summaryrefslogtreecommitdiff
path: root/cfrontend/Clight.v
blob: f95cbe6e876828beed22b73b88bdbbc73254d891 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
(* *********************************************************************)
(*                                                                     *)
(*              The Compcert verified compiler                         *)
(*                                                                     *)
(*          Xavier Leroy, INRIA Paris-Rocquencourt                     *)
(*                                                                     *)
(*  Copyright Institut National de Recherche en Informatique et en     *)
(*  Automatique.  All rights reserved.  This file is distributed       *)
(*  under the terms of the GNU General Public License as published by  *)
(*  the Free Software Foundation, either version 2 of the License, or  *)
(*  (at your option) any later version.  This file is also distributed *)
(*  under the terms of the INRIA Non-Commercial License Agreement.     *)
(*                                                                     *)
(* *********************************************************************)

(** The Clight language: a simplified version of Compcert C where all
  expressions are pure and assignments and function calls are
  statements, not expressions. *)

Require Import Coqlib.
Require Import Errors.
Require Import Maps.
Require Import Integers.
Require Import Floats.
Require Import Values.
Require Import AST.
Require Import Memory.
Require Import Events.
Require Import Globalenvs.
Require Import Smallstep.
Require Import Ctypes.
Require Import Cop.

(** * Abstract syntax *)

(** ** Expressions *)

(** Clight expressions correspond to the "pure" subset of C expressions.
  The main omissions are string literals and assignment operators
  ([=], [+=], [++], etc).  In Clight, assignment is a statement,
  not an expression.  Additionally, an expression can also refer to
  temporary variables, which are a separate class of local variables
  that do not reside in memory and whose address cannot be taken.

  As in Compcert C, all expressions are annotated with their types,
  as needed to resolve operator overloading and type-dependent behaviors. *)

Inductive expr : Type :=
  | Econst_int: int -> type -> expr       (**r integer literal *)
  | Econst_float: float -> type -> expr   (**r float literal *)
  | Evar: ident -> type -> expr           (**r variable *)
  | Etempvar: ident -> type -> expr       (**r temporary variable *)
  | Ederef: expr -> type -> expr          (**r pointer dereference (unary [*]) *)
  | Eaddrof: expr -> type -> expr         (**r address-of operator ([&]) *)
  | Eunop: unary_operation -> expr -> type -> expr  (**r unary operation *)
  | Ebinop: binary_operation -> expr -> expr -> type -> expr (**r binary operation *)
  | Ecast: expr -> type -> expr   (**r type cast ([(ty) e]) *)
  | Efield: expr -> ident -> type -> expr. (**r access to a member of a struct or union *)

(** [sizeof] and [alignof] are derived forms. *)

Definition Esizeof (ty' ty: type) : expr := Econst_int (Int.repr(sizeof ty')) ty.
Definition Ealignof (ty' ty: type) : expr := Econst_int (Int.repr(alignof ty')) ty.

(** Extract the type part of a type-annotated Clight expression. *)

Definition typeof (e: expr) : type :=
  match e with
  | Econst_int _ ty => ty
  | Econst_float _ ty => ty
  | Evar _ ty => ty
  | Etempvar _ ty => ty
  | Ederef _ ty => ty
  | Eaddrof _ ty => ty
  | Eunop _ _ ty => ty
  | Ebinop _ _ _ ty => ty
  | Ecast _ ty => ty
  | Efield _ _ ty => ty
  end.

(** ** Statements *)

(** Clight statements are similar to those of Compcert C, with the addition
  of assigment (of a rvalue to a lvalue), assignment to a temporary,
  and function call (with assignment of the result to a temporary).
  The three C loops are replaced by a single infinite loop [Sloop s1
  s2] that executes [s1] then [s2] repeatedly.  A [continue] in [s1]
  branches to [s2]. *)

Definition label := ident.

Inductive statement : Type :=
  | Sskip : statement                   (**r do nothing *)
  | Sassign : expr -> expr -> statement (**r assignment [lvalue = rvalue] *)
  | Sset : ident -> expr -> statement   (**r assignment [tempvar = rvalue] *)
  | Scall: option ident -> expr -> list expr -> statement (**r function call *)
  | Sbuiltin: option ident -> external_function -> typelist -> list expr -> statement (**r builtin invocation *)
  | Ssequence : statement -> statement -> statement  (**r sequence *)
  | Sifthenelse : expr  -> statement -> statement -> statement (**r conditional *)
  | Sloop: statement -> statement -> statement (**r infinite loop *)
  | Sbreak : statement                      (**r [break] statement *)
  | Scontinue : statement                   (**r [continue] statement *)
  | Sreturn : option expr -> statement      (**r [return] statement *)
  | Sswitch : expr -> labeled_statements -> statement  (**r [switch] statement *)
  | Slabel : label -> statement -> statement
  | Sgoto : label -> statement

with labeled_statements : Type :=            (**r cases of a [switch] *)
  | LSdefault: statement -> labeled_statements
  | LScase: int -> statement -> labeled_statements -> labeled_statements.

(** The C loops are derived forms. *)

Definition Swhile (e: expr) (s: statement) :=
  Sloop (Ssequence (Sifthenelse e Sskip Sbreak) s) Sskip.

Definition Sdowhile (s: statement) (e: expr) :=
  Sloop s (Sifthenelse e Sskip Sbreak).

Definition Sfor (s1: statement) (e2: expr) (s3: statement) (s4: statement) :=
  Ssequence s1 (Sloop (Ssequence (Sifthenelse e2 Sskip Sbreak) s3) s4).

(** ** Functions *)

(** A function definition is composed of its return type ([fn_return]),
  the names and types of its parameters ([fn_params]), the names
  and types of its local variables ([fn_vars]), and the body of the
  function (a statement, [fn_body]). *)

Record function : Type := mkfunction {
  fn_return: type;
  fn_params: list (ident * type);
  fn_vars: list (ident * type);
  fn_temps: list (ident * type);
  fn_body: statement
}.

Definition var_names (vars: list(ident * type)) : list ident :=
  List.map (@fst ident type) vars.

(** Functions can either be defined ([Internal]) or declared as
  external functions ([External]). *)

Inductive fundef : Type :=
  | Internal: function -> fundef
  | External: external_function -> typelist -> type -> fundef.

(** The type of a function definition. *)

Definition type_of_function (f: function) : type :=
  Tfunction (type_of_params (fn_params f)) (fn_return f).

Definition type_of_fundef (f: fundef) : type :=
  match f with
  | Internal fd => type_of_function fd
  | External id args res => Tfunction args res
  end.

(** ** Programs *)

(** A program is a collection of named functions, plus a collection
  of named global variables, carrying their types and optional initialization 
  data.  See module [AST] for more details. *)

Definition program : Type := AST.program fundef type.

