1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
|
(* *********************************************************************)
(* *)
(* The Compcert verified compiler *)
(* *)
(* Xavier Leroy, INRIA Paris-Rocquencourt *)
(* *)
(* Copyright Institut National de Recherche en Informatique et en *)
(* Automatique. All rights reserved. This file is distributed *)
(* under the terms of the INRIA Non-Commercial License Agreement. *)
(* *)
(* *********************************************************************)
(** Recognition of tail calls: correctness proof *)
Require Import Coqlib.
Require Import Maps.
Require Import AST.
Require Import Integers.
Require Import Values.
Require Import Mem.
Require Import Op.
Require Import Events.
Require Import Globalenvs.
Require Import Smallstep.
Require Import Registers.
Require Import RTL.
Require Conventions.
Require Import Tailcall.
(** * Syntactic properties of the code transformation *)
(** ** Measuring the number of instructions eliminated *)
(** The [return_measure c pc] function counts the number of instructions
eliminated by the code transformation, where [pc] is the successor
of a call turned into a tailcall. This is the length of the
move/nop/return sequence recognized by the [is_return] boolean function.
*)
Fixpoint return_measure_rec (n: nat) (c: code) (pc: node)
{struct n}: nat :=
match n with
| O => O
| S n' =>
match c!pc with
| Some(Inop s) => S(return_measure_rec n' c s)
| Some(Iop op args dst s) => S(return_measure_rec n' c s)
| _ => O
end
end.
Definition return_measure (c: code) (pc: node) :=
return_measure_rec niter c pc.
Lemma return_measure_bounds:
forall f pc, (return_measure f pc <= niter)%nat.
Proof.
intro f.
assert (forall n pc, (return_measure_rec n f pc <= n)%nat).
induction n; intros; simpl.
omega.
destruct (f!pc); try omega.
destruct i; try omega.
generalize (IHn n0). omega.
generalize (IHn n0). omega.
intros. unfold return_measure. apply H.
Qed.
Remark return_measure_rec_incr:
forall f n1 n2 pc,
(n1 <= n2)%nat ->
(return_measure_rec n1 f pc <= return_measure_rec n2 f pc)%nat.
Proof.
induction n1; intros; simpl.
omega.
destruct n2. omegaContradiction. assert (n1 <= n2)%nat by omega.
simpl. destruct f!pc; try omega. destruct i; try omega.
generalize (IHn1 n2 n H0). omega.
generalize (IHn1 n2 n H0). omega.
Qed.
Lemma is_return_measure_rec:
forall f n n' pc r,
is_return n f pc r = true -> (n <= n')%nat ->
return_measure_rec n f.(fn_code) pc = return_measure_rec n' f.(fn_code) pc.
Proof.
induction n; simpl; intros.
congruence.
destruct n'. omegaContradiction. simpl.
destruct (fn_code f)!pc; try congruence.
destruct i; try congruence.
decEq. apply IHn with r. auto. omega.
destruct (is_move_operation o l); try congruence.
destruct (Reg.eq r r1); try congruence.
decEq. apply IHn with r0. auto. omega.
Qed.
(** ** Relational characterization of the code transformation *)
(** The [is_return_spec] characterizes the instruction sequences
recognized by the [is_return] boolean function. *)
Inductive is_return_spec (f:function): node -> reg -> Prop :=
| is_return_none: forall pc r,
f.(fn_code)!pc = Some(Ireturn None) ->
is_return_spec f pc r
| is_return_some: forall pc r,
f.(fn_code)!pc = Some(Ireturn (Some r)) ->
is_return_spec f pc r
| is_return_nop: forall pc r s,
f.(fn_code)!pc = Some(Inop s) ->
is_return_spec f s r ->
(return_measure f.(fn_code) s < return_measure f.(fn_code) pc)%nat ->
is_return_spec f pc r
| is_return_move: forall pc r r' s,
f.(fn_code)!pc = Some(Iop Omove (r::nil) r' s) ->
is_return_spec f s r' ->
(return_measure f.(fn_code) s < return_measure f.(fn_code) pc)%nat ->
is_return_spec f pc r.
