1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
|
(* *********************************************************************)
(* *)
(* The Compcert verified compiler *)
(* *)
(* Xavier Leroy, INRIA Paris-Rocquencourt *)
(* *)
(* Copyright Institut National de Recherche en Informatique et en *)
(* Automatique. All rights reserved. This file is distributed *)
(* under the terms of the INRIA Non-Commercial License Agreement. *)
(* *)
(* *********************************************************************)
(** Correctness proof for the branch tunneling optimization. *)
Require Import Coqlib.
Require Import Maps.
Require Import UnionFind.
Require Import AST.
Require Import Values.
Require Import Mem.
Require Import Events.
Require Import Globalenvs.
Require Import Smallstep.
Require Import Op.
Require Import Locations.
Require Import LTL.
Require Import Tunneling.
(** * Properties of the branch map computed using union-find. *)
(** A variant of [record_goto] that also incrementally computes a measure [f: node -> nat]
counting the number of [Lnop] instructions starting at a given [pc] that were eliminated. *)
Definition measure_edge (u: U.t) (pc s: node) (f: node -> nat) : node -> nat :=
fun x => if peq (U.repr u s) pc then f x
else if peq (U.repr u x) pc then (f x + f s + 1)%nat
else f x.
Definition record_goto' (uf: U.t * (node -> nat)) (pc: node) (i: instruction) : U.t * (node -> nat) :=
match i with
| Lnop s => let (u, f) := uf in (U.union u pc s, measure_edge u pc s f)
| _ => uf
end.
Definition branch_map_correct (c: code) (uf: U.t * (node -> nat)): Prop :=
forall pc,
match c!pc with
| Some(Lnop s) =>
U.repr (fst uf) pc = pc \/ (U.repr (fst uf) pc = U.repr (fst uf) s /\ snd uf s < snd uf pc)%nat
| _ =>
U.repr (fst uf) pc = pc
end.
Lemma record_gotos'_correct:
forall c,
branch_map_correct c (PTree.fold record_goto' c (U.empty, fun (x: node) => O)).
Proof.
intros.
apply PTree_Properties.fold_rec with (P := fun c uf => branch_map_correct c uf).
(* extensionality *)
intros. red; intros. rewrite <- H. apply H0.
(* base case *)
red; intros; simpl. rewrite PTree.gempty. apply U.repr_empty.
(* inductive case *)
intros m uf pc i; intros. destruct uf as [u f].
assert (PC: U.repr u pc = pc).
generalize (H1 pc). rewrite H. auto.
assert (record_goto' (u, f) pc i = (u, f)
\/ exists s, i = Lnop s /\ record_goto' (u, f) pc i = (U.union u pc s, measure_edge u pc s f)).
unfold record_goto'; simpl. destruct i; auto. right. exists n; auto.
destruct H2 as [B | [s [EQ B]]].
(* u and f are unchanged *)
rewrite B.
red. intro pc'. simpl. rewrite PTree.gsspec. destruct (peq pc' pc). subst pc'.
destruct i; auto.
apply H1.
(* i is Lnop s, u becomes union u pc s, f becomes measure_edge u pc s f *)
rewrite B.
red. intro pc'. simpl. rewrite PTree.gsspec. destruct (peq pc' pc). subst pc'. rewrite EQ.
(* The new instruction *)
rewrite (U.repr_union_2 u pc s); auto. rewrite U.repr_union_3.
unfold measure_edge. destruct (peq (U.repr u s) pc). auto. right. split. auto.
rewrite PC. rewrite peq_true. omega.
(* An old instruction *)
assert (U.repr u pc' = pc' -> U.repr (U.union u pc s) pc' = pc').
intro. rewrite <- H2 at 2. apply U.repr_union_1. congruence.
generalize (H1 pc'). simpl. destruct (m!pc'); auto. destruct i0; auto.
intros [P | [P Q]]. left; auto. right.
split. apply U.sameclass_union_2. auto.
unfold measure_edge. destruct (peq (U.repr u s) pc). auto.
rewrite P. destruct (peq (U.repr u n0) pc). omega. auto.
Qed.
Definition record_gotos' (f: function) :=
PTree.fold record_goto' f.(fn_code) (U.empty, fun (x: node) => O).
Lemma record_gotos_gotos':
forall f, fst (record_gotos' f) = record_gotos f.
Proof.
intros. unfold record_gotos', record_gotos.
repeat rewrite PTree.fold_spec.
generalize (PTree.elements (fn_code f)) (U.empty) (fun _ : node => O).
induction l; intros; simpl.
auto.
unfold record_goto' at 2. unfold record_goto at 2.
destruct (snd a); apply IHl.
Qed.
Definition branch_target (f: function) (pc: node) : node :=
U.repr (record_gotos f) pc.