(** * Operational semantics *)

(** The semantics uses two environments.  The global environment
  maps names of functions and global variables to memory block references,
  and function pointers to their definitions.  (See module [Globalenvs].) *)

Definition genv := Genv.t fundef type.

(** The local environment maps local variables to block references and
  types.  The current value of the variable is stored in the
  associated memory block. *)

Definition env := PTree.t (block * type). (* map variable -> location & type *)

Definition empty_env: env := (PTree.empty (block * type)).

(** The temporary environment maps local temporaries to values. *)

Definition temp_env := PTree.t val.

(** [deref_loc ty m b ofs v] computes the value of a datum
  of type [ty] residing in memory [m] at block [b], offset [ofs].
  If the type [ty] indicates an access by value, the corresponding
  memory load is performed.  If the type [ty] indicates an access by
  reference or by copy, the pointer [Vptr b ofs] is returned. *)

Inductive deref_loc (ty: type) (m: mem) (b: block) (ofs: int) : val -> Prop :=
  | deref_loc_value: forall chunk v,
      access_mode ty = By_value chunk ->
      Mem.loadv chunk m (Vptr b ofs) = Some v ->
      deref_loc ty m b ofs v
  | deref_loc_reference:
      access_mode ty = By_reference ->
      deref_loc ty m b ofs (Vptr b ofs)
  | deref_loc_copy:
      access_mode ty = By_copy ->
      deref_loc ty m b ofs (Vptr b ofs).

(** Symmetrically, [assign_loc ty m b ofs v m'] returns the
  memory state after storing the value [v] in the datum
  of type [ty] residing in memory [m] at block [b], offset [ofs].
  This is allowed only if [ty] indicates an access by value or by copy.
  [m'] is the updated memory state. *)

Inductive assign_loc (ty: type) (m: mem) (b: block) (ofs: int):
                                            val -> mem -> Prop :=
  | assign_loc_value: forall v chunk m',
      access_mode ty = By_value chunk ->
      Mem.storev chunk m (Vptr b ofs) v = Some m' ->
      assign_loc ty m b ofs v m'
  | assign_loc_copy: forall b' ofs' bytes m',
      access_mode ty = By_copy ->
      (alignof ty | Int.unsigned ofs') -> (alignof ty | Int.unsigned ofs) ->
      b' <> b \/ Int.unsigned ofs' = Int.unsigned ofs
              \/ Int.unsigned ofs' + sizeof ty <= Int.unsigned ofs
              \/ Int.unsigned ofs + sizeof ty <= Int.unsigned ofs' ->
      Mem.loadbytes m b' (Int.unsigned ofs') (sizeof ty) = Some bytes ->
      Mem.storebytes m b (Int.unsigned ofs) bytes = Some m' ->
      assign_loc ty m b ofs (Vptr b' ofs') m'.

(** Allocation of function-local variables.
  [alloc_variables e1 m1 vars e2 m2] allocates one memory block
  for each variable declared in [vars], and associates the variable
  name with this block.  [e1] and [m1] are the initial local environment
  and memory state.  [e2] and [m2] are the final local environment
  and memory state. *)

Inductive alloc_variables: env -> mem ->
                           list (ident * type) ->
                           env -> mem -> Prop :=
  | alloc_variables_nil:
      forall e m,
      alloc_variables e m nil e m
  | alloc_variables_cons:
      forall e m id ty vars m1 b1 m2 e2,
      Mem.alloc m 0 (sizeof ty) = (m1, b1) ->
      alloc_variables (PTree.set id (b1, ty) e) m1 vars e2 m2 ->
      alloc_variables e m ((id, ty) :: vars) e2 m2.

(** Initialization of local variables that are parameters to a function.
  [bind_parameters e m1 params args m2] stores the values [args]
  in the memory blocks corresponding to the variables [params].
  [m1] is the initial memory state and [m2] the final memory state. *)

Inductive bind_parameters (e: env):
                           mem -> list (ident * type) -> list val ->
                           mem -> Prop :=
  | bind_parameters_nil:
      forall m,
      bind_parameters e m nil nil m
  | bind_parameters_cons:
      forall m id ty params v1 vl b m1 m2,
      PTree.get id e = Some(b, ty) ->
      assign_loc ty m b Int.zero v1 m1 ->
      bind_parameters e m1 params vl m2 ->
      bind_parameters e m ((id, ty) :: params) (v1 :: vl) m2.

(** Initialization of temporary variables *)

Fixpoint create_undef_temps (temps: list (ident * type)) : temp_env :=
  match temps with
  | nil => PTree.empty val
  | (id, t) :: temps' => PTree.set id Vundef (create_undef_temps temps')
 end.

(** Return the list of blocks in the codomain of [e], with low and high bounds. *)

Definition block_of_binding (id_b_ty: ident * (block * type)) :=
  match id_b_ty with (id, (b, ty)) => (b, 0, sizeof ty) end.

Definition blocks_of_env (e: env) : list (block * Z * Z) :=
  List.map block_of_binding (PTree.elements e).

(** Optional assignment to a temporary *)

Definition set_opttemp (optid: option ident) (v: val) (le: temp_env) :=
  match optid with
  | None => le
  | Some id => PTree.set id v le
  end.

(** Selection of the appropriate case of a [switch], given the value [n]
  of the selector expression. *)

Fixpoint select_switch (n: int) (sl: labeled_statements)
                       {struct sl}: labeled_statements :=
  match sl with
  | LSdefault _ => sl
  | LScase c s sl' => if Int.eq c n then sl else select_switch n sl'
  end.

(** Turn a labeled statement into a sequence *)

Fixpoint seq_of_labeled_statement (sl: labeled_statements) : statement :=
  match sl with
  | LSdefault s => s
  | LScase c s sl' => Ssequence s (seq_of_labeled_statement sl')
  end.

Section SEMANTICS.

Variable ge: genv.

(** [type_of_global b] returns the type of the global variable or function
  at address [b]. *)

Definition type_of_global (b: block) : option type :=
  match Genv.find_var_info ge b with
  | Some gv => Some gv.(gvar_info)
  | None =>
      match Genv.find_funct_ptr ge b with
      | Some fd => Some(type_of_fundef fd)
      | None => None
      end
  end.

(** ** Evaluation of expressions *)

Section EXPR.

Variable e: env.
Variable le: temp_env.
Variable m: mem.

