1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
|
(* *********************************************************************)
(* *)
(* The Compcert verified compiler *)
(* *)
(* Xavier Leroy, INRIA Paris-Rocquencourt *)
(* *)
(* Copyright Institut National de Recherche en Informatique et en *)
(* Automatique. All rights reserved. This file is distributed *)
(* under the terms of the INRIA Non-Commercial License Agreement. *)
(* *)
(* *********************************************************************)
open Printf
module CompcertErrors = Errors (* avoid shadowing by Cparser.Errors *)
open Cparser
open Cparser.C
open Cparser.Env
open Cparser.Builtins
open Camlcoq
open AST
open Values
open Csyntax
open Initializers
(** Record the declarations of global variables and associate them
with the corresponding atom. *)
type atom_info =
{ a_storage: C.storage;
a_env: Env.t;
a_type: C.typ;
a_fundef: C.fundef option }
let decl_atom : (AST.ident, atom_info) Hashtbl.t = Hashtbl.create 103
(** Hooks -- overriden in machine-dependent CPragmas module *)
let process_pragma_hook = ref (fun (s: string) -> false)
(** ** Error handling *)
let currentLocation = ref Cutil.no_loc
let updateLoc l = currentLocation := l
let numErrors = ref 0
let error msg =
incr numErrors;
eprintf "%aError: %s\n" Cutil.printloc !currentLocation msg
let unsupported msg =
incr numErrors;
eprintf "%aUnsupported feature: %s\n" Cutil.printloc !currentLocation msg
let warning msg =
eprintf "%aWarning: %s\n" Cutil.printloc !currentLocation msg
(** ** The builtin environment *)
let builtins_generic = {
typedefs = [
(* keeps GCC-specific headers happy, harmless for others *)
"__builtin_va_list", C.TPtr(C.TVoid [], [])
];
functions = [
(* Floating-point absolute value *)
"__builtin_fabs",
(TFloat(FDouble, []), [TFloat(FDouble, [])], false);
(* The volatile read/volatile write functions *)
"__builtin_volatile_read_int8unsigned",
(TInt(IUChar, []), [TPtr(TVoid [], [])], false);
"__builtin_volatile_read_int8signed",
(TInt(ISChar, []), [TPtr(TVoid [], [])], false);
"__builtin_volatile_read_int16unsigned",
(TInt(IUShort, []), [TPtr(TVoid [], [])], false);
"__builtin_volatile_read_int16signed",
(TInt(IShort, []), [TPtr(TVoid [], [])], false);
"__builtin_volatile_read_int32",
(TInt(IInt, []), [TPtr(TVoid [], [])], false);
"__builtin_volatile_read_float32",
(TFloat(FFloat, []), [TPtr(TVoid [], [])], false);
"__builtin_volatile_read_float64",
(TFloat(FDouble, []), [TPtr(TVoid [], [])], false);
"__builtin_volatile_read_pointer",
(TPtr(TVoid [], []), [TPtr(TVoid [], [])], false);
"__builtin_volatile_write_int8unsigned",
(TVoid [], [TPtr(TVoid [], []); TInt(IUChar, [])], false);
"__builtin_volatile_write_int8signed",
(TVoid [], [TPtr(TVoid [], []); TInt(ISChar, [])], false);
"__builtin_volatile_write_int16unsigned",
(TVoid [], [TPtr(TVoid [], []); TInt(IUShort, [])], false);
"__builtin_volatile_write_int16signed",
(TVoid [], [TPtr(TVoid [], []); TInt(IShort, [])], false);
"__builtin_volatile_write_int32",
(TVoid [], [TPtr(TVoid [], []); TInt(IInt, [])], false);
"__builtin_volatile_write_float32",
(TVoid [], [TPtr(TVoid [], []); TFloat(FFloat, [])], false);
"__builtin_volatile_write_float64",
(TVoid [], [TPtr(TVoid [], []); TFloat(FDouble, [])], false);
"__builtin_volatile_write_pointer",
(TVoid [], [TPtr(TVoid [], []); TPtr(TVoid [], [])], false);
(* Block copy *)
"__builtin_memcpy",
(TVoid [],
[TPtr(TVoid [], []);
TPtr(TVoid [AConst], []);
TInt(Cutil.size_t_ikind, [])],
false);
"__builtin_memcpy_al2",
(TVoid [],
[TPtr(TVoid [], []);
TPtr(TVoid [AConst], []);
TInt(Cutil.size_t_ikind, [])],
