summaryrefslogtreecommitdiff
path: root/cfrontend/Cexec.v
blob: eea1997e8ea113a33bb2e638ad28105b091bbce8 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
(* *********************************************************************)
(*                                                                     *)
(*              The Compcert verified compiler                         *)
(*                                                                     *)
(*          Xavier Leroy, INRIA Paris-Rocquencourt                     *)
(*                                                                     *)
(*  Copyright Institut National de Recherche en Informatique et en     *)
(*  Automatique.  All rights reserved.  This file is distributed       *)
(*  under the terms of the INRIA Non-Commercial License Agreement.     *)
(*                                                                     *)
(* *********************************************************************)

(** Animating the CompCert C semantics *)

Require Import Axioms.
Require Import Classical.
Require Import Coqlib.
Require Import Errors.
Require Import Maps.
Require Import Integers.
Require Import Floats.
Require Import Values.
Require Import AST.
Require Import Memory.
Require Import Events.
Require Import Globalenvs.
Require Import Determinism.
Require Import Ctypes.
Require Import Cop.
Require Import Csyntax.
Require Import Csem.
Require Cstrategy.

(** Error monad with options or lists *)

Notation "'do' X <- A ; B" := (match A with Some X => B | None => None end)
  (at level 200, X ident, A at level 100, B at level 200)
  : option_monad_scope.

Notation "'do' X , Y <- A ; B" := (match A with Some (X, Y) => B | None => None end)
  (at level 200, X ident, Y ident, A at level 100, B at level 200)
  : option_monad_scope.

Notation "'do' X , Y , Z <- A ; B" := (match A with Some (X, Y, Z) => B | None => None end)
  (at level 200, X ident, Y ident, Z ident, A at level 100, B at level 200)
  : option_monad_scope.

Notation " 'check' A ; B" := (if A then B else None)
  (at level 200, A at level 100, B at level 200)
  : option_monad_scope.

Notation "'do' X <- A ; B" := (match A with Some X => B | None => nil end)
  (at level 200, X ident, A at level 100, B at level 200)
  : list_monad_scope.

Notation " 'check' A ; B" := (if A then B else nil)
  (at level 200, A at level 100, B at level 200)
  : list_monad_scope.

Definition is_val (a: expr) : option (val * type) :=
  match a with
  | Eval v ty => Some(v, ty)
  | _ => None
  end.

Lemma is_val_inv:
  forall a v ty, is_val a = Some(v, ty) -> a = Eval v ty.
Proof.
  intros until ty. destruct a; simpl; congruence.
Qed.

Definition is_loc (a: expr) : option (block * int * type) :=
  match a with
  | Eloc b ofs ty => Some(b, ofs, ty)
  | _ => None
  end.

Lemma is_loc_inv:
  forall a b ofs ty, is_loc a = Some(b, ofs, ty) -> a = Eloc b ofs ty.
Proof.
  intros until ty. destruct a; simpl; congruence.
Qed.

Local Open Scope option_monad_scope. 

Fixpoint is_val_list (al: exprlist) : option (list (val * type)) :=
  match al with
  | Enil => Some nil
  | Econs a1 al => do vt1 <- is_val a1; do vtl <- is_val_list al; Some(vt1::vtl)
  end.

Definition is_skip (s: statement) : {s = Sskip} + {s <> Sskip}.
Proof.
  destruct s; (left; congruence) || (right; congruence).
Defined.

(** * Events, volatile memory accesses, and external functions. *)

Section EXEC.

Variable ge: genv.

Definition eventval_of_val (v: val) (t: typ) : option eventval :=
  match v, t with
  | Vint i, AST.Tint => Some (EVint i)
  | Vfloat f, AST.Tfloat => Some (EVfloat f)
  | Vsingle f, AST.Tsingle => Some (EVsingle f)
  | Vlong n, AST.Tlong => Some (EVlong n)
  | Vptr b ofs, AST.Tint => do id <- Genv.invert_symbol ge b; Some (EVptr_global id ofs)
  | _, _ => None
  end.

Fixpoint list_eventval_of_val (vl: list val) (tl: list typ) : option (list eventval) :=
  match vl, tl with
  | nil, nil => Some nil
  | v1::vl, t1::tl =>
      do ev1 <- eventval_of_val v1 t1;
      do evl <- list_eventval_of_val vl tl;
      Some (ev1 :: evl)
  | _, _ => None
  end.

Definition val_of_eventval (ev: eventval) (t: typ) : option val :=
  match ev, t with
  | EVint i, AST.Tint => Some (Vint i)
  | EVfloat f, AST.Tfloat => Some (Vfloat f)
  | EVsingle f, AST.Tsingle => Some (Vsingle f)
  | EVlong n, AST.Tlong => Some (Vlong n)
  | EVptr_global id ofs, AST.Tint => do b <- Genv.find_symbol ge id; Some (Vptr b ofs)
  | _, _ => None
  end.

Lemma eventval_of_val_sound:
  forall v t ev, eventval_of_val v t = Some ev -> eventval_match ge ev t v.
Proof.
  intros. destruct v; destruct t; simpl in H; inv H; try constructor.
  destruct (Genv.invert_symbol ge b) as [id|] eqn:?; inv H1. 
  constructor. apply Genv.invert_find_symbol; auto.
Qed.

Lemma eventval_of_val_complete:
  forall ev t v, eventval_match ge ev t v -> eventval_of_val v t = Some ev.
Proof.
  induction 1; simpl; auto.
  rewrite (Genv.find_invert_symbol _ _ H). auto. 
Qed.

Lemma list_eventval_of_val_sound:
  forall vl tl evl, list_eventval_of_val vl tl = Some evl -> eventval_list_match ge evl tl vl.
Proof with try discriminate.
  induction vl; destruct tl; simpl; intros; inv H.
  constructor.
  destruct (eventval_of_val a t) as [ev1|] eqn:?...
  destruct (list_eventval_of_val vl tl) as [evl'|] eqn:?...
  inv H1. constructor. apply eventval_of_val_sound; auto. eauto.
Qed.

Lemma list_eventval_of_val_complete:
  forall evl tl vl, eventval_list_match ge evl tl vl -> list_eventval_of_val vl tl = Some evl.
Proof.
  induction 1; simpl. auto. 
  rewrite (eventval_of_val_complete _ _ _ H). rewrite IHeventval_list_match. auto.
Qed.

Lemma val_of_eventval_sound:
  forall ev t v, val_of_eventval ev t = Some v -> eventval_match ge ev t v.
Proof.
  intros. destruct ev; destruct t; simpl in H; inv H; try constructor.
  destruct (Genv.find_symbol ge i) as [b|] eqn:?; inv H1.
  constructor. auto.
Qed.

Lemma val_of_eventval_complete:
  forall ev t v, eventval_match ge ev t v -> val_of_eventval ev t = Some v.
Proof.
  induction 1; simpl; auto. rewrite H; auto.
Qed.

(** Volatile memory accesses. *)

Definition do_volatile_load (w: world) (chunk: memory_chunk) (m: mem) (b: block) (ofs: int) 
                             : option (world * trace * val) :=
  if block_is_volatile ge b then
    do id <- Genv.invert_symbol ge b;
    match nextworld_vload w chunk id ofs with
    | None => None
    | Some(res, w') =>
        do vres <- val_of_eventval res (type_of_chunk chunk);
        Some(w', Event_vload chunk id ofs res :: nil, Val.load_result chunk vres)
    end
  else
    do v <- Mem.load chunk m b (Int.unsigned ofs);
    Some(w, E0, v).

Definition do_volatile_store (w: world) (chunk: memory_chunk) (m: mem) (b: block) (ofs: int) (v: val)
                             : option (world * trace * mem) :=
  if block_is_volatile ge b then
    do id <- Genv.invert_symbol ge b;
    do ev <- eventval_of_val (Val.load_result chunk v) (type_of_chunk chunk);
    do w' <- nextworld_vstore w chunk id ofs ev;
    Some(w', Event_vstore chunk id ofs ev :: nil, m)
  else
    do m' <- Mem.store chunk m b (Int.unsigned ofs) v;
    Some(w, E0, m').

Ltac mydestr :=
  match goal with
  | [ |- None = Some _ -> _ ] => intro X; discriminate
  | [ |- Some _ = Some _ -> _ ] => intro X; inv X
  | [ |- match ?x with Some _ => _ | None => _ end = Some _ -> _ ] => destruct x eqn:?; mydestr
  | [ |- match ?x with true => _ | false => _ end = Some _ -> _ ] => destruct x eqn:?; mydestr
  | [ |- match ?x with left _ => _ | right _ => _ end = Some _ -> _ ] => destruct x; mydestr
  | _ => idtac
  end.

Lemma do_volatile_load_sound:
  forall w chunk m b ofs w' t v,
  do_volatile_load w chunk m b ofs = Some(w', t, v) ->
  volatile_load ge chunk m b ofs t v /\ possible_trace w t w'.
Proof.
  intros until v. unfold do_volatile_load. mydestr. 
  destruct p as [ev w'']. mydestr. 
  split. constructor; auto. apply Genv.invert_find_symbol; auto. 
  apply val_of_eventval_sound; auto. 
  econstructor. constructor; eauto. constructor. 
  split. constructor; auto. constructor.
Qed.

Lemma do_volatile_load_complete:
  forall w chunk m b ofs w' t v,
  volatile_load ge chunk m b ofs t v -> possible_trace w t w' ->
  do_volatile_load w chunk m b ofs = Some(w', t, v).
Proof.
  unfold do_volatile_load; intros. inv H. 
  rewrite H1. rewrite (Genv.find_invert_symbol _ _ H2). inv H0. inv H8. inv H6. rewrite H9.
  rewrite (val_of_eventval_complete _ _ _ H3). auto.
  rewrite H1. rewrite H2. inv H0. auto.
Qed.

Lemma do_volatile_store_sound:
  forall w chunk m b ofs v w' t m',
  do_volatile_store w chunk m b ofs v = Some(w', t, m') ->
  volatile_store ge chunk m b ofs v t m' /\ possible_trace w t w'.
Proof.
  intros until m'. unfold do_volatile_store. mydestr. 
  split. constructor; auto. apply Genv.invert_find_symbol; auto. 
  apply eventval_of_val_sound; auto. 
  econstructor. constructor; eauto. constructor. 
  split. constructor; auto. constructor.
Qed.

Lemma do_volatile_store_complete:
  forall w chunk m b ofs v w' t m',
  volatile_store ge chunk m b ofs v t m' -> possible_trace w t w' ->
  do_volatile_store w chunk m b ofs v = Some(w', t, m').
Proof.
  unfold do_volatile_store; intros. inv H. 
  rewrite H1. rewrite (Genv.find_invert_symbol _ _ H2).
  rewrite (eventval_of_val_complete _ _ _ H3).
  inv H0. inv H8. inv H6. rewrite H9. auto.
  rewrite H1. rewrite H2. inv H0. auto.
Qed.

(** Accessing locations *)

Definition do_deref_loc (w: world) (ty: type) (m: mem) (b: block) (ofs: int) : option (world * trace * val) :=
  match access_mode ty with
  | By_value chunk =>
      match type_is_volatile ty with
      | false => do v <- Mem.loadv chunk m (Vptr b ofs); Some(w, E0, v)
      | true => do_volatile_load w chunk m b ofs
      end
  | By_reference => Some(w, E0, Vptr b ofs)
  | By_copy => Some(w, E0, Vptr b ofs)
  | _ => None
  end.

Definition assign_copy_ok (ty: type) (b: block) (ofs: int) (b': block) (ofs': int) : Prop :=
  (alignof_blockcopy ty | Int.unsigned ofs') /\ (alignof_blockcopy ty | Int.unsigned ofs) /\
  (b' <> b \/ Int.unsigned ofs' = Int.unsigned ofs
           \/ Int.unsigned ofs' + sizeof ty <= Int.unsigned ofs
           \/ Int.unsigned ofs + sizeof ty <= Int.unsigned ofs').

Remark check_assign_copy:
  forall (ty: type) (b: block) (ofs: int) (b': block) (ofs': int),
  { assign_copy_ok ty b ofs b' ofs' } + {~ assign_copy_ok ty b ofs b' ofs' }.
Proof with try (right; intuition omega).
  intros. unfold assign_copy_ok. 
  assert (alignof_blockcopy ty > 0) by apply alignof_blockcopy_pos.
  destruct (Zdivide_dec (alignof_blockcopy ty) (Int.unsigned ofs')); auto...
  destruct (Zdivide_dec (alignof_blockcopy ty) (Int.unsigned ofs)); auto...
  assert (Y: {b' <> b \/
              Int.unsigned ofs' = Int.unsigned ofs \/
              Int.unsigned ofs' + sizeof ty <= Int.unsigned ofs \/
              Int.unsigned ofs + sizeof ty <= Int.unsigned ofs'} +
           {~(b' <> b \/
              Int.unsigned ofs' = Int.unsigned ofs \/
              Int.unsigned ofs' + sizeof ty <= Int.unsigned ofs \/
              Int.unsigned ofs + sizeof ty <= Int.unsigned ofs')}).
  destruct (eq_block b' b); auto.
  destruct (zeq (Int.unsigned ofs') (Int.unsigned ofs)); auto.
  destruct (zle (Int.unsigned ofs' + sizeof ty) (Int.unsigned ofs)); auto.
  destruct (zle (Int.unsigned ofs + sizeof ty) (Int.unsigned ofs')); auto.
  right; intuition omega.
  destruct Y... left; intuition omega. 
Defined.

