summaryrefslogtreecommitdiff
path: root/backend/Stackingproof.v
blob: c25721bc7a482d6e1e5a3cf90621878281fe35dd (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861
2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
2889
2890
2891
2892
2893
2894
(* *********************************************************************)
(*                                                                     *)
(*              The Compcert verified compiler                         *)
(*                                                                     *)
(*          Xavier Leroy, INRIA Paris-Rocquencourt                     *)
(*                                                                     *)
(*  Copyright Institut National de Recherche en Informatique et en     *)
(*  Automatique.  All rights reserved.  This file is distributed       *)
(*  under the terms of the INRIA Non-Commercial License Agreement.     *)
(*                                                                     *)
(* *********************************************************************)

(** Correctness proof for the translation from Linear to Mach. *)

(** This file proves semantic preservation for the [Stacking] pass. *)

Require Import Coqlib.
Require Import Errors.
Require Import AST.
Require Import Integers.
Require Import Values.
Require Import Op.
Require Import Memory.
Require Import Events.
Require Import Globalenvs.
Require Import Smallstep.
Require Import Locations.
Require Import LTL.
Require Import Linear.
Require Import Lineartyping.
Require Import Mach.
Require Import Bounds.
Require Import Conventions.
Require Import Stacklayout.
Require Import Stacking.

(** * Properties of frame offsets *)

Lemma typesize_typesize:
  forall ty, AST.typesize ty = 4 * Locations.typesize ty.
Proof.
  destruct ty; auto.
Qed.

Remark size_type_chunk:
  forall ty, size_chunk (chunk_of_type ty) = AST.typesize ty.
Proof.
  destruct ty; reflexivity.
Qed.

Section PRESERVATION.

Variable return_address_offset: Mach.function -> Mach.code -> int -> Prop.

Hypothesis return_address_offset_exists:
  forall f sg ros c,
  is_tail (Mcall sg ros :: c) (fn_code f) ->
  exists ofs, return_address_offset f c ofs.

Let step := Mach.step return_address_offset.

Variable prog: Linear.program.
Variable tprog: Mach.program.
Hypothesis TRANSF: transf_program prog = OK tprog.
Let ge := Genv.globalenv prog.
Let tge := Genv.globalenv tprog.


Section FRAME_PROPERTIES.

Variable f: Linear.function.
Let b := function_bounds f.
Let fe := make_env b.
Variable tf: Mach.function.
Hypothesis TRANSF_F: transf_function f = OK tf.

Lemma unfold_transf_function:
  tf = Mach.mkfunction
         f.(Linear.fn_sig)
         (transl_body f fe)
         fe.(fe_size)
         (Int.repr fe.(fe_ofs_link))
         (Int.repr fe.(fe_ofs_retaddr)).
Proof.
  generalize TRANSF_F. unfold transf_function.
  destruct (wt_function f); simpl negb.
  destruct (zlt Int.max_unsigned (fe_size (make_env (function_bounds f)))).
  intros; discriminate.
  intros. unfold fe. unfold b. congruence.
  intros; discriminate.
Qed.

Lemma transf_function_well_typed:
  wt_function f = true.
Proof.
  generalize TRANSF_F. unfold transf_function.
  destruct (wt_function f); simpl negb. auto. intros; discriminate.
Qed.

Lemma size_no_overflow: fe.(fe_size) <= Int.max_unsigned.
Proof.
  generalize TRANSF_F. unfold transf_function.
  destruct (wt_function f); simpl negb.
  destruct (zlt Int.max_unsigned (fe_size (make_env (function_bounds f)))).
  intros; discriminate.
  intros. unfold fe. unfold b. omega.
  intros; discriminate.
Qed.

Remark bound_stack_data_stacksize:
  f.(Linear.fn_stacksize) <= b.(bound_stack_data).
Proof.
  unfold b, function_bounds, bound_stack_data. apply Zmax1.
Qed.  

(** A frame index is valid if it lies within the resource bounds
  of the current function. *)

Definition index_valid (idx: frame_index) :=
  match idx with
  | FI_link => True
  | FI_retaddr => True
  | FI_local x ty => ty <> Tlong /\ 0 <= x /\ x + typesize ty <= b.(bound_local)
  | FI_arg x ty => ty <> Tlong /\ 0 <= x /\ x + typesize ty <= b.(bound_outgoing)
  | FI_saved_int x => 0 <= x < b.(bound_int_callee_save)
  | FI_saved_float x => 0 <= x < b.(bound_float_callee_save)
  end.

Definition type_of_index (idx: frame_index) :=
  match idx with
  | FI_link => Tint
  | FI_retaddr => Tint
  | FI_local x ty => ty
  | FI_arg x ty => ty
  | FI_saved_int x => Tany32
  | FI_saved_float x => Tany64
  end.

(** Non-overlap between the memory areas corresponding to two
  frame indices. *)

Definition index_diff (idx1 idx2: frame_index) : Prop :=
  match idx1, idx2 with
  | FI_link, FI_link => False
  | FI_retaddr, FI_retaddr => False
  | FI_local x1 ty1, FI_local x2 ty2 =>
      x1 + typesize ty1 <= x2 \/ x2 + typesize ty2 <= x1
  | FI_arg x1 ty1, FI_arg x2 ty2 =>
      x1 + typesize ty1 <= x2 \/ x2 + typesize ty2 <= x1
  | FI_saved_int x1, FI_saved_int x2 => x1 <> x2
  | FI_saved_float x1, FI_saved_float x2 => x1 <> x2
  | _, _ => True
  end.

Lemma index_diff_sym:
  forall idx1 idx2, index_diff idx1 idx2 -> index_diff idx2 idx1.
Proof.
  unfold index_diff; intros. 
  destruct idx1; destruct idx2; intuition.
Qed.

Ltac AddPosProps :=
  generalize (bound_local_pos b); intro;
  generalize (bound_int_callee_save_pos b); intro;
  generalize (bound_float_callee_save_pos b); intro;
  generalize (bound_outgoing_pos b); intro;
  generalize (bound_stack_data_pos b); intro.

Lemma size_pos: 0 <= fe.(fe_size).
Proof.
  generalize (frame_env_separated b). intuition.
  AddPosProps.
  unfold fe. omega.
Qed.

Opaque function_bounds.

Ltac InvIndexValid :=
  match goal with
  | [ H: ?ty <> Tlong /\ _ |- _ ] =>
       destruct H; generalize (typesize_pos ty) (typesize_typesize ty); intros
  end.

Lemma offset_of_index_disj:
  forall idx1 idx2,
  index_valid idx1 -> index_valid idx2 ->
  index_diff idx1 idx2 ->
  offset_of_index fe idx1 + AST.typesize (type_of_index idx1) <= offset_of_index fe idx2 \/
  offset_of_index fe idx2 + AST.typesize (type_of_index idx2) <= offset_of_index fe idx1.
Proof.
  intros idx1 idx2 V1 V2 DIFF.
  generalize (frame_env_separated b). intuition. fold fe in H.
  AddPosProps.
  destruct idx1; destruct idx2;
  simpl in V1; simpl in V2; repeat InvIndexValid; simpl in DIFF;
  unfold offset_of_index, type_of_index;
  change (AST.typesize Tany32) with 4; change (AST.typesize Tany64) with 8;
  change (AST.typesize Tint) with 4;
  omega.
Qed.

Lemma offset_of_index_disj_stack_data_1:
  forall idx,
  index_valid idx ->
  offset_of_index fe idx + AST.typesize (type_of_index idx) <= fe.(fe_stack_data)
  \/ fe.(fe_stack_data) + b.(bound_stack_data) <= offset_of_index fe idx.
Proof.
  intros idx V.
  generalize (frame_env_separated b). intuition. fold fe in H.
  AddPosProps.
  destruct idx;
  simpl in V; repeat InvIndexValid;
  unfold offset_of_index, type_of_index;
  change (AST.typesize Tany32) with 4; change (AST.typesize Tany64) with 8;
  change (AST.typesize Tint) with 4;
  omega.
Qed.

Lemma offset_of_index_disj_stack_data_2:
  forall idx,
  index_valid idx ->
  offset_of_index fe idx + AST.typesize (type_of_index idx) <= fe.(fe_stack_data)
  \/ fe.(fe_stack_data) + f.(Linear.fn_stacksize) <= offset_of_index fe idx.
Proof.
  intros. 
  exploit offset_of_index_disj_stack_data_1; eauto.
  generalize bound_stack_data_stacksize. 
  omega.
Qed.

(** Alignment properties *)

Remark aligned_4_4x: forall x, (4 | 4 * x).
Proof. intro. exists x; ring. Qed.

Remark aligned_4_8x: forall x, (4 | 8 * x).
Proof. intro. exists (x * 2); ring. Qed.

Remark aligned_8_4:
  forall x, (8 | x) -> (4 | x).
Proof. intros. apply Zdivides_trans with 8; auto. exists 2; auto. Qed.

Hint Resolve Zdivide_0 Zdivide_refl Zdivide_plus_r 
             aligned_4_4x aligned_4_8x aligned_8_4: align_4.
Hint Extern 4 (?X | ?Y) => (exists (Y/X); reflexivity) : align_4.

Lemma offset_of_index_aligned:
  forall idx, (4 | offset_of_index fe idx).
Proof.
  intros.
  generalize (frame_env_aligned b). intuition. fold fe in H. intuition.
  destruct idx; try (destruct t);
  unfold offset_of_index, type_of_index, AST.typesize;
  auto with align_4.
Qed.

Lemma offset_of_index_aligned_2:
  forall idx, index_valid idx ->
  (align_chunk (chunk_of_type (type_of_index idx)) | offset_of_index fe idx).
Proof.
  intros. replace (align_chunk (chunk_of_type (type_of_index idx))) with 4.
  apply offset_of_index_aligned.
  assert (type_of_index idx <> Tlong) by
    (destruct idx; simpl; simpl in H; intuition congruence).
  destruct (type_of_index idx); auto; congruence.
Qed.

Lemma fe_stack_data_aligned:
  (8 | fe_stack_data fe).
Proof.
  intros.
  generalize (frame_env_aligned b). intuition. fold fe in H. intuition.
Qed.

(** The following lemmas give sufficient conditions for indices
  of various kinds to be valid. *)

Lemma index_local_valid:
  forall ofs ty,
  slot_within_bounds b Local ofs ty -> slot_valid f Local ofs ty = true ->
  index_valid (FI_local ofs ty).
Proof.
  unfold slot_within_bounds, slot_valid, index_valid; intros. 
  InvBooleans. 
  split. destruct ty; auto || discriminate. auto.
Qed.

Lemma index_arg_valid:
  forall ofs ty,
  slot_within_bounds b Outgoing ofs ty -> slot_valid f Outgoing ofs ty = true ->
  index_valid (FI_arg ofs ty).
Proof.
  unfold slot_within_bounds, slot_valid, index_valid; intros. 
  InvBooleans. 
  split. destruct ty; auto || discriminate. auto. 
Qed.

Lemma index_saved_int_valid:
  forall r,
  In r int_callee_save_regs ->
  index_int_callee_save r < b.(bound_int_callee_save) ->
  index_valid (FI_saved_int (index_int_callee_save r)).
Proof.
  intros. red. split. 
  apply Zge_le. apply index_int_callee_save_pos; auto. 
  auto.
Qed.

Lemma index_saved_float_valid:
  forall r,
  In r float_callee_save_regs ->
  index_float_callee_save r < b.(bound_float_callee_save) ->
  index_valid (FI_saved_float (index_float_callee_save r)).
Proof.
  intros. red. split. 
  apply Zge_le. apply index_float_callee_save_pos; auto. 
  auto.
Qed.

Hint Resolve index_local_valid index_arg_valid
             index_saved_int_valid index_saved_float_valid: stacking.

(** The offset of a valid index lies within the bounds of the frame. *)

Lemma offset_of_index_valid:
  forall idx,
  index_valid idx ->
  0 <= offset_of_index fe idx /\
  offset_of_index fe idx + AST.typesize (type_of_index idx) <= fe.(fe_size).
Proof.
  intros idx V.
  generalize (frame_env_separated b). intros [A B]. fold fe in A. fold fe in B.
  AddPosProps.
  destruct idx; simpl in V; repeat InvIndexValid;
  unfold offset_of_index, type_of_index;
  change (AST.typesize Tany32) with 4; change (AST.typesize Tany64) with 8;
  change (AST.typesize Tint) with 4;
  omega.
Qed.

(** The image of the Linear stack data block lies within the bounds of the frame. *)

Lemma stack_data_offset_valid:
  0 <= fe.(fe_stack_data) /\ fe.(fe_stack_data) + b.(bound_stack_data) <= fe.(fe_size).
Proof.
  generalize (frame_env_separated b). intros [A B]. fold fe in A. fold fe in B.
  AddPosProps.
  omega.
Qed.

(** Offsets for valid index are representable as signed machine integers
  without loss of precision. *)

Lemma offset_of_index_no_overflow:
  forall idx,
  index_valid idx ->
  Int.unsigned (Int.repr (offset_of_index fe idx)) = offset_of_index fe idx.
Proof.
  intros.
  generalize (offset_of_index_valid idx H). intros [A B].
  apply Int.unsigned_repr.
  generalize (AST.typesize_pos (type_of_index idx)).
  generalize size_no_overflow. 
  omega.
Qed.