false);
"__builtin_memcpy_al4",
(TVoid [],
[TPtr(TVoid [], []);
TPtr(TVoid [AConst], []);
TInt(Cutil.size_t_ikind, [])],
false);
"__builtin_memcpy_al8",
(TVoid [],
[TPtr(TVoid [], []);
TPtr(TVoid [AConst], []);
TInt(Cutil.size_t_ikind, [])],
false);
(* Annotations *)
"__builtin_annotation",
(TVoid [], (* overriden during elaboration *)
[TPtr(TInt(IChar, [AConst]), [])],
false)
]
}
(* Add processor-dependent builtins *)
let builtins =
{ typedefs = builtins_generic.typedefs @ CBuiltins.builtins.typedefs;
functions = builtins_generic.functions @ CBuiltins.builtins.functions }
(** ** Functions used to handle string literals *)
let stringNum = ref 0 (* number of next global for string literals *)
let stringTable = Hashtbl.create 47
let name_for_string_literal env s =
try
Hashtbl.find stringTable s
with Not_found ->
incr stringNum;
let name = Printf.sprintf "__stringlit_%d" !stringNum in
let id = intern_string name in
Hashtbl.add decl_atom id
{ a_storage = C.Storage_static;
a_env = env;
a_type = C.TPtr(C.TInt(C.IChar,[C.AConst]),[]);
a_fundef = None };
Sections.define_stringlit id;
Hashtbl.add stringTable s id;
id
let typeStringLiteral s =
Tarray(Tint(I8, Unsigned), z_of_camlint(Int32.of_int(String.length s + 1)))
let global_for_string s id =
let init = ref [] in
let add_char c =
init :=
AST.Init_int8(coqint_of_camlint(Int32.of_int(Char.code c)))
:: !init in
add_char '\000';
for i = String.length s - 1 downto 0 do add_char s.[i] done;
Datatypes.Coq_pair(id,
{gvar_info = typeStringLiteral s; gvar_init = !init;
gvar_readonly = true; gvar_volatile = false})
let globals_for_strings globs =
Hashtbl.fold
(fun s id l -> global_for_string s id :: l)
stringTable globs
(** ** Declaration of special external functions *)
let special_externals_table : (string, fundef) Hashtbl.t = Hashtbl.create 47
let register_special_external c_name int_name targs tres inline =
if not (Hashtbl.mem special_externals_table c_name) then begin
Hashtbl.add special_externals_table c_name
(External({ef_id = intern_string int_name;
ef_sig = signature_of_type targs tres;
ef_inline = inline},
targs, tres))
end
let declare_special_externals k =
Hashtbl.fold
(fun c_name fd k ->
Datatypes.Coq_pair(intern_string c_name, fd) :: k)
special_externals_table k
(** ** Handling of stubs for variadic functions *)
let register_stub_function name tres targs =
let rec letters_of_type = function
| Tnil -> []
| Tcons(Tfloat _, tl) -> "f" :: letters_of_type tl
| Tcons(_, tl) -> "i" :: letters_of_type tl in
let rec types_of_types = function
| Tnil -> Tnil
| Tcons(Tfloat _, tl) -> Tcons(Tfloat F64, types_of_types tl)
| Tcons(_, tl) -> Tcons(Tpointer Tvoid, types_of_types tl) in
let stub_name =
name ^ "$" ^ String.concat "" (letters_of_type targs) in
let targs = types_of_types targs in
register_special_external stub_name stub_name targs tres false;
(stub_name, Tfunction (targs, tres))
(** ** Handling of annotations *)
let annot_function_next = ref 0
let register_annotation_function txt targs tres =
incr annot_function_next;
let fun_name =
Printf.sprintf "__builtin_annotation_%d" !annot_function_next
and int_name =
Printf.sprintf "__builtin_annotation_\"%s\"" txt in
register_special_external fun_name int_name targs tres true;
Evalof(Evar(intern_string fun_name, Tfunction(targs, tres)),
Tfunction(targs, tres))
(** ** Handling of inlined memcpy functions *)
let alignof_pointed ty =
match ty with
| Tpointer ty' -> camlint_of_z (alignof ty')
| _ -> 1l (* safe default *)
let register_inlined_memcpy basename sz =
let name = Printf.sprintf "%s_sz%ld" basename sz in