Definition do_assign_loc (w: world) (ty: type) (m: mem) (b: block) (ofs: int) (v: val): option (world * trace * mem) :=
  match access_mode ty with
  | By_value chunk =>
      match type_is_volatile ty with
      | false => do m' <- Mem.storev chunk m (Vptr b ofs) v; Some(w, E0, m')
      | true => do_volatile_store w chunk m b ofs v
      end
  | By_copy =>
      match v with
      | Vptr b' ofs' =>
          if check_assign_copy ty b ofs b' ofs' then
            do bytes <- Mem.loadbytes m b' (Int.unsigned ofs') (sizeof ty);
            do m' <- Mem.storebytes m b (Int.unsigned ofs) bytes;
            Some(w, E0, m')
          else None
      | _ => None
      end
  | _ => None
  end.

Lemma do_deref_loc_sound:
  forall w ty m b ofs w' t v,
  do_deref_loc w ty m b ofs = Some(w', t, v) ->
  deref_loc ge ty m b ofs t v /\ possible_trace w t w'.
Proof.
  unfold do_deref_loc; intros until v.
  destruct (access_mode ty) eqn:?; mydestr. 
  intros. exploit do_volatile_load_sound; eauto. intuition. eapply deref_loc_volatile; eauto. 
  split. eapply deref_loc_value; eauto. constructor.
  split. eapply deref_loc_reference; eauto. constructor.
  split. eapply deref_loc_copy; eauto. constructor.
Qed.

Lemma do_deref_loc_complete:
  forall w ty m b ofs w' t v,
  deref_loc ge ty m b ofs t v -> possible_trace w t w' ->
  do_deref_loc w ty m b ofs = Some(w', t, v).
Proof.
  unfold do_deref_loc; intros. inv H.
  inv H0. rewrite H1; rewrite H2; rewrite H3; auto.
  rewrite H1; rewrite H2. apply do_volatile_load_complete; auto.
  inv H0. rewrite H1. auto.
  inv H0. rewrite H1. auto.
Qed.

Lemma do_assign_loc_sound:
  forall w ty m b ofs v w' t m',
  do_assign_loc w ty m b ofs v = Some(w', t, m') ->
  assign_loc ge ty m b ofs v t m' /\ possible_trace w t w'.
Proof.
  unfold do_assign_loc; intros until m'.
  destruct (access_mode ty) eqn:?; mydestr. 
  intros. exploit do_volatile_store_sound; eauto. intuition. eapply assign_loc_volatile; eauto. 
  split. eapply assign_loc_value; eauto. constructor.
  destruct v; mydestr. destruct a as [P [Q R]]. 
  split. eapply assign_loc_copy; eauto. constructor.
Qed.

Lemma do_assign_loc_complete:
  forall w ty m b ofs v w' t m',
  assign_loc ge ty m b ofs v t m' -> possible_trace w t w' ->
  do_assign_loc w ty m b ofs v = Some(w', t, m').
Proof.
  unfold do_assign_loc; intros. inv H.
  inv H0. rewrite H1; rewrite H2; rewrite H3; auto.
  rewrite H1; rewrite H2. apply do_volatile_store_complete; auto.
  rewrite H1. destruct (check_assign_copy ty b ofs b' ofs').
  inv H0. rewrite H5; rewrite H6; auto.
  elim n. red; tauto. 
Qed.

(** External calls *)

Variable do_external_function:
  ident -> signature -> genv -> world -> list val -> mem -> option (world * trace * val * mem).

Hypothesis do_external_function_sound:
  forall id sg ge vargs m t vres m' w w',
  do_external_function id sg ge w vargs m = Some(w', t, vres, m') ->
  external_functions_sem id sg ge vargs m t vres m' /\ possible_trace w t w'.

Hypothesis do_external_function_complete:
  forall id sg ge vargs m t vres m' w w',
  external_functions_sem id sg ge vargs m t vres m' ->
  possible_trace w t w' ->
  do_external_function id sg ge w vargs m = Some(w', t, vres, m').

Variable do_inline_assembly:
  ident -> genv -> world -> list val -> mem -> option (world * trace * val * mem).

Hypothesis do_inline_assembly_sound:
  forall txt ge vargs m t vres m' w w',
  do_inline_assembly txt ge w vargs m = Some(w', t, vres, m') ->
  inline_assembly_sem txt ge vargs m t vres m' /\ possible_trace w t w'.

Hypothesis do_inline_assembly_complete:
  forall txt ge vargs m t vres m' w w',
  inline_assembly_sem txt ge vargs m t vres m' ->
  possible_trace w t w' ->
  do_inline_assembly txt ge w vargs m = Some(w', t, vres, m').

Definition do_ef_volatile_load (chunk: memory_chunk)
       (w: world) (vargs: list val) (m: mem) : option (world * trace * val * mem) :=
  match vargs with
  | Vptr b ofs :: nil => do w',t,v <- do_volatile_load w chunk m b ofs; Some(w',t,v,m)
  | _ => None
  end.

Definition do_ef_volatile_store (chunk: memory_chunk)
       (w: world) (vargs: list val) (m: mem) : option (world * trace * val * mem) :=
  match vargs with
  | Vptr b ofs :: v :: nil => do w',t,m' <- do_volatile_store w chunk m b ofs v; Some(w',t,Vundef,m')
  | _ => None
  end.

Definition do_ef_volatile_load_global (chunk: memory_chunk) (id: ident) (ofs: int)
       (w: world) (vargs: list val) (m: mem) : option (world * trace * val * mem) :=
  do b <- Genv.find_symbol ge id; do_ef_volatile_load chunk w (Vptr b ofs :: vargs) m.

Definition do_ef_volatile_store_global (chunk: memory_chunk) (id: ident) (ofs: int)
       (w: world) (vargs: list val) (m: mem) : option (world * trace * val * mem) :=
  do b <- Genv.find_symbol ge id; do_ef_volatile_store chunk w (Vptr b ofs :: vargs) m.

Definition do_ef_malloc
       (w: world) (vargs: list val) (m: mem) : option (world * trace * val * mem) :=
  match vargs with
  | Vint n :: nil =>
      let (m', b) := Mem.alloc m (-4) (Int.unsigned n) in
      do m'' <- Mem.store Mint32 m' b (-4) (Vint n);
      Some(w, E0, Vptr b Int.zero, m'')
  | _ => None
  end.

Definition do_ef_free
       (w: world) (vargs: list val) (m: mem) : option (world * trace * val * mem) :=
  match vargs with
  | Vptr b lo :: nil =>
      do vsz <- Mem.load Mint32 m b (Int.unsigned lo - 4);
      match vsz with
      | Vint sz =>
          check (zlt 0 (Int.unsigned sz));
          do m' <- Mem.free m b (Int.unsigned lo - 4) (Int.unsigned lo + Int.unsigned sz);
          Some(w, E0, Vundef, m')
      | _ => None
      end
  | _ => None
  end.

Definition memcpy_args_ok
  (sz al: Z) (bdst: block) (odst: Z) (bsrc: block) (osrc: Z) : Prop :=
      (al = 1 \/ al = 2 \/ al = 4 \/ al = 8)
   /\ sz >= 0 /\ (al | sz)
   /\ (sz > 0 -> (al | osrc))
   /\ (sz > 0 -> (al | odst))
   /\ (bsrc <> bdst \/ osrc = odst \/ osrc + sz <= odst \/ odst + sz <= osrc).

Remark memcpy_check_args:
  forall sz al bdst odst bsrc osrc,
  {memcpy_args_ok sz al bdst odst bsrc osrc} + {~memcpy_args_ok sz al bdst odst bsrc osrc}.
Proof with try (right; intuition omega).
  intros. 
  assert (X: {al = 1 \/ al = 2 \/ al = 4 \/ al = 8} + {~(al = 1 \/ al = 2 \/ al = 4 \/ al = 8)}).
    destruct (zeq al 1); auto. destruct (zeq al 2); auto.
    destruct (zeq al 4); auto. destruct (zeq al 8); auto...
  unfold memcpy_args_ok. destruct X...
  assert (al > 0) by (intuition omega).
  destruct (zle 0 sz)...
  destruct (Zdivide_dec al sz); auto...
  assert(U: forall x, {sz > 0 -> (al | x)} + {~(sz > 0 -> (al | x))}).
    intros. destruct (zeq sz 0). 
    left; intros; omegaContradiction.
    destruct (Zdivide_dec al x); auto. right; red; intros. elim n0. apply H0. omega. 
  destruct (U osrc); auto...
  destruct (U odst); auto...
  assert (Y: {bsrc <> bdst \/ osrc = odst \/ osrc + sz <= odst \/ odst + sz <= osrc}
           +{~(bsrc <> bdst \/ osrc = odst \/ osrc + sz <= odst \/ odst + sz <= osrc)}).
    destruct (eq_block bsrc bdst); auto.
    destruct (zeq osrc odst); auto.
    destruct (zle (osrc + sz) odst); auto.
    destruct (zle (odst + sz) osrc); auto.
    right; intuition omega.
  destruct Y... left; intuition omega.
Defined.

Definition do_ef_memcpy (sz al: Z)
       (w: world) (vargs: list val) (m: mem) : option (world * trace * val * mem) :=
  match vargs with
  | Vptr bdst odst :: Vptr bsrc osrc :: nil =>
      if memcpy_check_args sz al bdst (Int.unsigned odst) bsrc (Int.unsigned osrc) then
        do bytes <- Mem.loadbytes m bsrc (Int.unsigned osrc) sz;
        do m' <- Mem.storebytes m bdst (Int.unsigned odst) bytes;
        Some(w, E0, Vundef, m')
      else None
  | _ => None
  end.

Definition do_ef_annot (text: ident) (targs: list annot_arg)
       (w: world) (vargs: list val) (m: mem) : option (world * trace * val * mem) :=
  do args <- list_eventval_of_val vargs (annot_args_typ targs);
  Some(w, Event_annot text (annot_eventvals targs args) :: E0, Vundef, m).

Definition do_ef_annot_val (text: ident) (targ: typ)
       (w: world) (vargs: list val) (m: mem) : option (world * trace * val * mem) :=
  match vargs with
  | varg :: nil =>
      do arg <- eventval_of_val varg targ;
      Some(w, Event_annot text (arg :: nil) :: E0, varg, m)
  | _ => None
  end.

Definition do_external (ef: external_function):
       world -> list val -> mem -> option (world * trace * val * mem) :=
  match ef with
  | EF_external name sg => do_external_function name sg ge
  | EF_builtin name sg => do_external_function name sg ge
  | EF_vload chunk => do_ef_volatile_load chunk
  | EF_vstore chunk => do_ef_volatile_store chunk
  | EF_vload_global chunk id ofs => do_ef_volatile_load_global chunk id ofs
  | EF_vstore_global chunk id ofs => do_ef_volatile_store_global chunk id ofs
  | EF_malloc => do_ef_malloc
  | EF_free => do_ef_free
  | EF_memcpy sz al => do_ef_memcpy sz al
  | EF_annot text targs => do_ef_annot text targs
  | EF_annot_val text targ => do_ef_annot_val text targ
  | EF_inline_asm text => do_inline_assembly text ge
  end.

