  eapply execinf_Sloop_body. eapply STMT; eauto.
  (* Sloop, loop *)
  destruct (transl_stmt_correct _ _ _ _ _ _ H0
            _ _ _ _ _ _ _ _ _ EQ MINJ MATCH)
  as [f2 [te2 [tm2 [tout [EXEC1 [OUT [MINJ2 [INCR12 MATCH2]]]]]]]].
  inv OUT.
  eapply execinf_Sloop_loop. eexact EXEC1. 
  eapply STMT; eauto. 
  simpl. rewrite EQ. auto. auto.
  (* Sblock *)
  apply execinf_Sblock. eapply STMT; eauto.
  (* stutter *)
  generalize (execinf_stmt_N_inv _ _ _ _ _ _ H0); intro.
  destruct s; try contradiction; monadInv TR.
  apply execinf_Sseq_1. eapply STMT; eauto. 
  apply execinf_Sblock. eapply STMT; eauto.
  (* Sloop_block *)
  destruct (transl_stmt_correct _ _ _ _ _ _ H0
            _ _ _ _ _ _ _ _ _ EQ MINJ MATCH)
  as [f2 [te2 [tm2 [tout [EXEC1 [OUT [MINJ2 [INCR12 MATCH2]]]]]]]].
  inv OUT. 
  eapply execinf_Sloop_loop. eexact EXEC1. 
  eapply STMT with (s := Csharpminor.Sloop sl); eauto.
  apply execinf_Sblock_inv; eauto.
  simpl. rewrite EQ; auto. auto.   
  (* Function *)
  intros. inv H.
  monadInv TR. generalize EQ.
  unfold transl_function.
  caseEq (build_compilenv gce f); intros cenv stacksize CENV.
  destruct (zle stacksize Int.max_signed); try congruence.
  intro TR. monadInv TR.
  caseEq (alloc tm1 0 stacksize). intros tm2 sp ALLOC.
  destruct (function_entry_ok _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _
            H1 H2 MATCH CENV z ALLOC ARGSINJ MINJ H0 EQ2)
  as [f2 [te2 [tm3 [STOREPARAM [MINJ2 [INCR12 [MATCH2 BLOCKS]]]]]]].
  eapply evalinf_funcall_internal; simpl.
  eauto. reflexivity. eapply execinf_Sseq_2. eexact STOREPARAM. 
  unfold execinf_stmt_prop in STMT. eapply STMT; eauto.
  traceEq.
Qed.

(** ** Semantic preservation for whole programs *)  

(** The [match_globalenvs] relation holds for the global environments
  of the source program and the transformed program. *)

Lemma match_globalenvs_init:
  let m := Genv.init_mem prog in
  let tm := Genv.init_mem tprog in
  let f := fun b => if zlt b m.(nextblock) then Some(b, 0) else None in
  match_globalenvs f.
Proof.
  intros. constructor.
  intros. split.
  unfold f. rewrite zlt_true. auto. unfold m. 
  eapply Genv.find_symbol_not_fresh; eauto.
  rewrite <- H. apply symbols_preserved.
  intros. unfold f. rewrite zlt_true. auto.
  generalize (nextblock_pos m). omega.
Qed.

(** The correctness of the translation of a whole Csharpminor program
  follows. *)

Theorem transl_program_correct:
  forall beh,
  Csharpminor.exec_program prog beh ->
  exec_program tprog beh.
Proof.
  intros. apply exec_program_bigstep_transition.
  set (m0 := Genv.init_mem prog) in *.
  set (f := meminj_init m0).
  assert (MINJ0: mem_inject f m0 m0).
    unfold f; apply init_inject. 
    unfold m0; apply Genv.initmem_inject_neutral.
  assert (MATCH0: match_callstack f nil m0.(nextblock) m0.(nextblock) m0).
    constructor. unfold f; apply match_globalenvs_init.
  inv H.
  (* Terminating case *)
  subst ge0 m1. 
  elim (function_ptr_translated _ _ H1). intros tfn [TFIND TR].
  fold ge in H3.
  exploit transl_function_correct; eauto.
  intros [f1 [tm1 [tres [TEVAL [VINJ [MINJ1 [INCR MATCH1]]]]]]].
  econstructor; eauto. 
  fold tge. rewrite <- H0. fold ge. 
  replace (prog_main prog) with (AST.prog_main tprog). apply symbols_preserved.
  apply transform_partial_program2_main with (transl_fundef gce) transl_globvar. assumption.
  rewrite <- H2. apply sig_preserved; auto.
  rewrite (Genv.init_mem_transf_partial2 (transl_fundef gce) transl_globvar _ TRANSL).
  inv VINJ. fold tge; fold m0. eexact TEVAL.
  (* Diverging case *)
  subst ge0 m1. 
  elim (function_ptr_translated _ _ H1). intros tfn [TFIND TR].
  econstructor; eauto.
  fold tge. rewrite <- H0. fold ge. 
  replace (prog_main prog) with (AST.prog_main tprog). apply symbols_preserved.
  apply transform_partial_program2_main with (transl_fundef gce) transl_globvar. assumption.
  rewrite <- H2. apply sig_preserved; auto.
  rewrite (Genv.init_mem_transf_partial2 (transl_fundef gce) transl_globvar _ TRANSL).
  fold tge; fold m0.
  eapply (transl_function_divergence_correct _ _ _ _ H3); eauto.
Qed.

End TRANSLATION.