let targs = Tcons(Tpointer Tvoid, Tcons(Tpointer Tvoid, Tnil)) in
let tres = Tvoid in
register_special_external name name targs tres true;
Evalof(Evar(intern_string name, Tfunction(targs, tres)),
Tfunction(targs, tres))
let memcpy_inline_threshold = ref 64l
let make_builtin_memcpy name fn args =
match args with
| Econs(dst, Econs(src, Econs(sz, Enil))) ->
let sz1 =
match Initializers.constval sz with
| CompcertErrors.OK(Vint n) -> Some (camlint_of_coqint n)
| _ -> None in
begin match sz1 with
| Some sz2 when sz2 <= !memcpy_inline_threshold ->
let fn = register_inlined_memcpy name sz2 in
Ecall(fn, Econs(dst, Econs(src, Enil)), Tvoid)
| _ ->
Ecall(fn, args, Tvoid)
end
| _ ->
Ecall(fn, args, Tvoid)
(** ** Translation functions *)
(** Constants *)
let convertInt n = coqint_of_camlint(Int64.to_int32 n)
(** Types *)
let convertIkind = function
| C.IBool -> unsupported "'_Bool' type"; (Unsigned, I8)
| C.IChar -> ((if (!Cparser.Machine.config).Cparser.Machine.char_signed
then Signed else Unsigned), I8)
| C.ISChar -> (Signed, I8)
| C.IUChar -> (Unsigned, I8)
| C.IInt -> (Signed, I32)
| C.IUInt -> (Unsigned, I32)
| C.IShort -> (Signed, I16)
| C.IUShort -> (Unsigned, I16)
| C.ILong -> (Signed, I32)
| C.IULong -> (Unsigned, I32)
(* Special-cased in convertTyp below *)
| C.ILongLong -> unsupported "'long long' type"; (Signed, I32)
| C.IULongLong -> unsupported "'unsigned long long' type"; (Unsigned, I32)
let convertFkind = function
| C.FFloat -> F32
| C.FDouble -> F64
| C.FLongDouble -> unsupported "'long double' type"; F64
let int64_struct =
let ty = Tint(I32,Unsigned) in
Tstruct(intern_string "struct __int64",
if Memdataaux.big_endian
then Fcons(intern_string "hi", ty, Fcons(intern_string "lo", ty, Fnil))
else Fcons(intern_string "lo", ty, Fcons(intern_string "hi", ty, Fnil)))
let convertTyp env t =
let rec convertTyp seen t =
match Cutil.unroll env t with
| C.TVoid a -> Tvoid
| C.TInt((C.ILongLong|C.IULongLong), a) when !Clflags.option_flonglong ->
int64_struct
| C.TInt(ik, a) ->
let (sg, sz) = convertIkind ik in Tint(sz, sg)
| C.TFloat(fk, a) ->
Tfloat(convertFkind fk)
| C.TPtr(ty, a) ->
begin match Cutil.unroll env ty with
| C.TStruct(id, _) when List.mem id seen ->
Tcomp_ptr(intern_string ("struct " ^ id.name))
| C.TUnion(id, _) when List.mem id seen ->
Tcomp_ptr(intern_string ("union " ^ id.name))
| _ ->
Tpointer(convertTyp seen ty)
end
| C.TArray(ty, None, a) ->
(* Cparser verified that the type ty[] occurs only in
contexts that are safe for Clight, so just treat as ty[0]. *)
(* warning "array type of unspecified size"; *)
Tarray(convertTyp seen ty, coqint_of_camlint 0l)
| C.TArray(ty, Some sz, a) ->
Tarray(convertTyp seen ty, convertInt sz)
| C.TFun(tres, targs, va, a) ->
if va then unsupported "variadic function type";
if Cutil.is_composite_type env tres then
unsupported "return type is a struct or union";
Tfunction(begin match targs with
| None -> warning "un-prototyped function type"; Tnil
| Some tl -> convertParams seen tl
end,
convertTyp seen tres)
| C.TNamed _ ->
assert false
| C.TStruct(id, a) ->
let flds =
try
convertFields (id :: seen) (Env.find_struct env id)
with Env.Error e ->
error (Env.error_message e); Fnil in
Tstruct(intern_string("struct " ^ id.name), flds)
| C.TUnion(id, a) ->
let flds =
try
convertFields (id :: seen) (Env.find_union env id)
with Env.Error e ->
error (Env.error_message e); Fnil in
Tunion(intern_string("union " ^ id.name), flds)
and convertParams seen = function
| [] -> Tnil
| (id, ty) :: rem ->
if Cutil.is_composite_type env ty then
unsupported "function parameter of struct or union type";