Lemma do_ef_external_sound:
  forall ef w vargs m w' t vres m',
  do_external ef w vargs m = Some(w', t, vres, m') ->
  external_call ef ge vargs m t vres m' /\ possible_trace w t w'.
Proof with try congruence.
  intros until m'.

  assert (VLOAD: forall chunk vargs,
    do_ef_volatile_load chunk w vargs m = Some (w', t, vres, m') ->
    volatile_load_sem chunk ge vargs m t vres m' /\ possible_trace w t w').
  intros chunk vargs'.
  unfold do_ef_volatile_load. destruct vargs'... destruct v... destruct vargs'... 
  mydestr. destruct p as [[w'' t''] v]; mydestr.
  exploit do_volatile_load_sound; eauto. intuition. econstructor; eauto. 

  assert (VSTORE: forall chunk vargs,
    do_ef_volatile_store chunk w vargs m = Some (w', t, vres, m') ->
    volatile_store_sem chunk ge vargs m t vres m' /\ possible_trace w t w').
  intros chunk vargs'.
  unfold do_ef_volatile_store. destruct vargs'... destruct v... destruct vargs'... destruct vargs'... 
  mydestr. destruct p as [[w'' t''] m'']. mydestr. 
  exploit do_volatile_store_sound; eauto. intuition. econstructor; eauto.

  destruct ef; simpl.
(* EF_external *)
  eapply do_external_function_sound; eauto. 
(* EF_builtin *)
  eapply do_external_function_sound; eauto. 
(* EF_vload *)
  auto.
(* EF_vstore *)
  auto.
(* EF_vload_global *)
  rewrite volatile_load_global_charact.
  unfold do_ef_volatile_load_global. destruct (Genv.find_symbol ge)...
  intros. exploit VLOAD; eauto. intros [A B]. split; auto. exists b; auto.
(* EF_vstore_global *)
  rewrite volatile_store_global_charact.
  unfold do_ef_volatile_store_global. destruct (Genv.find_symbol ge)...
  intros. exploit VSTORE; eauto. intros [A B]. split; auto. exists b; auto.
(* EF_malloc *)
  unfold do_ef_malloc. destruct vargs... destruct v... destruct vargs...
  destruct (Mem.alloc m (-4) (Int.unsigned i)) as [m1 b] eqn:?. mydestr.
  split. econstructor; eauto. constructor.
(* EF_free *)
  unfold do_ef_free. destruct vargs... destruct v... destruct vargs... 
  mydestr. destruct v... mydestr. 
  split. econstructor; eauto. omega. constructor.
(* EF_memcpy *)
  unfold do_ef_memcpy. destruct vargs... destruct v... destruct vargs... 
  destruct v... destruct vargs... mydestr. red in m0. 
  split. econstructor; eauto; tauto. constructor.
(* EF_annot *)
  unfold do_ef_annot. mydestr. 
  split. constructor. apply list_eventval_of_val_sound; auto.
  econstructor. constructor; eauto. constructor.
(* EF_annot_val *)
  unfold do_ef_annot_val. destruct vargs... destruct vargs... mydestr. 
  split. constructor. apply eventval_of_val_sound; auto.
  econstructor. constructor; eauto. constructor.
(* EF_inline_asm *)
  eapply do_inline_assembly_sound; eauto.
Qed.

Lemma do_ef_external_complete:
  forall ef w vargs m w' t vres m',
  external_call ef ge vargs m t vres m' -> possible_trace w t w' ->
  do_external ef w vargs m = Some(w', t, vres, m').
Proof.
  intros.
 
  assert (VLOAD: forall chunk vargs,
             volatile_load_sem chunk ge vargs m t vres m' ->
             do_ef_volatile_load chunk w vargs m = Some (w', t, vres, m')).
  intros. inv H1; unfold do_ef_volatile_load.
  exploit do_volatile_load_complete; eauto. intros EQ; rewrite EQ; auto.

  assert (VSTORE: forall chunk vargs,
             volatile_store_sem chunk ge vargs m t vres m' ->
             do_ef_volatile_store chunk w vargs m = Some (w', t, vres, m')).
  intros. inv H1; unfold do_ef_volatile_store.
  exploit do_volatile_store_complete; eauto. intros EQ; rewrite EQ; auto.

  destruct ef; simpl in *.
(* EF_external *)
  eapply do_external_function_complete; eauto.
(* EF_builtin *)
  eapply do_external_function_complete; eauto.
(* EF_vload *)
  auto.
(* EF_vstore *)
  auto.
(* EF_vload_global *)
  rewrite volatile_load_global_charact in H. destruct H as [b [P Q]]. 
  unfold do_ef_volatile_load_global. rewrite P. auto. 
(* EF_vstore *)
  rewrite volatile_store_global_charact in H. destruct H as [b [P Q]]. 
  unfold do_ef_volatile_store_global. rewrite P. auto. 
(* EF_malloc *)
  inv H; unfold do_ef_malloc. 
  inv H0. rewrite H1. rewrite H2. auto.
(* EF_free *)
  inv H; unfold do_ef_free.
  inv H0. rewrite H1. rewrite zlt_true. rewrite H3. auto. omega.
(* EF_memcpy *)
  inv H; unfold do_ef_memcpy.
  inv H0. rewrite pred_dec_true. rewrite H7; rewrite H8; auto.
  red. tauto. 
(* EF_annot *)
  inv H; unfold do_ef_annot. inv H0. inv H6. inv H4. 
  rewrite (list_eventval_of_val_complete _ _ _ H1). auto.
(* EF_annot_val *)
  inv H; unfold do_ef_annot_val. inv H0. inv H6. inv H4. 
  rewrite (eventval_of_val_complete _ _ _ H1). auto.
(* EF_inline_asm *)
  eapply do_inline_assembly_complete; eauto.
Qed.

(** * Reduction of expressions *)

Inductive reduction: Type :=
  | Lred (l': expr) (m': mem)
  | Rred (r': expr) (m': mem) (t: trace)
  | Callred (fd: fundef) (args: list val) (tyres: type) (m': mem)
  | Stuckred.

Section EXPRS.

Variable e: env.
Variable w: world.

Fixpoint sem_cast_arguments (vtl: list (val * type)) (tl: typelist) : option (list val) :=
  match vtl, tl with
  | nil, Tnil => Some nil
  | (v1,t1)::vtl, Tcons t1' tl =>
      do v <- sem_cast v1 t1 t1'; do vl <- sem_cast_arguments vtl tl; Some(v::vl)
  | _, _ => None
  end.

(** The result of stepping an expression is a list [ll] of possible reducts.
  Each element of [ll] is a pair of a context and the result of reducing
  inside this context (see type [reduction] above).
  The list [ll] is empty if the expression is fully reduced
   (it's [Eval] for a r-value and [Eloc] for a l-value).
*)

Definition reducts (A: Type): Type := list ((expr -> A) * reduction).

Definition topred (r: reduction) : reducts expr :=
  ((fun (x: expr) => x), r) :: nil.

Definition stuck : reducts expr :=
  ((fun (x: expr) => x), Stuckred) :: nil.

Definition incontext {A B: Type} (ctx: A -> B) (ll: reducts A) : reducts B :=
  map (fun z => ((fun (x: expr) => ctx(fst z x)), snd z)) ll.

Definition incontext2 {A1 A2 B: Type}
                     (ctx1: A1 -> B) (ll1: reducts A1)
                     (ctx2: A2 -> B) (ll2: reducts A2) : reducts B :=
  incontext ctx1 ll1 ++ incontext ctx2 ll2.

Notation "'do' X <- A ; B" := (match A with Some X => B | None => stuck end)
  (at level 200, X ident, A at level 100, B at level 200)
  : reducts_monad_scope.

Notation "'do' X , Y <- A ; B" := (match A with Some (X, Y) => B | None => stuck end)
  (at level 200, X ident, Y ident, A at level 100, B at level 200)
  : reducts_monad_scope.

Notation "'do' X , Y , Z <- A ; B" := (match A with Some (X, Y, Z) => B | None => stuck end)
  (at level 200, X ident, Y ident, Z ident, A at level 100, B at level 200)
  : reducts_monad_scope.

Notation " 'check' A ; B" := (if A then B else stuck)
  (at level 200, A at level 100, B at level 200)
  : reducts_monad_scope.

Local Open Scope reducts_monad_scope.

Fixpoint step_expr (k: kind) (a: expr) (m: mem): reducts expr :=
  match k, a with
  | LV, Eloc b ofs ty =>
      nil
  | LV, Evar x ty =>
      match e!x with
      | Some(b, ty') =>
          check type_eq ty ty';
          topred (Lred (Eloc b Int.zero ty) m)
      | None =>
          do b <- Genv.find_symbol ge x;
          topred (Lred (Eloc b Int.zero ty) m)
      end
  | LV, Ederef r ty =>
      match is_val r with
      | Some(Vptr b ofs, ty') =>
          topred (Lred (Eloc b ofs ty) m)
      | Some _ =>
          stuck
      | None =>
          incontext (fun x => Ederef x ty) (step_expr RV r m)
      end
  | LV, Efield r f ty =>
      match is_val r with
      | Some(Vptr b ofs, ty') =>
          match ty' with
          | Tstruct id fList _ =>
              match field_offset f fList with
              | Error _ => stuck
              | OK delta => topred (Lred (Eloc b (Int.add ofs (Int.repr delta)) ty) m)
              end
          | Tunion id fList _ =>
              topred (Lred (Eloc b ofs ty) m)
          | _ => stuck
          end
      | Some _ =>
          stuck
      | None =>
          incontext (fun x => Efield x f ty) (step_expr RV r m)
      end
  | RV, Eval v ty =>
      nil
  | RV, Evalof l ty =>
      match is_loc l with
      | Some(b, ofs, ty') =>
          check type_eq ty ty';
          do w',t,v <- do_deref_loc w ty m b ofs;
          topred (Rred (Eval v ty) m t)
      | None =>
          incontext (fun x => Evalof x ty) (step_expr LV l m)
      end
  | RV, Eaddrof l ty =>
      match is_loc l with
      | Some(b, ofs, ty') => topred (Rred (Eval (Vptr b ofs) ty) m E0)
      | None => incontext (fun x => Eaddrof x ty) (step_expr LV l m)
      end
  | RV, Eunop op r1 ty =>
      match is_val r1 with
      | Some(v1, ty1) =>
          do v <- sem_unary_operation op v1 ty1;
          topred (Rred (Eval v ty) m E0)
      | None =>
          incontext (fun x => Eunop op x ty) (step_expr RV r1 m)
      end
  | RV, Ebinop op r1 r2 ty =>
      match is_val r1, is_val r2 with
      | Some(v1, ty1), Some(v2, ty2) =>
          do v <- sem_binary_operation op v1 ty1 v2 ty2 m;
          topred (Rred (Eval v ty) m E0)
      | _, _ =>
         incontext2 (fun x => Ebinop op x r2 ty) (step_expr RV r1 m)
                    (fun x => Ebinop op r1 x ty) (step_expr RV r2 m)
      end
  | RV, Ecast r1 ty =>
      match is_val r1 with
      | Some(v1, ty1) =>
          do v <- sem_cast v1 ty1 ty;
          topred (Rred (Eval v ty) m E0)
      | None =>
          incontext (fun x => Ecast x ty) (step_expr RV r1 m)
      end
  | RV, Eseqand r1 r2 ty =>
      match is_val r1 with
      | Some(v1, ty1) =>
          do b <- bool_val v1 ty1;
          if b then topred (Rred (Eparen (Eparen r2 type_bool) ty) m E0)
               else topred (Rred (Eval (Vint Int.zero) ty) m E0)
      | None =>
          incontext (fun x => Eseqand x r2 ty) (step_expr RV r1 m)
      end
  | RV, Eseqor r1 r2 ty =>
      match is_val r1 with
      | Some(v1, ty1) =>
          do b <- bool_val v1 ty1;
          if b then topred (Rred (Eval (Vint Int.one) ty) m E0)
               else topred (Rred (Eparen (Eparen r2 type_bool) ty) m E0)
      | None =>
          incontext (fun x => Eseqor x r2 ty) (step_expr RV r1 m)
      end
  | RV, Econdition r1 r2 r3 ty =>
      match is_val r1 with
      | Some(v1, ty1) =>
          do b <- bool_val v1 ty1;
          topred (Rred (Eparen (if b then r2 else r3) ty) m E0)
      | None =>
          incontext (fun x => Econdition x r2 r3 ty) (step_expr RV r1 m)
      end
  | RV, Esizeof ty' ty =>
      topred (Rred (Eval (Vint (Int.repr (sizeof ty'))) ty) m E0)
  | RV, Ealignof ty' ty =>
      topred (Rred (Eval (Vint (Int.repr (alignof ty'))) ty) m E0)
  | RV, Eassign l1 r2 ty =>
      match is_loc l1, is_val r2 with
      | Some(b, ofs, ty1), Some(v2, ty2) =>
          check type_eq ty1 ty;
          do v <- sem_cast v2 ty2 ty1;
          do w',t,m' <- do_assign_loc w ty1 m b ofs v;
          topred (Rred (Eval v ty) m' t)
      | _, _ =>
         incontext2 (fun x => Eassign x r2 ty) (step_expr LV l1 m)
                    (fun x => Eassign l1 x ty) (step_expr RV r2 m)
      end
  | RV, Eassignop op l1 r2 tyres ty =>
      match is_loc l1, is_val r2 with
      | Some(b, ofs, ty1), Some(v2, ty2) =>
          check type_eq ty1 ty;
          do w',t,v1 <- do_deref_loc w ty1 m b ofs;
          let r' := Eassign (Eloc b ofs ty1)
                           (Ebinop op (Eval v1 ty1) (Eval v2 ty2) tyres) ty1 in
          topred (Rred r' m t)
      | _, _ =>
         incontext2 (fun x => Eassignop op x r2 tyres ty) (step_expr LV l1 m)
                    (fun x => Eassignop op l1 x tyres ty) (step_expr RV r2 m)
      end
  | RV, Epostincr id l ty =>
      match is_loc l with
      | Some(b, ofs, ty1) =>
          check type_eq ty1 ty;
          do w',t, v1 <- do_deref_loc w ty m b ofs;
          let op := match id with Incr => Oadd | Decr => Osub end in
          let r' :=
            Ecomma (Eassign (Eloc b ofs ty) 
                           (Ebinop op (Eval v1 ty) (Eval (Vint Int.one) type_int32s) (incrdecr_type ty))
                           ty)
                   (Eval v1 ty) ty in
          topred (Rred r' m t)
      | None =>
          incontext (fun x => Epostincr id x ty) (step_expr LV l m)
      end
  | RV, Ecomma r1 r2 ty =>
      match is_val r1 with
      | Some _ =>
          check type_eq (typeof r2) ty;
          topred (Rred r2 m E0)
      | None =>
          incontext (fun x => Ecomma x r2 ty) (step_expr RV r1 m)
      end
  | RV, Eparen r1 ty =>
      match is_val r1 with
      | Some (v1, ty1) =>
          do v <- sem_cast v1 ty1 ty;
          topred (Rred (Eval v ty) m E0)
      | None =>
          incontext (fun x => Eparen x ty) (step_expr RV r1 m)
      end
  | RV, Ecall r1 rargs ty =>
      match is_val r1, is_val_list rargs with
      | Some(vf, tyf), Some vtl =>
          match classify_fun tyf with
          | fun_case_f tyargs tyres cconv =>
              do fd <- Genv.find_funct ge vf;
              do vargs <- sem_cast_arguments vtl tyargs;
              check type_eq (type_of_fundef fd) (Tfunction tyargs tyres cconv);
              topred (Callred fd vargs ty m)
          | _ => stuck
          end
      | _, _ =>
          incontext2 (fun x => Ecall x rargs ty) (step_expr RV r1 m)
                     (fun x => Ecall r1 x ty) (step_exprlist rargs m)
      end
  | RV, Ebuiltin ef tyargs rargs ty =>
      match is_val_list rargs with
      | Some vtl =>
          do vargs <- sem_cast_arguments vtl tyargs;
          match do_external ef w vargs m with
          | None => stuck
          | Some(w',t,v,m') => topred (Rred (Eval v ty) m' t)
          end
      | _ =>
          incontext (fun x => Ebuiltin ef tyargs x ty) (step_exprlist rargs m)
      end
  | _, _ => stuck
  end

