1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
|
(* *********************************************************************)
(* *)
(* The Compcert verified compiler *)
(* *)
(* Xavier Leroy, INRIA Paris-Rocquencourt *)
(* *)
(* Copyright Institut National de Recherche en Informatique et en *)
(* Automatique. All rights reserved. This file is distributed *)
(* under the terms of the GNU General Public License as published by *)
(* the Free Software Foundation, either version 2 of the License, or *)
(* (at your option) any later version. This file is also distributed *)
(* under the terms of the INRIA Non-Commercial License Agreement. *)
(* *)
(* *********************************************************************)
(** The Clight language: a simplified version of Compcert C where all
expressions are pure and assignments and function calls are
statements, not expressions. *)
Require Import Coqlib.
Require Import Errors.
Require Import Maps.
Require Import Integers.
Require Import Floats.
Require Import Values.
Require Import AST.
Require Import Memory.
Require Import Events.
Require Import Globalenvs.
Require Import Smallstep.
Require Import Ctypes.
Require Import Cop.
(** * Abstract syntax *)
(** ** Expressions *)
(** Clight expressions correspond to the "pure" subset of C expressions.
The main omissions are string literals and assignment operators
([=], [+=], [++], etc). In Clight, assignment is a statement,
not an expression. Additionally, an expression can also refer to
temporary variables, which are a separate class of local variables
that do not reside in memory and whose address cannot be taken.
As in Compcert C, all expressions are annotated with their types,
as needed to resolve operator overloading and type-dependent behaviors. *)
Inductive expr : Type :=
| Econst_int: int -> type -> expr (**r integer literal *)
| Econst_float: float -> type -> expr (**r float literal *)
| Econst_long: int64 -> type -> expr (**r long integer literal *)
| Evar: ident -> type -> expr (**r variable *)
| Etempvar: ident -> type -> expr (**r temporary variable *)
| Ederef: expr -> type -> expr (**r pointer dereference (unary [*]) *)
| Eaddrof: expr -> type -> expr (**r address-of operator ([&]) *)
| Eunop: unary_operation -> expr -> type -> expr (**r unary operation *)
| Ebinop: binary_operation -> expr -> expr -> type -> expr (**r binary operation *)
| Ecast: expr -> type -> expr (**r type cast ([(ty) e]) *)
| Efield: expr -> ident -> type -> expr. (**r access to a member of a struct or union *)
(** [sizeof] and [alignof] are derived forms. *)
Definition Esizeof (ty' ty: type) : expr := Econst_int (Int.repr(sizeof ty')) ty.
Definition Ealignof (ty' ty: type) : expr := Econst_int (Int.repr(alignof ty')) ty.
(** Extract the type part of a type-annotated Clight expression. *)
Definition typeof (e: expr) : type :=
match e with
| Econst_int _ ty => ty
| Econst_float _ ty => ty
| Econst_long _ ty => ty
| Evar _ ty => ty
| Etempvar _ ty => ty
| Ederef _ ty => ty
| Eaddrof _ ty => ty
| Eunop _ _ ty => ty
| Ebinop _ _ _ ty => ty
| Ecast _ ty => ty
| Efield _ _ ty => ty
end.
(** ** Statements *)
(** Clight statements are similar to those of Compcert C, with the addition
of assigment (of a rvalue to a lvalue), assignment to a temporary,
and function call (with assignment of the result to a temporary).
The three C loops are replaced by a single infinite loop [Sloop s1
s2] that executes [s1] then [s2] repeatedly. A [continue] in [s1]
branches to [s2]. *)
Definition label := ident.
Inductive statement : Type :=
| Sskip : statement (**r do nothing *)
| Sassign : expr -> expr -> statement (**r assignment [lvalue = rvalue] *)
| Sset : ident -> expr -> statement (**r assignment [tempvar = rvalue] *)
| Scall: option ident -> expr -> list expr -> statement (**r function call *)
| Sbuiltin: option ident -> external_function -> typelist -> list expr -> statement (**r builtin invocation *)
| Ssequence : statement -> statement -> statement (**r sequence *)
| Sifthenelse : expr -> statement -> statement -> statement (**r conditional *)
| Sloop: statement -> statement -> statement (**r infinite loop *)
| Sbreak : statement (**r [break] statement *)
| Scontinue : statement (**r [continue] statement *)
| Sreturn : option expr -> statement (**r [return] statement *)
| Sswitch : expr -> labeled_statements -> statement (**r [switch] statement *)
| Slabel : label -> statement -> statement
| Sgoto : label -> statement
with labeled_statements : Type := (**r cases of a [switch] *)
| LSdefault: statement -> labeled_statements
| LScase: int -> statement -> labeled_statements -> labeled_statements.