(** Likewise, for offsets within the Linear stack slot, after shifting. *)

Lemma shifted_stack_offset_no_overflow:
  forall ofs,
  0 <= Int.unsigned ofs < Linear.fn_stacksize f ->
  Int.unsigned (Int.add ofs (Int.repr fe.(fe_stack_data))) 
  = Int.unsigned ofs + fe.(fe_stack_data).
Proof.
  intros. unfold Int.add.
  generalize size_no_overflow stack_data_offset_valid bound_stack_data_stacksize; intros.
  AddPosProps.
  replace (Int.unsigned (Int.repr (fe_stack_data fe))) with (fe_stack_data fe).
  apply Int.unsigned_repr. omega. 
  symmetry. apply Int.unsigned_repr. omega.
Qed.

(** * Contents of frame slots *)

Inductive index_contains (m: mem) (sp: block) (idx: frame_index) (v: val) : Prop :=
  | index_contains_intro:
      index_valid idx ->
      Mem.load (chunk_of_type (type_of_index idx)) m sp (offset_of_index fe idx) = Some v ->
      index_contains m sp idx v.

Lemma index_contains_load_stack:
  forall m sp idx v,
  index_contains m sp idx v ->
  load_stack m (Vptr sp Int.zero) (type_of_index idx)
              (Int.repr (offset_of_index fe idx)) = Some v.
Proof.
  intros. inv H. 
  unfold load_stack, Mem.loadv, Val.add. rewrite Int.add_commut. rewrite Int.add_zero.
  rewrite offset_of_index_no_overflow; auto.
Qed.

(** Good variable properties for [index_contains] *)

Lemma gss_index_contains_base:
  forall idx m m' sp v,
  Mem.store (chunk_of_type (type_of_index idx)) m sp (offset_of_index fe idx) v = Some m' ->
  index_valid idx ->
  exists v',
     index_contains m' sp idx v'
  /\ decode_encode_val v (chunk_of_type (type_of_index idx)) (chunk_of_type (type_of_index idx)) v'.
Proof.
  intros. 
  exploit Mem.load_store_similar. eauto. reflexivity. omega. 
  intros [v' [A B]].
  exists v'; split; auto. constructor; auto.
Qed.

Lemma gss_index_contains:
  forall idx m m' sp v,
  Mem.store (chunk_of_type (type_of_index idx)) m sp (offset_of_index fe idx) v = Some m' ->
  index_valid idx ->
  Val.has_type v (type_of_index idx) ->
  index_contains m' sp idx v.
Proof.
  intros. exploit gss_index_contains_base; eauto. intros [v' [A B]].
  assert (v' = v).
    destruct v; destruct (type_of_index idx); simpl in *;
    try contradiction; auto.
  subst v'. auto.
Qed.

Lemma gso_index_contains:
  forall idx m m' sp v idx' v',
  Mem.store (chunk_of_type (type_of_index idx)) m sp (offset_of_index fe idx) v = Some m' ->
  index_valid idx ->
  index_contains m sp idx' v' ->
  index_diff idx idx' ->
  index_contains m' sp idx' v'.
Proof.
  intros. inv H1. constructor; auto. 
  rewrite <- H4. eapply Mem.load_store_other; eauto.
  right. repeat rewrite size_type_chunk. 
  apply offset_of_index_disj; auto. apply index_diff_sym; auto.
Qed.

Lemma store_other_index_contains:
  forall chunk m blk ofs v' m' sp idx v,
  Mem.store chunk m blk ofs v' = Some m' ->
  blk <> sp \/
    (fe.(fe_stack_data) <= ofs /\ ofs + size_chunk chunk <= fe.(fe_stack_data) + f.(Linear.fn_stacksize)) ->
  index_contains m sp idx v ->
  index_contains m' sp idx v.
Proof.
  intros. inv H1. constructor; auto. rewrite <- H3. 
  eapply Mem.load_store_other; eauto. 
  destruct H0. auto. right. 
  exploit offset_of_index_disj_stack_data_2; eauto. intros.
  rewrite size_type_chunk.
  omega.
Qed.

Definition frame_perm_freeable (m: mem) (sp: block): Prop :=
  forall ofs,
  0 <= ofs < fe.(fe_size) ->
  ofs < fe.(fe_stack_data) \/ fe.(fe_stack_data) + f.(Linear.fn_stacksize) <= ofs ->
  Mem.perm m sp ofs Cur Freeable.

Lemma offset_of_index_perm:
  forall m sp idx,
  index_valid idx ->
  frame_perm_freeable m sp ->
  Mem.range_perm m sp (offset_of_index fe idx) (offset_of_index fe idx + AST.typesize (type_of_index idx)) Cur Freeable.
Proof.
  intros.
  exploit offset_of_index_valid; eauto. intros [A B].
  exploit offset_of_index_disj_stack_data_2; eauto. intros.
  red; intros. apply H0. omega. omega.
Qed.

Lemma store_index_succeeds:
  forall m sp idx v,
  index_valid idx ->
  frame_perm_freeable m sp ->
  exists m',
  Mem.store (chunk_of_type (type_of_index idx)) m sp (offset_of_index fe idx) v = Some m'.
Proof.
  intros.
  destruct (Mem.valid_access_store m (chunk_of_type (type_of_index idx)) sp (offset_of_index fe idx) v) as [m' ST].
  constructor.
  rewrite size_type_chunk. 
  apply Mem.range_perm_implies with Freeable; auto with mem.
  apply offset_of_index_perm; auto.
  apply offset_of_index_aligned_2; auto.
  exists m'; auto.
Qed.

Lemma store_stack_succeeds:
  forall m sp idx v m',
  index_valid idx ->
  Mem.store (chunk_of_type (type_of_index idx)) m sp (offset_of_index fe idx) v = Some m' ->
  store_stack m (Vptr sp Int.zero) (type_of_index idx) (Int.repr (offset_of_index fe idx)) v = Some m'.
Proof.
  intros. unfold store_stack, Mem.storev, Val.add.
  rewrite Int.add_commut. rewrite Int.add_zero.
  rewrite offset_of_index_no_overflow; auto.
Qed.

(** A variant of [index_contains], up to a memory injection. *)

Definition index_contains_inj (j: meminj) (m: mem) (sp: block) (idx: frame_index) (v: val) : Prop :=
  exists v', index_contains m sp idx v' /\ val_inject j v v'.

Lemma gss_index_contains_inj:
  forall j idx m m' sp v v',
  Mem.store (chunk_of_type (type_of_index idx)) m sp (offset_of_index fe idx) v' = Some m' ->
  index_valid idx ->
  Val.has_type v (type_of_index idx) ->
  val_inject j v v' ->
  index_contains_inj j m' sp idx v.
Proof.
  intros. exploit gss_index_contains_base; eauto. intros [v'' [A B]].
  exists v''; split; auto.
  inv H2; destruct (type_of_index idx); simpl in *; try contradiction; subst; auto.
  econstructor; eauto.
  econstructor; eauto.
  econstructor; eauto.
Qed.

Lemma gss_index_contains_inj':
  forall j idx m m' sp v v',
  Mem.store (chunk_of_type (type_of_index idx)) m sp (offset_of_index fe idx) v' = Some m' ->
  index_valid idx ->
  val_inject j v v' ->
  index_contains_inj j m' sp idx (Val.load_result (chunk_of_type (type_of_index idx)) v).
Proof.
  intros. exploit gss_index_contains_base; eauto. intros [v'' [A B]].
  exists v''; split; auto.
  inv H1; destruct (type_of_index idx); simpl in *; try contradiction; subst; auto. 
  econstructor; eauto.
  econstructor; eauto.
  econstructor; eauto.
Qed.

Lemma gso_index_contains_inj:
  forall j idx m m' sp v idx' v',
  Mem.store (chunk_of_type (type_of_index idx)) m sp (offset_of_index fe idx) v = Some m' ->
  index_valid idx ->
  index_contains_inj j m sp idx' v' ->
  index_diff idx idx' ->
  index_contains_inj j m' sp idx' v'.
Proof.
  intros. destruct H1 as [v'' [A B]]. exists v''; split; auto.
  eapply gso_index_contains; eauto.
Qed.

Lemma store_other_index_contains_inj:
  forall j chunk m b ofs v' m' sp idx v,
  Mem.store chunk m b ofs v' = Some m' ->
  b <> sp \/
    (fe.(fe_stack_data) <= ofs /\ ofs + size_chunk chunk <= fe.(fe_stack_data) + f.(Linear.fn_stacksize)) ->
  index_contains_inj j m sp idx v ->
  index_contains_inj j m' sp idx v.
Proof.
  intros. destruct H1 as [v'' [A B]]. exists v''; split; auto.
  eapply store_other_index_contains; eauto.
Qed.

Lemma index_contains_inj_incr:
  forall j m sp idx v j',
  index_contains_inj j m sp idx v ->
  inject_incr j j' ->
  index_contains_inj j' m sp idx v.
Proof.
  intros. destruct H as [v'' [A B]]. exists v''; split; auto. eauto. 
Qed.

Lemma index_contains_inj_undef:
  forall j m sp idx,
  index_valid idx ->
  frame_perm_freeable m sp ->
  index_contains_inj j m sp idx Vundef.
Proof.
  intros. 
  exploit (Mem.valid_access_load m (chunk_of_type (type_of_index idx)) sp (offset_of_index fe idx)).
  constructor. 
  rewrite size_type_chunk.
  apply Mem.range_perm_implies with Freeable; auto with mem.
  apply offset_of_index_perm; auto. 
  apply offset_of_index_aligned_2; auto.
  intros [v C]. 
  exists v; split; auto. constructor; auto. 
Qed.

Hint Resolve store_other_index_contains_inj index_contains_inj_incr: stacking.

(** * Agreement between location sets and Mach states *)

(** Agreement with Mach register states *)

Definition agree_regs (j: meminj) (ls: locset) (rs: regset) : Prop :=
  forall r, val_inject j (ls (R r)) (rs r).

(** Agreement over data stored in memory *)

Record agree_frame (j: meminj) (ls ls0: locset)
                   (m: mem) (sp: block)
                   (m': mem) (sp': block)
                   (parent retaddr: val) : Prop :=
  mk_agree_frame {

    (** Unused registers have the same value as in the caller *)
    agree_unused_reg:
       forall r, ~(mreg_within_bounds b r) -> ls (R r) = ls0 (R r);

    (** Local and outgoing stack slots (on the Linear side) have
        the same values as the one loaded from the current Mach frame 
        at the corresponding offsets. *)
    agree_locals:
      forall ofs ty, 
      slot_within_bounds b Local ofs ty -> slot_valid f Local ofs ty = true ->
      index_contains_inj j m' sp' (FI_local ofs ty) (ls (S Local ofs ty));
    agree_outgoing:
      forall ofs ty, 
      slot_within_bounds b Outgoing ofs ty -> slot_valid f Outgoing ofs ty = true ->
      index_contains_inj j m' sp' (FI_arg ofs ty) (ls (S Outgoing ofs ty));

    (** Incoming stack slots have the same value as the
        corresponding Outgoing stack slots in the caller *)
    agree_incoming:
       forall ofs ty, 
       In (S Incoming ofs ty) (loc_parameters f.(Linear.fn_sig)) ->
       ls (S Incoming ofs ty) = ls0 (S Outgoing ofs ty);

    (** The back link and return address slots of the Mach frame contain
        the [parent] and [retaddr] values, respectively. *)
    agree_link:
      index_contains m' sp' FI_link parent;
    agree_retaddr:
      index_contains m' sp' FI_retaddr retaddr;

    (** The areas of the frame reserved for saving used callee-save
        registers always contain the values that those registers had
        in the caller. *)
    agree_saved_int:
      forall r,
      In r int_callee_save_regs ->
      index_int_callee_save r < b.(bound_int_callee_save) ->
      index_contains_inj j m' sp' (FI_saved_int (index_int_callee_save r)) (ls0 (R r));
    agree_saved_float:
      forall r,
      In r float_callee_save_regs ->
      index_float_callee_save r < b.(bound_float_callee_save) ->
      index_contains_inj j m' sp' (FI_saved_float (index_float_callee_save r)) (ls0 (R r));

    (** Mapping between the Linear stack pointer and the Mach stack pointer *)
    agree_inj:
      j sp = Some(sp', fe.(fe_stack_data));
    agree_inj_unique:
      forall b delta, j b = Some(sp', delta) -> b = sp /\ delta = fe.(fe_stack_data);

    (** The Linear and Mach stack pointers are valid *)
    agree_valid_linear:
      Mem.valid_block m sp;
    agree_valid_mach:
      Mem.valid_block m' sp';

    (** Bounds of the Linear stack data block *)
    agree_bounds:
      forall ofs p, Mem.perm m sp ofs Max p -> 0 <= ofs < f.(Linear.fn_stacksize);

    (** Permissions on the frame part of the Mach stack block *)
    agree_perm:
      frame_perm_freeable m' sp'
  }.