with step_exprlist (rl: exprlist) (m: mem): reducts exprlist :=
  match rl with
  | Enil =>
      nil
  | Econs r1 rs =>
      incontext2 (fun x => Econs x rs) (step_expr RV r1 m)
                 (fun x => Econs r1 x) (step_exprlist rs m)
  end.

(** Technical properties on safe expressions. *)

Inductive imm_safe_t: kind -> expr -> mem -> Prop :=
  | imm_safe_t_val: forall v ty m,
      imm_safe_t RV (Eval v ty) m
  | imm_safe_t_loc: forall b ofs ty m,
      imm_safe_t LV (Eloc b ofs ty) m
  | imm_safe_t_lred: forall to C l m l' m',
      lred ge e l m l' m' ->
      context LV to C ->
      imm_safe_t to (C l) m
  | imm_safe_t_rred: forall to C r m t r' m' w',
      rred ge r m t r' m' -> possible_trace w t w' ->
      context RV to C ->
      imm_safe_t to (C r) m
  | imm_safe_t_callred: forall to C r m fd args ty,
      callred ge r fd args ty ->
      context RV to C ->
      imm_safe_t to (C r) m.

Remark imm_safe_t_imm_safe:
  forall k a m, imm_safe_t k a m -> imm_safe ge e k a m.
Proof.
  induction 1. 
  constructor.
  constructor.
  eapply imm_safe_lred; eauto.
  eapply imm_safe_rred; eauto.
  eapply imm_safe_callred; eauto.
Qed.

(*
Definition not_stuck (a: expr) (m: mem) :=
  forall a' k C, context k RV C -> a = C a' -> imm_safe_t k a' m.

Lemma safe_expr_kind:
  forall k C a m,
  context k RV C ->
  not_stuck (C a) m ->
  k = Cstrategy.expr_kind a.
Proof.
  intros.
  symmetry. eapply Cstrategy.imm_safe_kind. eapply imm_safe_t_imm_safe. eauto.
Qed.
*)

Fixpoint exprlist_all_values (rl: exprlist) : Prop :=
  match rl with
  | Enil => True
  | Econs (Eval v ty) rl' => exprlist_all_values rl'
  | Econs _ _ => False
  end.

Definition invert_expr_prop (a: expr) (m: mem) : Prop :=
  match a with
  | Eloc b ofs ty => False
  | Evar x ty =>
      exists b,
      e!x = Some(b, ty)
      \/ (e!x = None /\ Genv.find_symbol ge x = Some b)
  | Ederef (Eval v ty1) ty =>
      exists b, exists ofs, v = Vptr b ofs
  | Efield (Eval v ty1) f ty =>
      exists b, exists ofs, v = Vptr b ofs /\
      match ty1 with
      | Tstruct _ fList _ => exists delta, field_offset f fList = Errors.OK delta
      | Tunion _ _ _ => True
      | _ => False
      end
  | Eval v ty => False
  | Evalof (Eloc b ofs ty') ty =>
      ty' = ty /\ exists t, exists v, exists w', deref_loc ge ty m b ofs t v /\ possible_trace w t w'
  | Eunop op (Eval v1 ty1) ty =>
      exists v, sem_unary_operation op v1 ty1 = Some v
  | Ebinop op (Eval v1 ty1) (Eval v2 ty2) ty =>
      exists v, sem_binary_operation op v1 ty1 v2 ty2 m = Some v
  | Ecast (Eval v1 ty1) ty =>
      exists v, sem_cast v1 ty1 ty = Some v
  | Eseqand (Eval v1 ty1) r2 ty =>
      exists b, bool_val v1 ty1 = Some b
  | Eseqor (Eval v1 ty1) r2 ty =>
      exists b, bool_val v1 ty1 = Some b
  | Econdition (Eval v1 ty1) r1 r2 ty =>
      exists b, bool_val v1 ty1 = Some b
  | Eassign (Eloc b ofs ty1) (Eval v2 ty2) ty =>
      exists v, exists m', exists t, exists w',
      ty = ty1 /\ sem_cast v2 ty2 ty1 = Some v /\ assign_loc ge ty1 m b ofs v t m' /\ possible_trace w t w'
  | Eassignop op (Eloc b ofs ty1) (Eval v2 ty2) tyres ty =>
      exists t, exists v1, exists w',
      ty = ty1 /\ deref_loc ge ty1 m b ofs t v1 /\ possible_trace w t w'
  | Epostincr id (Eloc b ofs ty1) ty =>
      exists t, exists v1, exists w', 
      ty = ty1 /\ deref_loc ge ty m b ofs t v1 /\ possible_trace w t w'
  | Ecomma (Eval v ty1) r2 ty =>
      typeof r2 = ty
  | Eparen (Eval v1 ty1) ty =>
      exists v, sem_cast v1 ty1 ty = Some v
  | Ecall (Eval vf tyf) rargs ty =>
      exprlist_all_values rargs ->
      exists tyargs tyres cconv fd vl,
         classify_fun tyf = fun_case_f tyargs tyres cconv
      /\ Genv.find_funct ge vf = Some fd
      /\ cast_arguments rargs tyargs vl
      /\ type_of_fundef fd = Tfunction tyargs tyres cconv
  | Ebuiltin ef tyargs rargs ty =>
      exprlist_all_values rargs ->
      exists vargs t vres m' w',
         cast_arguments rargs tyargs vargs
      /\ external_call ef ge vargs m t vres m'
      /\ possible_trace w t w'
  | _ => True
  end.

Lemma lred_invert:
  forall l m l' m', lred ge e l m l' m' -> invert_expr_prop l m.
Proof.
  induction 1; red; auto.
  exists b; auto.
  exists b; auto.
  exists b; exists ofs; auto.
  exists b; exists ofs; split; auto. exists delta; auto.
  exists b; exists ofs; auto.
Qed.

Lemma rred_invert:
  forall w' r m t r' m', rred ge r m t r' m' -> possible_trace w t w' -> invert_expr_prop r m.
Proof.
  induction 1; intros; red; auto.
  split; auto; exists t; exists v; exists w'; auto.
  exists v; auto.
  exists v; auto.
  exists v; auto.
  exists true; auto. exists false; auto.
  exists true; auto. exists false; auto.
  exists b; auto.
  exists v; exists m'; exists t; exists w'; auto.
  exists t; exists v1; exists w'; auto.
  exists t; exists v1; exists w'; auto.
  exists v; auto.
  intros; exists vargs; exists t; exists vres; exists m'; exists w'; auto.
Qed.

Lemma callred_invert:
  forall r fd args ty m,
  callred ge r fd args ty ->
  invert_expr_prop r m.
Proof.
  intros. inv H. simpl.
  intros. exists tyargs, tyres, cconv, fd, args; auto.
Qed.

Scheme context_ind2 := Minimality for context Sort Prop
  with contextlist_ind2 := Minimality for contextlist Sort Prop.
Combined Scheme context_contextlist_ind from context_ind2, contextlist_ind2.

Lemma invert_expr_context:
  (forall from to C, context from to C ->
   forall a m,
   invert_expr_prop a m ->
   invert_expr_prop (C a) m)
/\(forall from C, contextlist from C ->
  forall a m,
  invert_expr_prop a m ->
  ~exprlist_all_values (C a)).
Proof.
  apply context_contextlist_ind; intros; try (exploit H0; [eauto|intros]); simpl.
  auto.
  destruct (C a); auto; contradiction.
  destruct (C a); auto; contradiction.
  destruct (C a); auto; contradiction.
  auto.
  destruct (C a); auto; contradiction.
  destruct (C a); auto; contradiction.
  destruct e1; auto; destruct (C a); auto; contradiction.
  destruct (C a); auto; contradiction.
  destruct (C a); auto; contradiction.
  destruct (C a); auto; contradiction.
  destruct (C a); auto; contradiction.
  destruct (C a); auto; contradiction.
  destruct e1; auto; destruct (C a); auto; contradiction.
  destruct (C a); auto; contradiction.
  destruct e1; auto; destruct (C a); auto; contradiction.
  destruct (C a); auto; contradiction.
  destruct (C a); auto; contradiction.
  destruct e1; auto. intros. elim (H0 a m); auto.
  intros. elim (H0 a m); auto.
  destruct (C a); auto; contradiction.
  destruct (C a); auto; contradiction.
  red; intros. destruct (C a); auto. 
  red; intros. destruct e1; auto. elim (H0 a m); auto. 
Qed.

Lemma imm_safe_t_inv:
  forall k a m,
  imm_safe_t k a m ->
  match a with
  | Eloc _ _ _ => True
  | Eval _ _ => True
  | _ => invert_expr_prop a m
  end.
Proof.
  destruct invert_expr_context as [A B].
  intros. inv H. 
  auto.
  auto.
  assert (invert_expr_prop (C l) m).
    eapply A; eauto. eapply lred_invert; eauto.
  red in H. destruct (C l); auto; contradiction.
  assert (invert_expr_prop (C r) m).
    eapply A; eauto. eapply rred_invert; eauto.
  red in H. destruct (C r); auto; contradiction.
  assert (invert_expr_prop (C r) m).
    eapply A; eauto. eapply callred_invert; eauto.
  red in H. destruct (C r); auto; contradiction.
Qed.

(** Soundness: if [step_expr] returns [Some ll], then every element
  of [ll] is a reduct. *)

Lemma context_compose:
  forall k2 k3 C2, context k2 k3 C2 ->
  forall k1 C1, context k1 k2 C1 ->
  context k1 k3 (fun x => C2(C1 x))
with contextlist_compose:
  forall k2 C2, contextlist k2 C2 ->
  forall k1 C1, context k1 k2 C1 ->
  contextlist k1 (fun x => C2(C1 x)).
Proof.
  induction 1; intros; try (constructor; eauto).
  replace (fun x => C1 x) with C1. auto. apply extensionality; auto.
  induction 1; intros; constructor; eauto.
Qed.

Hint Constructors context contextlist.
Hint Resolve context_compose contextlist_compose.

Definition reduction_ok (k: kind) (a: expr) (m: mem) (rd: reduction) : Prop :=
  match k, rd with
  | LV, Lred l' m' => lred ge e a m l' m'
  | RV, Rred r' m' t => rred ge a m t r' m' /\ exists w', possible_trace w t w'
  | RV, Callred fd args tyres m' => callred ge a fd args tyres /\ m' = m
  | LV, Stuckred => ~imm_safe_t k a m
  | RV, Stuckred => ~imm_safe_t k a m
  | _, _ => False
  end.

Definition reducts_ok (k: kind) (a: expr) (m: mem) (ll: reducts expr) : Prop :=
  (forall C rd,
      In (C, rd) ll ->
      exists a', exists k', context k' k C /\ a = C a' /\ reduction_ok k' a' m rd)
  /\ (ll = nil -> match k with LV => is_loc a <> None | RV => is_val a <> None end).