(** The C loops are derived forms. *)
Definition Swhile (e: expr) (s: statement) :=
Sloop (Ssequence (Sifthenelse e Sskip Sbreak) s) Sskip.
Definition Sdowhile (s: statement) (e: expr) :=
Sloop s (Sifthenelse e Sskip Sbreak).
Definition Sfor (s1: statement) (e2: expr) (s3: statement) (s4: statement) :=
Ssequence s1 (Sloop (Ssequence (Sifthenelse e2 Sskip Sbreak) s3) s4).
(** ** Functions *)
(** A function definition is composed of its return type ([fn_return]),
the names and types of its parameters ([fn_params]), the names
and types of its local variables ([fn_vars]), and the body of the
function (a statement, [fn_body]). *)
Record function : Type := mkfunction {
fn_return: type;
fn_params: list (ident * type);
fn_vars: list (ident * type);
fn_temps: list (ident * type);
fn_body: statement
}.
Definition var_names (vars: list(ident * type)) : list ident :=
List.map (@fst ident type) vars.
(** Functions can either be defined ([Internal]) or declared as
external functions ([External]). *)
Inductive fundef : Type :=
| Internal: function -> fundef
| External: external_function -> typelist -> type -> fundef.
(** The type of a function definition. *)
Definition type_of_function (f: function) : type :=
Tfunction (type_of_params (fn_params f)) (fn_return f).
Definition type_of_fundef (f: fundef) : type :=
match f with
| Internal fd => type_of_function fd
| External id args res => Tfunction args res
end.
(** ** Programs *)
(** A program is a collection of named functions, plus a collection
of named global variables, carrying their types and optional initialization
data. See module [AST] for more details. *)
Definition program : Type := AST.program fundef type.
(** * Operational semantics *)
(** The semantics uses two environments. The global environment
maps names of functions and global variables to memory block references,
and function pointers to their definitions. (See module [Globalenvs].) *)
Definition genv := Genv.t fundef type.
(** The local environment maps local variables to block references and
types. The current value of the variable is stored in the
associated memory block. *)
Definition env := PTree.t (block * type). (* map variable -> location & type *)
Definition empty_env: env := (PTree.empty (block * type)).
(** The temporary environment maps local temporaries to values. *)
Definition temp_env := PTree.t val.
(** [deref_loc ty m b ofs v] computes the value of a datum
of type [ty] residing in memory [m] at block [b], offset [ofs].
If the type [ty] indicates an access by value, the corresponding
memory load is performed. If the type [ty] indicates an access by
reference or by copy, the pointer [Vptr b ofs] is returned. *)
Inductive deref_loc (ty: type) (m: mem) (b: block) (ofs: int) : val -> Prop :=
| deref_loc_value: forall chunk v,
access_mode ty = By_value chunk ->
Mem.loadv chunk m (Vptr b ofs) = Some v ->
deref_loc ty m b ofs v
| deref_loc_reference:
access_mode ty = By_reference ->
deref_loc ty m b ofs (Vptr b ofs)
| deref_loc_copy:
access_mode ty = By_copy ->
deref_loc ty m b ofs (Vptr b ofs).
(** Symmetrically, [assign_loc ty m b ofs v m'] returns the
memory state after storing the value [v] in the datum
of type [ty] residing in memory [m] at block [b], offset [ofs].
This is allowed only if [ty] indicates an access by value or by copy.