Hint Resolve agree_unused_reg agree_locals agree_outgoing agree_incoming
             agree_link agree_retaddr agree_saved_int agree_saved_float
             agree_valid_linear agree_valid_mach agree_perm: stacking.

(** Auxiliary predicate used at call points *)

Definition agree_callee_save (ls ls0: locset) : Prop :=
  forall l,
  match l with
  | R r => ~In r destroyed_at_call
  | S _ _ _ => True
  end ->
  ls l = ls0 l.

(** ** Properties of [agree_regs]. *)

(** Values of registers *)

Lemma agree_reg:
  forall j ls rs r,
  agree_regs j ls rs -> val_inject j (ls (R r)) (rs r).
Proof.
  intros. auto. 
Qed.

Lemma agree_reglist:
  forall j ls rs rl,
  agree_regs j ls rs -> val_list_inject j (reglist ls rl) (rs##rl).
Proof.
  induction rl; simpl; intros.
  auto. constructor. eauto with stacking. auto. 
Qed.

Hint Resolve agree_reg agree_reglist: stacking.

(** Preservation under assignments of machine registers. *)

Lemma agree_regs_set_reg:
  forall j ls rs r v v',
  agree_regs j ls rs ->
  val_inject j v v' ->
  agree_regs j (Locmap.set (R r) v ls) (Regmap.set r v' rs).
Proof.
  intros; red; intros. 
  unfold Regmap.set. destruct (RegEq.eq r0 r). subst r0. 
  rewrite Locmap.gss; auto.
  rewrite Locmap.gso; auto. red. auto.
Qed.

Lemma agree_regs_set_regs:
  forall j rl vl vl' ls rs,
  agree_regs j ls rs ->
  val_list_inject j vl vl' ->
  agree_regs j (Locmap.setlist (map R rl) vl ls) (set_regs rl vl' rs).
Proof.
  induction rl; simpl; intros. 
  auto.
  inv H0. auto.
  apply IHrl; auto. apply agree_regs_set_reg; auto. 
Qed.

Lemma agree_regs_exten:
  forall j ls rs ls' rs',
  agree_regs j ls rs ->
  (forall r, ls' (R r) = Vundef \/ ls' (R r) = ls (R r) /\ rs' r = rs r) ->
  agree_regs j ls' rs'.
Proof.
  intros; red; intros.
  destruct (H0 r) as [A | [A B]]. 
  rewrite A. constructor. 
  rewrite A; rewrite B; auto.
Qed.

Lemma agree_regs_undef_regs:
  forall j rl ls rs,
  agree_regs j ls rs ->
  agree_regs j (LTL.undef_regs rl ls) (Mach.undef_regs rl rs).
Proof.
  induction rl; simpl; intros.
  auto.
  apply agree_regs_set_reg; auto. 
Qed.

(** Preservation under assignment of stack slot *)

Lemma agree_regs_set_slot:
  forall j ls rs sl ofs ty v,
  agree_regs j ls rs ->
  agree_regs j (Locmap.set (S sl ofs ty) v ls) rs.
Proof.
  intros; red; intros. rewrite Locmap.gso; auto. red. auto.
Qed.

(** Preservation by increasing memory injections *)

Lemma agree_regs_inject_incr:
  forall j ls rs j',
  agree_regs j ls rs -> inject_incr j j' -> agree_regs j' ls rs.
Proof.
  intros; red; intros; eauto with stacking.
Qed.

(** Preservation at function entry. *)

Lemma agree_regs_call_regs:
  forall j ls rs,
  agree_regs j ls rs ->
  agree_regs j (call_regs ls) rs.
Proof.
  intros.
  unfold call_regs; intros; red; intros; auto.
Qed.

(** ** Properties of [agree_frame] *)

(** Preservation under assignment of machine register. *)

Lemma agree_frame_set_reg:
  forall j ls ls0 m sp m' sp' parent ra r v,
  agree_frame j ls ls0 m sp m' sp' parent ra ->
  mreg_within_bounds b r ->
  agree_frame j (Locmap.set (R r) v ls) ls0 m sp m' sp' parent ra.
Proof.
  intros. inv H; constructor; auto; intros.
  rewrite Locmap.gso. auto. red. intuition congruence.
Qed.

Lemma agree_frame_set_regs:
  forall j ls0 m sp m' sp' parent ra rl vl ls,
  agree_frame j ls ls0 m sp m' sp' parent ra ->
  (forall r, In r rl -> mreg_within_bounds b r) ->
  agree_frame j (Locmap.setlist (map R rl) vl ls) ls0 m sp m' sp' parent ra.
Proof.
  induction rl; destruct vl; simpl; intros; intuition.
  apply IHrl; auto. 
  eapply agree_frame_set_reg; eauto. 
Qed.

Lemma agree_frame_undef_regs:
  forall j ls0 m sp m' sp' parent ra regs ls,
  agree_frame j ls ls0 m sp m' sp' parent ra ->
  (forall r, In r regs -> mreg_within_bounds b r) ->
  agree_frame j (LTL.undef_regs regs ls) ls0 m sp m' sp' parent ra.
Proof.
  induction regs; simpl; intros.
  auto.
  apply agree_frame_set_reg; auto.
Qed.

Lemma caller_save_reg_within_bounds:
  forall r,
  In r destroyed_at_call -> mreg_within_bounds b r.
Proof.
  intros. red.
  destruct (zlt (index_int_callee_save r) 0).
  destruct (zlt (index_float_callee_save r) 0).
  generalize (bound_int_callee_save_pos b) (bound_float_callee_save_pos b); omega.
  exfalso. eapply float_callee_save_not_destroyed; eauto. eapply index_float_callee_save_pos2; eauto.
  exfalso. eapply int_callee_save_not_destroyed; eauto. eapply index_int_callee_save_pos2; eauto.
Qed.

Lemma agree_frame_undef_locs:
  forall j ls0 m sp m' sp' parent ra regs ls,
  agree_frame j ls ls0 m sp m' sp' parent ra ->
  incl regs destroyed_at_call ->
  agree_frame j (LTL.undef_regs regs ls) ls0 m sp m' sp' parent ra.
Proof.
  intros. eapply agree_frame_undef_regs; eauto. 
  intros. apply caller_save_reg_within_bounds. auto. 
Qed.

(** Preservation by assignment to local slot *)

Lemma agree_frame_set_local:
  forall j ls ls0 m sp m' sp' parent retaddr ofs ty v v' m'',
  agree_frame j ls ls0 m sp m' sp' parent retaddr ->
  slot_within_bounds b Local ofs ty -> slot_valid f Local ofs ty = true ->
  val_inject j v v' ->
  Mem.store (chunk_of_type ty) m' sp' (offset_of_index fe (FI_local ofs ty)) v' = Some m'' ->
  agree_frame j (Locmap.set (S Local ofs ty) v ls) ls0 m sp m'' sp' parent retaddr.
Proof.
  intros. inv H. 
  change (chunk_of_type ty) with (chunk_of_type (type_of_index (FI_local ofs ty))) in H3.
  constructor; auto; intros.
(* local *)
  unfold Locmap.set.
  destruct (Loc.eq (S Local ofs ty) (S Local ofs0 ty0)).
  inv e. eapply gss_index_contains_inj'; eauto with stacking.
  destruct (Loc.diff_dec (S Local ofs ty) (S Local ofs0 ty0)).
  eapply gso_index_contains_inj. eauto. eauto with stacking. eauto. 
  simpl. simpl in d. intuition.
  apply index_contains_inj_undef. auto with stacking.
  red; intros. eapply Mem.perm_store_1; eauto.
(* outgoing *)
  rewrite Locmap.gso. eapply gso_index_contains_inj; eauto with stacking.
  red; auto. red; left; congruence. 
(* parent *)
  eapply gso_index_contains; eauto with stacking. red; auto.
(* retaddr *)
  eapply gso_index_contains; eauto with stacking. red; auto.
(* int callee save *)
  eapply gso_index_contains_inj; eauto with stacking. simpl; auto. 
(* float callee save *)
  eapply gso_index_contains_inj; eauto with stacking. simpl; auto.
(* valid *)
  eauto with mem.
(* perm *)
  red; intros. eapply Mem.perm_store_1; eauto.
Qed.

(** Preservation by assignment to outgoing slot *)

Lemma agree_frame_set_outgoing:
  forall j ls ls0 m sp m' sp' parent retaddr ofs ty v v' m'',
  agree_frame j ls ls0 m sp m' sp' parent retaddr ->
  slot_within_bounds b Outgoing ofs ty -> slot_valid f Outgoing ofs ty = true ->
  val_inject j v v' ->
  Mem.store (chunk_of_type ty) m' sp' (offset_of_index fe (FI_arg ofs ty)) v' = Some m'' ->
  agree_frame j (Locmap.set (S Outgoing ofs ty) v ls) ls0 m sp m'' sp' parent retaddr.
Proof.
  intros. inv H. 
  change (chunk_of_type ty) with (chunk_of_type (type_of_index (FI_arg ofs ty))) in H3.
  constructor; auto; intros.
(* local *)
  rewrite Locmap.gso. eapply gso_index_contains_inj; eauto with stacking. red; auto.
  red; left; congruence.
(* outgoing *)
  unfold Locmap.set. destruct (Loc.eq (S Outgoing ofs ty) (S Outgoing ofs0 ty0)).
  inv e. eapply gss_index_contains_inj'; eauto with stacking.
  destruct (Loc.diff_dec (S Outgoing ofs ty) (S Outgoing ofs0 ty0)).
  eapply gso_index_contains_inj; eauto with stacking.
  red. red in d. intuition. 
  apply index_contains_inj_undef. auto with stacking.
  red; intros. eapply Mem.perm_store_1; eauto.
(* parent *)
  eapply gso_index_contains; eauto with stacking. red; auto.
(* retaddr *)
  eapply gso_index_contains; eauto with stacking. red; auto.
(* int callee save *)
  eapply gso_index_contains_inj; eauto with stacking. simpl; auto. 
(* float callee save *)
  eapply gso_index_contains_inj; eauto with stacking. simpl; auto.
(* valid *)
  eauto with mem stacking.
(* perm *)
  red; intros. eapply Mem.perm_store_1; eauto.
Qed.

(** General invariance property with respect to memory changes. *)

Lemma agree_frame_invariant:
  forall j ls ls0 m sp m' sp' parent retaddr m1 m1',
  agree_frame j ls ls0 m sp m' sp' parent retaddr ->
  (Mem.valid_block m sp -> Mem.valid_block m1 sp) ->
  (forall ofs p, Mem.perm m1 sp ofs Max p -> Mem.perm m sp ofs Max p) ->
  (Mem.valid_block m' sp' -> Mem.valid_block m1' sp') ->
  (forall chunk ofs v,
     ofs + size_chunk chunk <= fe.(fe_stack_data) \/
     fe.(fe_stack_data) + f.(Linear.fn_stacksize) <= ofs ->
     Mem.load chunk m' sp' ofs = Some v ->
     Mem.load chunk m1' sp' ofs = Some v) ->
  (forall ofs k p,
     ofs < fe.(fe_stack_data) \/ fe.(fe_stack_data) + f.(Linear.fn_stacksize) <= ofs ->
     Mem.perm m' sp' ofs k p -> Mem.perm m1' sp' ofs k p) ->
  agree_frame j ls ls0 m1 sp m1' sp' parent retaddr.
Proof.
  intros.
  assert (IC: forall idx v,
              index_contains m' sp' idx v -> index_contains m1' sp' idx v).
    intros. inv H5.
    exploit offset_of_index_disj_stack_data_2; eauto. intros. 
    constructor; eauto. apply H3; auto. rewrite size_type_chunk; auto.
  assert (ICI: forall idx v,
              index_contains_inj j m' sp' idx v -> index_contains_inj j m1' sp' idx v).
    intros. destruct H5 as [v' [A B]]. exists v'; split; auto. 
  inv H; constructor; auto; intros.
  eauto.
  red; intros. apply H4; auto.
Qed.

(** A variant of the latter, for use with external calls *)

Lemma agree_frame_extcall_invariant:
  forall j ls ls0 m sp m' sp' parent retaddr m1 m1',
  agree_frame j ls ls0 m sp m' sp' parent retaddr ->
  (Mem.valid_block m sp -> Mem.valid_block m1 sp) ->
  (forall ofs p, Mem.perm m1 sp ofs Max p -> Mem.perm m sp ofs Max p) ->
  (Mem.valid_block m' sp' -> Mem.valid_block m1' sp') ->
  Mem.unchanged_on (loc_out_of_reach j m) m' m1' ->
  agree_frame j ls ls0 m1 sp m1' sp' parent retaddr.
Proof.
  intros.
  assert (REACH: forall ofs,
     ofs < fe.(fe_stack_data) \/ fe.(fe_stack_data) + f.(Linear.fn_stacksize) <= ofs ->
    loc_out_of_reach j m sp' ofs).
  intros; red; intros. exploit agree_inj_unique; eauto. intros [EQ1 EQ2]; subst.
  red; intros. exploit agree_bounds; eauto. omega. 
  eapply agree_frame_invariant; eauto.
  intros. eapply Mem.load_unchanged_on; eauto. intros. apply REACH. omega. auto. 
  intros. eapply Mem.perm_unchanged_on; eauto with mem. auto. 
Qed.