(** [eval_expr ge e m a v] defines the evaluation of expression [a]
  in r-value position.  [v] is the value of the expression.
  [e] is the current environment and [m] is the current memory state. *)

Inductive eval_expr: expr -> val -> Prop :=
  | eval_Econst_int:   forall i ty,
      eval_expr (Econst_int i ty) (Vint i)
  | eval_Econst_float:   forall f ty,
      eval_expr (Econst_float f ty) (Vfloat f)
  | eval_Etempvar:  forall id ty v,
      le!id = Some v ->
      eval_expr (Etempvar id ty) v
  | eval_Eaddrof: forall a ty loc ofs,
      eval_lvalue a loc ofs ->
      eval_expr (Eaddrof a ty) (Vptr loc ofs)
  | eval_Eunop:  forall op a ty v1 v,
      eval_expr a v1 ->
      sem_unary_operation op v1 (typeof a) = Some v ->
      eval_expr (Eunop op a ty) v
  | eval_Ebinop: forall op a1 a2 ty v1 v2 v,
      eval_expr a1 v1 ->
      eval_expr a2 v2 ->
      sem_binary_operation op v1 (typeof a1) v2 (typeof a2) m = Some v ->
      eval_expr (Ebinop op a1 a2 ty) v
  | eval_Ecast:   forall a ty v1 v,
      eval_expr a v1 ->
      sem_cast v1 (typeof a) ty = Some v ->
      eval_expr (Ecast a ty) v
  | eval_Elvalue: forall a loc ofs v,
      eval_lvalue a loc ofs -> 
      deref_loc (typeof a) m loc ofs v ->
      eval_expr a v

(** [eval_lvalue ge e m a b ofs] defines the evaluation of expression [a]
  in l-value position.  The result is the memory location [b, ofs]
  that contains the value of the expression [a]. *)

with eval_lvalue: expr -> block -> int -> Prop :=
  | eval_Evar_local:   forall id l ty,
      e!id = Some(l, ty) ->
      eval_lvalue (Evar id ty) l Int.zero
  | eval_Evar_global: forall id l ty,
      e!id = None ->
      Genv.find_symbol ge id = Some l ->
      type_of_global l = Some ty ->
      eval_lvalue (Evar id ty) l Int.zero
  | eval_Ederef: forall a ty l ofs,
      eval_expr a (Vptr l ofs) ->
      eval_lvalue (Ederef a ty) l ofs
 | eval_Efield_struct:   forall a i ty l ofs id fList att delta,
      eval_expr a (Vptr l ofs) ->
      typeof a = Tstruct id fList att ->
      field_offset i fList = OK delta ->
      eval_lvalue (Efield a i ty) l (Int.add ofs (Int.repr delta))
 | eval_Efield_union:   forall a i ty l ofs id fList att,
      eval_expr a (Vptr l ofs) ->
      typeof a = Tunion id fList att ->
      eval_lvalue (Efield a i ty) l ofs.

Scheme eval_expr_ind2 := Minimality for eval_expr Sort Prop
  with eval_lvalue_ind2 := Minimality for eval_lvalue Sort Prop.
Combined Scheme eval_expr_lvalue_ind from eval_expr_ind2, eval_lvalue_ind2.

(** [eval_exprlist ge e m al tyl vl] evaluates a list of r-value
  expressions [al], cast their values to the types given in [tyl],
  and produces the list of cast values [vl].  It is used to
  evaluate the arguments of function calls. *)

Inductive eval_exprlist: list expr -> typelist -> list val -> Prop :=
  | eval_Enil:
      eval_exprlist nil Tnil nil
  | eval_Econs:   forall a bl ty tyl v1 v2 vl,
      eval_expr a v1 ->
      sem_cast v1 (typeof a) ty = Some v2 ->
      eval_exprlist bl tyl vl ->
      eval_exprlist (a :: bl) (Tcons ty tyl) (v2 :: vl).

End EXPR.

(** ** Transition semantics for statements and functions *)

(** Continuations *)

Inductive cont: Type :=
  | Kstop: cont
  | Kseq: statement -> cont -> cont       (**r [Kseq s2 k] = after [s1] in [s1;s2] *)
  | Kloop1: statement -> statement -> cont -> cont (**r [Kloop1 s1 s2 k] = after [s1] in [Sloop s1 s2] *)
  | Kloop2: statement -> statement -> cont -> cont (**r [Kloop1 s1 s2 k] = after [s2] in [Sloop s1 s2] *)
  | Kswitch: cont -> cont       (**r catches [break] statements arising out of [switch] *)
  | Kcall: option ident ->                  (**r where to store result *)
           function ->                      (**r calling function *)
           env ->                           (**r local env of calling function *)
           temp_env ->                      (**r temporary env of calling function *)
           cont -> cont.

(** Pop continuation until a call or stop *)

Fixpoint call_cont (k: cont) : cont :=
  match k with
  | Kseq s k => call_cont k
  | Kloop1 s1 s2 k => call_cont k
  | Kloop2 s1 s2 k => call_cont k
  | Kswitch k => call_cont k
  | _ => k
  end.

Definition is_call_cont (k: cont) : Prop :=
  match k with
  | Kstop => True
  | Kcall _ _ _ _ _ => True
  | _ => False
  end.

(** States *)

Inductive state: Type :=
  | State
      (f: function)
      (s: statement)
      (k: cont)
      (e: env)
      (le: temp_env)
      (m: mem) : state
  | Callstate
      (fd: fundef)
      (args: list val)
      (k: cont)
      (m: mem) : state
  | Returnstate
      (res: val)
      (k: cont)
      (m: mem) : state.
                 
(** Find the statement and manufacture the continuation 
  corresponding to a label *)

Fixpoint find_label (lbl: label) (s: statement) (k: cont) 
                    {struct s}: option (statement * cont) :=
  match s with
  | Ssequence s1 s2 =>
      match find_label lbl s1 (Kseq s2 k) with
      | Some sk => Some sk
      | None => find_label lbl s2 k
      end
  | Sifthenelse a s1 s2 =>
      match find_label lbl s1 k with
      | Some sk => Some sk
      | None => find_label lbl s2 k
      end
  | Sloop s1 s2 =>
      match find_label lbl s1 (Kloop1 s1 s2 k) with
      | Some sk => Some sk
      | None => find_label lbl s2 (Kloop2 s1 s2 k)
      end
  | Sswitch e sl =>
      find_label_ls lbl sl (Kswitch k)
  | Slabel lbl' s' =>
      if ident_eq lbl lbl' then Some(s', k) else find_label lbl s' k
  | _ => None
  end

with find_label_ls (lbl: label) (sl: labeled_statements) (k: cont) 
                    {struct sl}: option (statement * cont) :=
  match sl with
  | LSdefault s => find_label lbl s k
  | LScase _ s sl' =>
      match find_label lbl s (Kseq (seq_of_labeled_statement sl') k) with
      | Some sk => Some sk
      | None => find_label_ls lbl sl' k
      end
  end.