Lemma is_return_charact:
forall f n pc rret,
is_return n f pc rret = true -> (n <= niter)%nat ->
is_return_spec f pc rret.
Proof.
induction n; intros.
simpl in H. congruence.
generalize H. simpl.
caseEq ((fn_code f)!pc); try congruence.
intro i. caseEq i; try congruence.
intros s; intros. eapply is_return_nop; eauto. eapply IHn; eauto. omega.
unfold return_measure.
rewrite <- (is_return_measure_rec f (S n) niter pc rret); auto.
rewrite <- (is_return_measure_rec f n niter s rret); auto.
simpl. rewrite H2. omega. omega.
intros op args dst s EQ1 EQ2.
caseEq (is_move_operation op args); try congruence.
intros src IMO. destruct (Reg.eq rret src); try congruence.
subst rret. intro.
exploit is_move_operation_correct; eauto. intros [A B]. subst.
eapply is_return_move; eauto. eapply IHn; eauto. omega.
unfold return_measure.
rewrite <- (is_return_measure_rec f (S n) niter pc src); auto.
rewrite <- (is_return_measure_rec f n niter s dst); auto.
simpl. rewrite EQ2. omega. omega.
intros or EQ1 EQ2. destruct or; intros.
assert (r = rret). eapply proj_sumbool_true; eauto. subst r.
apply is_return_some; auto.
apply is_return_none; auto.
Qed.
(** The [transf_instr_spec] predicate relates one instruction in the
initial code with its possible transformations in the optimized code. *)
Inductive transf_instr_spec (f: function): instruction -> instruction -> Prop :=
| transf_instr_tailcall: forall sig ros args res s,
f.(fn_stacksize) = 0 ->
is_return_spec f s res ->
transf_instr_spec f (Icall sig ros args res s) (Itailcall sig ros args)
| transf_instr_default: forall i,
transf_instr_spec f i i.
Lemma transf_instr_charact:
forall f pc instr,
f.(fn_stacksize) = 0 ->
transf_instr_spec f instr (transf_instr f pc instr).
Proof.
intros. unfold transf_instr. destruct instr; try constructor.
caseEq (is_return niter f n r && Conventions.tailcall_is_possible s &&
opt_typ_eq (sig_res s) (sig_res (fn_sig f))); intros.
destruct (andb_prop _ _ H0). destruct (andb_prop _ _ H1).
eapply transf_instr_tailcall; eauto.
eapply is_return_charact; eauto.
constructor.
Qed.
Lemma transf_instr_lookup:
forall f pc i,
f.(fn_code)!pc = Some i ->
exists i', (transf_function f).(fn_code)!pc = Some i' /\ transf_instr_spec f i i'.
Proof.
intros. unfold transf_function. destruct (zeq (fn_stacksize f) 0).
simpl. rewrite PTree.gmap. rewrite H. simpl.
exists (transf_instr f pc i); split. auto. apply transf_instr_charact; auto.
exists i; split. auto. constructor.
Qed.
(** * Semantic properties of the code transformation *)
(** ** The ``less defined than'' relation between register states *)
(** A call followed by a return without an argument can be turned
into a tail call. In this case, the original function returns
[Vundef], while the transformed function can return any value.
We account for this situation by using the ``less defined than''
relation between values and between memory states. We need to
extend it pointwise to register states. *)
Definition regset_lessdef (rs rs': regset) : Prop :=
forall r, Val.lessdef (rs#r) (rs'#r).
Lemma regset_get_list:
forall rs rs' l,
regset_lessdef rs rs' -> Val.lessdef_list (rs##l) (rs'##l).
Proof.
induction l; simpl; intros; constructor; auto.
Qed.
Lemma regset_set:
forall rs rs' v v' r,
regset_lessdef rs rs' -> Val.lessdef v v' ->
regset_lessdef (rs#r <- v) (rs'#r <- v').
Proof.
intros; red; intros. repeat rewrite PMap.gsspec. destruct (peq r0 r); auto.
Qed.