(** Preservation by parallel stores in the Linear and Mach codes *)

Lemma agree_frame_parallel_stores:
  forall j ls ls0 m sp m' sp' parent retaddr chunk addr addr' v v' m1 m1',
  agree_frame j ls ls0 m sp m' sp' parent retaddr ->
  Mem.inject j m m' ->
  val_inject j addr addr' ->
  Mem.storev chunk m addr v = Some m1 ->
  Mem.storev chunk m' addr' v' = Some m1' ->
  agree_frame j ls ls0 m1 sp m1' sp' parent retaddr.
Proof.
Opaque Int.add.
  intros until m1'. intros AG MINJ VINJ STORE1 STORE2.
  inv VINJ; simpl in *; try discriminate.
  eapply agree_frame_invariant; eauto.
  eauto with mem.
  eauto with mem.
  eauto with mem.
  intros. rewrite <- H1. eapply Mem.load_store_other; eauto. 
    destruct (eq_block sp' b2); auto.
    subst b2. right.
    exploit agree_inj_unique; eauto. intros [P Q]. subst b1 delta.
    exploit Mem.store_valid_access_3. eexact STORE1. intros [A B].
    rewrite shifted_stack_offset_no_overflow.
    exploit agree_bounds. eauto. apply Mem.perm_cur_max. apply A. 
    instantiate (1 := Int.unsigned ofs1). generalize (size_chunk_pos chunk). omega.
    intros C.
    exploit agree_bounds. eauto. apply Mem.perm_cur_max. apply A. 
    instantiate (1 := Int.unsigned ofs1 + size_chunk chunk - 1). generalize (size_chunk_pos chunk). omega.
    intros D.
    omega.
    eapply agree_bounds. eauto. apply Mem.perm_cur_max. apply A. 
    generalize (size_chunk_pos chunk). omega.
  intros; eauto with mem.
Qed.

(** Preservation by increasing memory injections (allocations and external calls) *)

Lemma agree_frame_inject_incr:
  forall j ls ls0 m sp m' sp' parent retaddr m1 m1' j',
  agree_frame j ls ls0 m sp m' sp' parent retaddr ->
  inject_incr j j' -> inject_separated j j' m1 m1' ->
  Mem.valid_block m1' sp' ->
  agree_frame j' ls ls0 m sp m' sp' parent retaddr.
Proof.
  intros. inv H. constructor; auto; intros; eauto with stacking.
  case_eq (j b0). 
  intros [b' delta'] EQ. rewrite (H0 _ _ _ EQ) in H. inv H. auto. 
  intros EQ. exploit H1. eauto. eauto. intros [A B]. contradiction.
Qed.

Remark inject_alloc_separated:
  forall j m1 m2 j' b1 b2 delta,
  inject_incr j j' ->
  j' b1 = Some(b2, delta) ->
  (forall b, b <> b1 -> j' b = j b) ->
  ~Mem.valid_block m1 b1 -> ~Mem.valid_block m2 b2 ->
  inject_separated j j' m1 m2.
Proof.
  intros. red. intros.
  destruct (eq_block b0 b1). subst b0. rewrite H0 in H5; inv H5. tauto.
  rewrite H1 in H5. congruence. auto.
Qed.

(** Preservation at return points (when [ls] is changed but not [ls0]). *)

Lemma agree_frame_return:
  forall j ls ls0 m sp m' sp' parent retaddr ls',
  agree_frame j ls ls0 m sp m' sp' parent retaddr ->
  agree_callee_save ls' ls ->
  agree_frame j ls' ls0 m sp m' sp' parent retaddr.
Proof.
  intros. red in H0. inv H; constructor; auto; intros.
  rewrite H0; auto. red; intros; elim H. apply caller_save_reg_within_bounds; auto. 
  rewrite H0; auto.
  rewrite H0; auto.
  rewrite H0; auto.
Qed.

(** Preservation at tailcalls (when [ls0] is changed but not [ls]). *)

Lemma agree_frame_tailcall:
  forall j ls ls0 m sp m' sp' parent retaddr ls0',
  agree_frame j ls ls0 m sp m' sp' parent retaddr ->
  agree_callee_save ls0 ls0' ->
  agree_frame j ls ls0' m sp m' sp' parent retaddr.
Proof.
  intros. red in H0. inv H; constructor; auto; intros.
  rewrite <- H0; auto. red; intros; elim H. apply caller_save_reg_within_bounds; auto. 
  rewrite <- H0; auto.
  rewrite <- H0. auto. red; intros. eapply int_callee_save_not_destroyed; eauto. 
  rewrite <- H0. auto. red; intros. eapply float_callee_save_not_destroyed; eauto. 
Qed.

(** Properties of [agree_callee_save]. *)

Lemma agree_callee_save_return_regs:
  forall ls1 ls2,
  agree_callee_save (return_regs ls1 ls2) ls1.
Proof.
  intros; red; intros.
  unfold return_regs. destruct l; auto.
  rewrite pred_dec_false; auto. 
Qed.

Lemma agree_callee_save_set_result:
  forall sg vl ls1 ls2,
  agree_callee_save ls1 ls2 ->
  agree_callee_save (Locmap.setlist (map R (loc_result sg)) vl ls1) ls2.
Proof.
  intros sg. generalize (loc_result_caller_save sg).
  generalize (loc_result sg).
Opaque destroyed_at_call.
  induction l; simpl; intros.
  auto.
  destruct vl; auto. 
  apply IHl; auto.
  red; intros. rewrite Locmap.gso. apply H0; auto. 
  destruct l0; simpl; auto. 
Qed.

(** Properties of destroyed registers. *)

Lemma check_mreg_list_incl:
  forall l1 l2,
  forallb (fun r => In_dec mreg_eq r l2) l1 = true ->
  incl l1 l2.
Proof.
  intros; red; intros. 
  rewrite forallb_forall in H. eapply proj_sumbool_true. eauto. 
Qed.

Remark destroyed_by_op_caller_save:
  forall op, incl (destroyed_by_op op) destroyed_at_call.
Proof.
  destruct op; apply check_mreg_list_incl; compute; auto.
Qed.

Remark destroyed_by_load_caller_save:
  forall chunk addr, incl (destroyed_by_load chunk addr) destroyed_at_call.
Proof.
  intros. destruct chunk; apply check_mreg_list_incl; compute; auto.
Qed.

Remark destroyed_by_store_caller_save:
  forall chunk addr, incl (destroyed_by_store chunk addr) destroyed_at_call.
Proof.
  intros. destruct chunk; apply check_mreg_list_incl; compute; auto.
Qed.

Remark destroyed_by_cond_caller_save:
  forall cond, incl (destroyed_by_cond cond) destroyed_at_call.
Proof.
  destruct cond; apply check_mreg_list_incl; compute; auto.
Qed.

Remark destroyed_by_jumptable_caller_save:
  incl destroyed_by_jumptable destroyed_at_call.
Proof.
  apply check_mreg_list_incl; compute; auto.
Qed.

Remark destroyed_by_setstack_caller_save:
  forall ty, incl (destroyed_by_setstack ty) destroyed_at_call.
Proof.
  destruct ty; apply check_mreg_list_incl; compute; auto.
Qed.

Remark destroyed_at_function_entry_caller_save:
  incl destroyed_at_function_entry destroyed_at_call.
Proof.
  apply check_mreg_list_incl; compute; auto.
Qed.

Remark temp_for_parent_frame_caller_save:
  In temp_for_parent_frame destroyed_at_call.
Proof.
  Transparent temp_for_parent_frame.
  Transparent destroyed_at_call.
  unfold temp_for_parent_frame; simpl; tauto.
Qed.

Hint Resolve destroyed_by_op_caller_save destroyed_by_load_caller_save
    destroyed_by_store_caller_save
    destroyed_by_cond_caller_save destroyed_by_jumptable_caller_save
    destroyed_at_function_entry_caller_save: stacking.

Remark destroyed_by_setstack_function_entry:
  forall ty, incl (destroyed_by_setstack ty) destroyed_at_function_entry.
Proof.
  destruct ty; apply check_mreg_list_incl; compute; auto. 
Qed.

Remark transl_destroyed_by_op:
  forall op e, destroyed_by_op (transl_op e op) = destroyed_by_op op.
Proof.
  intros; destruct op; reflexivity.
Qed.

Remark transl_destroyed_by_load:
  forall chunk addr e, destroyed_by_load chunk (transl_addr e addr) = destroyed_by_load chunk addr.
Proof.
  intros; destruct chunk; reflexivity.
Qed.

Remark transl_destroyed_by_store:
  forall chunk addr e, destroyed_by_store chunk (transl_addr e addr) = destroyed_by_store chunk addr.
Proof.
  intros; destruct chunk; reflexivity.
Qed.

(** * Correctness of saving and restoring of callee-save registers *)

(** The following lemmas show the correctness of the register saving
  code generated by [save_callee_save]: after this code has executed,
  the register save areas of the current frame do contain the
  values of the callee-save registers used by the function. *)

Section SAVE_CALLEE_SAVE.

Variable bound: frame_env -> Z.
Variable number: mreg -> Z.
Variable mkindex: Z -> frame_index.
Variable ty: typ.
Variable j: meminj.
Variable cs: list stackframe.
Variable fb: block.
Variable sp: block.
Variable csregs: list mreg.
Variable ls: locset.

Inductive stores_in_frame: mem -> mem -> Prop :=
  | stores_in_frame_refl: forall m,
      stores_in_frame m m
  | stores_in_frame_step: forall m1 chunk ofs v m2 m3,
       ofs + size_chunk chunk <= fe.(fe_stack_data)
       \/ fe.(fe_stack_data) + f.(Linear.fn_stacksize) <= ofs ->
       Mem.store chunk m1 sp ofs v = Some m2 ->
       stores_in_frame m2 m3 ->
       stores_in_frame m1 m3.

Remark stores_in_frame_trans:
  forall m1 m2, stores_in_frame m1 m2 ->
  forall m3, stores_in_frame m2 m3 -> stores_in_frame m1 m3.
Proof.
  induction 1; intros. auto. econstructor; eauto.
Qed.

Hypothesis number_inj: 
  forall r1 r2, In r1 csregs -> In r2 csregs -> r1 <> r2 -> number r1 <> number r2.
Hypothesis mkindex_valid:
  forall r, In r csregs -> number r < bound fe -> index_valid (mkindex (number r)).
Hypothesis mkindex_typ:
  forall z, type_of_index (mkindex z) = ty.
Hypothesis mkindex_inj:
  forall z1 z2, z1 <> z2 -> mkindex z1 <> mkindex z2.
Hypothesis mkindex_diff:
  forall r idx,
  idx <> mkindex (number r) -> index_diff (mkindex (number r)) idx.
Hypothesis csregs_typ:
  forall r, In r csregs -> mreg_type r = ty.

Hypothesis ls_temp_undef:
  forall r, In r (destroyed_by_setstack ty) -> ls (R r) = Vundef.

Hypothesis wt_ls: forall r, Val.has_type (ls (R r)) (mreg_type r).

Lemma save_callee_save_regs_correct:
  forall l k rs m,
  incl l csregs ->
  list_norepet l ->
  frame_perm_freeable m sp ->
  agree_regs j ls rs ->
  exists rs', exists m',
    star step tge 
       (State cs fb (Vptr sp Int.zero)
         (save_callee_save_regs bound number mkindex ty fe l k) rs m)
    E0 (State cs fb (Vptr sp Int.zero) k rs' m')
  /\ (forall r,
       In r l -> number r < bound fe ->
       index_contains_inj j m' sp (mkindex (number r)) (ls (R r)))
  /\ (forall idx v,
       index_valid idx ->
       (forall r,
         In r l -> number r < bound fe -> idx <> mkindex (number r)) ->
       index_contains m sp idx v ->
       index_contains m' sp idx v)
  /\ stores_in_frame m m'
  /\ frame_perm_freeable m' sp
  /\ agree_regs j ls rs'.
Proof.
  induction l; intros; simpl save_callee_save_regs.
  (* base case *)
  exists rs; exists m. split. apply star_refl. 
  split. intros. elim H3.
  split. auto.
  split. constructor.
  auto.
  (* inductive case *)
  assert (R1: incl l csregs). eauto with coqlib.
  assert (R2: list_norepet l). inversion H0; auto.
  unfold save_callee_save_reg.
  destruct (zlt (number a) (bound fe)).
  (* a store takes place *)
  exploit store_index_succeeds. apply (mkindex_valid a); auto with coqlib. 
  eauto. instantiate (1 := rs a). intros [m1 ST].
  exploit (IHl k (undef_regs (destroyed_by_setstack ty) rs) m1).  auto with coqlib. auto. 
  red; eauto with mem.
  apply agree_regs_exten with ls rs. auto.
  intros. destruct (In_dec mreg_eq r (destroyed_by_setstack ty)).
  left. apply ls_temp_undef; auto. 
  right; split. auto. apply undef_regs_other; auto.
  intros [rs' [m' [A [B [C [D [E F]]]]]]].
  exists rs'; exists m'. 
  split. eapply star_left; eauto. econstructor. 
  rewrite <- (mkindex_typ (number a)). 
  apply store_stack_succeeds; auto with coqlib.
  auto. traceEq.
  split; intros.
  simpl in H3. destruct (mreg_eq a r). subst r.
  assert (index_contains_inj j m1 sp (mkindex (number a)) (ls (R a))).
    eapply gss_index_contains_inj; eauto.
    rewrite mkindex_typ. rewrite <- (csregs_typ a). apply wt_ls. 
    auto with coqlib.
  destruct H5 as [v' [P Q]].
  exists v'; split; auto. apply C; auto. 
  intros. apply mkindex_inj. apply number_inj; auto with coqlib. 
  inv H0. intuition congruence.
  apply B; auto with coqlib. 
  intuition congruence.
  split. intros.
  apply C; auto with coqlib.
  eapply gso_index_contains; eauto with coqlib. 
  split. econstructor; eauto.
  rewrite size_type_chunk. apply offset_of_index_disj_stack_data_2; eauto with coqlib.
  auto.
  (* no store takes place *)
  exploit (IHl k rs m); auto with coqlib. 
  intros [rs' [m' [A [B [C [D [E F]]]]]]].
  exists rs'; exists m'; intuition. 
  simpl in H3. destruct H3. subst r. omegaContradiction. apply B; auto.
  apply C; auto with coqlib.
  intros. eapply H4; eauto. auto with coqlib.
Qed.