Tcons(convertTyp seen ty, convertParams seen rem)
and convertFields seen ci =
convertFieldList seen ci.Env.ci_members
and convertFieldList seen = function
| [] -> Fnil
| f :: fl ->
if f.fld_bitfield <> None then
unsupported "bit field in struct or union";
Fcons(intern_string f.fld_name, convertTyp seen f.fld_typ,
convertFieldList seen fl)
in convertTyp [] t
let rec convertTypList env = function
| [] -> Tnil
| t1 :: tl -> Tcons(convertTyp env t1, convertTypList env tl)
let rec projFunType env ty =
match Cutil.unroll env ty with
| TFun(res, args, vararg, attr) -> Some(res, vararg)
| TPtr(ty', attr) -> projFunType env ty'
| _ -> None
let string_of_type ty =
let b = Buffer.create 20 in
let fb = Format.formatter_of_buffer b in
Cprint.typ fb ty;
Format.pp_print_flush fb ();
Buffer.contents b
let first_class_value env ty =
match Cutil.unroll env ty with
| C.TInt((C.ILongLong|C.IULongLong), _) -> false
| C.TStruct _ -> false
| C.TUnion _ -> false
| _ -> true
(* Handling of volatile *)
let is_volatile_access env e =
List.mem C.AVolatile (Cutil.attributes_of_type env e.etyp)
&& Cutil.is_lvalue env e
let volatile_fun_suffix_type ty =
match ty with
| Tint(I8, Unsigned) -> ("int8unsigned", ty)
| Tint(I8, Signed) -> ("int8signed", ty)
| Tint(I16, Unsigned) -> ("int16unsigned", ty)
| Tint(I16, Signed) -> ("int16signed", ty)
| Tint(I32, _) -> ("int32", Tint(I32, Signed))
| Tfloat F32 -> ("float32", ty)
| Tfloat F64 -> ("float64", ty)
| Tpointer _ | Tarray _ | Tfunction _ | Tcomp_ptr _ ->
("pointer", Tpointer Tvoid)
| _ ->
unsupported "operation on volatile struct or union"; ("", Tvoid)
let volatile_read_fun ty =
let (suffix, ty') = volatile_fun_suffix_type ty in
let funty = Tfunction(Tcons(Tpointer Tvoid, Tnil), ty') in
Evalof(Evar(intern_string ("__builtin_volatile_read_" ^ suffix), funty), funty)
let volatile_write_fun ty =
let (suffix, ty') = volatile_fun_suffix_type ty in
let funty = Tfunction(Tcons(Tpointer Tvoid, Tcons(ty', Tnil)), Tvoid) in
Evalof(Evar(intern_string ("__builtin_volatile_write_" ^ suffix), funty), funty)
(** Expressions *)
let ezero = Eval(Vint(coqint_of_camlint 0l), Tint(I32, Signed))
let check_assignop msg env e =
if not (first_class_value env e.etyp) then
unsupported (msg ^ " on a l-value of type " ^ string_of_type e.etyp);
if is_volatile_access env e then
unsupported (msg ^ " on a volatile l-value")
let rec convertExpr env e =
let ty = convertTyp env e.etyp in
match e.edesc with
| C.EVar _
| C.EUnop((C.Oderef|C.Odot _|C.Oarrow _), _)
| C.EBinop(C.Oindex, _, _, _) ->
let l = convertLvalue env e in
if not (first_class_value env e.etyp) then
unsupported ("r-value of type " ^ string_of_type e.etyp);
if is_volatile_access env e then
Ecall(volatile_read_fun (typeof l),
Econs(Eaddrof(l, Tpointer(typeof l)), Enil),
ty)
else
Evalof(l, ty)
| C.EConst(C.CInt(i, _, _)) ->
Eval(Vint(convertInt i), ty)
| C.EConst(C.CFloat(f, _, _)) ->
Eval(Vfloat(f), ty)
| C.EConst(C.CStr s) ->
let ty = typeStringLiteral s in
Evalof(Evar(name_for_string_literal env s, ty), ty)
| C.EConst(C.CWStr s) ->
unsupported "wide string literal"; ezero
| C.EConst(C.CEnum(id, i)) ->
Eval(Vint(convertInt i), ty)
| C.ESizeof ty1 ->
Esizeof(convertTyp env ty1, ty)
| C.EUnop(C.Ominus, e1) ->
Eunop(Oneg, convertExpr env e1, ty)
| C.EUnop(C.Oplus, e1) ->
convertExpr env e1
| C.EUnop(C.Olognot, e1) ->
Eunop(Onotbool, convertExpr env e1, ty)
| C.EUnop(C.Onot, e1) ->
Eunop(Onotint, convertExpr env e1, ty)
| C.EUnop(C.Oaddrof, e1) ->
Eaddrof(convertLvalue env e1, ty)
| C.EUnop(C.Opreincr, e1) ->
check_assignop "pre-increment" env e1;
coq_Epreincr Incr (convertLvalue env e1) ty