Definition count_gotos (f: function) (pc: node) : nat :=
snd (record_gotos' f) pc.
Theorem record_gotos_correct:
forall f pc,
match f.(fn_code)!pc with
| Some(Lnop s) =>
branch_target f pc = pc \/
(branch_target f pc = branch_target f s /\ count_gotos f s < count_gotos f pc)%nat
| _ => branch_target f pc = pc
end.
Proof.
intros.
generalize (record_gotos'_correct f.(fn_code) pc). simpl.
fold (record_gotos' f). unfold branch_map_correct, branch_target, count_gotos.
rewrite record_gotos_gotos'. auto.
Qed.
(** * Preservation of semantics *)
Section PRESERVATION.
Variable p: program.
Let tp := tunnel_program p.
Let ge := Genv.globalenv p.
Let tge := Genv.globalenv tp.
Lemma functions_translated:
forall v f,
Genv.find_funct ge v = Some f ->
Genv.find_funct tge v = Some (tunnel_fundef f).
Proof (@Genv.find_funct_transf _ _ _ tunnel_fundef p).
Lemma function_ptr_translated:
forall v f,
Genv.find_funct_ptr ge v = Some f ->
Genv.find_funct_ptr tge v = Some (tunnel_fundef f).
Proof (@Genv.find_funct_ptr_transf _ _ _ tunnel_fundef p).
Lemma symbols_preserved:
forall id,
Genv.find_symbol tge id = Genv.find_symbol ge id.
Proof (@Genv.find_symbol_transf _ _ _ tunnel_fundef p).
Lemma sig_preserved:
forall f, funsig (tunnel_fundef f) = funsig f.
Proof.
destruct f; reflexivity.
Qed.
Lemma find_function_translated:
forall ros ls f,
find_function ge ros ls = Some f ->
find_function tge ros ls = Some (tunnel_fundef f).
Proof.
intros until f. destruct ros; simpl.
intro. apply functions_translated; auto.
rewrite symbols_preserved. destruct (Genv.find_symbol ge i).
apply function_ptr_translated; auto.
congruence.
Qed.
(** The proof of semantic preservation is a simulation argument
based on diagrams of the following form:
<<
st1 --------------- st2
| |
t| ?|t
| |
v v
st1'--------------- st2'
>>
The [match_states] predicate, defined below, captures the precondition
between states [st1] and [st2], as well as the postcondition between
[st1'] and [st2']. One transition in the source code (left) can correspond
to zero or one transition in the transformed code (right). The
"zero transition" case occurs when executing a [Lgoto] instruction
in the source code that has been removed by tunneling.
In the definition of [match_states], note that only the control-flow
(in particular, the current program point [pc]) is changed:
the values of locations and the memory states are identical in the
original and transformed codes. *)
Definition tunneled_code (f: function) :=
PTree.map (fun pc b => tunnel_instr (record_gotos f) b) (fn_code f).
Inductive match_stackframes: stackframe -> stackframe -> Prop :=
| match_stackframes_intro:
forall res f sp ls0 pc,
match_stackframes
(Stackframe res f sp ls0 pc)
(Stackframe res (tunnel_function f) sp ls0 (branch_target f pc)).
Inductive match_states: state -> state -> Prop :=
| match_states_intro:
forall s f sp pc ls m ts,
list_forall2 match_stackframes s ts ->
match_states (State s f sp pc ls m)
(State ts (tunnel_function f) sp (branch_target f pc) ls m)
| match_states_call:
forall s f ls m ts,
list_forall2 match_stackframes s ts ->
match_states (Callstate s f ls m)
(Callstate ts (tunnel_fundef f) ls m)
| match_states_return:
forall s ls m ts,
list_forall2 match_stackframes s ts ->
match_states (Returnstate s ls m)
(Returnstate ts ls m).
(** To preserve non-terminating behaviours, we show that the transformed
code cannot take an infinity of "zero transition" cases.
We use the following [measure] function over source states,
which decreases strictly in the "zero transition" case. *)
Definition measure (st: state) : nat :=
match st with
| State s f sp pc ls m => count_gotos f pc
| Callstate s f ls m => 0%nat
| Returnstate s ls m => 0%nat
end.
Lemma tunnel_function_lookup:
forall f pc i,
f.(fn_code)!pc = Some i ->
(tunnel_function f).(fn_code)!pc = Some (tunnel_instr (record_gotos f) i).
Proof.
intros. simpl. rewrite PTree.gmap. rewrite H. auto.
Qed.
Lemma tunnel_step_correct:
forall st1 t st2, step ge st1 t st2 ->
forall st1' (MS: match_states st1 st1'),
(exists st2', step tge st1' t st2' /\ match_states st2 st2')
\/ (measure st2 < measure st1 /\ t = E0 /\ match_states st2 st1')%nat.