Lemma regset_init_regs:
forall params vl vl',
Val.lessdef_list vl vl' ->
regset_lessdef (init_regs vl params) (init_regs vl' params).
Proof.
induction params; intros.
simpl. red; intros. rewrite Regmap.gi. constructor.
simpl. inv H. red; intros. rewrite Regmap.gi. constructor.
apply regset_set. auto. auto.
Qed.
(** ** Agreement between the size of a stack block and a function *)
(** To reason over deallocation of empty stack blocks, we need to
maintain the invariant that the bounds of a stack block
for function [f] are always [0, f.(fn_stacksize)]. *)
Inductive match_stacksize: function -> block -> mem -> Z -> Prop :=
| match_stacksize_intro: forall f sp m bound,
sp < bound ->
low_bound m sp = 0 ->
high_bound m sp = f.(fn_stacksize) ->
match_stacksize f sp m bound.
Lemma match_stacksize_store:
forall m m' chunk b ofs v f sp bound,
store chunk m b ofs v = Some m' ->
match_stacksize f sp m bound ->
match_stacksize f sp m' bound.
Proof.
intros. inv H0. constructor. auto.
rewrite <- H2. eapply Mem.low_bound_store; eauto.
rewrite <- H3. eapply Mem.high_bound_store; eauto.
Qed.
Lemma match_stacksize_alloc_other:
forall m m' lo hi b f sp bound,
alloc m lo hi = (m', b) ->
match_stacksize f sp m bound ->
bound <= m.(nextblock) ->
match_stacksize f sp m' bound.
Proof.
intros. inv H0.
assert (valid_block m sp). red. omega.
constructor. auto.
rewrite <- H3. eapply low_bound_alloc_other; eauto.
rewrite <- H4. eapply high_bound_alloc_other; eauto.
Qed.
Lemma match_stacksize_alloc_same:
forall m f m' sp,
alloc m 0 f.(fn_stacksize) = (m', sp) ->
match_stacksize f sp m' m'.(nextblock).
Proof.
intros. constructor.
unfold alloc in H. inv H. simpl. omega.
eapply low_bound_alloc_same; eauto.
eapply high_bound_alloc_same; eauto.
Qed.
Lemma match_stacksize_free:
forall f sp m b bound,
match_stacksize f sp m bound ->
bound <= b ->
match_stacksize f sp (free m b) bound.
Proof.
intros. inv H. constructor. auto.
rewrite <- H2. apply low_bound_free. unfold block; omega.
rewrite <- H3. apply high_bound_free. unfold block; omega.
Qed.
(** * Proof of semantic preservation *)
Section PRESERVATION.
Variable prog: program.
Let tprog := transf_program prog.
Let ge := Genv.globalenv prog.
Let tge := Genv.globalenv tprog.
Lemma symbols_preserved:
forall (s: ident), Genv.find_symbol tge s = Genv.find_symbol ge s.
Proof (Genv.find_symbol_transf transf_fundef prog).
Lemma functions_translated:
forall (v: val) (f: RTL.fundef),
Genv.find_funct ge v = Some f ->
Genv.find_funct tge v = Some (transf_fundef f).
Proof (@Genv.find_funct_transf _ _ _ transf_fundef prog).
Lemma funct_ptr_translated:
forall (b: block) (f: RTL.fundef),
Genv.find_funct_ptr ge b = Some f ->
Genv.find_funct_ptr tge b = Some (transf_fundef f).
Proof (@Genv.find_funct_ptr_transf _ _ _ transf_fundef prog).
Lemma sig_preserved:
forall f, funsig (transf_fundef f) = funsig f.
Proof.
destruct f; auto. simpl. unfold transf_function.
destruct (zeq (fn_stacksize f) 0); auto.
Qed.
Lemma find_function_translated:
forall ros rs rs' f,
find_function ge ros rs = Some f ->
regset_lessdef rs rs' ->
find_function tge ros rs' = Some (transf_fundef f).