Definition list_reducts_ok (al: exprlist) (m: mem) (ll: reducts exprlist) : Prop :=
  (forall C rd,
      In (C, rd) ll ->
      exists a', exists k', contextlist k' C /\ al = C a' /\ reduction_ok k' a' m rd)
  /\ (ll = nil -> is_val_list al <> None).

Ltac monadInv :=
  match goal with
  | [ H: match ?x with Some _ => _ | None => None end = Some ?y |- _ ] =>
      destruct x eqn:?; [monadInv|discriminate]
  | [ H: match ?x with left _ => _ | right _ => None end = Some ?y |- _ ] =>
      destruct x; [monadInv|discriminate]
  | _ => idtac
  end.

Lemma sem_cast_arguments_sound:
  forall rargs vtl tyargs vargs,
  is_val_list rargs = Some vtl ->
  sem_cast_arguments vtl tyargs = Some vargs ->
  cast_arguments rargs tyargs vargs.
Proof.
  induction rargs; simpl; intros.
  inv H. destruct tyargs; simpl in H0; inv H0. constructor.
  monadInv. inv H. simpl in H0. destruct p as [v1 t1]. destruct tyargs; try congruence. monadInv.
  inv H0. rewrite (is_val_inv _ _ _ Heqo). constructor. auto. eauto. 
Qed.

Lemma sem_cast_arguments_complete:
  forall al tyl vl,
  cast_arguments al tyl vl ->
  exists vtl, is_val_list al = Some vtl /\ sem_cast_arguments vtl tyl = Some vl.
Proof.
  induction 1.
  exists (@nil (val * type)); auto.
  destruct IHcast_arguments as [vtl [A B]]. 
  exists ((v, ty) :: vtl); simpl. rewrite A; rewrite B; rewrite H. auto.
Qed.

Lemma topred_ok:
  forall k a m rd,
  reduction_ok k a m rd ->
  reducts_ok k a m (topred rd).
Proof.
  intros. unfold topred; split; simpl; intros. 
  destruct H0; try contradiction. inv H0. exists a; exists k; auto.
  congruence.
Qed.

Lemma stuck_ok:
  forall k a m,
  ~imm_safe_t k a m ->
  reducts_ok k a m stuck.
Proof.
  intros. unfold stuck; split; simpl; intros.
  destruct H0; try contradiction. inv H0. exists a; exists k; intuition. red. destruct k; auto.
  congruence.
Qed.

Lemma wrong_kind_ok:
  forall k a m,
  k <> Cstrategy.expr_kind a ->
  reducts_ok k a m stuck.
Proof.
  intros. apply stuck_ok. red; intros. exploit Cstrategy.imm_safe_kind; eauto. 
  eapply imm_safe_t_imm_safe; eauto.
Qed.

Lemma not_invert_ok:
  forall k a m,
  match a with
  | Eloc _ _ _ => False
  | Eval _ _ => False
  | _ => invert_expr_prop a m -> False
  end ->
  reducts_ok k a m stuck.
Proof.
  intros. apply stuck_ok. red; intros. 
  exploit imm_safe_t_inv; eauto. destruct a; auto. 
Qed. 

Lemma incontext_ok:
  forall k a m C res k' a',
  reducts_ok k' a' m res ->
  a = C a' ->
  context k' k C ->
  match k' with LV => is_loc a' = None | RV => is_val a' = None end ->
  reducts_ok k a m (incontext C res).
Proof.
  unfold reducts_ok, incontext; intros. destruct H. split; intros.
  exploit list_in_map_inv; eauto. intros [[C1 rd1] [P Q]]. inv P.
  exploit H; eauto. intros [a'' [k'' [U [V W]]]].
  exists a''; exists k''. split. eapply context_compose; eauto. rewrite V; auto.
  destruct res; simpl in H4; try congruence. destruct k'; intuition congruence.
Qed.

Lemma incontext2_ok:
  forall k a m k1 a1 res1 k2 a2 res2 C1 C2,
  reducts_ok k1 a1 m res1 ->
  reducts_ok k2 a2 m res2 ->
  a = C1 a1 -> a = C2 a2 ->
  context k1 k C1 -> context k2 k C2 ->
  match k1 with LV => is_loc a1 = None | RV => is_val a1 = None end
  \/ match k2 with LV => is_loc a2 = None | RV => is_val a2 = None end ->
  reducts_ok k a m (incontext2 C1 res1 C2 res2).
Proof.
  unfold reducts_ok, incontext2, incontext; intros. destruct H; destruct H0; split; intros.
  destruct (in_app_or _ _ _ H8).
  exploit list_in_map_inv; eauto. intros [[C' rd'] [P Q]]. inv P.
  exploit H; eauto. intros [a'' [k'' [U [V W]]]].
  exists a''; exists k''. split. eapply context_compose; eauto. rewrite V; auto.
  exploit list_in_map_inv; eauto. intros [[C' rd'] [P Q]]. inv P.
  exploit H0; eauto. intros [a'' [k'' [U [V W]]]].
  exists a''; exists k''. split. eapply context_compose; eauto. rewrite H2; rewrite V; auto.
  destruct res1; simpl in H8; try congruence. destruct res2; simpl in H8; try congruence.
  destruct H5. destruct k1; intuition congruence. destruct k2; intuition congruence.
Qed.

Lemma incontext_list_ok:
  forall ef tyargs al ty m res,
  list_reducts_ok al m res ->
  is_val_list al = None ->
  reducts_ok RV (Ebuiltin ef tyargs al ty) m
                (incontext (fun x => Ebuiltin ef tyargs x ty) res).
Proof.
  unfold reducts_ok, incontext; intros. destruct H. split; intros.
  exploit list_in_map_inv; eauto. intros [[C1 rd1] [P Q]]. inv P.
  exploit H; eauto. intros [a'' [k'' [U [V W]]]].
  exists a''; exists k''. split. eauto. rewrite V; auto.
  destruct res; simpl in H2. elim H1; auto. congruence.
Qed.

Lemma incontext2_list_ok:
  forall a1 a2 ty m res1 res2,
  reducts_ok RV a1 m res1 ->
  list_reducts_ok a2 m res2 ->
  is_val a1 = None \/ is_val_list a2 = None ->
  reducts_ok RV (Ecall a1 a2 ty) m 
               (incontext2 (fun x => Ecall x a2 ty) res1
                           (fun x => Ecall a1 x ty) res2).
Proof.
  unfold reducts_ok, incontext2, incontext; intros. destruct H; destruct H0; split; intros.
  destruct (in_app_or _ _ _ H4).
  exploit list_in_map_inv; eauto. intros [[C' rd'] [P Q]]. inv P.
  exploit H; eauto. intros [a'' [k'' [U [V W]]]].
  exists a''; exists k''. split. eauto. rewrite V; auto. 
  exploit list_in_map_inv; eauto. intros [[C' rd'] [P Q]]. inv P.
  exploit H0; eauto. intros [a'' [k'' [U [V W]]]].
  exists a''; exists k''. split. eauto. rewrite V; auto.
  destruct res1; simpl in H4; try congruence. destruct res2; simpl in H4; try congruence.
  tauto.
Qed.

Lemma incontext2_list_ok':
  forall a1 a2 m res1 res2,
  reducts_ok RV a1 m res1 ->
  list_reducts_ok a2 m res2 ->
  list_reducts_ok (Econs a1 a2) m
               (incontext2 (fun x => Econs x a2) res1
                           (fun x => Econs a1 x) res2).
Proof.
  unfold reducts_ok, list_reducts_ok, incontext2, incontext; intros.
  destruct H; destruct H0. split; intros.
  destruct (in_app_or _ _ _ H3).
  exploit list_in_map_inv; eauto. intros [[C' rd'] [P Q]]. inv P.
  exploit H; eauto. intros [a'' [k'' [U [V W]]]].
  exists a''; exists k''. split. eauto. rewrite V; auto. 
  exploit list_in_map_inv; eauto. intros [[C' rd'] [P Q]]. inv P.
  exploit H0; eauto. intros [a'' [k'' [U [V W]]]].
  exists a''; exists k''. split. eauto. rewrite V; auto.
  destruct res1; simpl in H3; try congruence. destruct res2; simpl in H3; try congruence.
  simpl. destruct (is_val a1). destruct (is_val_list a2). congruence. intuition congruence. intuition congruence.
Qed.

Lemma is_val_list_all_values:
  forall al vtl, is_val_list al = Some vtl -> exprlist_all_values al.
Proof.
  induction al; simpl; intros. auto. 
  destruct (is_val r1) as [[v ty]|] eqn:?; try discriminate.
  destruct (is_val_list al) as [vtl'|] eqn:?; try discriminate.
  rewrite (is_val_inv _ _ _ Heqo). eauto.
Qed.

Ltac myinv :=
  match goal with
  | [ H: False |- _ ] => destruct H
  | [ H: _ /\ _ |- _ ] => destruct H; myinv
  | [ H: exists _, _ |- _ ] => destruct H; myinv
  | _ => idtac
  end.