(** Transition relation *)

Inductive step: state -> trace -> state -> Prop :=

  | step_assign:   forall f a1 a2 k e le m loc ofs v2 v m',
      eval_lvalue e le m a1 loc ofs ->
      eval_expr e le m a2 v2 ->
      sem_cast v2 (typeof a2) (typeof a1) = Some v ->
      assign_loc (typeof a1) m loc ofs v m' ->
      step (State f (Sassign a1 a2) k e le m)
        E0 (State f Sskip k e le m')

  | step_set:   forall f id a k e le m v,
      eval_expr e le m a v ->
      step (State f (Sset id a) k e le m)
        E0 (State f Sskip k e (PTree.set id v le) m)

  | step_call:   forall f optid a al k e le m tyargs tyres vf vargs fd,
      classify_fun (typeof a) = fun_case_f tyargs tyres ->
      eval_expr e le m a vf ->
      eval_exprlist e le m al tyargs vargs ->
      Genv.find_funct ge vf = Some fd ->
      type_of_fundef fd = Tfunction tyargs tyres ->
      step (State f (Scall optid a al) k e le m)
        E0 (Callstate fd vargs (Kcall optid f e le k) m)

  | step_builtin:   forall f optid ef tyargs al k e le m vargs t vres m',
      eval_exprlist e le m al tyargs vargs ->
      external_call ef ge vargs m t vres m' ->
      step (State f (Sbuiltin optid ef tyargs al) k e le m)
         t (State f Sskip k e (set_opttemp optid vres le) m')

  | step_seq:  forall f s1 s2 k e le m,
      step (State f (Ssequence s1 s2) k e le m)
        E0 (State f s1 (Kseq s2 k) e le m)
  | step_skip_seq: forall f s k e le m,
      step (State f Sskip (Kseq s k) e le m)
        E0 (State f s k e le m)
  | step_continue_seq: forall f s k e le m,
      step (State f Scontinue (Kseq s k) e le m)
        E0 (State f Scontinue k e le m)
  | step_break_seq: forall f s k e le m,
      step (State f Sbreak (Kseq s k) e le m)
        E0 (State f Sbreak k e le m)

  | step_ifthenelse:  forall f a s1 s2 k e le m v1 b,
      eval_expr e le m a v1 ->
      bool_val v1 (typeof a) = Some b ->
      step (State f (Sifthenelse a s1 s2) k e le m)
        E0 (State f (if b then s1 else s2) k e le m)

  | step_loop: forall f s1 s2 k e le m,
      step (State f (Sloop s1 s2) k e le m)
        E0 (State f s1 (Kloop1 s1 s2 k) e le m)
  | step_skip_or_continue_loop1:  forall f s1 s2 k e le m x,
      x = Sskip \/ x = Scontinue ->
      step (State f x (Kloop1 s1 s2 k) e le m)
        E0 (State f s2 (Kloop2 s1 s2 k) e le m)
  | step_break_loop1:  forall f s1 s2 k e le m,
      step (State f Sbreak (Kloop1 s1 s2 k) e le m)
        E0 (State f Sskip k e le m)
  | step_skip_loop2: forall f s1 s2 k e le m,
      step (State f Sskip (Kloop2 s1 s2 k) e le m)
        E0 (State f (Sloop s1 s2) k e le m)
  | step_break_loop2: forall f s1 s2 k e le m,
      step (State f Sbreak (Kloop2 s1 s2 k) e le m)
        E0 (State f Sskip k e le m)

  | step_return_0: forall f k e le m m',
      Mem.free_list m (blocks_of_env e) = Some m' ->
      step (State f (Sreturn None) k e le m)
        E0 (Returnstate Vundef (call_cont k) m')
  | step_return_1: forall f a k e le m v v' m',
      eval_expr e le m a v -> 
      sem_cast v (typeof a) f.(fn_return) = Some v' ->
      Mem.free_list m (blocks_of_env e) = Some m' ->
      step (State f (Sreturn (Some a)) k e le m)
        E0 (Returnstate v' (call_cont k) m')
  | step_skip_call: forall f k e le m m',
      is_call_cont k ->
      f.(fn_return) = Tvoid ->
      Mem.free_list m (blocks_of_env e) = Some m' ->
      step (State f Sskip k e le m)
        E0 (Returnstate Vundef k m')

  | step_switch: forall f a sl k e le m n,
      eval_expr e le m a (Vint n) ->
      step (State f (Sswitch a sl) k e le m)
        E0 (State f (seq_of_labeled_statement (select_switch n sl)) (Kswitch k) e le m)
  | step_skip_break_switch: forall f x k e le m,
      x = Sskip \/ x = Sbreak ->
      step (State f x (Kswitch k) e le m)
        E0 (State f Sskip k e le m)
  | step_continue_switch: forall f k e le m,
      step (State f Scontinue (Kswitch k) e le m)
        E0 (State f Scontinue k e le m)

  | step_label: forall f lbl s k e le m,
      step (State f (Slabel lbl s) k e le m)
        E0 (State f s k e le m)

  | step_goto: forall f lbl k e le m s' k',
      find_label lbl f.(fn_body) (call_cont k) = Some (s', k') ->
      step (State f (Sgoto lbl) k e le m)
        E0 (State f s' k' e le m)

  | step_internal_function: forall f vargs k m e m1 m2,
      list_norepet (var_names f.(fn_params) ++ var_names f.(fn_vars)) ->
      alloc_variables empty_env m (f.(fn_params) ++ f.(fn_vars)) e m1 ->
      bind_parameters e m1 f.(fn_params) vargs m2 ->
      step (Callstate (Internal f) vargs k m)
        E0 (State f f.(fn_body) k e (create_undef_temps f.(fn_temps)) m2)

  | step_external_function: forall ef targs tres vargs k m vres t m',
      external_call ef ge vargs m t vres m' ->
      step (Callstate (External ef targs tres) vargs k m)
         t (Returnstate vres k m')

  | step_returnstate: forall v optid f e le k m,
      step (Returnstate v (Kcall optid f e le k) m)
        E0 (State f Sskip k e (set_opttemp optid v le) m).

(** ** Whole-program semantics *)

(** Execution of whole programs are described as sequences of transitions
  from an initial state to a final state.  An initial state is a [Callstate]
  corresponding to the invocation of the ``main'' function of the program
  without arguments and with an empty continuation. *)

Inductive initial_state (p: program): state -> Prop :=
  | initial_state_intro: forall b f m0,
      let ge := Genv.globalenv p in
      Genv.init_mem p = Some m0 ->
      Genv.find_symbol ge p.(prog_main) = Some b ->
      Genv.find_funct_ptr ge b = Some f ->
      type_of_fundef f = Tfunction Tnil type_int32s ->
      initial_state p (Callstate f nil Kstop m0).