Proof.
intros until f; destruct ros; simpl.
intros.
assert (rs'#r = rs#r).
exploit Genv.find_funct_inv; eauto. intros [b EQ].
generalize (H0 r). rewrite EQ. intro LD. inv LD. auto.
rewrite H1. apply functions_translated; auto.
rewrite symbols_preserved. destruct (Genv.find_symbol ge i); intros.
apply funct_ptr_translated; auto.
discriminate.
Qed.
(** Consider an execution of a call/move/nop/return sequence in the
original code and the corresponding tailcall in the transformed code.
The transition sequences are of the following form
(left: original code, right: transformed code).
[f] is the calling function and [fd] the called function.
<<
State stk f (Icall instruction) State stk' f' (Itailcall)
Callstate (frame::stk) fd args Callstate stk' fd' args'
. .
. .
. .
Returnstate (frame::stk) res Returnstate stk' res'
State stk f (move/nop/return seq)
.
.
.
State stk f (return instr)
Returnstate stk res
>>
The simulation invariant must therefore account for two kinds of
mismatches between the transition sequences:
- The call stack of the original program can contain more frames
than that of the transformed program (e.g. [frame] in the example above).
- The regular states corresponding to executing the move/nop/return
sequence must all correspond to the single [Returnstate stk' res']
state of the transformed program.
We first define the simulation invariant between call stacks.
The first two cases are standard, but the third case corresponds
to a frame that was eliminated by the transformation. *)
Inductive match_stackframes: mem -> Z -> list stackframe -> list stackframe -> Prop :=
| match_stackframes_nil: forall m bound,
match_stackframes m bound nil nil
| match_stackframes_normal: forall m bound stk stk' res sp pc rs rs' f,
match_stackframes m sp stk stk' ->
match_stacksize f sp m bound ->
regset_lessdef rs rs' ->
match_stackframes m bound
(Stackframe res f.(fn_code) (Vptr sp Int.zero) pc rs :: stk)
(Stackframe res (transf_function f).(fn_code) (Vptr sp Int.zero) pc rs' :: stk')
| match_stackframes_tail: forall m bound stk stk' res sp pc rs f,
match_stackframes m sp stk stk' ->
match_stacksize f sp m bound ->
is_return_spec f pc res ->
f.(fn_stacksize) = 0 ->
match_stackframes m bound
(Stackframe res f.(fn_code) (Vptr sp Int.zero) pc rs :: stk)
stk'.
(** In [match_stackframes m bound s s'], the memory state [m] is used
to check that the sizes of the stack blocks agree with what was
declared by the corresponding functions. The [bound] parameter
is used to enforce separation between the stack blocks. *)
Lemma match_stackframes_incr:
forall m bound s s' bound',
match_stackframes m bound s s' ->
bound <= bound' ->
match_stackframes m bound' s s'.
Proof.
intros. inv H; econstructor; eauto.
inv H2. constructor; auto. omega.
inv H2. constructor; auto. omega.
Qed.
Lemma match_stackframes_store:
forall m bound s s',
match_stackframes m bound s s' ->
forall chunk b ofs v m',
store chunk m b ofs v = Some m' ->
match_stackframes m' bound s s'.
Proof.
induction 1; intros.
constructor.
econstructor; eauto. eapply match_stacksize_store; eauto.
econstructor; eauto. eapply match_stacksize_store; eauto.
Qed.
Lemma match_stackframes_alloc:
forall m lo hi m' sp s s',
match_stackframes m (nextblock m) s s' ->
alloc m lo hi = (m', sp) ->
match_stackframes m' sp s s'.
Proof.
intros.
assert (forall bound s s',
match_stackframes m bound s s' ->
bound <= m.(nextblock) ->
match_stackframes m' bound s s').
induction 1; intros. constructor.
constructor; auto. apply IHmatch_stackframes; auto. inv H2. omega.
eapply match_stacksize_alloc_other; eauto.
econstructor; eauto. apply IHmatch_stackframes; auto. inv H2. omega.
eapply match_stacksize_alloc_other; eauto.
exploit alloc_result; eauto. intro. rewrite H2.
eapply H1; eauto. omega.
Qed.