[m'] is the updated memory state. *)
Inductive assign_loc (ty: type) (m: mem) (b: block) (ofs: int):
val -> mem -> Prop :=
| assign_loc_value: forall v chunk m',
access_mode ty = By_value chunk ->
Mem.storev chunk m (Vptr b ofs) v = Some m' ->
assign_loc ty m b ofs v m'
| assign_loc_copy: forall b' ofs' bytes m',
access_mode ty = By_copy ->
(alignof ty | Int.unsigned ofs') -> (alignof ty | Int.unsigned ofs) ->
b' <> b \/ Int.unsigned ofs' = Int.unsigned ofs
\/ Int.unsigned ofs' + sizeof ty <= Int.unsigned ofs
\/ Int.unsigned ofs + sizeof ty <= Int.unsigned ofs' ->
Mem.loadbytes m b' (Int.unsigned ofs') (sizeof ty) = Some bytes ->
Mem.storebytes m b (Int.unsigned ofs) bytes = Some m' ->
assign_loc ty m b ofs (Vptr b' ofs') m'.
(** Allocation of function-local variables.
[alloc_variables e1 m1 vars e2 m2] allocates one memory block
for each variable declared in [vars], and associates the variable
name with this block. [e1] and [m1] are the initial local environment
and memory state. [e2] and [m2] are the final local environment
and memory state. *)
Inductive alloc_variables: env -> mem ->
list (ident * type) ->
env -> mem -> Prop :=
| alloc_variables_nil:
forall e m,
alloc_variables e m nil e m
| alloc_variables_cons:
forall e m id ty vars m1 b1 m2 e2,
Mem.alloc m 0 (sizeof ty) = (m1, b1) ->
alloc_variables (PTree.set id (b1, ty) e) m1 vars e2 m2 ->
alloc_variables e m ((id, ty) :: vars) e2 m2.
(** Initialization of local variables that are parameters to a function.
[bind_parameters e m1 params args m2] stores the values [args]
in the memory blocks corresponding to the variables [params].
[m1] is the initial memory state and [m2] the final memory state. *)
Inductive bind_parameters (e: env):
mem -> list (ident * type) -> list val ->
mem -> Prop :=
| bind_parameters_nil:
forall m,
bind_parameters e m nil nil m
| bind_parameters_cons:
forall m id ty params v1 vl b m1 m2,
PTree.get id e = Some(b, ty) ->
assign_loc ty m b Int.zero v1 m1 ->
bind_parameters e m1 params vl m2 ->
bind_parameters e m ((id, ty) :: params) (v1 :: vl) m2.
(** Initialization of temporary variables *)
Fixpoint create_undef_temps (temps: list (ident * type)) : temp_env :=
match temps with
| nil => PTree.empty val
| (id, t) :: temps' => PTree.set id Vundef (create_undef_temps temps')
end.
(** Initialization of temporary variables that are parameters to a function. *)
Fixpoint bind_parameter_temps (formals: list (ident * type)) (args: list val)
(le: temp_env) : option temp_env :=
match formals, args with
| nil, nil => Some le
| (id, t) :: xl, v :: vl => bind_parameter_temps xl vl (PTree.set id v le)
| _, _ => None
end.
(** Return the list of blocks in the codomain of [e], with low and high bounds. *)
Definition block_of_binding (id_b_ty: ident * (block * type)) :=
match id_b_ty with (id, (b, ty)) => (b, 0, sizeof ty) end.
Definition blocks_of_env (e: env) : list (block * Z * Z) :=
List.map block_of_binding (PTree.elements e).
(** Optional assignment to a temporary *)
Definition set_opttemp (optid: option ident) (v: val) (le: temp_env) :=
match optid with
| None => le
| Some id => PTree.set id v le
end.
(** Selection of the appropriate case of a [switch], given the value [n]
of the selector expression. *)
Fixpoint select_switch (n: int) (sl: labeled_statements)
{struct sl}: labeled_statements :=
match sl with
| LSdefault _ => sl
| LScase c s sl' => if Int.eq c n then sl else select_switch n sl'
end.
(** Turn a labeled statement into a sequence *)
Fixpoint seq_of_labeled_statement (sl: labeled_statements) : statement :=
match sl with
| LSdefault s => s
| LScase c s sl' => Ssequence s (seq_of_labeled_statement sl')
end.
Section SEMANTICS.