(** A final state is a [Returnstate] with an empty continuation. *)

Inductive final_state: state -> int -> Prop :=
  | final_state_intro: forall r m,
      final_state (Returnstate (Vint r) Kstop m) r.

End SEMANTICS.

(** Wrapping up these definitions in a small-step semantics. *)

Definition semantics (p: program) :=
  Semantics step (initial_state p) final_state (Genv.globalenv p).

(** This semantics is receptive to changes in events. *)

Lemma semantics_receptive:
  forall (p: program), receptive (semantics p).
Proof.
  intros. constructor; simpl; intros.
(* receptiveness *)
  assert (t1 = E0 -> exists s2, step (Genv.globalenv p) s t2 s2).
    intros. subst. inv H0. exists s1; auto.
  inversion H; subst; auto.
  (* builtin *)
  exploit external_call_receptive; eauto. intros [vres2 [m2 EC2]]. 
  econstructor; econstructor; eauto.
  (* external *)
  exploit external_call_receptive; eauto. intros [vres2 [m2 EC2]]. 
  exists (Returnstate vres2 k m2). econstructor; eauto.
(* trace length *)
  red; intros. inv H; simpl; try omega.
  eapply external_call_trace_length; eauto.
  eapply external_call_trace_length; eauto.
Qed.

(** * Alternate big-step semantics *)

Section BIGSTEP.

Variable ge: genv.

(** ** Big-step semantics for terminating statements and functions *)

(** The execution of a statement produces an ``outcome'', indicating
  how the execution terminated: either normally or prematurely
  through the execution of a [break], [continue] or [return] statement. *)

Inductive outcome: Type :=
   | Out_break: outcome                 (**r terminated by [break] *)
   | Out_continue: outcome              (**r terminated by [continue] *)
   | Out_normal: outcome                (**r terminated normally *)
   | Out_return: option (val * type) -> outcome. (**r terminated by [return] *)

Inductive out_normal_or_continue : outcome -> Prop :=
  | Out_normal_or_continue_N: out_normal_or_continue Out_normal
  | Out_normal_or_continue_C: out_normal_or_continue Out_continue.

Inductive out_break_or_return : outcome -> outcome -> Prop :=
  | Out_break_or_return_B: out_break_or_return Out_break Out_normal
  | Out_break_or_return_R: forall ov,
      out_break_or_return (Out_return ov) (Out_return ov).

Definition outcome_switch (out: outcome) : outcome :=
  match out with
  | Out_break => Out_normal
  | o => o
  end.

Definition outcome_result_value (out: outcome) (t: type) (v: val) : Prop :=
  match out, t with
  | Out_normal, Tvoid => v = Vundef
  | Out_return None, Tvoid => v = Vundef
  | Out_return (Some (v',t')), ty => ty <> Tvoid /\ sem_cast v' t' t = Some v
  | _, _ => False
  end. 

(** [exec_stmt ge e m1 s t m2 out] describes the execution of 
  the statement [s].  [out] is the outcome for this execution.
  [m1] is the initial memory state, [m2] the final memory state.
  [t] is the trace of input/output events performed during this
  evaluation. *)

Inductive exec_stmt: env -> temp_env -> mem -> statement -> trace -> temp_env -> mem -> outcome -> Prop :=
  | exec_Sskip:   forall e le m,
      exec_stmt e le m Sskip
               E0 le m Out_normal
  | exec_Sassign:   forall e le m a1 a2 loc ofs v2 v m',
      eval_lvalue ge e le m a1 loc ofs ->
      eval_expr ge e le m a2 v2 ->
      sem_cast v2 (typeof a2) (typeof a1) = Some v ->
      assign_loc (typeof a1) m loc ofs v m' ->
      exec_stmt e le m (Sassign a1 a2)
               E0 le m' Out_normal
  | exec_Sset:     forall e le m id a v,
      eval_expr ge e le m a v ->
      exec_stmt e le m (Sset id a)
               E0 (PTree.set id v le) m Out_normal 
  | exec_Scall:   forall e le m optid a al tyargs tyres vf vargs f t m' vres,
      classify_fun (typeof a) = fun_case_f tyargs tyres ->
      eval_expr ge e le m a vf ->
      eval_exprlist ge e le m al tyargs vargs ->
      Genv.find_funct ge vf = Some f ->
      type_of_fundef f = Tfunction tyargs tyres ->
      eval_funcall m f vargs t m' vres ->
      exec_stmt e le m (Scall optid a al)
                t (set_opttemp optid vres le) m' Out_normal
  | exec_Sbuiltin:   forall e le m optid ef al tyargs vargs t m' vres,
      eval_exprlist ge e le m al tyargs vargs ->
      external_call ef ge vargs m t vres m' ->
      exec_stmt e le m (Sbuiltin optid ef tyargs al)
                t (set_opttemp optid vres le) m' Out_normal
  | exec_Sseq_1:   forall e le m s1 s2 t1 le1 m1 t2 le2 m2 out,
      exec_stmt e le m s1 t1 le1 m1 Out_normal ->
      exec_stmt e le1 m1 s2 t2 le2 m2 out ->
      exec_stmt e le m (Ssequence s1 s2)
                (t1 ** t2) le2 m2 out
  | exec_Sseq_2:   forall e le m s1 s2 t1 le1 m1 out,
      exec_stmt e le m s1 t1 le1 m1 out ->
      out <> Out_normal ->
      exec_stmt e le m (Ssequence s1 s2)
                t1 le1 m1 out
  | exec_Sifthenelse: forall e le m a s1 s2 v1 b t le' m' out,
      eval_expr ge e le m a v1 ->
      bool_val v1 (typeof a) = Some b ->
      exec_stmt e le m (if b then s1 else s2) t le' m' out ->
      exec_stmt e le m (Sifthenelse a s1 s2)
                t le' m' out
  | exec_Sreturn_none:   forall e le m,
      exec_stmt e le m (Sreturn None)
               E0 le m (Out_return None)
  | exec_Sreturn_some: forall e le m a v,
      eval_expr ge e le m a v ->
      exec_stmt e le m (Sreturn (Some a))
                E0 le m (Out_return (Some (v, typeof a)))
  | exec_Sbreak:   forall e le m,
      exec_stmt e le m Sbreak
               E0 le m Out_break
  | exec_Scontinue:   forall e le m,
      exec_stmt e le m Scontinue
               E0 le m Out_continue
  | exec_Sloop_stop1: forall e le m s1 s2 t le' m' out' out,
      exec_stmt e le m s1 t le' m' out' ->
      out_break_or_return out' out ->
      exec_stmt e le m (Sloop s1 s2)
                t le' m' out
  | exec_Sloop_stop2: forall e le m s1 s2 t1 le1 m1 out1 t2 le2 m2 out2 out,
      exec_stmt e le m s1 t1 le1 m1 out1 ->
      out_normal_or_continue out1 ->
      exec_stmt e le1 m1 s2 t2 le2 m2 out2 ->
      out_break_or_return out2 out ->
      exec_stmt e le m (Sloop s1 s2)
                (t1**t2) le2 m2 out
  | exec_Sloop_loop: forall e le m s1 s2 t1 le1 m1 out1 t2 le2 m2 t3 le3 m3 out,
      exec_stmt e le m s1 t1 le1 m1 out1 ->
      out_normal_or_continue out1 ->
      exec_stmt e le1 m1 s2 t2 le2 m2 Out_normal ->
      exec_stmt e le2 m2 (Sloop s1 s2) t3 le3 m3 out ->
      exec_stmt e le m (Sloop s1 s2)
                (t1**t2**t3) le3 m3 out
  | exec_Sswitch:   forall e le m a t n sl le1 m1 out,
      eval_expr ge e le m a (Vint n) ->
      exec_stmt e le m (seq_of_labeled_statement (select_switch n sl)) t le1 m1 out ->
      exec_stmt e le m (Sswitch a sl)
                t le1 m1 (outcome_switch out)