Theorem step_expr_sound:
  forall a k m, reducts_ok k a m (step_expr k a m)
with step_exprlist_sound:
  forall al m, list_reducts_ok al m (step_exprlist al m).
Proof with (try (apply not_invert_ok; simpl; intro; myinv; intuition congruence; fail)).
  induction a; intros; simpl; destruct k; try (apply wrong_kind_ok; simpl; congruence).
(* Eval *)
  split; intros. tauto. simpl; congruence.
(* Evar *)
  destruct (e!x) as [[b ty']|] eqn:?.
  destruct (type_eq ty ty')...
  subst. apply topred_ok; auto. apply red_var_local; auto.
  destruct (Genv.find_symbol ge x) as [b|] eqn:?...
  apply topred_ok; auto. apply red_var_global; auto.
(* Efield *)
  destruct (is_val a) as [[v ty'] | ] eqn:?.
  rewrite (is_val_inv _ _ _ Heqo).
  destruct v...
  destruct ty'... 
  (* top struct *)
  destruct (field_offset f f0) as [delta|] eqn:?...
  apply topred_ok; auto. apply red_field_struct; auto.
  (* top union *)
  apply topred_ok; auto. apply red_field_union; auto.
  (* in depth *)
  eapply incontext_ok; eauto. 
(* Evalof *)
  destruct (is_loc a) as [[[b ofs] ty'] | ] eqn:?. rewrite (is_loc_inv _ _ _ _ Heqo).
  (* top *)
  destruct (type_eq ty ty')... subst ty'.
  destruct (do_deref_loc w ty m b ofs) as [[[w' t] v] | ] eqn:?.
  exploit do_deref_loc_sound; eauto. intros [A B].
  apply topred_ok; auto. red. split. apply red_rvalof; auto. exists w'; auto.
  apply not_invert_ok; simpl; intros; myinv. exploit do_deref_loc_complete; eauto. congruence.
  (* depth *)
  eapply incontext_ok; eauto.
(* Ederef *)
  destruct (is_val a) as [[v ty'] | ] eqn:?. rewrite (is_val_inv _ _ _ Heqo).
  (* top *)
  destruct v... apply topred_ok; auto. apply red_deref; auto. 
  (* depth *)
  eapply incontext_ok; eauto.
(* Eaddrof *)
  destruct (is_loc a) as [[[b ofs] ty'] | ] eqn:?. rewrite (is_loc_inv _ _ _ _ Heqo).
  (* top *)
  apply topred_ok; auto. split. apply red_addrof; auto. exists w; constructor.
  (* depth *)
  eapply incontext_ok; eauto.
(* unop *)
  destruct (is_val a) as [[v ty'] | ] eqn:?. rewrite (is_val_inv _ _ _ Heqo). 
  (* top *)
  destruct (sem_unary_operation op v ty') as [v'|] eqn:?...
  apply topred_ok; auto. split. apply red_unop; auto. exists w; constructor. 
  (* depth *)
  eapply incontext_ok; eauto.
(* binop *)
  destruct (is_val a1) as [[v1 ty1] | ] eqn:?. 
  destruct (is_val a2) as [[v2 ty2] | ] eqn:?.
  rewrite (is_val_inv _ _ _ Heqo). rewrite (is_val_inv _ _ _ Heqo0). 
  (* top *)
  destruct (sem_binary_operation op v1 ty1 v2 ty2 m) as [v|] eqn:?...
  apply topred_ok; auto. split. apply red_binop; auto. exists w; constructor.
  (* depth *)
  eapply incontext2_ok; eauto. 
  eapply incontext2_ok; eauto. 
(* cast *)
  destruct (is_val a) as [[v ty'] | ] eqn:?. rewrite (is_val_inv _ _ _ Heqo). 
  (* top *)
  destruct (sem_cast v ty' ty) as [v'|] eqn:?...
  apply topred_ok; auto. split. apply red_cast; auto. exists w; constructor. 
  (* depth *)
  eapply incontext_ok; eauto.
(* seqand *)
  destruct (is_val a1) as [[v ty'] | ] eqn:?. rewrite (is_val_inv _ _ _ Heqo). 
  (* top *)
  destruct (bool_val v ty') as [v'|] eqn:?... destruct v'.
  apply topred_ok; auto. split. eapply red_seqand_true; eauto. exists w; constructor.
  apply topred_ok; auto. split. eapply red_seqand_false; eauto. exists w; constructor.
  (* depth *)
  eapply incontext_ok; eauto.
(* seqor *)
  destruct (is_val a1) as [[v ty'] | ] eqn:?. rewrite (is_val_inv _ _ _ Heqo). 
  (* top *)
  destruct (bool_val v ty') as [v'|] eqn:?... destruct v'.
  apply topred_ok; auto. split. eapply red_seqor_true; eauto. exists w; constructor.
  apply topred_ok; auto. split. eapply red_seqor_false; eauto. exists w; constructor.
  (* depth *)
  eapply incontext_ok; eauto.
(* condition *)
  destruct (is_val a1) as [[v ty'] | ] eqn:?. rewrite (is_val_inv _ _ _ Heqo). 
  (* top *)
  destruct (bool_val v ty') as [v'|] eqn:?...
  apply topred_ok; auto. split. eapply red_condition; eauto. exists w; constructor.
  (* depth *)
  eapply incontext_ok; eauto.
(* sizeof *)
  apply topred_ok; auto. split. apply red_sizeof. exists w; constructor.
(* alignof *)
  apply topred_ok; auto. split. apply red_alignof. exists w; constructor.
(* assign *)
  destruct (is_loc a1) as [[[b ofs] ty1] | ] eqn:?. 
  destruct (is_val a2) as [[v2 ty2] | ] eqn:?. 
  rewrite (is_loc_inv _ _ _ _ Heqo). rewrite (is_val_inv _ _ _ Heqo0).
  (* top *)
  destruct (type_eq ty1 ty)... subst ty1.
  destruct (sem_cast v2 ty2 ty) as [v|] eqn:?...
  destruct (do_assign_loc w ty m b ofs v) as [[[w' t] m']|] eqn:?.
  exploit do_assign_loc_sound; eauto. intros [P Q].
  apply topred_ok; auto. split. apply red_assign; auto. exists w'; auto.
  apply not_invert_ok; simpl; intros; myinv. exploit do_assign_loc_complete; eauto. congruence.
  (* depth *)
  eapply incontext2_ok; eauto.
  eapply incontext2_ok; eauto.
(* assignop *)
  destruct (is_loc a1) as [[[b ofs] ty1] | ] eqn:?. 
  destruct (is_val a2) as [[v2 ty2] | ] eqn:?. 
  rewrite (is_loc_inv _ _ _ _ Heqo). rewrite (is_val_inv _ _ _ Heqo0). 
  (* top *)
  destruct (type_eq ty1 ty)... subst ty1.
  destruct (do_deref_loc w ty m b ofs) as [[[w' t] v] | ] eqn:?.
  exploit do_deref_loc_sound; eauto. intros [A B].
  apply topred_ok; auto. red. split. apply red_assignop; auto. exists w'; auto.
  apply not_invert_ok; simpl; intros; myinv. exploit do_deref_loc_complete; eauto. congruence.
  (* depth *)
  eapply incontext2_ok; eauto.
  eapply incontext2_ok; eauto.
(* postincr *)
  destruct (is_loc a) as [[[b ofs] ty'] | ] eqn:?. rewrite (is_loc_inv _ _ _ _ Heqo). 
  (* top *)
  destruct (type_eq ty' ty)... subst ty'.
  destruct (do_deref_loc w ty m b ofs) as [[[w' t] v] | ] eqn:?.
  exploit do_deref_loc_sound; eauto. intros [A B].
  apply topred_ok; auto. red. split. apply red_postincr; auto. exists w'; auto.
  apply not_invert_ok; simpl; intros; myinv. exploit do_deref_loc_complete; eauto. congruence.
  (* depth *)
  eapply incontext_ok; eauto.
(* comma *)
  destruct (is_val a1) as [[v ty'] | ] eqn:?. rewrite (is_val_inv _ _ _ Heqo). 
  (* top *)
  destruct (type_eq (typeof a2) ty)... subst ty.
  apply topred_ok; auto. split. apply red_comma; auto. exists w; constructor.
  (* depth *)
  eapply incontext_ok; eauto.
(* call *)
  destruct (is_val a) as [[vf tyf] | ] eqn:?.  
  destruct (is_val_list rargs) as [vtl | ] eqn:?. 
  rewrite (is_val_inv _ _ _ Heqo). exploit is_val_list_all_values; eauto. intros ALLVAL.
  (* top *)
  destruct (classify_fun tyf) as [tyargs tyres cconv|] eqn:?...
  destruct (Genv.find_funct ge vf) as [fd|] eqn:?...
  destruct (sem_cast_arguments vtl tyargs) as [vargs|] eqn:?... 
  destruct (type_eq (type_of_fundef fd) (Tfunction tyargs tyres cconv))...
  apply topred_ok; auto. red. split; auto. eapply red_Ecall; eauto. 
  eapply sem_cast_arguments_sound; eauto.
  apply not_invert_ok; simpl; intros; myinv. specialize (H ALLVAL). myinv. congruence.
  apply not_invert_ok; simpl; intros; myinv. specialize (H ALLVAL). myinv.
  exploit sem_cast_arguments_complete; eauto. intros [vtl' [P Q]]. congruence.
  apply not_invert_ok; simpl; intros; myinv. specialize (H ALLVAL). myinv. congruence.
  apply not_invert_ok; simpl; intros; myinv. specialize (H ALLVAL). myinv. congruence.
  (* depth *)
  eapply incontext2_list_ok; eauto.
  eapply incontext2_list_ok; eauto.
(* builtin *)
  destruct (is_val_list rargs) as [vtl | ] eqn:?. 
  exploit is_val_list_all_values; eauto. intros ALLVAL.
  (* top *)
  destruct (sem_cast_arguments vtl tyargs) as [vargs|] eqn:?... 
  destruct (do_external ef w vargs m) as [[[[? ?] v] m'] | ] eqn:?...
  exploit do_ef_external_sound; eauto. intros [EC PT].
  apply topred_ok; auto. red. split; auto. eapply red_builtin; eauto. 
  eapply sem_cast_arguments_sound; eauto.
  exists w0; auto.
  apply not_invert_ok; simpl; intros; myinv. specialize (H ALLVAL). myinv.
  assert (x = vargs). 
    exploit sem_cast_arguments_complete; eauto. intros [vtl' [A B]]. congruence.
  subst x. exploit do_ef_external_complete; eauto. congruence.
  apply not_invert_ok; simpl; intros; myinv. specialize (H ALLVAL). myinv. 
  exploit sem_cast_arguments_complete; eauto. intros [vtl' [A B]]. congruence.
  (* depth *)
  eapply incontext_list_ok; eauto.
 
(* loc *)
  split; intros. tauto. simpl; congruence.
(* paren *)
  destruct (is_val a) as [[v ty'] | ] eqn:?. rewrite (is_val_inv _ _ _ Heqo). 
  (* top *)
  destruct (sem_cast v ty' ty) as [v'|] eqn:?...
  apply topred_ok; auto. split. apply red_paren; auto. exists w; constructor. 
  (* depth *)
  eapply incontext_ok; eauto.

  induction al; simpl; intros.
(* nil *)
  split; intros. tauto. simpl; congruence.
(* cons *)
  eapply incontext2_list_ok'; eauto.
Qed.

Lemma step_exprlist_val_list:
  forall m al, is_val_list al <> None -> step_exprlist al m = nil.
Proof.
  induction al; simpl; intros. 
  auto.
  destruct (is_val r1) as [[v1 ty1]|] eqn:?; try congruence.
  destruct (is_val_list al) eqn:?; try congruence.
  rewrite (is_val_inv _ _ _ Heqo).
  rewrite IHal. auto. congruence.
Qed.

(** Completeness part 1: [step_expr] contains all possible non-error reducts. *)

Lemma lred_topred:
  forall l1 m1 l2 m2,
  lred ge e l1 m1 l2 m2 ->
  step_expr LV l1 m1 = topred (Lred l2 m2).
Proof.
  induction 1; simpl.
(* var local *)
  rewrite H. rewrite dec_eq_true; auto.
(* var global *)
  rewrite H; rewrite H0. auto.
(* deref *) 
  auto.
(* field struct *)
  rewrite H; auto.
(* field union *)
  auto.
Qed.

Lemma rred_topred:
  forall w' r1 m1 t r2 m2,
  rred ge r1 m1 t r2 m2 -> possible_trace w t w' ->
  step_expr RV r1 m1 = topred (Rred r2 m2 t).
Proof.
  induction 1; simpl; intros.
(* valof *)
  rewrite dec_eq_true; auto. rewrite (do_deref_loc_complete _ _ _ _ _ _ _ _ H H0). auto. 
(* addrof *)
  inv H. auto.
(* unop *)
  inv H0. rewrite H; auto.
(* binop *)
  inv H0. rewrite H; auto.
(* cast *)
  inv H0. rewrite H; auto.
(* seqand *)
  inv H0. rewrite H; auto.
  inv H0. rewrite H; auto.
(* seqor *)
  inv H0. rewrite H; auto.
  inv H0. rewrite H; auto.
(* condition *)
  inv H0. rewrite H; auto.
(* sizeof *)
  inv H. auto.
(* alignof *)
  inv H. auto.
(* assign *)
  rewrite dec_eq_true; auto. rewrite H. rewrite (do_assign_loc_complete _ _ _ _ _ _ _ _ _ H0 H1). auto.
(* assignop *)
  rewrite dec_eq_true; auto. rewrite (do_deref_loc_complete _ _ _ _ _ _ _ _ H H0). auto. 
(* postincr *)
  rewrite dec_eq_true; auto. subst. rewrite (do_deref_loc_complete _ _ _ _ _ _ _ _ H H1). auto.
(* comma *)
  inv H0. rewrite dec_eq_true; auto.
(* paren *)
  inv H0. rewrite H; auto.
(* builtin *)
  exploit sem_cast_arguments_complete; eauto. intros [vtl [A B]].
  exploit do_ef_external_complete; eauto. intros C. 
  rewrite A. rewrite B. rewrite C. auto.
Qed.

Lemma callred_topred:
  forall a fd args ty m,
  callred ge a fd args ty ->
  step_expr RV a m = topred (Callred fd args ty m).
Proof.
  induction 1; simpl.
  rewrite H2. exploit sem_cast_arguments_complete; eauto. intros [vtl [A B]].
  rewrite A; rewrite H; rewrite B; rewrite H1; rewrite dec_eq_true. auto.
Qed.

Definition reducts_incl {A B: Type} (C: A -> B) (res1: reducts A) (res2: reducts B) : Prop :=
  forall C1 rd, In (C1, rd) res1 -> In ((fun x => C(C1 x)), rd) res2.

Lemma reducts_incl_trans:
  forall (A1 A2: Type) (C: A1 -> A2) res1 res2, reducts_incl C res1 res2 ->
  forall (A3: Type) (C': A2 -> A3) res3,
  reducts_incl C' res2 res3 ->
  reducts_incl (fun x => C'(C x)) res1 res3.
Proof.
  unfold reducts_incl; intros. auto. 
Qed.

Lemma reducts_incl_nil:
  forall (A B: Type) (C: A -> B) res,
  reducts_incl C nil res.
Proof.
  intros; red. intros; contradiction.
Qed.

Lemma reducts_incl_val:
  forall (A: Type) a m v ty (C: expr -> A) res,
  is_val a = Some(v, ty) -> reducts_incl C (step_expr RV a m) res.
Proof.
  intros. rewrite (is_val_inv _ _ _ H). apply reducts_incl_nil.
Qed.

Lemma reducts_incl_loc:
  forall (A: Type) a m b ofs ty (C: expr -> A) res,
  is_loc a = Some(b, ofs, ty) -> reducts_incl C (step_expr LV a m) res.
Proof.
  intros. rewrite (is_loc_inv _ _ _ _ H). apply reducts_incl_nil.
Qed.

Lemma reducts_incl_listval:
  forall (A: Type) a m vtl (C: exprlist -> A) res,
  is_val_list a = Some vtl -> reducts_incl C (step_exprlist a m) res.
Proof.
  intros. rewrite step_exprlist_val_list. apply reducts_incl_nil. congruence.
Qed.

Lemma reducts_incl_incontext:
  forall (A B: Type) (C: A -> B) res,
  reducts_incl C res (incontext C res).
Proof.
  unfold reducts_incl, incontext. intros.
  set (f := fun z : (expr -> A) * reduction => (fun x : expr => C (fst z x), snd z)).
  change (In (f (C1, rd)) (map f res)). apply in_map. auto.
Qed.