Variable ge: genv.
(** [type_of_global b] returns the type of the global variable or function
at address [b]. *)
Definition type_of_global (b: block) : option type :=
match Genv.find_var_info ge b with
| Some gv => Some gv.(gvar_info)
| None =>
match Genv.find_funct_ptr ge b with
| Some fd => Some(type_of_fundef fd)
| None => None
end
end.
(** ** Evaluation of expressions *)
Section EXPR.
Variable e: env.
Variable le: temp_env.
Variable m: mem.
(** [eval_expr ge e m a v] defines the evaluation of expression [a]
in r-value position. [v] is the value of the expression.
[e] is the current environment and [m] is the current memory state. *)
Inductive eval_expr: expr -> val -> Prop :=
| eval_Econst_int: forall i ty,
eval_expr (Econst_int i ty) (Vint i)
| eval_Econst_float: forall f ty,
eval_expr (Econst_float f ty) (Vfloat f)
| eval_Econst_long: forall i ty,
eval_expr (Econst_long i ty) (Vlong i)
| eval_Etempvar: forall id ty v,
le!id = Some v ->
eval_expr (Etempvar id ty) v
| eval_Eaddrof: forall a ty loc ofs,
eval_lvalue a loc ofs ->
eval_expr (Eaddrof a ty) (Vptr loc ofs)
| eval_Eunop: forall op a ty v1 v,
eval_expr a v1 ->
sem_unary_operation op v1 (typeof a) = Some v ->
eval_expr (Eunop op a ty) v
| eval_Ebinop: forall op a1 a2 ty v1 v2 v,
eval_expr a1 v1 ->
eval_expr a2 v2 ->
sem_binary_operation op v1 (typeof a1) v2 (typeof a2) m = Some v ->
eval_expr (Ebinop op a1 a2 ty) v
| eval_Ecast: forall a ty v1 v,
eval_expr a v1 ->
sem_cast v1 (typeof a) ty = Some v ->
eval_expr (Ecast a ty) v
| eval_Elvalue: forall a loc ofs v,
eval_lvalue a loc ofs ->
deref_loc (typeof a) m loc ofs v ->
eval_expr a v
(** [eval_lvalue ge e m a b ofs] defines the evaluation of expression [a]
in l-value position. The result is the memory location [b, ofs]
that contains the value of the expression [a]. *)
with eval_lvalue: expr -> block -> int -> Prop :=
| eval_Evar_local: forall id l ty,
e!id = Some(l, ty) ->
eval_lvalue (Evar id ty) l Int.zero
| eval_Evar_global: forall id l ty,
e!id = None ->
Genv.find_symbol ge id = Some l ->
type_of_global l = Some ty ->
eval_lvalue (Evar id ty) l Int.zero
| eval_Ederef: forall a ty l ofs,
eval_expr a (Vptr l ofs) ->
eval_lvalue (Ederef a ty) l ofs
| eval_Efield_struct: forall a i ty l ofs id fList att delta,
eval_expr a (Vptr l ofs) ->
typeof a = Tstruct id fList att ->
field_offset i fList = OK delta ->
eval_lvalue (Efield a i ty) l (Int.add ofs (Int.repr delta))
| eval_Efield_union: forall a i ty l ofs id fList att,
eval_expr a (Vptr l ofs) ->
typeof a = Tunion id fList att ->
eval_lvalue (Efield a i ty) l ofs.
Scheme eval_expr_ind2 := Minimality for eval_expr Sort Prop
with eval_lvalue_ind2 := Minimality for eval_lvalue Sort Prop.
Combined Scheme eval_expr_lvalue_ind from eval_expr_ind2, eval_lvalue_ind2.
(** [eval_exprlist ge e m al tyl vl] evaluates a list of r-value
expressions [al], cast their values to the types given in [tyl],
and produces the list of cast values [vl]. It is used to
evaluate the arguments of function calls. *)
Inductive eval_exprlist: list expr -> typelist -> list val -> Prop :=
| eval_Enil:
eval_exprlist nil Tnil nil
| eval_Econs: forall a bl ty tyl v1 v2 vl,
eval_expr a v1 ->
sem_cast v1 (typeof a) ty = Some v2 ->
eval_exprlist bl tyl vl ->
eval_exprlist (a :: bl) (Tcons ty tyl) (v2 :: vl).