End SAVE_CALLEE_SAVE.

Remark LTL_undef_regs_same:
  forall r rl ls, In r rl -> LTL.undef_regs rl ls (R r) = Vundef.
Proof.
  induction rl; simpl; intros. contradiction. 
  unfold Locmap.set. destruct (Loc.eq (R a) (R r)). auto. 
  destruct (Loc.diff_dec (R a) (R r)); auto. 
  apply IHrl. intuition congruence.
Qed.

Remark LTL_undef_regs_others:
  forall r rl ls, ~In r rl -> LTL.undef_regs rl ls (R r) = ls (R r).
Proof.
  induction rl; simpl; intros. auto.
  rewrite Locmap.gso. apply IHrl. intuition. red. intuition. 
Qed.

Remark LTL_undef_regs_slot:
  forall sl ofs ty rl ls, LTL.undef_regs rl ls (S sl ofs ty) = ls (S sl ofs ty).
Proof.
  induction rl; simpl; intros. auto.
  rewrite Locmap.gso. apply IHrl. red; auto. 
Qed.

Lemma save_callee_save_correct:
  forall j ls0 rs sp cs fb k m,
  let ls := LTL.undef_regs destroyed_at_function_entry ls0 in
  agree_regs j ls rs ->
  (forall r, Val.has_type (ls (R r)) (mreg_type r)) ->
  frame_perm_freeable m sp ->
  exists rs', exists m',
    star step tge 
       (State cs fb (Vptr sp Int.zero) (save_callee_save fe k) rs m)
    E0 (State cs fb (Vptr sp Int.zero) k rs' m')
  /\ (forall r,
       In r int_callee_save_regs -> index_int_callee_save r < b.(bound_int_callee_save) ->
       index_contains_inj j m' sp (FI_saved_int (index_int_callee_save r)) (ls (R r)))
  /\ (forall r,
       In r float_callee_save_regs -> index_float_callee_save r < b.(bound_float_callee_save) ->
       index_contains_inj j m' sp (FI_saved_float (index_float_callee_save r)) (ls (R r)))
  /\ (forall idx v,
       index_valid idx ->
       match idx with FI_saved_int _ => False | FI_saved_float _ => False | _ => True end ->
       index_contains m sp idx v ->
       index_contains m' sp idx v)
  /\ stores_in_frame sp m m'
  /\ frame_perm_freeable m' sp
  /\ agree_regs j ls rs'.
Proof.
  intros.
  assert (UNDEF: forall r ty, In r (destroyed_by_setstack ty) -> ls (R r) = Vundef).
    intros. unfold ls. apply LTL_undef_regs_same. eapply destroyed_by_setstack_function_entry; eauto.
  exploit (save_callee_save_regs_correct 
             fe_num_int_callee_save
             index_int_callee_save
             FI_saved_int Tany32
             j cs fb sp int_callee_save_regs ls).
  intros. apply index_int_callee_save_inj; auto. 
  intros. simpl. split. apply Zge_le. apply index_int_callee_save_pos; auto. assumption.
  auto.
  intros; congruence.
  intros; simpl. destruct idx; auto. congruence.
  intros. apply int_callee_save_type. auto.
  eauto.
  auto.
  apply incl_refl. 
  apply int_callee_save_norepet.
  eauto.
  eauto.
  intros [rs1 [m1 [A [B [C [D [E F]]]]]]].
  exploit (save_callee_save_regs_correct 
             fe_num_float_callee_save
             index_float_callee_save
             FI_saved_float Tany64
             j cs fb sp float_callee_save_regs ls).
  intros. apply index_float_callee_save_inj; auto. 
  intros. simpl. split. apply Zge_le. apply index_float_callee_save_pos; auto. assumption.
  simpl; auto.
  intros; congruence.
  intros; simpl. destruct idx; auto. congruence.
  intros. apply float_callee_save_type. auto.
  eauto.
  auto. 
  apply incl_refl. 
  apply float_callee_save_norepet.
  eexact E.
  eexact F.
  intros [rs2 [m2 [P [Q [R [S [T U]]]]]]].
  exists rs2; exists m2.
  split. unfold save_callee_save, save_callee_save_int, save_callee_save_float.
  eapply star_trans; eauto. 
  split; intros.
  destruct (B r H2 H3) as [v [X Y]]. exists v; split; auto. apply R.
  apply index_saved_int_valid; auto. 
  intros. congruence.
  auto.
  split. intros. apply Q; auto.
  split. intros. apply R. auto.
  intros. destruct idx; contradiction||congruence.
  apply C. auto. 
  intros. destruct idx; contradiction||congruence.
  auto.
  split. eapply stores_in_frame_trans; eauto.
  auto.
Qed.

(** Properties of sequences of stores in the frame. *)

Lemma stores_in_frame_inject:
  forall j sp sp' m,
  (forall b delta, j b = Some(sp', delta) -> b = sp /\ delta = fe.(fe_stack_data)) ->
  (forall ofs k p, Mem.perm m sp ofs k p -> 0 <= ofs < f.(Linear.fn_stacksize)) ->
  forall m1 m2, stores_in_frame sp' m1 m2 -> Mem.inject j m m1 -> Mem.inject j m m2.
Proof.
  induction 3; intros.
  auto.
  apply IHstores_in_frame.
  intros. eapply Mem.store_outside_inject; eauto.
  intros. exploit H; eauto. intros [A B]; subst.
  exploit H0; eauto. omega. 
Qed.

Lemma stores_in_frame_valid:
  forall b sp m m', stores_in_frame sp m m' -> Mem.valid_block m b -> Mem.valid_block m' b.
Proof.
  induction 1; intros. auto. apply IHstores_in_frame. eauto with mem.
Qed.

Lemma stores_in_frame_perm:
  forall b ofs k p sp m m', stores_in_frame sp m m' -> Mem.perm m b ofs k p -> Mem.perm m' b ofs k p.
Proof.
  induction 1; intros. auto. apply IHstores_in_frame. eauto with mem.
Qed.

Lemma stores_in_frame_contents:
  forall chunk b ofs sp, Plt b sp ->
  forall m m', stores_in_frame sp m m' -> 
  Mem.load chunk m' b ofs = Mem.load chunk m b ofs.
Proof.
  induction 2. auto. 
  rewrite IHstores_in_frame. eapply Mem.load_store_other; eauto.
  left. apply Plt_ne; auto.
Qed.

Lemma undef_regs_type:
  forall ty l rl ls,
  Val.has_type (ls l) ty -> Val.has_type (LTL.undef_regs rl ls l) ty.
Proof.
  induction rl; simpl; intros.
- auto.
- unfold Locmap.set. destruct (Loc.eq (R a) l). red; auto. 
  destruct (Loc.diff_dec (R a) l); auto. red; auto.
Qed.

(** As a corollary of the previous lemmas, we obtain the following
  correctness theorem for the execution of a function prologue
  (allocation of the frame + saving of the link and return address +
  saving of the used callee-save registers). *)

Lemma function_prologue_correct:
  forall j ls ls0 ls1 rs rs1 m1 m1' m2 sp parent ra cs fb k,
  agree_regs j ls rs ->
  agree_callee_save ls ls0 ->
  (forall r, Val.has_type (ls (R r)) (mreg_type r)) ->
  ls1 = LTL.undef_regs destroyed_at_function_entry (LTL.call_regs ls) ->
  rs1 = undef_regs destroyed_at_function_entry rs ->
  Mem.inject j m1 m1' ->
  Mem.alloc m1 0 f.(Linear.fn_stacksize) = (m2, sp) ->
  Val.has_type parent Tint -> Val.has_type ra Tint ->
  exists j', exists rs', exists m2', exists sp', exists m3', exists m4', exists m5',
     Mem.alloc m1' 0 tf.(fn_stacksize) = (m2', sp')
  /\ store_stack m2' (Vptr sp' Int.zero) Tint tf.(fn_link_ofs) parent = Some m3'
  /\ store_stack m3' (Vptr sp' Int.zero) Tint tf.(fn_retaddr_ofs) ra = Some m4'
  /\ star step tge 
         (State cs fb (Vptr sp' Int.zero) (save_callee_save fe k) rs1 m4')
      E0 (State cs fb (Vptr sp' Int.zero) k rs' m5')
  /\ agree_regs j' ls1 rs'
  /\ agree_frame j' ls1 ls0 m2 sp m5' sp' parent ra
  /\ inject_incr j j'
  /\ inject_separated j j' m1 m1'
  /\ Mem.inject j' m2 m5'
  /\ stores_in_frame sp' m2' m5'.
Proof.
  intros until k; intros AGREGS AGCS WTREGS LS1 RS1 INJ1 ALLOC TYPAR TYRA.
  rewrite unfold_transf_function.
  unfold fn_stacksize, fn_link_ofs, fn_retaddr_ofs.
  (* Allocation step *)
  caseEq (Mem.alloc m1' 0 (fe_size fe)). intros m2' sp' ALLOC'.
  exploit Mem.alloc_left_mapped_inject.
    eapply Mem.alloc_right_inject; eauto.
    eauto.
    instantiate (1 := sp'). eauto with mem.
    instantiate (1 := fe_stack_data fe).
    generalize stack_data_offset_valid (bound_stack_data_pos b) size_no_overflow; omega.
    intros; right. 
    exploit Mem.perm_alloc_inv. eexact ALLOC'. eauto. rewrite dec_eq_true. 
    generalize size_no_overflow. omega. 
    intros. apply Mem.perm_implies with Freeable; auto with mem. 
    eapply Mem.perm_alloc_2; eauto.
    generalize stack_data_offset_valid bound_stack_data_stacksize; omega.
    red. intros. apply Zdivides_trans with 8. 
    destruct chunk; simpl; auto with align_4.
    apply fe_stack_data_aligned.
    intros.
      assert (Mem.valid_block m1' sp'). eapply Mem.valid_block_inject_2; eauto.
      assert (~Mem.valid_block m1' sp') by eauto with mem.
      contradiction.
  intros [j' [INJ2 [INCR [MAP1 MAP2]]]].
  assert (PERM: frame_perm_freeable m2' sp').
    red; intros. eapply Mem.perm_alloc_2; eauto.
  (* Store of parent *)
  exploit (store_index_succeeds m2' sp' FI_link parent). red; auto. auto. 
  intros [m3' STORE2].
  (* Store of retaddr *)
  exploit (store_index_succeeds m3' sp' FI_retaddr ra). red; auto. red; eauto with mem.
  intros [m4' STORE3].
  (* Saving callee-save registers *)
  assert (PERM4: frame_perm_freeable m4' sp').
    red; intros. eauto with mem. 
  exploit save_callee_save_correct. 
    instantiate (1 := rs1). instantiate (1 := call_regs ls). instantiate (1 := j').
    subst rs1. apply agree_regs_undef_regs. 
    apply agree_regs_call_regs. eapply agree_regs_inject_incr; eauto.
    intros. apply undef_regs_type. simpl. apply WTREGS.
    eexact PERM4.
  rewrite <- LS1.
  intros [rs' [m5' [STEPS [ICS [FCS [OTHERS [STORES [PERM5 AGREGS']]]]]]]].
  (* stores in frames *)
  assert (SIF: stores_in_frame sp' m2' m5').
    econstructor; eauto. 
    rewrite size_type_chunk. apply offset_of_index_disj_stack_data_2; auto. red; auto.
    econstructor; eauto.
    rewrite size_type_chunk. apply offset_of_index_disj_stack_data_2; auto. red; auto.
  (* separation *)
  assert (SEP: forall b0 delta, j' b0 = Some(sp', delta) -> b0 = sp /\ delta = fe_stack_data fe).
    intros. destruct (eq_block b0 sp). 
    subst b0. rewrite MAP1 in H; inv H; auto.
    rewrite MAP2 in H; auto. 
    assert (Mem.valid_block m1' sp'). eapply Mem.valid_block_inject_2; eauto.
    assert (~Mem.valid_block m1' sp') by eauto with mem.
    contradiction.
  (* Conclusions *)
  exists j'; exists rs'; exists m2'; exists sp'; exists m3'; exists m4'; exists m5'.
  split. auto.
  (* store parent *)
  split. change Tint with (type_of_index FI_link). 
  change (fe_ofs_link fe) with (offset_of_index fe FI_link).
  apply store_stack_succeeds; auto. red; auto.
  (* store retaddr *)
  split. change Tint with (type_of_index FI_retaddr). 
  change (fe_ofs_retaddr fe) with (offset_of_index fe FI_retaddr).
  apply store_stack_succeeds; auto. red; auto.
  (* saving of registers *)
  split. eexact STEPS.
  (* agree_regs *)
  split. auto.
  (* agree frame *)
  split. constructor; intros.
    (* unused regs *)
    assert (~In r destroyed_at_call). 
      red; intros; elim H; apply caller_save_reg_within_bounds; auto.
    rewrite LS1. rewrite LTL_undef_regs_others. unfold call_regs. 
    apply AGCS; auto. red; intros; elim H0. 
    apply destroyed_at_function_entry_caller_save; auto.
    (* locals *)
    rewrite LS1. rewrite LTL_undef_regs_slot. unfold call_regs. 
    apply index_contains_inj_undef; auto with stacking.
    (* outgoing *)
    rewrite LS1. rewrite LTL_undef_regs_slot. unfold call_regs. 
    apply index_contains_inj_undef; auto with stacking.
    (* incoming *)
    rewrite LS1. rewrite LTL_undef_regs_slot. unfold call_regs.
    apply AGCS; auto. 
    (* parent *)
    apply OTHERS; auto. red; auto.
    eapply gso_index_contains; eauto. red; auto.
    eapply gss_index_contains; eauto. red; auto.
    red; auto.
    (* retaddr *)
    apply OTHERS; auto. red; auto.
    eapply gss_index_contains; eauto. red; auto.
    (* int callee save *)
    assert (~In r destroyed_at_call). 
      red; intros. eapply int_callee_save_not_destroyed; eauto.
    exploit ICS; eauto. rewrite LS1. rewrite LTL_undef_regs_others. unfold call_regs.
    rewrite AGCS; auto. 
    red; intros; elim H1. apply destroyed_at_function_entry_caller_save; auto.
    (* float callee save *)
    assert (~In r destroyed_at_call). 
      red; intros. eapply float_callee_save_not_destroyed; eauto.
    exploit FCS; eauto. rewrite LS1. rewrite LTL_undef_regs_others. unfold call_regs.
    rewrite AGCS; auto. 
    red; intros; elim H1. apply destroyed_at_function_entry_caller_save; auto.
    (* inj *)
    auto.
    (* inj_unique *)
    auto.
    (* valid sp *)
    eauto with mem.
    (* valid sp' *)
    eapply stores_in_frame_valid with (m := m2'); eauto with mem.
    (* bounds *)
    exploit Mem.perm_alloc_inv. eexact ALLOC. eauto. rewrite dec_eq_true. auto.
    (* perms *)
    auto.
  (* incr *)
  split. auto.
  (* separated *)
  split. eapply inject_alloc_separated; eauto with mem.
  (* inject *)
  split. eapply stores_in_frame_inject; eauto.
  intros. exploit Mem.perm_alloc_inv. eexact ALLOC. eauto. rewrite dec_eq_true. auto.
  (* stores in frame *)
  auto.
Qed.