(** [eval_funcall m1 fd args t m2 res] describes the invocation of
  function [fd] with arguments [args].  [res] is the value returned
  by the call.  *)

with eval_funcall: mem -> fundef -> list val -> trace -> mem -> val -> Prop :=
  | eval_funcall_internal: forall le m f vargs t e m1 m2 m3 out vres m4,
      alloc_variables empty_env m (f.(fn_params) ++ f.(fn_vars)) e m1 ->
      list_norepet (var_names f.(fn_params) ++ var_names f.(fn_vars)) ->
      bind_parameters e m1 f.(fn_params) vargs m2 ->
      exec_stmt e (create_undef_temps f.(fn_temps)) m2 f.(fn_body) t le m3 out ->
      outcome_result_value out f.(fn_return) vres ->
      Mem.free_list m3 (blocks_of_env e) = Some m4 ->
      eval_funcall m (Internal f) vargs t m4 vres
  | eval_funcall_external: forall m ef targs tres vargs t vres m',
      external_call ef ge vargs m t vres m' ->
      eval_funcall m (External ef targs tres) vargs t m' vres.

Scheme exec_stmt_ind2 := Minimality for exec_stmt Sort Prop
  with eval_funcall_ind2 := Minimality for eval_funcall Sort Prop.
Combined Scheme exec_stmt_funcall_ind from exec_stmt_ind2, eval_funcall_ind2.

(** ** Big-step semantics for diverging statements and functions *)

(** Coinductive semantics for divergence.
  [execinf_stmt ge e m s t] holds if the execution of statement [s]
  diverges, i.e. loops infinitely.  [t] is the possibly infinite
  trace of observable events performed during the execution. *)

CoInductive execinf_stmt: env -> temp_env -> mem -> statement -> traceinf -> Prop :=
  | execinf_Scall:   forall e le m optid a al vf tyargs tyres vargs f t,
      classify_fun (typeof a) = fun_case_f tyargs tyres ->
      eval_expr ge e le m a vf ->
      eval_exprlist ge e le m al tyargs vargs ->
      Genv.find_funct ge vf = Some f ->
      type_of_fundef f = Tfunction tyargs tyres ->
      evalinf_funcall m f vargs t ->
      execinf_stmt e le m (Scall optid a al) t
  | execinf_Sseq_1:   forall e le m s1 s2 t,
      execinf_stmt e le m s1 t ->
      execinf_stmt e le m (Ssequence s1 s2) t
  | execinf_Sseq_2:   forall e le m s1 s2 t1 le1 m1 t2,
      exec_stmt e le m s1 t1 le1 m1 Out_normal ->
      execinf_stmt e le1 m1 s2 t2 ->
      execinf_stmt e le m (Ssequence s1 s2) (t1 *** t2)
  | execinf_Sifthenelse: forall e le m a s1 s2 v1 b t,
      eval_expr ge e le m a v1 ->
      bool_val v1 (typeof a) = Some b ->
      execinf_stmt e le m (if b then s1 else s2) t ->
      execinf_stmt e le m (Sifthenelse a s1 s2) t
  | execinf_Sloop_body1: forall e le m s1 s2 t,
      execinf_stmt e le m s1 t ->
      execinf_stmt e le m (Sloop s1 s2) t
  | execinf_Sloop_body2: forall e le m s1 s2 t1 le1 m1 out1 t2,
      exec_stmt e le m s1 t1 le1 m1 out1 ->
      out_normal_or_continue out1 ->
      execinf_stmt e le1 m1 s2 t2 ->
      execinf_stmt e le m (Sloop s1 s2) (t1***t2)
  | execinf_Sloop_loop: forall e le m s1 s2 t1 le1 m1 out1 t2 le2 m2 t3,
      exec_stmt e le m s1 t1 le1 m1 out1 ->
      out_normal_or_continue out1 ->
      exec_stmt e le1 m1 s2 t2 le2 m2 Out_normal ->
      execinf_stmt e le2 m2 (Sloop s1 s2) t3 ->
      execinf_stmt e le m (Sloop s1 s2) (t1***t2***t3)
  | execinf_Sswitch:   forall e le m a t n sl,
      eval_expr ge e le m a (Vint n) ->
      execinf_stmt e le m (seq_of_labeled_statement (select_switch n sl)) t ->
      execinf_stmt e le m (Sswitch a sl) t

(** [evalinf_funcall ge m fd args t] holds if the invocation of function
    [fd] on arguments [args] diverges, with observable trace [t]. *)

with evalinf_funcall: mem -> fundef -> list val -> traceinf -> Prop :=
  | evalinf_funcall_internal: forall m f vargs t e m1 m2,
      alloc_variables empty_env m (f.(fn_params) ++ f.(fn_vars)) e m1 ->
      list_norepet (var_names f.(fn_params) ++ var_names f.(fn_vars)) ->
      bind_parameters e m1 f.(fn_params) vargs m2 ->
      execinf_stmt e (create_undef_temps f.(fn_temps)) m2 f.(fn_body) t ->
      evalinf_funcall m (Internal f) vargs t.

End BIGSTEP.