End EXPR.
(** ** Transition semantics for statements and functions *)
(** Continuations *)
Inductive cont: Type :=
| Kstop: cont
| Kseq: statement -> cont -> cont (**r [Kseq s2 k] = after [s1] in [s1;s2] *)
| Kloop1: statement -> statement -> cont -> cont (**r [Kloop1 s1 s2 k] = after [s1] in [Sloop s1 s2] *)
| Kloop2: statement -> statement -> cont -> cont (**r [Kloop1 s1 s2 k] = after [s2] in [Sloop s1 s2] *)
| Kswitch: cont -> cont (**r catches [break] statements arising out of [switch] *)
| Kcall: option ident -> (**r where to store result *)
function -> (**r calling function *)
env -> (**r local env of calling function *)
temp_env -> (**r temporary env of calling function *)
cont -> cont.
(** Pop continuation until a call or stop *)
Fixpoint call_cont (k: cont) : cont :=
match k with
| Kseq s k => call_cont k
| Kloop1 s1 s2 k => call_cont k
| Kloop2 s1 s2 k => call_cont k
| Kswitch k => call_cont k
| _ => k
end.
Definition is_call_cont (k: cont) : Prop :=
match k with
| Kstop => True
| Kcall _ _ _ _ _ => True
| _ => False
end.
(** States *)
Inductive state: Type :=
| State
(f: function)
(s: statement)
(k: cont)
(e: env)
(le: temp_env)
(m: mem) : state
| Callstate
(fd: fundef)
(args: list val)
(k: cont)
(m: mem) : state
| Returnstate
(res: val)
(k: cont)
(m: mem) : state.
(** Find the statement and manufacture the continuation
corresponding to a label *)
Fixpoint find_label (lbl: label) (s: statement) (k: cont)
{struct s}: option (statement * cont) :=
match s with
| Ssequence s1 s2 =>
match find_label lbl s1 (Kseq s2 k) with
| Some sk => Some sk
| None => find_label lbl s2 k
end
| Sifthenelse a s1 s2 =>
match find_label lbl s1 k with
| Some sk => Some sk
| None => find_label lbl s2 k
end
| Sloop s1 s2 =>
match find_label lbl s1 (Kloop1 s1 s2 k) with
| Some sk => Some sk
| None => find_label lbl s2 (Kloop2 s1 s2 k)
end
| Sswitch e sl =>
find_label_ls lbl sl (Kswitch k)
| Slabel lbl' s' =>
if ident_eq lbl lbl' then Some(s', k) else find_label lbl s' k
| _ => None
end
with find_label_ls (lbl: label) (sl: labeled_statements) (k: cont)
{struct sl}: option (statement * cont) :=
match sl with
| LSdefault s => find_label lbl s k
| LScase _ s sl' =>
match find_label lbl s (Kseq (seq_of_labeled_statement sl') k) with
| Some sk => Some sk
| None => find_label_ls lbl sl' k
end
end.
(** Semantics for allocation of variables and binding of parameters at
function entry. Two semantics are supported: one where
parameters are local variables, reside in memory, and can have their address
taken; the other where parameters are temporary variables and do not reside
in memory. We parameterize the [step] transition relation over the
parameter binding semantics, then instantiate it later to give the two
semantics described above. *)
Variable function_entry: function -> list val -> mem -> env -> temp_env -> mem -> Prop.