(** The following lemmas show the correctness of the register reloading
  code generated by [reload_callee_save]: after this code has executed,
  all callee-save registers contain the same values they had at
  function entry. *)

Section RESTORE_CALLEE_SAVE.

Variable bound: frame_env -> Z.
Variable number: mreg -> Z.
Variable mkindex: Z -> frame_index.
Variable ty: typ.
Variable csregs: list mreg.
Variable j: meminj.
Variable cs: list stackframe.
Variable fb: block.
Variable sp: block.
Variable ls0: locset.
Variable m: mem.

Hypothesis mkindex_valid:
  forall r, In r csregs -> number r < bound fe -> index_valid (mkindex (number r)).
Hypothesis mkindex_typ:
  forall z, type_of_index (mkindex z) = ty.
Hypothesis number_within_bounds:
  forall r, In r csregs ->
  (number r < bound fe <-> mreg_within_bounds b r).
Hypothesis mkindex_val:
  forall r,
  In r csregs -> number r < bound fe ->
  index_contains_inj j m sp (mkindex (number r)) (ls0 (R r)).

Definition agree_unused (ls0: locset) (rs: regset) : Prop :=
  forall r, ~(mreg_within_bounds b r) -> val_inject j (ls0 (R r)) (rs r).

Lemma restore_callee_save_regs_correct:
  forall l rs k,
  incl l csregs ->
  list_norepet l -> 
  agree_unused ls0 rs ->
  exists rs',
    star step tge
      (State cs fb (Vptr sp Int.zero)
        (restore_callee_save_regs bound number mkindex ty fe l k) rs m)
   E0 (State cs fb (Vptr sp Int.zero) k rs' m)
  /\ (forall r, In r l -> val_inject j (ls0 (R r)) (rs' r))
  /\ (forall r, ~(In r l) -> rs' r = rs r)
  /\ agree_unused ls0 rs'.
Proof.
  induction l; intros; simpl restore_callee_save_regs.
  (* base case *)
  exists rs. intuition. apply star_refl.
  (* inductive case *)
  assert (R0: In a csregs). apply H; auto with coqlib.
  assert (R1: incl l csregs). eauto with coqlib.
  assert (R2: list_norepet l). inversion H0; auto.
  unfold restore_callee_save_reg.
  destruct (zlt (number a) (bound fe)).
  exploit (mkindex_val a); auto. intros [v [X Y]].
  set (rs1 := Regmap.set a v rs).
  exploit (IHl rs1 k); eauto.
    red; intros. unfold rs1. unfold Regmap.set. destruct (RegEq.eq r a).
    subst r. auto.
    auto.
  intros [rs' [A [B [C D]]]].
  exists rs'. split. 
  eapply star_left. 
  constructor. rewrite <- (mkindex_typ (number a)). apply index_contains_load_stack. eauto.   
  eauto. traceEq.
  split. intros. destruct H2.
  subst r. rewrite C. unfold rs1. rewrite Regmap.gss. auto. inv H0; auto.
  auto.
  split. intros. simpl in H2. rewrite C. unfold rs1. apply Regmap.gso.
  apply sym_not_eq; tauto. tauto.
  auto.
  (* no load takes place *)
  exploit (IHl rs k); auto.
  intros [rs' [A [B [C D]]]].
  exists rs'. split. assumption.
  split. intros. destruct H2.
  subst r. apply D. 
  rewrite <- number_within_bounds. auto. auto. auto.
  split. intros. simpl in H2. apply C. tauto.
  auto.
Qed.

End RESTORE_CALLEE_SAVE.

Lemma restore_callee_save_correct:
  forall j ls ls0 m sp m' sp' pa ra cs fb rs k,
  agree_frame j ls ls0 m sp m' sp' pa ra ->
  agree_unused j ls0 rs ->
  exists rs',
    star step tge
       (State cs fb (Vptr sp' Int.zero) (restore_callee_save fe k) rs m')
    E0 (State cs fb (Vptr sp' Int.zero) k rs' m')
  /\ (forall r, 
        In r int_callee_save_regs \/ In r float_callee_save_regs -> 
        val_inject j (ls0 (R r)) (rs' r))
  /\ (forall r, 
        ~(In r int_callee_save_regs) ->
        ~(In r float_callee_save_regs) ->
        rs' r = rs r).
Proof.
  intros. 
    exploit (restore_callee_save_regs_correct 
             fe_num_int_callee_save
             index_int_callee_save
             FI_saved_int
             Tany32
             int_callee_save_regs
             j cs fb sp' ls0 m'); auto.
  intros. unfold mreg_within_bounds. split; intros.
  split; auto. destruct (zlt (index_float_callee_save r) 0).
  generalize (bound_float_callee_save_pos b). omega. 
  eelim int_float_callee_save_disjoint. eauto. 
  eapply index_float_callee_save_pos2. eauto. auto.
  destruct H2; auto. 
  eapply agree_saved_int; eauto. 
  apply incl_refl.
  apply int_callee_save_norepet.
  eauto.
  intros [rs1 [A [B [C D]]]].
  exploit (restore_callee_save_regs_correct 
             fe_num_float_callee_save
             index_float_callee_save
             FI_saved_float
             Tany64
             float_callee_save_regs
             j cs fb sp' ls0 m'); auto.
  intros. unfold mreg_within_bounds. split; intros.
  split; auto. destruct (zlt (index_int_callee_save r) 0).
  generalize (bound_int_callee_save_pos b). omega. 
  eelim int_float_callee_save_disjoint. 
  eapply index_int_callee_save_pos2. eauto. eauto. auto.
  destruct H2; auto. 
  eapply agree_saved_float; eauto. 
  apply incl_refl.
  apply float_callee_save_norepet.
  eexact D.
  intros [rs2 [P [Q [R S]]]].
  exists rs2.
  split. unfold restore_callee_save. eapply star_trans; eauto.
  split. intros. destruct H1.
    rewrite R. apply B; auto. red; intros. exploit int_float_callee_save_disjoint; eauto.
    apply Q; auto.
  intros. rewrite R; auto.
Qed.

(** As a corollary, we obtain the following correctness result for
  the execution of a function epilogue (reloading of used callee-save
  registers + reloading of the link and return address + freeing
  of the frame). *)

Lemma function_epilogue_correct:
  forall j ls ls0 m sp m' sp' pa ra cs fb rs k m1,
  agree_regs j ls rs ->
  agree_frame j ls ls0 m sp m' sp' pa ra ->
  Mem.inject j m m' ->
  Mem.free m sp 0 f.(Linear.fn_stacksize) = Some m1 ->
  exists rs1, exists m1',
     load_stack m' (Vptr sp' Int.zero) Tint tf.(fn_link_ofs) = Some pa
  /\ load_stack m' (Vptr sp' Int.zero) Tint tf.(fn_retaddr_ofs) = Some ra
  /\ Mem.free m' sp' 0 tf.(fn_stacksize) = Some m1'
  /\ star step tge
       (State cs fb (Vptr sp' Int.zero) (restore_callee_save fe k) rs m')
    E0 (State cs fb (Vptr sp' Int.zero) k rs1 m')
  /\ agree_regs j (return_regs ls0 ls) rs1
  /\ agree_callee_save (return_regs ls0 ls) ls0
  /\ Mem.inject j m1 m1'.
Proof.
  intros.
  (* can free *)
  destruct (Mem.range_perm_free m' sp' 0 (fn_stacksize tf)) as [m1' FREE].
  rewrite unfold_transf_function; unfold fn_stacksize. red; intros.
  assert (EITHER: fe_stack_data fe <= ofs < fe_stack_data fe + Linear.fn_stacksize f
              \/ (ofs < fe_stack_data fe \/ fe_stack_data fe + Linear.fn_stacksize f <= ofs))
  by omega.
  destruct EITHER.
  replace ofs with ((ofs - fe_stack_data fe) + fe_stack_data fe) by omega.
  eapply Mem.perm_inject with (f := j). eapply agree_inj; eauto. eauto. 
  eapply Mem.free_range_perm; eauto. omega.
  eapply agree_perm; eauto. 
  (* inject after free *)
  assert (INJ1: Mem.inject j m1 m1').
  eapply Mem.free_inject with (l := (sp, 0, f.(Linear.fn_stacksize)) :: nil); eauto.
  simpl. rewrite H2. auto.
  intros. exploit agree_inj_unique; eauto. intros [P Q]; subst b1 delta.
  exists 0; exists (Linear.fn_stacksize f); split. auto with coqlib.
  eapply agree_bounds. eauto. eapply Mem.perm_max. eauto.  
  (* can execute epilogue *)
  exploit restore_callee_save_correct; eauto.
    instantiate (1 := rs). red; intros. 
    rewrite <- (agree_unused_reg _ _ _ _ _ _ _ _ _ H0). auto. auto. 
  intros [rs1 [A [B C]]].
  (* conclusions *)
  exists rs1; exists m1'.
  split. rewrite unfold_transf_function; unfold fn_link_ofs. 
    eapply index_contains_load_stack with (idx := FI_link); eauto with stacking.
  split. rewrite unfold_transf_function; unfold fn_retaddr_ofs. 
    eapply index_contains_load_stack with (idx := FI_retaddr); eauto with stacking.
  split. auto.
  split. eexact A.
  split. red; intros. unfold return_regs.
    generalize (register_classification r) (int_callee_save_not_destroyed r) (float_callee_save_not_destroyed r); intros.
    destruct (in_dec mreg_eq r destroyed_at_call). 
    rewrite C; auto. 
    apply B. intuition. 
  split. apply agree_callee_save_return_regs.
  auto.
Qed.