Proof.
induction 1; intros; try inv MS.
(* Lnop *)
generalize (record_gotos_correct f pc); rewrite H.
intros [A | [B C]].
left; econstructor; split.
eapply exec_Lnop. rewrite A.
rewrite (tunnel_function_lookup _ _ _ H); simpl; auto.
econstructor; eauto.
right. split. simpl. auto. split. auto.
rewrite B. econstructor; eauto.
(* Lop *)
generalize (record_gotos_correct f pc); rewrite H; intro A; rewrite A.
left; econstructor; split.
eapply exec_Lop with (v := v); eauto.
rewrite (tunnel_function_lookup _ _ _ H); simpl; auto.
rewrite <- H0. apply eval_operation_preserved. exact symbols_preserved.
econstructor; eauto.
(* Lload *)
generalize (record_gotos_correct f pc); rewrite H; intro A; rewrite A.
left; econstructor; split.
eapply exec_Lload with (a := a).
rewrite (tunnel_function_lookup _ _ _ H); simpl; auto.
rewrite <- H0. apply eval_addressing_preserved. exact symbols_preserved.
eauto.
econstructor; eauto.
(* Lstore *)
generalize (record_gotos_correct f pc); rewrite H; intro A; rewrite A.
left; econstructor; split.
eapply exec_Lstore with (a := a).
rewrite (tunnel_function_lookup _ _ _ H); simpl; auto.
rewrite <- H0. apply eval_addressing_preserved. exact symbols_preserved.
eauto.
econstructor; eauto.
(* Lcall *)
generalize (record_gotos_correct f pc); rewrite H; intro A.
left; econstructor; split.
eapply exec_Lcall with (f' := tunnel_fundef f'); eauto.
rewrite A. rewrite (tunnel_function_lookup _ _ _ H); simpl.
rewrite sig_preserved. auto.
apply find_function_translated; auto.
econstructor; eauto.
constructor; auto.
constructor; auto.
(* Ltailcall *)
generalize (record_gotos_correct f pc); rewrite H; intro A.
left; econstructor; split.
eapply exec_Ltailcall with (f' := tunnel_fundef f'); eauto.
rewrite A. rewrite (tunnel_function_lookup _ _ _ H); simpl.
rewrite sig_preserved. auto.
apply find_function_translated; auto.
econstructor; eauto.
(* cond *)
generalize (record_gotos_correct f pc); rewrite H; intro A; rewrite A.
left; econstructor; split.
eapply exec_Lcond_true; eauto.
rewrite (tunnel_function_lookup _ _ _ H); simpl; eauto.
econstructor; eauto.
generalize (record_gotos_correct f pc); rewrite H; intro A; rewrite A.
left; econstructor; split.
eapply exec_Lcond_false; eauto.
rewrite (tunnel_function_lookup _ _ _ H); simpl; eauto.
econstructor; eauto.
(* return *)
generalize (record_gotos_correct f pc); rewrite H; intro A; rewrite A.
left; econstructor; split.
eapply exec_Lreturn; eauto.
rewrite (tunnel_function_lookup _ _ _ H); simpl; eauto.
simpl. constructor; auto.
(* internal function *)
simpl. left; econstructor; split.
eapply exec_function_internal; eauto.
simpl. econstructor; eauto.
(* external function *)
simpl. left; econstructor; split.
eapply exec_function_external; eauto.
simpl. econstructor; eauto.
(* return *)
inv H3. inv H1.
left; econstructor; split.
eapply exec_return; eauto.
constructor. auto.
Qed.
Lemma transf_initial_states:
forall st1, initial_state p st1 ->
exists st2, initial_state tp st2 /\ match_states st1 st2.
Proof.
intros. inversion H.
exists (Callstate nil (tunnel_fundef f) nil (Genv.init_mem tp)); split.
econstructor; eauto.
change (prog_main tp) with (prog_main p).
rewrite symbols_preserved. eauto.
apply function_ptr_translated; auto.
rewrite <- H2. apply sig_preserved.
replace (Genv.init_mem tp) with (Genv.init_mem p).
constructor. constructor. auto.
symmetry. unfold tp, tunnel_program. apply Genv.init_mem_transf.
Qed.
Lemma transf_final_states:
forall st1 st2 r,
match_states st1 st2 -> final_state st1 r -> final_state st2 r.
Proof.
intros. inv H0. inv H. inv H4. constructor.
Qed.
Theorem transf_program_correct:
forall (beh: program_behavior), not_wrong beh ->
exec_program p beh -> exec_program tp beh.
Proof.
unfold exec_program; intros.
eapply simulation_opt_preservation; eauto.
eexact transf_initial_states.
eexact transf_final_states.
eexact tunnel_step_correct.
Qed.
End PRESERVATION.
|