(** Transition relation *)
Inductive step: state -> trace -> state -> Prop :=
| step_assign: forall f a1 a2 k e le m loc ofs v2 v m',
eval_lvalue e le m a1 loc ofs ->
eval_expr e le m a2 v2 ->
sem_cast v2 (typeof a2) (typeof a1) = Some v ->
assign_loc (typeof a1) m loc ofs v m' ->
step (State f (Sassign a1 a2) k e le m)
E0 (State f Sskip k e le m')
| step_set: forall f id a k e le m v,
eval_expr e le m a v ->
step (State f (Sset id a) k e le m)
E0 (State f Sskip k e (PTree.set id v le) m)
| step_call: forall f optid a al k e le m tyargs tyres vf vargs fd,
classify_fun (typeof a) = fun_case_f tyargs tyres ->
eval_expr e le m a vf ->
eval_exprlist e le m al tyargs vargs ->
Genv.find_funct ge vf = Some fd ->
type_of_fundef fd = Tfunction tyargs tyres ->
step (State f (Scall optid a al) k e le m)
E0 (Callstate fd vargs (Kcall optid f e le k) m)
| step_builtin: forall f optid ef tyargs al k e le m vargs t vres m',
eval_exprlist e le m al tyargs vargs ->
external_call ef ge vargs m t vres m' ->
step (State f (Sbuiltin optid ef tyargs al) k e le m)
t (State f Sskip k e (set_opttemp optid vres le) m')
| step_seq: forall f s1 s2 k e le m,
step (State f (Ssequence s1 s2) k e le m)
E0 (State f s1 (Kseq s2 k) e le m)
| step_skip_seq: forall f s k e le m,
step (State f Sskip (Kseq s k) e le m)
E0 (State f s k e le m)
| step_continue_seq: forall f s k e le m,
step (State f Scontinue (Kseq s k) e le m)
E0 (State f Scontinue k e le m)
| step_break_seq: forall f s k e le m,
step (State f Sbreak (Kseq s k) e le m)
E0 (State f Sbreak k e le m)
| step_ifthenelse: forall f a s1 s2 k e le m v1 b,
eval_expr e le m a v1 ->
bool_val v1 (typeof a) = Some b ->
step (State f (Sifthenelse a s1 s2) k e le m)
E0 (State f (if b then s1 else s2) k e le m)
| step_loop: forall f s1 s2 k e le m,
step (State f (Sloop s1 s2) k e le m)
E0 (State f s1 (Kloop1 s1 s2 k) e le m)
| step_skip_or_continue_loop1: forall f s1 s2 k e le m x,
x = Sskip \/ x = Scontinue ->
step (State f x (Kloop1 s1 s2 k) e le m)
E0 (State f s2 (Kloop2 s1 s2 k) e le m)
| step_break_loop1: forall f s1 s2 k e le m,
step (State f Sbreak (Kloop1 s1 s2 k) e le m)
E0 (State f Sskip k e le m)
| step_skip_loop2: forall f s1 s2 k e le m,
step (State f Sskip (Kloop2 s1 s2 k) e le m)
E0 (State f (Sloop s1 s2) k e le m)
| step_break_loop2: forall f s1 s2 k e le m,
step (State f Sbreak (Kloop2 s1 s2 k) e le m)
E0 (State f Sskip k e le m)
| step_return_0: forall f k e le m m',
Mem.free_list m (blocks_of_env e) = Some m' ->
step (State f (Sreturn None) k e le m)
E0 (Returnstate Vundef (call_cont k) m')
| step_return_1: forall f a k e le m v v' m',
eval_expr e le m a v ->
sem_cast v (typeof a) f.(fn_return) = Some v' ->
Mem.free_list m (blocks_of_env e) = Some m' ->
step (State f (Sreturn (Some a)) k e le m)
E0 (Returnstate v' (call_cont k) m')
| step_skip_call: forall f k e le m m',
is_call_cont k ->
Mem.free_list m (blocks_of_env e) = Some m' ->
step (State f Sskip k e le m)
E0 (Returnstate Vundef k m')
| step_switch: forall f a sl k e le m n,
eval_expr e le m a (Vint n) ->
step (State f (Sswitch a sl) k e le m)
E0 (State f (seq_of_labeled_statement (select_switch n sl)) (Kswitch k) e le m)
| step_skip_break_switch: forall f x k e le m,
x = Sskip \/ x = Sbreak ->
step (State f x (Kswitch k) e le m)
E0 (State f Sskip k e le m)
| step_continue_switch: forall f k e le m,
step (State f Scontinue (Kswitch k) e le m)
E0 (State f Scontinue k e le m)
| step_label: forall f lbl s k e le m,
step (State f (Slabel lbl s) k e le m)
E0 (State f s k e le m)
| step_goto: forall f lbl k e le m s' k',
find_label lbl f.(fn_body) (call_cont k) = Some (s', k') ->
step (State f (Sgoto lbl) k e le m)
E0 (State f s' k' e le m)
| step_internal_function: forall f vargs k m e le m1,
function_entry f vargs m e le m1 ->
step (Callstate (Internal f) vargs k m)
E0 (State f f.(fn_body) k e le m1)
| step_external_function: forall ef targs tres vargs k m vres t m',
external_call ef ge vargs m t vres m' ->
step (Callstate (External ef targs tres) vargs k m)
t (Returnstate vres k m')
| step_returnstate: forall v optid f e le k m,
step (Returnstate v (Kcall optid f e le k) m)
E0 (State f Sskip k e (set_opttemp optid v le) m).