| C.EUnop(C.Opredecr, e1) ->
check_assignop "pre-decrement" env e1;
coq_Epreincr Decr (convertLvalue env e1) ty
| C.EUnop(C.Opostincr, e1) ->
check_assignop "post-increment" env e1;
Epostincr(Incr, convertLvalue env e1, ty)
| C.EUnop(C.Opostdecr, e1) ->
check_assignop "post-decrement" env e1;
Epostincr(Decr, convertLvalue env e1, ty)
| C.EBinop((C.Oadd|C.Osub|C.Omul|C.Odiv|C.Omod|C.Oand|C.Oor|C.Oxor|
C.Oshl|C.Oshr|C.Oeq|C.One|C.Olt|C.Ogt|C.Ole|C.Oge) as op,
e1, e2, _) ->
let op' =
match op with
| C.Oadd -> Oadd
| C.Osub -> Osub
| C.Omul -> Omul
| C.Odiv -> Odiv
| C.Omod -> Omod
| C.Oand -> Oand
| C.Oor -> Oor
| C.Oxor -> Oxor
| C.Oshl -> Oshl
| C.Oshr -> Oshr
| C.Oeq -> Oeq
| C.One -> One
| C.Olt -> Olt
| C.Ogt -> Ogt
| C.Ole -> Ole
| C.Oge -> Oge
| _ -> assert false in
Ebinop(op', convertExpr env e1, convertExpr env e2, ty)
| C.EBinop(C.Oassign, e1, e2, _) ->
let e1' = convertLvalue env e1 in
let e2' = convertExpr env e2 in
if not (first_class_value env e1.etyp) then
unsupported ("assignment to a l-value of type " ^ string_of_type e1.etyp);
if is_volatile_access env e1 then
Ecall(volatile_write_fun (typeof e1'),
Econs(Eaddrof(e1', Tpointer(typeof e1')), Econs(e2', Enil)),
Tvoid) (* typing issue here *)
else
Eassign(e1', e2', ty)
| C.EBinop((C.Oadd_assign|C.Osub_assign|C.Omul_assign|C.Odiv_assign|
C.Omod_assign|C.Oand_assign|C.Oor_assign|C.Oxor_assign|
C.Oshl_assign|C.Oshr_assign) as op,
e1, e2, tyres) ->
let tyres = convertTyp env tyres in
let op' =
match op with
| C.Oadd_assign -> Oadd
| C.Osub_assign -> Osub
| C.Omul_assign -> Omul
| C.Odiv_assign -> Odiv
| C.Omod_assign -> Omod
| C.Oand_assign -> Oand
| C.Oor_assign -> Oor
| C.Oxor_assign -> Oxor
| C.Oshl_assign -> Oshl
| C.Oshr_assign -> Oshr
| _ -> assert false in
let e1' = convertLvalue env e1 in
let e2' = convertExpr env e2 in
check_assignop "assignment-operation" env e1;
Eassignop(op', e1', e2', tyres, ty)
| C.EBinop(C.Ocomma, e1, e2, _) ->
Ecomma(convertExpr env e1, convertExpr env e2, ty)
| C.EBinop(C.Ologand, e1, e2, _) ->
coq_Eseqand (convertExpr env e1) (convertExpr env e2) ty
| C.EBinop(C.Ologor, e1, e2, _) ->
coq_Eseqor (convertExpr env e1) (convertExpr env e2) ty
| C.EConditional(e1, e2, e3) ->
Econdition(convertExpr env e1, convertExpr env e2, convertExpr env e3, ty)
| C.ECast(ty1, e1) ->
Ecast(convertExpr env e1, convertTyp env ty1)
| C.ECall({edesc = C.EVar {name = "__builtin_annotation"}}, args) ->
begin match args with
| {edesc = C.EConst(CStr txt)} :: args1 ->
if List.length args1 > 2 then
error "too many arguments to __builtin_annotation";
let targs1 = convertTypList env (List.map (fun e -> e.etyp) args1) in
let fn' = register_annotation_function txt targs1 ty in
Ecall(fn', convertExprList env args1, ty)
| _ ->
error "ill-formed __builtin_annotation (first argument must be string literal)";
ezero
end
| C.ECall({edesc = C.EVar {name = ("__builtin_memcpy"
|"__builtin_memcpy_al2"
|"__builtin_memcpy_al4"
|"__builtin_memcpy_al8" as name)}} as fn,
args) ->
make_builtin_memcpy name (convertExpr env fn) (convertExprList env args)
| C.ECall(fn, args) ->
match projFunType env fn.etyp with
| None ->
error "wrong type for function part of a call"; ezero
| Some(res, false) ->
(* Non-variadic function *)
Ecall(convertExpr env fn, convertExprList env args, ty)
| Some(res, true) ->
(* Variadic function: generate a call to a stub function with
the appropriate number and types of arguments. Works only if
the function expression e is a global variable. *)
let fun_name =
match fn with
| {edesc = C.EVar id} when !Clflags.option_fvararg_calls ->
(*warning "emulating call to variadic function"; *)