End FRAME_PROPERTIES.

(** * Call stack invariant *)

Inductive match_globalenvs (j: meminj) (bound: block) : Prop :=
  | match_globalenvs_intro
      (DOMAIN: forall b, Plt b bound -> j b = Some(b, 0))
      (IMAGE: forall b1 b2 delta, j b1 = Some(b2, delta) -> Plt b2 bound -> b1 = b2)
      (SYMBOLS: forall id b, Genv.find_symbol ge id = Some b -> Plt b bound)
      (FUNCTIONS: forall b fd, Genv.find_funct_ptr ge b = Some fd -> Plt b bound)
      (VARINFOS: forall b gv, Genv.find_var_info ge b = Some gv -> Plt b bound).

Inductive match_stacks (j: meminj) (m m': mem): 
       list Linear.stackframe -> list stackframe -> signature -> block -> block -> Prop :=
  | match_stacks_empty: forall sg hi bound bound',
      Ple hi bound -> Ple hi bound' -> match_globalenvs j hi ->
      tailcall_possible sg ->
      match_stacks j m m' nil nil sg bound bound'
  | match_stacks_cons: forall f sp ls c cs fb sp' ra c' cs' sg bound bound' trf
        (TAIL: is_tail c (Linear.fn_code f))
        (FINDF: Genv.find_funct_ptr tge fb = Some (Internal trf))
        (TRF: transf_function f = OK trf)
        (TRC: transl_code (make_env (function_bounds f)) c = c')
        (TY_RA: Val.has_type ra Tint)
        (FRM: agree_frame f j ls (parent_locset cs) m sp m' sp' (parent_sp cs') (parent_ra cs'))
        (ARGS: forall ofs ty,
           In (S Outgoing ofs ty) (loc_arguments sg) ->
           slot_within_bounds (function_bounds f) Outgoing ofs ty)
        (STK: match_stacks j m m' cs cs' (Linear.fn_sig f) sp sp')
        (BELOW: Plt sp bound)
        (BELOW': Plt sp' bound'),
      match_stacks j m m'
                   (Linear.Stackframe f (Vptr sp Int.zero) ls c :: cs)
                   (Stackframe fb (Vptr sp' Int.zero) ra c' :: cs')
                   sg bound bound'.

(** Invariance with respect to change of bounds. *)

Lemma match_stacks_change_bounds:
  forall j m1 m' cs cs' sg bound bound',
  match_stacks j m1 m' cs cs' sg bound bound' ->
  forall xbound xbound',
  Ple bound xbound -> Ple bound' xbound' ->
  match_stacks j m1 m' cs cs' sg xbound xbound'.
Proof.
  induction 1; intros. 
  apply match_stacks_empty with hi; auto. apply Ple_trans with bound; eauto. apply Ple_trans with bound'; eauto. 
  econstructor; eauto. eapply Plt_le_trans; eauto. eapply Plt_le_trans; eauto. 
Qed.

(** Invariance with respect to change of [m]. *)

Lemma match_stacks_change_linear_mem:
  forall j m1 m2 m' cs cs' sg bound bound',
  match_stacks j m1 m' cs cs' sg bound bound' ->
  (forall b, Plt b bound -> Mem.valid_block m1 b -> Mem.valid_block m2 b) ->
  (forall b ofs p, Plt b bound -> Mem.perm m2 b ofs Max p -> Mem.perm m1 b ofs Max p) ->
  match_stacks j m2 m' cs cs' sg bound bound'.
Proof.
  induction 1; intros.
  econstructor; eauto.
  econstructor; eauto.
  eapply agree_frame_invariant; eauto. 
  apply IHmatch_stacks.
  intros. apply H0; auto. apply Plt_trans with sp; auto.
  intros. apply H1. apply Plt_trans with sp; auto. auto.
Qed.

(** Invariance with respect to change of [m']. *)

Lemma match_stacks_change_mach_mem:
  forall j m m1' m2' cs cs' sg bound bound',
  match_stacks j m m1' cs cs' sg bound bound' ->
  (forall b, Plt b bound' -> Mem.valid_block m1' b -> Mem.valid_block m2' b) ->
  (forall b ofs k p, Plt b bound' -> Mem.perm m1' b ofs k p -> Mem.perm m2' b ofs k p) ->
  (forall chunk b ofs v, Plt b bound' -> Mem.load chunk m1' b ofs = Some v -> Mem.load chunk m2' b ofs = Some v) ->
  match_stacks j m m2' cs cs' sg bound bound'.
Proof.
  induction 1; intros.
  econstructor; eauto.
  econstructor; eauto.
  eapply agree_frame_invariant; eauto. 
  apply IHmatch_stacks. 
  intros; apply H0; auto. apply Plt_trans with sp'; auto. 
  intros; apply H1; auto. apply Plt_trans with sp'; auto. 
  intros; apply H2; auto. apply Plt_trans with sp'; auto. 
Qed.

(** A variant of the latter, for use with external calls *)

Lemma match_stacks_change_mem_extcall:
  forall j m1 m2 m1' m2' cs cs' sg bound bound',
  match_stacks j m1 m1' cs cs' sg bound bound' ->
  (forall b, Plt b bound -> Mem.valid_block m1 b -> Mem.valid_block m2 b) ->
  (forall b ofs p, Plt b bound -> Mem.perm m2 b ofs Max p -> Mem.perm m1 b ofs Max p) ->
  (forall b, Plt b bound' -> Mem.valid_block m1' b -> Mem.valid_block m2' b) ->
  Mem.unchanged_on (loc_out_of_reach j m1) m1' m2' ->
  match_stacks j m2 m2' cs cs' sg bound bound'.
Proof.
  induction 1; intros.
  econstructor; eauto.
  econstructor; eauto.
  eapply agree_frame_extcall_invariant; eauto.
  apply IHmatch_stacks. 
  intros; apply H0; auto. apply Plt_trans with sp; auto. 
  intros; apply H1. apply Plt_trans with sp; auto. auto.
  intros; apply H2; auto. apply Plt_trans with sp'; auto. 
  auto.
Qed.

(** Invariance with respect to change of [j]. *)

Lemma match_stacks_change_meminj:
  forall j j' m m' m1 m1',
  inject_incr j j' ->
  inject_separated j j' m1 m1' ->
  forall cs cs' sg bound bound',
  match_stacks j m m' cs cs' sg bound bound' ->
  Ple bound' (Mem.nextblock m1') ->
  match_stacks j' m m' cs cs' sg bound bound'.
Proof.
  induction 3; intros.
  apply match_stacks_empty with hi; auto.
  inv H3. constructor; auto.
  intros. red in H0. case_eq (j b1).
  intros [b' delta'] EQ. rewrite (H _ _ _ EQ) in H3. inv H3. eauto.
  intros EQ. exploit H0; eauto. intros [A B]. elim B. red.
  apply Plt_le_trans with hi. auto. apply Ple_trans with bound'; auto.
  econstructor; eauto. 
  eapply agree_frame_inject_incr; eauto. red. eapply Plt_le_trans; eauto. 
  apply IHmatch_stacks. apply Ple_trans with bound'; auto. apply Plt_Ple; auto.
Qed.

(** Preservation by parallel stores in Linear and Mach. *)

Lemma match_stacks_parallel_stores:
  forall j m m' chunk addr addr' v v' m1 m1',
  Mem.inject j m m' ->
  val_inject j addr addr' ->
  Mem.storev chunk m addr v = Some m1 ->
  Mem.storev chunk m' addr' v' = Some m1' ->
  forall cs cs' sg bound bound',
  match_stacks j m m' cs cs' sg bound bound' ->
  match_stacks j m1 m1' cs cs' sg bound bound'.
Proof.
  intros until m1'. intros MINJ VINJ STORE1 STORE2.
  induction 1.
  econstructor; eauto.
  econstructor; eauto.
  eapply agree_frame_parallel_stores; eauto.
Qed.

(** Invariance by external calls. *)

Lemma match_stack_change_extcall:
  forall ec args m1 res t m2 args' m1' res' t' m2' j j',
  external_call ec ge args m1 t res m2 ->
  external_call ec ge args' m1' t' res' m2' ->
  inject_incr j j' ->
  inject_separated j j' m1 m1' ->
  Mem.unchanged_on (loc_out_of_reach j m1) m1' m2' ->
  forall cs cs' sg bound bound',
  match_stacks j m1 m1' cs cs' sg bound bound' ->
  Ple bound (Mem.nextblock m1) -> Ple bound' (Mem.nextblock m1') ->
  match_stacks j' m2 m2' cs cs' sg bound bound'.
Proof.
  intros. 
  eapply match_stacks_change_meminj; eauto. 
  eapply match_stacks_change_mem_extcall; eauto.
  intros; eapply external_call_valid_block; eauto.
  intros; eapply external_call_max_perm; eauto. red. eapply Plt_le_trans; eauto. 
  intros; eapply external_call_valid_block; eauto.
Qed.

(** Invariance with respect to change of signature *)

Lemma match_stacks_change_sig:
  forall sg1 j m m' cs cs' sg bound bound',
  match_stacks j m m' cs cs' sg bound bound' ->
  tailcall_possible sg1 ->
  match_stacks j m m' cs cs' sg1 bound bound'.
Proof.
  induction 1; intros.
  econstructor; eauto. 
  econstructor; eauto. intros. elim (H0 _ H1).
Qed.

(** [match_stacks] implies [match_globalenvs], which implies [meminj_preserves_globals]. *)

Lemma match_stacks_globalenvs:
  forall j m m' cs cs' sg bound bound',
  match_stacks j m m' cs cs' sg bound bound' ->
  exists hi, match_globalenvs j hi.
Proof.
  induction 1. exists hi; auto. auto.
Qed.

Lemma match_stacks_preserves_globals:
  forall j m m' cs cs' sg bound bound',
  match_stacks j m m' cs cs' sg bound bound' ->
  meminj_preserves_globals ge j.
Proof.
  intros. exploit match_stacks_globalenvs; eauto. intros [hi MG]. inv MG.
  split. eauto. split. eauto. intros. symmetry. eauto. 
Qed.

(** Typing properties of [match_stacks]. *)

Lemma match_stacks_type_sp:
  forall j m m' cs cs' sg bound bound',
  match_stacks j m m' cs cs' sg bound bound' ->
  Val.has_type (parent_sp cs') Tint.
Proof.
  induction 1; simpl; auto.
Qed.

Lemma match_stacks_type_retaddr:
  forall j m m' cs cs' sg bound bound',
  match_stacks j m m' cs cs' sg bound bound' ->
  Val.has_type (parent_ra cs') Tint.
Proof.
  induction 1; simpl; auto.
Qed.

(** * Syntactic properties of the translation *)

(** Preservation of code labels through the translation. *)

Section LABELS.

Remark find_label_fold_right:
  forall (A: Type) (fn: A -> Mach.code -> Mach.code) lbl,
  (forall x k, Mach.find_label lbl (fn x k) = Mach.find_label lbl k) ->  forall (args: list A) k,
  Mach.find_label lbl (List.fold_right fn k args) = Mach.find_label lbl k.
Proof.
  induction args; simpl. auto. 
  intros. rewrite H. auto.
Qed.

Remark find_label_save_callee_save:
  forall fe lbl k,
  Mach.find_label lbl (save_callee_save fe k) = Mach.find_label lbl k.
Proof.
  intros. unfold save_callee_save, save_callee_save_int, save_callee_save_float, save_callee_save_regs.
  repeat rewrite find_label_fold_right. reflexivity.
  intros. unfold save_callee_save_reg. 
  case (zlt (index_float_callee_save x) (fe_num_float_callee_save fe));
  intro; reflexivity.
  intros. unfold save_callee_save_reg.  
  case (zlt (index_int_callee_save x) (fe_num_int_callee_save fe));
  intro; reflexivity.
Qed.

Remark find_label_restore_callee_save:
  forall fe lbl k,
  Mach.find_label lbl (restore_callee_save fe k) = Mach.find_label lbl k.
Proof.
  intros. unfold restore_callee_save, restore_callee_save_int, restore_callee_save_float, restore_callee_save_regs.
  repeat rewrite find_label_fold_right. reflexivity.
  intros. unfold restore_callee_save_reg. 
  case (zlt (index_float_callee_save x) (fe_num_float_callee_save fe));
  intro; reflexivity.
  intros. unfold restore_callee_save_reg. 
  case (zlt (index_int_callee_save x) (fe_num_int_callee_save fe));
  intro; reflexivity.
Qed.

Lemma transl_code_eq:
  forall fe i c, transl_code fe (i :: c) = transl_instr fe i (transl_code fe c).
Proof.
  unfold transl_code; intros. rewrite list_fold_right_eq. auto.
Qed.