Lemma reducts_incl_incontext2_left:
  forall (A1 A2 B: Type) (C1: A1 -> B) res1 (C2: A2 -> B) res2,
  reducts_incl C1 res1 (incontext2 C1 res1 C2 res2).
Proof.
  unfold reducts_incl, incontext2, incontext. intros.
  rewrite in_app_iff. left.
  set (f := fun z : (expr -> A1) * reduction => (fun x : expr => C1 (fst z x), snd z)).
  change (In (f (C0, rd)) (map f res1)). apply in_map; auto.
Qed.

Lemma reducts_incl_incontext2_right:
  forall (A1 A2 B: Type) (C1: A1 -> B) res1 (C2: A2 -> B) res2,
  reducts_incl C2 res2 (incontext2 C1 res1 C2 res2).
Proof.
  unfold reducts_incl, incontext2, incontext. intros.
  rewrite in_app_iff. right.
  set (f := fun z : (expr -> A2) * reduction => (fun x : expr => C2 (fst z x), snd z)).
  change (In (f (C0, rd)) (map f res2)). apply in_map; auto.
Qed.

Hint Resolve reducts_incl_val reducts_incl_loc reducts_incl_listval
             reducts_incl_incontext reducts_incl_incontext2_left reducts_incl_incontext2_right.

Lemma step_expr_context:
  forall from to C, context from to C ->
  forall a m, reducts_incl C (step_expr from a m) (step_expr to (C a) m)
with step_exprlist_context:
  forall from C, contextlist from C ->
  forall a m, reducts_incl C (step_expr from a m) (step_exprlist (C a) m).
Proof.
  induction 1; simpl; intros.
(* top *)
  red. destruct (step_expr k a m); auto.
  try (* no eta in 8.3 *)
   (intros;
    replace (fun x => C1 x) with C1 by (apply extensionality; auto);
    auto).
(* deref *)
  eapply reducts_incl_trans with (C' := fun x => Ederef x ty); eauto.
  destruct (is_val (C a)) as [[v ty']|] eqn:?; eauto.
(* field *)
  eapply reducts_incl_trans with (C' := fun x => Efield x f ty); eauto.
  destruct (is_val (C a)) as [[v ty']|] eqn:?; eauto.
(* valof *)
  eapply reducts_incl_trans with (C' := fun x => Evalof x ty); eauto.
  destruct (is_loc (C a)) as [[[b ofs] ty']|] eqn:?; eauto.
(* addrof *)
  eapply reducts_incl_trans with (C' := fun x => Eaddrof x ty); eauto.
  destruct (is_loc (C a)) as [[[b ofs] ty']|] eqn:?; eauto.
(* unop *)
  eapply reducts_incl_trans with (C' := fun x => Eunop op x ty); eauto.
  destruct (is_val (C a)) as [[v ty']|] eqn:?; eauto.
(* binop left *)
  eapply reducts_incl_trans with (C' := fun x => Ebinop op x e2 ty); eauto.
  destruct (is_val (C a)) as [[v ty']|] eqn:?; eauto.
(* binop right *)
  eapply reducts_incl_trans with (C' := fun x => Ebinop op e1 x ty); eauto.
  destruct (is_val e1) as [[v1 ty1]|] eqn:?; eauto.
  destruct (is_val (C a)) as [[v2 ty2]|] eqn:?; eauto.
(* cast *)
  eapply reducts_incl_trans with (C' := fun x => Ecast x ty); eauto.
  destruct (is_val (C a)) as [[v ty']|] eqn:?; eauto.
(* seqand *)
  eapply reducts_incl_trans with (C' := fun x => Eseqand x r2 ty); eauto.
  destruct (is_val (C a)) as [[v ty']|] eqn:?; eauto.
(* seqor *)
  eapply reducts_incl_trans with (C' := fun x => Eseqor x r2 ty); eauto.
  destruct (is_val (C a)) as [[v ty']|] eqn:?; eauto.
(* condition *)
  eapply reducts_incl_trans with (C' := fun x => Econdition x r2 r3 ty); eauto.
  destruct (is_val (C a)) as [[v ty']|] eqn:?; eauto.
(* assign left *)
  eapply reducts_incl_trans with (C' := fun x => Eassign x e2 ty); eauto.
  destruct (is_loc (C a)) as [[[b ofs] ty']|] eqn:?; eauto.
(* assign right *)
  eapply reducts_incl_trans with (C' := fun x => Eassign e1 x ty); eauto.
  destruct (is_loc e1) as [[[b ofs] ty1]|] eqn:?; eauto.
  destruct (is_val (C a)) as [[v2 ty2]|] eqn:?; eauto.
(* assignop left *)
  eapply reducts_incl_trans with (C' := fun x => Eassignop op x e2 tyres ty); eauto.
  destruct (is_loc (C a)) as [[[b ofs] ty']|] eqn:?; eauto.
(* assignop right *)
  eapply reducts_incl_trans with (C' := fun x => Eassignop op e1 x tyres ty); eauto.
  destruct (is_loc e1) as [[[b ofs] ty1]|] eqn:?; eauto.
  destruct (is_val (C a)) as [[v2 ty2]|] eqn:?; eauto.
(* postincr *)
  eapply reducts_incl_trans with (C' := fun x => Epostincr id x ty); eauto.
  destruct (is_loc (C a)) as [[[b ofs] ty']|] eqn:?; eauto.
(* call left *)
  eapply reducts_incl_trans with (C' := fun x => Ecall x el ty); eauto.
  destruct (is_val (C a)) as [[v ty']|] eqn:?; eauto.
(* call right *)
  eapply reducts_incl_trans with (C' := fun x => Ecall e1 x ty). apply step_exprlist_context. auto. 
  destruct (is_val e1) as [[v1 ty1]|] eqn:?; eauto.
  destruct (is_val_list (C a)) as [vl|] eqn:?; eauto.
(* builtin *)
  eapply reducts_incl_trans with (C' := fun x => Ebuiltin ef tyargs x ty). apply step_exprlist_context. auto. 
  destruct (is_val_list (C a)) as [vl|] eqn:?; eauto.
(* comma *)
  eapply reducts_incl_trans with (C' := fun x => Ecomma x e2 ty); eauto.
  destruct (is_val (C a)) as [[v ty']|] eqn:?; eauto.
(* paren *)
  eapply reducts_incl_trans with (C' := fun x => Eparen x ty); eauto.
  destruct (is_val (C a)) as [[v ty']|] eqn:?; eauto.

  induction 1; simpl; intros.
(* cons left *)
  eapply reducts_incl_trans with (C' := fun x => Econs x el).
  apply step_expr_context; eauto. eauto.
(* binop right *)
  eapply reducts_incl_trans with (C' := fun x => Econs e1 x).
  apply step_exprlist_context; eauto. eauto.
Qed.

(** Completeness part 2: if we can reduce to [Stuckstate], [step_expr]
    contains at least one [Stuckred] reduction. *)

Lemma not_stuckred_imm_safe:
  forall m a k,
  (forall C, ~In (C, Stuckred) (step_expr k a m)) -> imm_safe_t k a m.
Proof.
  intros. generalize (step_expr_sound a k m). intros [A B]. 
  destruct (step_expr k a m) as [|[C rd] res] eqn:?.
  specialize (B (refl_equal _)). destruct k.
  destruct a; simpl in B; try congruence. constructor.
  destruct a; simpl in B; try congruence. constructor.
  assert (NOTSTUCK: rd <> Stuckred).
    red; intros. elim (H C); subst rd; auto with coqlib.
  exploit A. eauto with coqlib. intros [a' [k' [P [Q R]]]]. 
  destruct k'; destruct rd; simpl in R; intuition.
  subst a. eapply imm_safe_t_lred; eauto.
  subst a. destruct H1 as [w' PT]. eapply imm_safe_t_rred; eauto. 
  subst. eapply imm_safe_t_callred; eauto. 
Qed.

Lemma not_imm_safe_stuck_red:
  forall m a k C,
  context k RV C ->
  ~imm_safe_t k a m ->
  exists C', In (C', Stuckred) (step_expr RV (C a) m).
Proof.
  intros. 
  assert (exists C', In (C', Stuckred) (step_expr k a m)).
    destruct (classic (exists C', In (C', Stuckred) (step_expr k a m))); auto.
    elim H0. apply not_stuckred_imm_safe. apply not_ex_all_not. auto. 
  destruct H1 as [C' IN].
  specialize (step_expr_context _ _ _ H a m). unfold reducts_incl. 
  intro.
  exists (fun x => (C (C' x))). apply H1; auto. 
Qed.

(** Connections between [imm_safe_t] and [imm_safe] *)

Lemma imm_safe_imm_safe_t:
  forall k a m,
  imm_safe ge e k a m ->
  imm_safe_t k a m \/
  exists C, exists a1, exists t, exists a1', exists m',
    context RV k C /\ a = C a1 /\ rred ge a1 m t a1' m' /\ forall w', ~possible_trace w t w'.
Proof.
  intros. inv H. 
  left. apply imm_safe_t_val.
  left. apply imm_safe_t_loc.
  left. eapply imm_safe_t_lred; eauto.
  destruct (classic (exists w', possible_trace w t w')) as [[w' A] | A].
  left. eapply imm_safe_t_rred; eauto. 
  right. exists C; exists e0; exists t; exists e'; exists m'; intuition. apply A; exists w'; auto.
  left. eapply imm_safe_t_callred; eauto.
Qed.

(** A state can "crash the world" if it can make an observable transition
  whose trace is not accepted by the external world. *)

Definition can_crash_world (w: world) (S: state) : Prop :=
  exists t, exists S', Csem.step ge S t S' /\ forall w', ~possible_trace w t w'.

Theorem not_imm_safe_t:
  forall K C a m f k,
  context K RV C ->
  ~imm_safe_t K a m ->
  Csem.step ge (ExprState f (C a) k e m) E0 Stuckstate \/ can_crash_world w (ExprState f (C a) k e m).
Proof.
  intros. destruct (classic (imm_safe ge e K a m)).
  exploit imm_safe_imm_safe_t; eauto. 
  intros [A | [C1 [a1 [t [a1' [m' [A [B [D E]]]]]]]]]. contradiction.
  right. red. exists t; econstructor; split; auto. 
  left. rewrite B. eapply step_rred with (C := fun x => C(C1 x)). eauto. eauto. 
  left. left. eapply step_stuck; eauto.
Qed.

End EXPRS.

(** * Transitions over states. *)

Fixpoint do_alloc_variables (e: env) (m: mem) (l: list (ident * type)) {struct l} : env * mem :=
  match l with
  | nil => (e,m)
  | (id, ty) :: l' =>
      let (m1,b1) := Mem.alloc m 0 (sizeof ty) in 
      do_alloc_variables (PTree.set id (b1, ty) e) m1 l'
end.

Lemma do_alloc_variables_sound:
  forall l e m, alloc_variables e m l (fst (do_alloc_variables e m l)) (snd (do_alloc_variables e m l)).
Proof.
  induction l; intros; simpl. 
  constructor.
  destruct a as [id ty]. destruct (Mem.alloc m 0 (sizeof ty)) as [m1 b1] eqn:?; simpl.
  econstructor; eauto.
Qed.

Lemma do_alloc_variables_complete:
  forall e1 m1 l e2 m2, alloc_variables e1 m1 l e2 m2 ->
  do_alloc_variables e1 m1 l = (e2, m2).
Proof.
  induction 1; simpl. 
  auto.
  rewrite H; rewrite IHalloc_variables; auto. 
Qed.

Function sem_bind_parameters (w: world) (e: env) (m: mem) (l: list (ident * type)) (lv: list val) 
                          {struct l} : option mem :=
  match l, lv  with
  | nil, nil => Some m
  | (id, ty) :: params, v1::lv =>
      match PTree.get id e with
         | Some (b, ty') =>
             check (type_eq ty ty');
             do w', t, m1 <- do_assign_loc w ty m b Int.zero v1;
             match t with nil => sem_bind_parameters w e m1 params lv | _ => None end
        | None => None
      end
   | _, _ => None
end.

Lemma sem_bind_parameters_sound : forall w e m l lv m',
  sem_bind_parameters w e m l lv = Some m' -> 
  bind_parameters ge e m l lv m'.
Proof.
   intros; functional induction (sem_bind_parameters w e m l lv); try discriminate.
   inversion H; constructor; auto.
   exploit do_assign_loc_sound; eauto. intros [A B]. econstructor; eauto.
Qed.

Lemma sem_bind_parameters_complete : forall w e m l lv m',
  bind_parameters ge e m l lv m' ->
  sem_bind_parameters w e m l lv = Some m'.
Proof.
   induction 1; simpl; auto.
   rewrite H. rewrite dec_eq_true.
   assert (possible_trace w E0 w) by constructor.
   rewrite (do_assign_loc_complete _ _ _ _ _ _ _ _ _ H0 H2).
   simpl. auto. 
Qed.

Definition expr_final_state (f: function) (k: cont) (e: env) (C_rd: (expr -> expr) * reduction) :=
  match snd C_rd with
  | Lred a m => (E0, ExprState f (fst C_rd a) k e m)
  | Rred a m t => (t, ExprState f (fst C_rd a) k e m)
  | Callred fd vargs ty m => (E0, Callstate fd vargs (Kcall f e (fst C_rd) ty k) m)
  | Stuck => (E0, Stuckstate)
  end.