id.name
| _ ->
unsupported "call to variadic function";
"<error>" in
let targs = convertTypList env (List.map (fun e -> e.etyp) args) in
let tres = convertTyp env res in
let (stub_fun_name, stub_fun_typ) =
register_stub_function fun_name tres targs in
Ecall(Evalof(Evar(intern_string stub_fun_name, stub_fun_typ),
stub_fun_typ),
convertExprList env args, ty)
and convertLvalue env e =
let ty = convertTyp env e.etyp in
match e.edesc with
| C.EVar id ->
Evar(intern_string id.name, ty)
| C.EUnop(C.Oderef, e1) ->
Ederef(convertExpr env e1, ty)
| C.EUnop(C.Odot id, e1) ->
Efield(convertLvalue env e1, intern_string id, ty)
| C.EUnop(C.Oarrow id, e1) ->
let e1' = convertExpr env e1 in
let ty1 =
match typeof e1' with
| Tpointer t -> t
| _ -> error ("wrong type for ->" ^ id ^ " access"); Tvoid in
Efield(Ederef(e1', ty1), intern_string id, ty)
| C.EBinop(C.Oindex, e1, e2, _) ->
coq_Eindex (convertExpr env e1) (convertExpr env e2) ty
| _ ->
error "illegal l-value"; ezero
and convertExprList env el =
match el with
| [] -> Enil
| e1 :: el' -> Econs(convertExpr env e1, convertExprList env el')
(* Separate the cases of a switch statement body *)
type switchlabel =
| Case of C.exp
| Default
type switchbody =
| Label of switchlabel
| Stmt of C.stmt
let rec flattenSwitch = function
| {sdesc = C.Sseq(s1, s2)} ->
flattenSwitch s1 @ flattenSwitch s2
| {sdesc = C.Slabeled(C.Scase e, s1)} ->
Label(Case e) :: flattenSwitch s1
| {sdesc = C.Slabeled(C.Sdefault, s1)} ->
Label Default :: flattenSwitch s1
| s ->
[Stmt s]
let rec groupSwitch = function
| [] ->
(Cutil.sskip, [])
| Label case :: rem ->
let (fst, cases) = groupSwitch rem in
(Cutil.sskip, (case, fst) :: cases)
| Stmt s :: rem ->
let (fst, cases) = groupSwitch rem in
(Cutil.sseq s.sloc s fst, cases)
(* Statement *)
let rec convertStmt env s =
updateLoc s.sloc;
match s.sdesc with
| C.Sskip ->
Sskip
| C.Sdo e ->
Sdo(convertExpr env e)
| C.Sseq(s1, s2) ->
Ssequence(convertStmt env s1, convertStmt env s2)
| C.Sif(e, s1, s2) ->
Sifthenelse(convertExpr env e, convertStmt env s1, convertStmt env s2)
| C.Swhile(e, s1) ->
Swhile(convertExpr env e, convertStmt env s1)
| C.Sdowhile(s1, e) ->
Sdowhile(convertExpr env e, convertStmt env s1)
| C.Sfor(s1, e, s2, s3) ->
Sfor(convertStmt env s1, convertExpr env e, convertStmt env s2,
convertStmt env s3)
| C.Sbreak ->
Sbreak
| C.Scontinue ->
Scontinue
| C.Sswitch(e, s1) ->
let (init, cases) = groupSwitch (flattenSwitch s1) in
if cases = [] then
unsupported "ill-formed 'switch' statement";
if init.sdesc <> C.Sskip then
warning "ignored code at beginning of 'switch'";
Sswitch(convertExpr env e, convertSwitch env cases)
| C.Slabeled(C.Slabel lbl, s1) ->
Slabel(intern_string lbl, convertStmt env s1)
| C.Slabeled(C.Scase _, _) ->
unsupported "'case' outside of 'switch'"; Sskip
| C.Slabeled(C.Sdefault, _) ->
unsupported "'default' outside of 'switch'"; Sskip
| C.Sgoto lbl ->
Sgoto(intern_string lbl)
| C.Sreturn None ->
Sreturn None
| C.Sreturn(Some e) ->
Sreturn(Some(convertExpr env e))
| C.Sblock _ ->
unsupported "nested blocks"; Sskip
| C.Sdecl _ ->
unsupported "inner declarations"; Sskip
and convertSwitch env = function
| [] ->
LSdefault Sskip
| [Default, s] ->
LSdefault (convertStmt env s)
| (Default, s) :: _ ->
updateLoc s.sloc;
unsupported "'default' case must occur last";
LSdefault Sskip
| (Case e, s) :: rem ->
updateLoc s.sloc;
let v =
match Ceval.integer_expr env e with
| None -> unsupported "'case' label is not a compile-time integer"; 0L
| Some v -> v in
LScase(convertInt v,
convertStmt env s,
convertSwitch env rem)
(** Function definitions *)