Lemma match_stackframes_free:
forall f sp m s s',
match_stacksize f sp m (nextblock m) ->
match_stackframes m sp s s' ->
match_stackframes (free m sp) (nextblock (free m sp)) s s'.
Proof.
intros. simpl.
assert (forall bound s s',
match_stackframes m bound s s' ->
bound <= sp ->
match_stackframes (free m sp) bound s s').
induction 1; intros. constructor.
constructor; auto. apply IHmatch_stackframes; auto. inv H2; omega.
apply match_stacksize_free; auto.
econstructor; eauto. apply IHmatch_stackframes; auto. inv H2; omega.
apply match_stacksize_free; auto.
apply match_stackframes_incr with sp. apply H1; auto. omega.
inv H. omega.
Qed.
(** Here is the invariant relating two states. The first three
cases are standard. Note the ``less defined than'' conditions
over values, register states, and memory states. *)
Inductive match_states: state -> state -> Prop :=
| match_states_normal:
forall s sp pc rs m s' rs' m' f
(STKSZ: match_stacksize f sp m m.(nextblock))
(STACKS: match_stackframes m sp s s')
(RLD: regset_lessdef rs rs')
(MLD: Mem.lessdef m m'),
match_states (State s f.(fn_code) (Vptr sp Int.zero) pc rs m)
(State s' (transf_function f).(fn_code) (Vptr sp Int.zero) pc rs' m')
| match_states_call:
forall s f args m s' args' m',
match_stackframes m m.(nextblock) s s' ->
Val.lessdef_list args args' ->
Mem.lessdef m m' ->
match_states (Callstate s f args m)
(Callstate s' (transf_fundef f) args' m')
| match_states_return:
forall s v m s' v' m',
match_stackframes m m.(nextblock) s s' ->
Val.lessdef v v' ->
Mem.lessdef m m' ->
match_states (Returnstate s v m)
(Returnstate s' v' m')
| match_states_interm:
forall s sp pc rs m s' m' f r v'
(STKSZ: match_stacksize f sp m m.(nextblock))
(STACKS: match_stackframes m sp s s')
(MLD: Mem.lessdef m m'),
is_return_spec f pc r ->
f.(fn_stacksize) = 0 ->
Val.lessdef (rs#r) v' ->
match_states (State s f.(fn_code) (Vptr sp Int.zero) pc rs m)
(Returnstate s' v' m').
(** The last case of [match_states] corresponds to the execution
of a move/nop/return sequence in the original code that was
eliminated by the transformation:
<<
State stk f (move/nop/return seq) ~~ Returnstate stk' res'
.
.
.
State stk f (return instr) ~~ Returnstate stk' res'
>>
To preserve non-terminating behaviors, we need to make sure
that the execution of this sequence in the original code cannot
diverge. For this, we introduce the following complicated
measure over states, which will decrease strictly whenever
the original code makes a transition but the transformed code
does not. *)
Definition measure (st: state) : nat :=
match st with
| State s c sp pc rs m => (List.length s * (niter + 2) + return_measure c pc + 1)%nat
| Callstate s f args m => 0%nat
| Returnstate s v m => (List.length s * (niter + 2))%nat
end.
Ltac TransfInstr :=
match goal with
| H: (PTree.get _ (fn_code _) = _) |- _ =>
destruct (transf_instr_lookup _ _ _ H) as [i' [TINSTR TSPEC]]; inv TSPEC
end.
Ltac EliminatedInstr :=
match goal with
| H: (is_return_spec _ _ _) |- _ => inv H; try congruence
| _ => idtac
end.
(** The proof of semantic preservation, then, is a simulation diagram
of the ``option'' kind. *)
Lemma transf_step_correct:
forall s1 t s2, step ge s1 t s2 ->
forall s1' (MS: match_states s1 s1'),
(exists s2', step tge s1' t s2' /\ match_states s2 s2')
\/ (measure s2 < measure s1 /\ t = E0 /\ match_states s2 s1')%nat.
Proof.
induction 1; intros; inv MS; EliminatedInstr.
(* nop *)
TransfInstr. left. econstructor; split.
eapply exec_Inop; eauto. constructor; auto.