(** Big-step execution of a whole program.  *)

Inductive bigstep_program_terminates (p: program): trace -> int -> Prop :=
  | bigstep_program_terminates_intro: forall b f m0 m1 t r,
      let ge := Genv.globalenv p in 
      Genv.init_mem p = Some m0 ->
      Genv.find_symbol ge p.(prog_main) = Some b ->
      Genv.find_funct_ptr ge b = Some f ->
      type_of_fundef f = Tfunction Tnil type_int32s ->
      eval_funcall ge m0 f nil t m1 (Vint r) ->
      bigstep_program_terminates p t r.

Inductive bigstep_program_diverges (p: program): traceinf -> Prop :=
  | bigstep_program_diverges_intro: forall b f m0 t,
      let ge := Genv.globalenv p in 
      Genv.init_mem p = Some m0 ->
      Genv.find_symbol ge p.(prog_main) = Some b ->
      Genv.find_funct_ptr ge b = Some f ->
      type_of_fundef f = Tfunction Tnil type_int32s ->
      evalinf_funcall ge m0 f nil t ->
      bigstep_program_diverges p t.

Definition bigstep_semantics (p: program) :=
  Bigstep_semantics (bigstep_program_terminates p) (bigstep_program_diverges p).

(** * Implication from big-step semantics to transition semantics *)

Section BIGSTEP_TO_TRANSITIONS.

Variable prog: program.
Let ge : genv := Genv.globalenv prog.

Inductive outcome_state_match
       (e: env) (le: temp_env) (m: mem) (f: function) (k: cont): outcome -> state -> Prop :=
  | osm_normal:
      outcome_state_match e le m f k Out_normal (State f Sskip k e le m)
  | osm_break:
      outcome_state_match e le m f k Out_break (State f Sbreak k e le m)
  | osm_continue:
      outcome_state_match e le m f k Out_continue (State f Scontinue k e le m)
  | osm_return_none: forall k',
      call_cont k' = call_cont k ->
      outcome_state_match e le m f k 
        (Out_return None) (State f (Sreturn None) k' e le m)
  | osm_return_some: forall a v k',
      call_cont k' = call_cont k ->
      eval_expr ge e le m a v ->
      outcome_state_match e le m f k
        (Out_return (Some (v,typeof a))) (State f (Sreturn (Some a)) k' e le m).

Lemma is_call_cont_call_cont:
  forall k, is_call_cont k -> call_cont k = k.
Proof.
  destruct k; simpl; intros; contradiction || auto.
Qed.

Lemma exec_stmt_eval_funcall_steps:
  (forall e le m s t le' m' out,
   exec_stmt ge e le m s t le' m' out ->
   forall f k, exists S,
   star step ge (State f s k e le m) t S
   /\ outcome_state_match e le' m' f k out S)
/\
  (forall m fd args t m' res,
   eval_funcall ge m fd args t m' res ->
   forall k,
   is_call_cont k ->
   star step ge (Callstate fd args k m) t (Returnstate res k m')).
Proof.
  apply exec_stmt_funcall_ind; intros.

(* skip *)
  econstructor; split. apply star_refl. constructor.

(* assign *)
  econstructor; split. apply star_one. econstructor; eauto. constructor.

(* set *)
  econstructor; split. apply star_one. econstructor; eauto. constructor.

(* call *)
  econstructor; split.
  eapply star_left. econstructor; eauto. 
  eapply star_right. apply H5. simpl; auto. econstructor. reflexivity. traceEq.
  constructor.

(* builtin *)
  econstructor; split. apply star_one. econstructor; eauto. constructor.

(* sequence 2 *)
  destruct (H0 f (Kseq s2 k)) as [S1 [A1 B1]]. inv B1.
  destruct (H2 f k) as [S2 [A2 B2]]. 
  econstructor; split.
  eapply star_left. econstructor.
  eapply star_trans. eexact A1. 
  eapply star_left. constructor. eexact A2.
  reflexivity. reflexivity. traceEq.
  auto.

(* sequence 1 *)
  destruct (H0 f (Kseq s2 k)) as [S1 [A1 B1]].
  set (S2 :=
    match out with
    | Out_break => State f Sbreak k e le1 m1
    | Out_continue => State f Scontinue k e le1 m1
    | _ => S1
    end).
  exists S2; split.
  eapply star_left. econstructor.
  eapply star_trans. eexact A1.
  unfold S2; inv B1.
    congruence.
    apply star_one. apply step_break_seq.
    apply star_one. apply step_continue_seq.
    apply star_refl.
    apply star_refl.
  reflexivity. traceEq.
  unfold S2; inv B1; congruence || econstructor; eauto.

(* ifthenelse *)
  destruct (H2 f k) as [S1 [A1 B1]].
  exists S1; split.
  eapply star_left. 2: eexact A1. eapply step_ifthenelse; eauto. traceEq.
  auto.

(* return none *)
  econstructor; split. apply star_refl. constructor. auto.

(* return some *)
  econstructor; split. apply star_refl. econstructor; eauto.

(* break *)
  econstructor; split. apply star_refl. constructor.

(* continue *)
  econstructor; split. apply star_refl. constructor.

(* loop stop 1 *)
  destruct (H0 f (Kloop1 s1 s2 k)) as [S1 [A1 B1]].
  set (S2 :=
    match out' with
    | Out_break => State f Sskip k e le' m'
    | _ => S1
    end).
  exists S2; split.
  eapply star_left. eapply step_loop. 
  eapply star_trans. eexact A1.
  unfold S2. inversion H1; subst.
  inv B1. apply star_one. constructor.    
  apply star_refl.
  reflexivity. traceEq.
  unfold S2. inversion H1; subst. constructor. inv B1; econstructor; eauto.

(* loop stop 2 *)
  destruct (H0 f (Kloop1 s1 s2 k)) as [S1 [A1 B1]].
  destruct (H3 f (Kloop2 s1 s2 k)) as [S2 [A2 B2]].
  set (S3 :=
    match out2 with
    | Out_break => State f Sskip k e le2 m2
    | _ => S2
    end).
  exists S3; split.
  eapply star_left. eapply step_loop. 
  eapply star_trans. eexact A1.
  eapply star_left with (s2 := State f s2 (Kloop2 s1 s2 k) e le1 m1).
  inv H1; inv B1; constructor; auto.
  eapply star_trans. eexact A2.
  unfold S3. inversion H4; subst.
  inv B2. apply star_one. constructor. apply star_refl.
  reflexivity. reflexivity. reflexivity. traceEq. 
  unfold S3. inversion H4; subst. constructor. inv B2; econstructor; eauto.