Local Open Scope list_monad_scope.

Definition ret (S: state) : list (trace * state) := (E0, S) :: nil.

Definition do_step (w: world) (s: state) : list (trace * state) :=
  match s with

  | ExprState f a k e m =>
      match is_val a with
      | Some(v, ty) =>
        match k with
        | Kdo k => ret (State f Sskip k e m )
        | Kifthenelse s1 s2 k =>
            do b <- bool_val v ty; ret (State f (if b then s1 else s2) k e m)
        | Kwhile1 x s k =>
            do b <- bool_val v ty; 
            if b then ret (State f s (Kwhile2 x s k) e m) else ret (State f Sskip k e m)
        | Kdowhile2 x s k =>
            do b <- bool_val v ty;
            if b then ret (State f (Sdowhile x s) k e m) else ret (State f Sskip k e m)
        | Kfor2 a2 a3 s k =>
            do b <- bool_val v ty;
            if b then ret (State f s (Kfor3 a2 a3 s k) e m) else ret (State f Sskip k e m)
        | Kreturn k =>
            do v' <- sem_cast v ty f.(fn_return);
            do m' <- Mem.free_list m (blocks_of_env e);
            ret (Returnstate v' (call_cont k) m')
        | Kswitch1 sl k =>
            match v with
            | Vint n => ret (State f (seq_of_labeled_statement (select_switch n sl)) (Kswitch2 k) e m)
            | _ => nil
            end
        | _ => nil
        end

      | None =>
          map (expr_final_state f k e) (step_expr e w RV a m)
      end

  | State f (Sdo x) k e m => ret(ExprState f x (Kdo k) e m)

  | State f (Ssequence s1 s2) k e m => ret(State f s1 (Kseq s2 k) e m)
  | State f Sskip (Kseq s k) e m => ret (State f s k e m)
  | State f Scontinue (Kseq s k) e m => ret (State f Scontinue k e m)
  | State f Sbreak (Kseq s k) e m => ret (State f Sbreak k e m)

  | State f (Sifthenelse a s1 s2) k e m => ret (ExprState f a (Kifthenelse s1 s2 k) e m)

  | State f (Swhile x s) k e m => ret (ExprState f x (Kwhile1 x s k) e m)
  | State f (Sskip|Scontinue) (Kwhile2 x s k) e m => ret (State f (Swhile x s) k e m)
  | State f Sbreak (Kwhile2 x s k) e m => ret (State f Sskip k e m)

  | State f (Sdowhile a s) k e m => ret (State f s (Kdowhile1 a s k) e m)
  | State f (Sskip|Scontinue) (Kdowhile1 x s k) e m => ret (ExprState f x (Kdowhile2 x s k) e m)
  | State f Sbreak (Kdowhile1 x s k) e m => ret (State f Sskip k e m)

  | State f (Sfor a1 a2 a3 s) k e m =>
      if is_skip a1
      then ret (ExprState f a2 (Kfor2 a2 a3 s k) e m)
      else ret (State f a1 (Kseq (Sfor Sskip a2 a3 s) k) e m)
  | State f Sskip (Kfor3 a2 a3 s k) e m => ret (State f a3 (Kfor4 a2 a3 s k) e m)
  | State f Scontinue (Kfor3 a2 a3 s k) e m => ret (State f a3 (Kfor4 a2 a3 s k) e m)
  | State f Sbreak (Kfor3 a2 a3 s k) e m => ret (State f Sskip k e m)
  | State f Sskip (Kfor4 a2 a3 s k) e m => ret (State f (Sfor Sskip a2 a3 s) k e m)

  | State f (Sreturn None) k e m =>
      do m' <- Mem.free_list m (blocks_of_env e);
      ret (Returnstate Vundef (call_cont k) m')
  | State f (Sreturn (Some x)) k e m => ret (ExprState f x (Kreturn k) e m)
  | State f Sskip ((Kstop | Kcall _ _ _ _ _) as k) e m => 
      do m' <- Mem.free_list m (blocks_of_env e);
      ret (Returnstate Vundef k m')

  | State f (Sswitch x sl) k e m => ret (ExprState f x (Kswitch1 sl k) e m)
  | State f (Sskip|Sbreak) (Kswitch2 k) e m => ret (State f Sskip k e m)
  | State f Scontinue (Kswitch2 k) e m => ret (State f Scontinue k e m)

  | State f (Slabel lbl s) k e m => ret (State f s k e m)
  | State f (Sgoto lbl) k e m =>
      match find_label lbl f.(fn_body) (call_cont k) with
      | Some(s', k') => ret (State f s' k' e m)
      | None => nil
      end

  | Callstate (Internal f) vargs k m =>
      check (list_norepet_dec ident_eq (var_names (fn_params f) ++ var_names (fn_vars f)));
      let (e,m1) := do_alloc_variables empty_env m (f.(fn_params) ++ f.(fn_vars)) in
      do m2 <- sem_bind_parameters w e m1 f.(fn_params) vargs;
      ret (State f f.(fn_body) k e m2)
  | Callstate (External ef _ _ _) vargs k m =>
      match do_external ef w vargs m with
      | None => nil
      | Some(w',t,v,m') => (t, Returnstate v k m') :: nil
      end

  | Returnstate v (Kcall f e C ty k) m => ret (ExprState f (C (Eval v ty)) k e m)

  | _ => nil
  end.

Ltac myinv :=
  match goal with
  | [ |- In _ nil -> _ ] => intro X; elim X
  | [ |- In _ (ret _) -> _ ] => 
        intro X; elim X; clear X;
        [intro EQ; unfold ret in EQ; inv EQ; myinv | myinv]
  | [ |- In _ (_ :: nil) -> _ ] => 
        intro X; elim X; clear X; [intro EQ; inv EQ; myinv | myinv]
  | [ |- In _ (match ?x with Some _ => _ | None => _ end) -> _ ] => destruct x eqn:?; myinv
  | [ |- In _ (match ?x with false => _ | true => _ end) -> _ ] => destruct x eqn:?; myinv
  | [ |- In _ (match ?x with left _ => _ | right _ => _ end) -> _ ] => destruct x; myinv
  | _ => idtac
  end.

Hint Extern 3 => exact I.

Theorem do_step_sound:
  forall w S t S',
  In (t, S') (do_step w S) ->
  Csem.step ge S t S' \/ (t = E0 /\ S' = Stuckstate /\ can_crash_world w S).
Proof with try (left; right; econstructor; eauto; fail).
  intros until S'. destruct S; simpl.
(* State *)
  destruct s; myinv...
  (* skip *)
  destruct k; myinv...
  (* break *)
  destruct k; myinv...
  (* continue *)
  destruct k; myinv...
  (* goto *)
  destruct p as [s' k']. myinv...
(* ExprState *)
  destruct (is_val r) as [[v ty]|] eqn:?.
  (* expression is a value *)
  rewrite (is_val_inv _ _ _ Heqo).
  destruct k; myinv...
  destruct v; myinv...
  (* expression reduces *)
  intros. exploit list_in_map_inv; eauto. intros [[C rd] [A B]].
  generalize (step_expr_sound e w r RV m). unfold reducts_ok. intros [P Q].
  exploit P; eauto. intros [a' [k' [CTX [EQ RD]]]].
  unfold expr_final_state in A. simpl in A.
  destruct k'; destruct rd; inv A; simpl in RD; try contradiction. 
  (* lred *)
  left; left; apply step_lred; auto.
  (* stuck lred *)
  exploit not_imm_safe_t; eauto. intros [R | R]; eauto.
  (* rred *)
  destruct RD. left; left; apply step_rred; auto.
  (* callred *)
  destruct RD; subst m'. left; left; apply step_call; eauto.
  (* stuck rred *)
  exploit not_imm_safe_t; eauto. intros [R | R]; eauto.
(* callstate *)
  destruct fd; myinv.
  (* internal *)
  destruct (do_alloc_variables empty_env m (fn_params f ++ fn_vars f)) as [e m1] eqn:?.
  myinv. left; right; apply step_internal_function with m1. auto. 
  change e with (fst (e,m1)). change m1 with (snd (e,m1)) at 2. rewrite <- Heqp. 
  apply do_alloc_variables_sound. eapply sem_bind_parameters_sound; eauto.
  (* external *)
  destruct p as [[[w' tr] v] m']. myinv. left; right; constructor. 
  eapply do_ef_external_sound; eauto.
(* returnstate *)
  destruct k; myinv...
(* stuckstate *)
  contradiction.
Qed.

Remark estep_not_val:
  forall f a k e m t S, estep ge (ExprState f a k e m) t S -> is_val a = None.
Proof.
  intros. 
  assert (forall b from to C, context from to C -> (from = to /\ C = fun x => x) \/ is_val (C b) = None).
    induction 1; simpl; auto. 
  inv H. 
  destruct (H0 a0 _ _ _ H9) as [[A B] | A]. subst. inv H8; auto. auto.
  destruct (H0 a0 _ _ _ H9) as [[A B] | A]. subst. inv H8; auto. auto.
  destruct (H0 a0 _ _ _ H9) as [[A B] | A]. subst. inv H8; auto. auto.
  destruct (H0 a0 _ _ _ H8) as [[A B] | A]. subst. destruct a0; auto. elim H9. constructor. auto.
Qed.

Theorem do_step_complete:
  forall w S t S' w', possible_trace w t w' -> Csem.step ge S t S' -> In (t, S') (do_step w S).
Proof with (unfold ret; auto with coqlib).
  intros until w'; intros PT H.
  destruct H. 
  (* Expression step *)
  inversion H; subst; exploit estep_not_val; eauto; intro NOTVAL.
(* lred *)
  unfold do_step; rewrite NOTVAL.
  change (E0, ExprState f (C a') k e m') with (expr_final_state f k e (C, Lred a' m')).
  apply in_map.
  generalize (step_expr_context e w _ _ _ H1 a m). unfold reducts_incl.
  intro. replace C with (fun x => C x). apply H2. 
  rewrite (lred_topred _ _ _ _ _ _ H0). unfold topred; auto with coqlib.
  apply extensionality; auto.
(* rred *)
  unfold do_step; rewrite NOTVAL.
  change (t, ExprState f (C a') k e m') with (expr_final_state f k e (C, Rred a' m' t)).
  apply in_map.
  generalize (step_expr_context e w _ _ _ H1 a m). unfold reducts_incl.
  intro. replace C with (fun x => C x). apply H2. 
  rewrite (rred_topred _ _ _ _ _ _ _ _ H0 PT). unfold topred; auto with coqlib.
  apply extensionality; auto.
(* callred *)
  unfold do_step; rewrite NOTVAL.
  change (E0, Callstate fd vargs (Kcall f e C ty k) m) with (expr_final_state f k e (C, Callred fd vargs ty m)).
  apply in_map.
  generalize (step_expr_context e w _ _ _ H1 a m). unfold reducts_incl.
  intro. replace C with (fun x => C x). apply H2. 
  rewrite (callred_topred _ _ _ _ _ _ _ H0). unfold topred; auto with coqlib.
  apply extensionality; auto.
(* stuck *)
  exploit not_imm_safe_stuck_red. eauto. red; intros; elim H1. eapply imm_safe_t_imm_safe. eauto.
  instantiate (1 := w). intros [C' IN].
  simpl do_step. rewrite NOTVAL. 
  change (E0, Stuckstate) with (expr_final_state f k e (C', Stuckred)).
  apply in_map. auto. 

  (* Statement step *)
  inv H; simpl...
  rewrite H0...
  rewrite H0...
  rewrite H0...
  destruct H0; subst s0...
  destruct H0; subst s0...
  rewrite H0...
  rewrite H0...
  rewrite pred_dec_false...
  rewrite H0...
  rewrite H0...
  destruct H0; subst x...
  rewrite H0...
  rewrite H0; rewrite H1...
  rewrite H1. red in H0. destruct k; try contradiction...
  destruct H0; subst x...
  rewrite H0...

  (* Call step *)
  rewrite pred_dec_true; auto. rewrite (do_alloc_variables_complete _ _ _ _ _ H1).
  rewrite (sem_bind_parameters_complete _ _ _ _ _ _ H2)...
  exploit do_ef_external_complete; eauto. intro EQ; rewrite EQ. auto with coqlib.
Qed.

End EXEC.

Local Open Scope option_monad_scope.

Definition do_initial_state (p: program): option (genv * state) :=
  let ge := Genv.globalenv p in
  do m0 <- Genv.init_mem p;
  do b <- Genv.find_symbol ge p.(prog_main);
  do f <- Genv.find_funct_ptr ge b;
  check (type_eq (type_of_fundef f) (Tfunction Tnil type_int32s cc_default));
  Some (ge, Callstate f nil Kstop m0).

Definition at_final_state (S: state): option int :=
  match S with
  | Returnstate (Vint r) Kstop m => Some r
  | _ => None
  end.