(* eliminated nop *)
assert (s0 = pc') by congruence. subst s0.
right. split. simpl. omega. split. auto.
econstructor; eauto.
(* op *)
TransfInstr.
assert (Val.lessdef_list (rs##args) (rs'##args)). apply regset_get_list; auto.
exploit eval_operation_lessdef; eauto.
intros [v' [EVAL' VLD]].
left. exists (State s' (fn_code (transf_function f)) (Vptr sp0 Int.zero) pc' (rs'#res <- v') m'); split.
eapply exec_Iop; eauto. rewrite <- EVAL'.
apply eval_operation_preserved. exact symbols_preserved.
econstructor; eauto. apply regset_set; auto.
(* eliminated move *)
rewrite H1 in H. clear H1. inv H.
right. split. simpl. omega. split. auto.
econstructor; eauto. simpl in H0. rewrite PMap.gss. congruence.
(* load *)
TransfInstr.
assert (Val.lessdef_list (rs##args) (rs'##args)). apply regset_get_list; auto.
exploit eval_addressing_lessdef; eauto.
intros [a' [ADDR' ALD]].
exploit loadv_lessdef; eauto.
intros [v' [LOAD' VLD]].
left. exists (State s' (fn_code (transf_function f)) (Vptr sp0 Int.zero) pc' (rs'#dst <- v') m'); split.
eapply exec_Iload with (a := a'). eauto. rewrite <- ADDR'.
apply eval_addressing_preserved. exact symbols_preserved. eauto.
econstructor; eauto. apply regset_set; auto.
(* store *)
TransfInstr.
assert (Val.lessdef_list (rs##args) (rs'##args)). apply regset_get_list; auto.
exploit eval_addressing_lessdef; eauto.
intros [a' [ADDR' ALD]].
exploit storev_lessdef. 4: eexact H1. eauto. eauto. apply RLD.
intros [m'1 [STORE' MLD']].
left. exists (State s' (fn_code (transf_function f)) (Vptr sp0 Int.zero) pc' rs' m'1); split.
eapply exec_Istore with (a := a'). eauto. rewrite <- ADDR'.
apply eval_addressing_preserved. exact symbols_preserved. eauto.
destruct a; simpl in H1; try discriminate.
econstructor; eauto.
eapply match_stacksize_store; eauto.
rewrite (nextblock_store _ _ _ _ _ _ H1). auto.
eapply match_stackframes_store; eauto.
(* call *)
exploit find_function_translated; eauto. intro FIND'.
TransfInstr.
(* call turned tailcall *)
left. exists (Callstate s' (transf_fundef f) (rs'##args) (Mem.free m' sp0)); split.
eapply exec_Itailcall; eauto. apply sig_preserved.
constructor. eapply match_stackframes_tail; eauto. apply regset_get_list; auto.
apply Mem.free_right_lessdef; auto. inv STKSZ. omega.
(* call that remains a call *)
left. exists (Callstate (Stackframe res (fn_code (transf_function f0)) (Vptr sp0 Int.zero) pc' rs' :: s')
(transf_fundef f) (rs'##args) m'); split.
eapply exec_Icall; eauto. apply sig_preserved.
constructor. constructor; auto. apply regset_get_list; auto. auto.
(* tailcall *)
exploit find_function_translated; eauto. intro FIND'.
TransfInstr.
left. exists (Callstate s' (transf_fundef f) (rs'##args) (Mem.free m' stk)); split.
eapply exec_Itailcall; eauto. apply sig_preserved.
constructor. eapply match_stackframes_free; eauto.
apply regset_get_list; auto. apply Mem.free_lessdef; auto.
(* cond true *)
TransfInstr.
left. exists (State s' (fn_code (transf_function f)) (Vptr sp0 Int.zero) ifso rs' m'); split.
eapply exec_Icond_true; eauto.
apply eval_condition_lessdef with (rs##args); auto. apply regset_get_list; auto.
constructor; auto.