(* loop loop *)
  destruct (H0 f (Kloop1 s1 s2 k)) as [S1 [A1 B1]].
  destruct (H3 f (Kloop2 s1 s2 k)) as [S2 [A2 B2]].
  destruct (H5 f k) as [S3 [A3 B3]].
  exists S3; split.
  eapply star_left. eapply step_loop. 
  eapply star_trans. eexact A1.
  eapply star_left with (s2 := State f s2 (Kloop2 s1 s2 k) e le1 m1).
  inv H1; inv B1; constructor; auto.
  eapply star_trans. eexact A2.
  eapply star_left with (s2 := State f (Sloop s1 s2) k e le2 m2).
  inversion H4; subst; inv B2; constructor; auto. 
  eexact A3.
  reflexivity. reflexivity. reflexivity. reflexivity. traceEq. 
  auto.

(* switch *)
  destruct (H1 f (Kswitch k)) as [S1 [A1 B1]].
  set (S2 :=
    match out with
    | Out_normal => State f Sskip k e le1 m1
    | Out_break => State f Sskip k e le1 m1
    | Out_continue => State f Scontinue k e le1 m1
    | _ => S1
    end).
  exists S2; split.
  eapply star_left. eapply step_switch; eauto. 
  eapply star_trans. eexact A1. 
  unfold S2; inv B1. 
    apply star_one. constructor. auto. 
    apply star_one. constructor. auto. 
    apply star_one. constructor. 
    apply star_refl.
    apply star_refl.
  reflexivity. traceEq.
  unfold S2. inv B1; simpl; econstructor; eauto.

(* call internal *)
  destruct (H3 f k) as [S1 [A1 B1]].
  eapply star_left. eapply step_internal_function; eauto.
  eapply star_right. eexact A1. 
   inv B1; simpl in H4; try contradiction.
  (* Out_normal *)
  assert (fn_return f = Tvoid /\ vres = Vundef).
    destruct (fn_return f); auto || contradiction.
  destruct H7. subst vres. apply step_skip_call; auto.
  (* Out_return None *)
  assert (fn_return f = Tvoid /\ vres = Vundef).
    destruct (fn_return f); auto || contradiction.
  destruct H8. subst vres.
  rewrite <- (is_call_cont_call_cont k H6). rewrite <- H7.
  apply step_return_0; auto.
  (* Out_return Some *)
  destruct H4.
  rewrite <- (is_call_cont_call_cont k H6). rewrite <- H7.
  eapply step_return_1; eauto.
  reflexivity. traceEq.

(* call external *)
  apply star_one. apply step_external_function; auto. 
Qed.

Lemma exec_stmt_steps:
   forall e le m s t le' m' out,
   exec_stmt ge e le m s t le' m' out ->
   forall f k, exists S,
   star step ge (State f s k e le m) t S
   /\ outcome_state_match e le' m' f k out S.
Proof (proj1 exec_stmt_eval_funcall_steps).

Lemma eval_funcall_steps:
   forall m fd args t m' res,
   eval_funcall ge m fd args t m' res ->
   forall k,
   is_call_cont k ->
   star step ge (Callstate fd args k m) t (Returnstate res k m').
Proof (proj2 exec_stmt_eval_funcall_steps).

Definition order (x y: unit) := False.

Lemma evalinf_funcall_forever:
  forall m fd args T k,
  evalinf_funcall ge m fd args T ->
  forever_N step order ge tt (Callstate fd args k m) T.
Proof.
  cofix CIH_FUN.
  assert (forall e le m s T f k,
          execinf_stmt ge e le m s T ->
          forever_N step order ge tt (State f s k e le m) T).
  cofix CIH_STMT.
  intros. inv H.

(* call  *)
  eapply forever_N_plus.
  apply plus_one. eapply step_call; eauto. 
  eapply CIH_FUN. eauto. traceEq.

(* seq 1 *)
  eapply forever_N_plus.
  apply plus_one. econstructor.
  apply CIH_STMT; eauto. traceEq.
(* seq 2 *)
  destruct (exec_stmt_steps _ _ _ _ _ _ _ _ H0 f (Kseq s2 k)) as [S1 [A1 B1]].
  inv B1.
  eapply forever_N_plus.
  eapply plus_left. constructor. eapply star_trans. eexact A1. 
  apply star_one. constructor. reflexivity. reflexivity.
  apply CIH_STMT; eauto. traceEq.

(* ifthenelse *)
  eapply forever_N_plus.
  apply plus_one. eapply step_ifthenelse with (b := b); eauto. 
  apply CIH_STMT; eauto. traceEq.

(* loop body 1 *)
  eapply forever_N_plus.
  eapply plus_one. constructor. 
  apply CIH_STMT; eauto. traceEq.
(* loop body 2 *)
  destruct (exec_stmt_steps _ _ _ _ _ _ _ _ H0 f (Kloop1 s1 s2 k)) as [S1 [A1 B1]].
  eapply forever_N_plus with (s2 := State f s2 (Kloop2 s1 s2 k) e le1 m1).
  eapply plus_left. constructor.
  eapply star_right. eexact A1.
  inv H1; inv B1; constructor; auto. 
  reflexivity. reflexivity.
  apply CIH_STMT; eauto. traceEq.
(* loop loop *)
  destruct (exec_stmt_steps _ _ _ _ _ _ _ _ H0 f (Kloop1 s1 s2 k)) as [S1 [A1 B1]].
  destruct (exec_stmt_steps _ _ _ _ _ _ _ _ H2 f (Kloop2 s1 s2 k)) as [S2 [A2 B2]].
  eapply forever_N_plus with (s2 := State f (Sloop s1 s2) k e le2 m2).
  eapply plus_left. constructor.
  eapply star_trans. eexact A1.
  eapply star_left. inv H1; inv B1; constructor; auto.
  eapply star_right. eexact A2.
  inv B2. constructor.
  reflexivity. reflexivity. reflexivity. reflexivity.
  apply CIH_STMT; eauto. traceEq.

(* switch *)
  eapply forever_N_plus.
  eapply plus_one. eapply step_switch; eauto.
  apply CIH_STMT; eauto.
  traceEq.

(* call internal *)
  intros. inv H0.
  eapply forever_N_plus.
  eapply plus_one. econstructor; eauto. 
  apply H; eauto.
  traceEq.
Qed.

Theorem bigstep_semantics_sound:
  bigstep_sound (bigstep_semantics prog) (semantics prog).
Proof.
  constructor; simpl; intros.
(* termination *)
  inv H. econstructor; econstructor.
  split. econstructor; eauto.
  split. eapply eval_funcall_steps. eauto. red; auto. 
  econstructor.
(* divergence *)
  inv H. econstructor.
  split. econstructor; eauto.
  eapply forever_N_forever with (order := order).
  red; intros. constructor; intros. red in H. elim H.
  eapply evalinf_funcall_forever; eauto. 
Qed.

End BIGSTEP_TO_TRANSITIONS.