(** ** Whole-program semantics *)
(** Execution of whole programs are described as sequences of transitions
from an initial state to a final state. An initial state is a [Callstate]
corresponding to the invocation of the ``main'' function of the program
without arguments and with an empty continuation. *)
Inductive initial_state (p: program): state -> Prop :=
| initial_state_intro: forall b f m0,
let ge := Genv.globalenv p in
Genv.init_mem p = Some m0 ->
Genv.find_symbol ge p.(prog_main) = Some b ->
Genv.find_funct_ptr ge b = Some f ->
type_of_fundef f = Tfunction Tnil type_int32s ->
initial_state p (Callstate f nil Kstop m0).
(** A final state is a [Returnstate] with an empty continuation. *)
Inductive final_state: state -> int -> Prop :=
| final_state_intro: forall r m,
final_state (Returnstate (Vint r) Kstop m) r.
End SEMANTICS.
(** The two semantics for function parameters. First, parameters as local variables. *)
Inductive function_entry1 (f: function) (vargs: list val) (m: mem) (e: env) (le: temp_env) (m': mem) : Prop :=
| function_entry1_intro: forall m1,
list_norepet (var_names f.(fn_params) ++ var_names f.(fn_vars)) ->
alloc_variables empty_env m (f.(fn_params) ++ f.(fn_vars)) e m1 ->
bind_parameters e m1 f.(fn_params) vargs m' ->
le = create_undef_temps f.(fn_temps) ->
function_entry1 f vargs m e le m'.
Definition step1 (ge: genv) := step ge function_entry1.
(** Second, parameters as temporaries. *)
Inductive function_entry2 (f: function) (vargs: list val) (m: mem) (e: env) (le: temp_env) (m': mem) : Prop :=
| function_entry2_intro:
list_norepet (var_names f.(fn_vars)) ->
list_norepet (var_names f.(fn_params)) ->
list_disjoint (var_names f.(fn_params)) (var_names f.(fn_temps)) ->
alloc_variables empty_env m f.(fn_vars) e m' ->
bind_parameter_temps f.(fn_params) vargs (create_undef_temps f.(fn_temps)) = Some le ->
function_entry2 f vargs m e le m'.
Definition step2 (ge: genv) := step ge function_entry2.
(** Wrapping up these definitions in two small-step semantics. *)
Definition semantics1 (p: program) :=
Semantics step1 (initial_state p) final_state (Genv.globalenv p).
Definition semantics2 (p: program) :=
Semantics step2 (initial_state p) final_state (Genv.globalenv p).
(** This semantics is receptive to changes in events. *)
Lemma semantics_receptive:
forall (p: program), receptive (semantics1 p).
Proof.
intros. constructor; simpl; intros.
(* receptiveness *)
assert (t1 = E0 -> exists s2, step1 (Genv.globalenv p) s t2 s2).
intros. subst. inv H0. exists s1; auto.
inversion H; subst; auto.
(* builtin *)
exploit external_call_receptive; eauto. intros [vres2 [m2 EC2]].
econstructor; econstructor; eauto.
(* external *)
exploit external_call_receptive; eauto. intros [vres2 [m2 EC2]].
exists (Returnstate vres2 k m2). econstructor; eauto.
(* trace length *)
red; intros. inv H; simpl; try omega.
eapply external_call_trace_length; eauto.
eapply external_call_trace_length; eauto.
Qed.
|