let convertFundef env fd =
if Cutil.is_composite_type env fd.fd_ret then
unsupported "function returning a struct or union";
let ret =
convertTyp env fd.fd_ret in
let params =
List.map
(fun (id, ty) ->
if Cutil.is_composite_type env ty then
unsupported "function parameter of struct or union type";
Datatypes.Coq_pair(intern_string id.name, convertTyp env ty))
fd.fd_params in
let vars =
List.map
(fun (sto, id, ty, init) ->
if sto = Storage_extern || sto = Storage_static then
unsupported "'static' or 'extern' local variable";
if init <> None then
unsupported "initialized local variable";
Datatypes.Coq_pair(intern_string id.name, convertTyp env ty))
fd.fd_locals in
let body' = convertStmt env fd.fd_body in
let id' = intern_string fd.fd_name.name in
Hashtbl.add decl_atom id'
{ a_storage = fd.fd_storage;
a_env = env;
a_type = Cutil.fundef_typ fd;
a_fundef = Some fd };
Sections.define_function env id' fd.fd_ret;
Datatypes.Coq_pair(id',
Internal {fn_return = ret; fn_params = params;
fn_vars = vars; fn_body = body'})
(** External function declaration *)
let noninlined_builtin_functions = [
"__builtin_memcpy"; "__builtin_memcpy_al2";
"__builtin_memcpy_al4"; "__builtin_memcpy_al8"
]
let convertFundecl env (sto, id, ty, optinit) =
let (args, res) =
match convertTyp env ty with
| Tfunction(args, res) -> (args, res)
| _ -> assert false in
let id' = intern_string id.name in
let ef =
{ ef_id = id';
ef_sig = signature_of_type args res;
ef_inline = List.mem_assoc id.name builtins.functions
&& not (List.mem id.name noninlined_builtin_functions) } in
Datatypes.Coq_pair(id', External(ef, args, res))
(** Initializers *)
let string_of_errmsg msg =
let string_of_err = function
| CompcertErrors.MSG s -> camlstring_of_coqstring s
| CompcertErrors.CTX i -> extern_atom i
in String.concat "" (List.map string_of_err msg)
let rec convertInit env init =
match init with
| C.Init_single e ->
Init_single (convertExpr env e)
| C.Init_array il ->
Init_compound (convertInitList env il)
| C.Init_struct(_, flds) ->
Init_compound (convertInitList env (List.map snd flds))
| C.Init_union(_, fld, i) ->
Init_compound (Init_cons(convertInit env i, Init_nil))
and convertInitList env il =
match il with
| [] -> Init_nil
| i :: il' -> Init_cons(convertInit env i, convertInitList env il')
let convertInitializer env ty i =
match Initializers.transl_init (convertTyp env ty) (convertInit env i)
with
| CompcertErrors.OK init -> init
| CompcertErrors.Error msg -> error (string_of_errmsg msg); []
(** Global variable *)
let convertGlobvar env (sto, id, ty, optinit) =
let id' = intern_string id.name in
let ty' = convertTyp env ty in
let init' =
match optinit with
| None ->
if sto = C.Storage_extern then [] else [Init_space(Csyntax.sizeof ty')]
| Some i ->
convertInitializer env ty i in
Hashtbl.add decl_atom id'
{ a_storage = sto;
a_env = env;
a_type = ty;
a_fundef = None };
Sections.define_variable env id' ty;
let a = Cutil.attributes_of_type env ty in
let volatile = List.mem C.AVolatile a in
let readonly = List.mem C.AConst a && not volatile in
Datatypes.Coq_pair(id',
{gvar_info = ty'; gvar_init = init';
gvar_readonly = readonly;
gvar_volatile = volatile})
(** Convert a list of global declarations.
Result is a pair [(funs, vars)] where [funs] are
the function definitions (internal and external)
and [vars] the variable declarations. *)
let rec convertGlobdecls env funs vars gl =
match gl with
| [] -> (List.rev funs, List.rev vars)
| g :: gl' ->
updateLoc g.gloc;
match g.gdesc with
| C.Gdecl((sto, id, ty, optinit) as d) ->
(* Prototyped functions become external declarations.