(* cond false *)
TransfInstr.
left. exists (State s' (fn_code (transf_function f)) (Vptr sp0 Int.zero) ifnot rs' m'); split.
eapply exec_Icond_false; eauto.
apply eval_condition_lessdef with (rs##args); auto. apply regset_get_list; auto.
constructor; auto.
(* return *)
TransfInstr.
left. exists (Returnstate s' (regmap_optget or Vundef rs') (free m' stk)); split.
apply exec_Ireturn; auto.
constructor.
eapply match_stackframes_free; eauto.
destruct or; simpl. apply RLD. constructor.
apply Mem.free_lessdef; auto.
(* eliminated return None *)
assert (or = None) by congruence. subst or.
right. split. simpl. omega. split. auto.
constructor.
eapply match_stackframes_free; eauto.
simpl. constructor.
apply Mem.free_left_lessdef; auto.
(* eliminated return Some *)
assert (or = Some r) by congruence. subst or.
right. split. simpl. omega. split. auto.
constructor.
eapply match_stackframes_free; eauto.
simpl. auto.
apply Mem.free_left_lessdef; auto.
(* internal call *)
caseEq (alloc m'0 0 (fn_stacksize f)). intros m'1 stk' ALLOC'.
exploit alloc_lessdef; eauto. intros [EQ1 LD']. subst stk'.
assert (fn_stacksize (transf_function f) = fn_stacksize f /\
fn_entrypoint (transf_function f) = fn_entrypoint f /\
fn_params (transf_function f) = fn_params f).
unfold transf_function. destruct (zeq (fn_stacksize f) 0); auto.
destruct H0 as [EQ1 [EQ2 EQ3]].
left. econstructor; split.
simpl. eapply exec_function_internal; eauto. rewrite EQ1; eauto.
rewrite EQ2. rewrite EQ3. constructor; auto.
eapply match_stacksize_alloc_same; eauto.
eapply match_stackframes_alloc; eauto.
apply regset_init_regs. auto.
(* external call *)
exploit event_match_lessdef; eauto. intros [res' [EVM' VLD']].
left. exists (Returnstate s' res' m'); split.
simpl. econstructor; eauto.
constructor; auto.
(* returnstate *)
inv H2.
(* synchronous return in both programs *)
left. econstructor; split.
apply exec_return.
constructor; auto. apply regset_set; auto.
(* return instr in source program, eliminated because of tailcall *)
right. split. unfold measure. simpl length.
change (S (length s) * (niter + 2))%nat
with ((niter + 2) + (length s) * (niter + 2))%nat.
generalize (return_measure_bounds (fn_code f) pc). omega.
split. auto.
econstructor; eauto.
rewrite Regmap.gss. auto.
Qed.
Lemma transf_initial_states:
forall st1, initial_state prog st1 ->
exists st2, initial_state tprog st2 /\ match_states st1 st2.
Proof.
intros. inv H.
exploit funct_ptr_translated; eauto. intro FIND.
exists (Callstate nil (transf_fundef f) nil (Genv.init_mem tprog)); split.
econstructor; eauto.
replace (prog_main tprog) with (prog_main prog).
rewrite symbols_preserved. eauto.
reflexivity.
rewrite <- H2. apply sig_preserved.
replace (Genv.init_mem tprog) with (Genv.init_mem prog).
constructor. constructor. constructor. apply lessdef_refl.
symmetry. unfold tprog, transf_program. apply Genv.init_mem_transf.
Qed.
Lemma transf_final_states:
forall st1 st2 r,
match_states st1 st2 -> final_state st1 r -> final_state st2 r.
Proof.
intros. inv H0. inv H. inv H5. inv H3. constructor.
Qed.
(** The preservation of the observable behavior of the program then
follows, using the generic preservation theorem
[Smallstep.simulation_opt_preservation]. *)
Theorem transf_program_correct:
forall (beh: program_behavior),
exec_program prog beh -> exec_program tprog beh.
Proof.
unfold exec_program; intros.
eapply simulation_opt_preservation with (measure := measure); eauto.
eexact transf_initial_states.
eexact transf_final_states.
exact transf_step_correct.
Qed.
End PRESERVATION.
|