Variadic functions are skipped.
Other types become variable declarations. *)
begin match Cutil.unroll env ty with
| TFun(_, Some _, false, _) ->
convertGlobdecls env (convertFundecl env d :: funs) vars gl'
| TFun(_, None, false, _) ->
error "function declaration without prototype";
convertGlobdecls env funs vars gl'
| TFun(_, _, true, _) ->
convertGlobdecls env funs vars gl'
| _ ->
convertGlobdecls env funs (convertGlobvar env d :: vars) gl'
end
| C.Gfundef fd ->
convertGlobdecls env (convertFundef env fd :: funs) vars gl'
| C.Gcompositedecl _ | C.Gcompositedef _
| C.Gtypedef _ | C.Genumdef _ ->
(* typedefs are unrolled, structs are expanded inline, and
enum tags are folded. So we just skip their declarations. *)
convertGlobdecls env funs vars gl'
| C.Gpragma s ->
if not (!process_pragma_hook s) then
warning ("'#pragma " ^ s ^ "' directive ignored");
convertGlobdecls env funs vars gl'
(** Build environment of typedefs and structs *)
let rec translEnv env = function
| [] -> env
| g :: gl ->
let env' =
match g.gdesc with
| C.Gcompositedecl(su, id, attr) ->
Env.add_composite env id (Cutil.composite_info_decl env su attr)
| C.Gcompositedef(su, id, attr, fld) ->
Env.add_composite env id (Cutil.composite_info_def env su attr fld)
| C.Gtypedef(id, ty) ->
Env.add_typedef env id ty
| _ ->
env in
translEnv env' gl
(** Eliminate forward declarations of globals that are defined later. *)
module IdentSet = Set.Make(struct type t = C.ident let compare = compare end)
let cleanupGlobals p =
let rec clean defs accu = function
| [] -> accu
| g :: gl ->
updateLoc g.gloc;
match g.gdesc with
| C.Gdecl(sto, id, ty, None) ->
if IdentSet.mem id defs
then clean defs accu gl
else clean (IdentSet.add id defs) (g :: accu) gl
| C.Gdecl(_, id, ty, _) ->
if IdentSet.mem id defs then
error ("multiple definitions of " ^ id.name);
clean (IdentSet.add id defs) (g :: accu) gl
| C.Gfundef fd ->
if IdentSet.mem fd.fd_name defs then
error ("multiple definitions of " ^ fd.fd_name.name);
clean (IdentSet.add fd.fd_name defs) (g :: accu) gl
| _ ->
clean defs (g :: accu) gl
in clean IdentSet.empty [] (List.rev p)
(** Convert a [C.program] into a [Csyntax.program] *)
let convertProgram p =
numErrors := 0;
stringNum := 0;
Hashtbl.clear decl_atom;
Hashtbl.clear stringTable;
Hashtbl.clear special_externals_table;
let p = Builtins.declarations() @ p in
try
let (funs1, vars1) =
convertGlobdecls (translEnv Env.empty p) [] [] (cleanupGlobals p) in
let funs2 = declare_special_externals funs1 in
let vars2 = globals_for_strings vars1 in
if !numErrors > 0
then None
else Some { AST.prog_funct = funs2;
AST.prog_vars = vars2;
AST.prog_main = intern_string "main" }
with Env.Error msg ->
error (Env.error_message msg); None
(** ** Extracting information about global variables from their atom *)
let atom_is_static a =
try
match Hashtbl.find decl_atom a with
| { a_storage = C.Storage_static } -> true
(* We do not inline functions, but at least let's not make them globals *)
| { a_fundef = Some { fd_inline = true } } -> true
| _ -> false
with Not_found ->
false
let atom_is_extern a =
try
let i = Hashtbl.find decl_atom a in i.a_storage = C.Storage_extern
with Not_found ->
false
(*
let atom_is_readonly a =
try
let i = Hashtbl.find decl_atom a in type_is_readonly i.a_env i.a_type
with Not_found ->
false
let atom_sizeof a =
try
let i = Hashtbl.find decl_atom a in Cutil.sizeof i.a_env i.a_type
with Not_found ->
None
*)
let atom_alignof a =
try
let i = Hashtbl.find decl_atom a in
match Cutil.find_custom_attributes
["aligned"; "__aligned__"]
(Cutil.attributes_of_type i.a_env i.a_type) with
| [[C.AInt n]] -> Some(Int64.to_int n)
| _ -> Cutil.alignof i.a_env i.a_type
with Not_found ->
None
|