Lemma find_label_transl_code:
  forall fe lbl c,
  Mach.find_label lbl (transl_code fe c) =
    option_map (transl_code fe) (Linear.find_label lbl c).
Proof.
  induction c; simpl; intros.
  auto.
  rewrite transl_code_eq. 
  destruct a; unfold transl_instr; auto.
  destruct s; simpl; auto.
  destruct s; simpl; auto.
  rewrite find_label_restore_callee_save. auto.
  simpl. case (peq lbl l); intro. reflexivity. auto.
  rewrite find_label_restore_callee_save. auto.
Qed.

Lemma transl_find_label:
  forall f tf lbl c,
  transf_function f = OK tf ->
  Linear.find_label lbl f.(Linear.fn_code) = Some c ->
  Mach.find_label lbl tf.(Mach.fn_code) = 
    Some (transl_code (make_env (function_bounds f)) c).
Proof.
  intros. rewrite (unfold_transf_function _ _ H).  simpl. 
  unfold transl_body. rewrite find_label_save_callee_save.
  rewrite find_label_transl_code. rewrite H0. reflexivity.
Qed.

End LABELS.

(** Code tail property for Linear executions. *)

Lemma find_label_tail:
  forall lbl c c', 
  Linear.find_label lbl c = Some c' -> is_tail c' c.
Proof.
  induction c; simpl.
  intros; discriminate.
  intro c'. case (Linear.is_label lbl a); intros.
  injection H; intro; subst c'. auto with coqlib.
  auto with coqlib.
Qed.

(** Code tail property for translations *)

Lemma is_tail_save_callee_save_regs:
  forall bound number mkindex ty fe csl k,
  is_tail k (save_callee_save_regs bound number mkindex ty fe csl k).
Proof.
  induction csl; intros; simpl. auto with coqlib.
  unfold save_callee_save_reg. destruct (zlt (number a) (bound fe)). 
  constructor; auto. auto.
Qed.

Lemma is_tail_save_callee_save:
  forall fe k,
  is_tail k (save_callee_save fe k).
Proof.
  intros. unfold save_callee_save, save_callee_save_int, save_callee_save_float.
  eapply is_tail_trans; apply is_tail_save_callee_save_regs.
Qed.

Lemma is_tail_restore_callee_save_regs:
  forall bound number mkindex ty fe csl k,
  is_tail k (restore_callee_save_regs bound number mkindex ty fe csl k).
Proof.
  induction csl; intros; simpl. auto with coqlib.
  unfold restore_callee_save_reg. destruct (zlt (number a) (bound fe)). 
  constructor; auto. auto.
Qed.

Lemma is_tail_restore_callee_save:
  forall fe k,
  is_tail k (restore_callee_save fe k).
Proof.
  intros. unfold restore_callee_save, restore_callee_save_int, restore_callee_save_float.
  eapply is_tail_trans; apply is_tail_restore_callee_save_regs.
Qed.

Lemma is_tail_transl_instr:
  forall fe i k,
  is_tail k (transl_instr fe i k).
Proof.
  intros. destruct i; unfold transl_instr; auto with coqlib.
  destruct s; auto with coqlib.
  destruct s; auto with coqlib.
  eapply is_tail_trans. 2: apply is_tail_restore_callee_save. auto with coqlib.
  eapply is_tail_trans. 2: apply is_tail_restore_callee_save. auto with coqlib.
Qed.

Lemma is_tail_transl_code:
  forall fe c1 c2, is_tail c1 c2 -> is_tail (transl_code fe c1) (transl_code fe c2).
Proof.
  induction 1; simpl. auto with coqlib.
  rewrite transl_code_eq. 
  eapply is_tail_trans. eauto. apply is_tail_transl_instr.
Qed.

Lemma is_tail_transf_function:
  forall f tf c,
  transf_function f = OK tf ->
  is_tail c (Linear.fn_code f) ->
  is_tail (transl_code (make_env (function_bounds f)) c) (fn_code tf).
Proof.
  intros. rewrite (unfold_transf_function _ _ H). simpl. 
  unfold transl_body. eapply is_tail_trans. 2: apply is_tail_save_callee_save.
  apply is_tail_transl_code; auto.
Qed.

(** * Semantic preservation *)

(** Preservation / translation of global symbols and functions. *)

Lemma symbols_preserved:
  forall id, Genv.find_symbol tge id = Genv.find_symbol ge id.
Proof.
  intros. unfold ge, tge. 
  apply Genv.find_symbol_transf_partial with transf_fundef.
  exact TRANSF. 
Qed.

Lemma varinfo_preserved:
  forall b, Genv.find_var_info tge b = Genv.find_var_info ge b.
Proof.
  intros. unfold ge, tge. 
  apply Genv.find_var_info_transf_partial with transf_fundef.
  exact TRANSF. 
Qed.

Lemma functions_translated:
  forall v f,
  Genv.find_funct ge v = Some f ->
  exists tf,
  Genv.find_funct tge v = Some tf /\ transf_fundef f = OK tf.
Proof
  (Genv.find_funct_transf_partial transf_fundef _ TRANSF).

Lemma function_ptr_translated:
  forall v f,
  Genv.find_funct_ptr ge v = Some f ->
  exists tf,
  Genv.find_funct_ptr tge v = Some tf /\ transf_fundef f = OK tf.
Proof
  (Genv.find_funct_ptr_transf_partial transf_fundef _ TRANSF).

Lemma sig_preserved:
  forall f tf, transf_fundef f = OK tf -> Mach.funsig tf = Linear.funsig f.
Proof.
  intros until tf; unfold transf_fundef, transf_partial_fundef.
  destruct f; intros; monadInv H.
  rewrite (unfold_transf_function _ _ EQ). auto. 
  auto.
Qed.

Lemma find_function_translated:
  forall j ls rs m m' cs cs' sg bound bound' ros f,
  agree_regs j ls rs ->
  match_stacks j m m' cs cs' sg bound bound' ->
  Linear.find_function ge ros ls = Some f ->
  exists bf, exists tf,
     find_function_ptr tge ros rs = Some bf
  /\ Genv.find_funct_ptr tge bf = Some tf
  /\ transf_fundef f = OK tf.
Proof.
  intros until f; intros AG MS FF.
  exploit match_stacks_globalenvs; eauto. intros [hi MG]. 
  destruct ros; simpl in FF.
  exploit Genv.find_funct_inv; eauto. intros [b EQ]. rewrite EQ in FF. 
  rewrite Genv.find_funct_find_funct_ptr in FF. 
  exploit function_ptr_translated; eauto. intros [tf [A B]].
  exists b; exists tf; split; auto. simpl.
  generalize (AG m0). rewrite EQ. intro INJ. inv INJ.
  inv MG. rewrite DOMAIN in H2. inv H2. simpl. auto. eapply FUNCTIONS; eauto. 
  destruct (Genv.find_symbol ge i) as [b|] eqn:?; try discriminate. 
  exploit function_ptr_translated; eauto. intros [tf [A B]].
  exists b; exists tf; split; auto. simpl. 
  rewrite symbols_preserved. auto.
Qed.

(** Preservation of the arguments to an external call. *)

Section EXTERNAL_ARGUMENTS.

Variable j: meminj.
Variables m m': mem.
Variable cs: list Linear.stackframe.
Variable cs': list stackframe.
Variable sg: signature.
Variables bound bound': block.
Hypothesis MS: match_stacks j m m' cs cs' sg bound bound'.
Variable ls: locset.
Variable rs: regset.
Hypothesis AGR: agree_regs j ls rs.
Hypothesis AGCS: agree_callee_save ls (parent_locset cs).

Lemma transl_external_argument:
  forall l,
  In l (loc_arguments sg) ->
  exists v, extcall_arg rs m' (parent_sp cs') l v /\ val_inject j (ls l) v.
Proof.
  intros.
  assert (loc_argument_acceptable l). apply loc_arguments_acceptable with sg; auto.
  destruct l; red in H0.
  exists (rs r); split. constructor. auto. 
  destruct sl; try contradiction.
  inv MS.
  elim (H4 _ H).
  unfold parent_sp.
  assert (slot_valid f Outgoing pos ty = true).
    exploit loc_arguments_acceptable; eauto. intros [A B]. 
    unfold slot_valid. unfold proj_sumbool. rewrite zle_true by omega.
    destruct ty; auto; congruence.
  assert (slot_within_bounds (function_bounds f) Outgoing pos ty).
    eauto.
  exploit agree_outgoing; eauto. intros [v [A B]].
  exists v; split.
  constructor. 
  eapply index_contains_load_stack with (idx := FI_arg pos ty); eauto. 
  red in AGCS. rewrite AGCS; auto.
Qed.

Lemma transl_external_arguments_rec:
  forall locs,
  incl locs (loc_arguments sg) ->
  exists vl,
  list_forall2 (extcall_arg rs m' (parent_sp cs')) locs vl /\ val_list_inject j ls##locs vl.
Proof.
  induction locs; simpl; intros.
  exists (@nil val); split. constructor. constructor.
  exploit transl_external_argument; eauto with coqlib. intros [v [A B]].
  exploit IHlocs; eauto with coqlib. intros [vl [C D]].
  exists (v :: vl); split; constructor; auto.
Qed.

Lemma transl_external_arguments:
  exists vl,
  extcall_arguments rs m' (parent_sp cs') sg vl /\
  val_list_inject j (ls ## (loc_arguments sg)) vl.
Proof.
  unfold extcall_arguments. 
  apply transl_external_arguments_rec.
  auto with coqlib.
Qed.

End EXTERNAL_ARGUMENTS.

(** Preservation of the arguments to an annotation. *)

Section ANNOT_ARGUMENTS.

Variable f: Linear.function.
Let b := function_bounds f.
Let fe := make_env b.
Variable j: meminj.
Variables m m': mem.
Variables ls ls0: locset.
Variable rs: regset.
Variables sp sp': block.
Variables parent retaddr: val.
Hypothesis AGR: agree_regs j ls rs.
Hypothesis AGF: agree_frame f j ls ls0 m sp m' sp' parent retaddr.

Lemma transl_annot_param_correct:
  forall l,
  loc_valid f l = true ->
  match l with S sl ofs ty => slot_within_bounds b sl ofs ty | _ => True end ->
  exists v, annot_arg rs m' (Vptr sp' Int.zero) (transl_annot_param fe l) v
         /\ val_inject j (ls l) v.
Proof.
  intros. destruct l; simpl in H.
(* reg *)
  exists (rs r); split. constructor. auto.
(* stack *) 
  destruct sl; try discriminate. 
  exploit agree_locals; eauto. intros [v [A B]]. inv A. 
  exists v; split. constructor. rewrite Zplus_0_l. auto. auto.
Qed.

Lemma transl_annot_params_correct:
  forall ll,
  forallb (loc_valid f) ll = true ->
  (forall sl ofs ty, In (S sl ofs ty) ll -> slot_within_bounds b sl ofs ty) ->
  exists vl,
     annot_arguments rs m' (Vptr sp' Int.zero) (map (transl_annot_param fe) ll) vl
  /\ val_list_inject j (map ls ll) vl.
Proof.
  induction ll; simpl; intros. 
  exists (@nil val); split; constructor.
  InvBooleans. 
  exploit (transl_annot_param_correct a). auto. destruct a; auto. 
  intros [v1 [A B]].
  exploit IHll. auto. auto. 
  intros [vl [C D]].
  exists (v1 :: vl); split; constructor; auto.
Qed.

End ANNOT_ARGUMENTS.

(** The proof of semantic preservation relies on simulation diagrams
  of the following form:
<<
           st1 --------------- st2
            |                   |
           t|                  +|t
            |                   |
            v                   v
           st1'--------------- st2'
>>
  Matching between source and target states is defined by [match_states]
  below.  It implies:
- Agreement between, on the Linear side, the location sets [ls]
  and [parent_locset s] of the current function and its caller,
  and on the Mach side the register set [rs] and the contents of
  the memory area corresponding to the stack frame.
- The Linear code [c] is a suffix of the code of the
  function [f] being executed.
- Memory injection between the Linear and the Mach memory states.
- Well-typedness of [f].
*)

Inductive match_states: Linear.state -> Mach.state -> Prop :=
  | match_states_intro:
      forall cs f sp c ls m cs' fb sp' rs m' j tf
        (MINJ: Mem.inject j m m')
        (STACKS: match_stacks j m m' cs cs' f.(Linear.fn_sig) sp sp')
        (TRANSL: transf_function f = OK tf)
        (FIND: Genv.find_funct_ptr tge fb = Some (Internal tf))
        (AGREGS: agree_regs j ls rs)
        (AGFRAME: agree_frame f j ls (parent_locset cs) m sp m' sp' (parent_sp cs') (parent_ra cs'))
        (TAIL: is_tail c (Linear.fn_code f)),
      match_states (Linear.State cs f (Vptr sp Int.zero) c ls m)
                  (Mach.State cs' fb (Vptr sp' Int.zero) (transl_code (make_env (function_bounds f)) c) rs m')
  | match_states_call:
      forall cs f ls m cs' fb rs m' j tf
        (MINJ: Mem.inject j m m')
        (STACKS: match_stacks j m m' cs cs' (Linear.funsig f) (Mem.nextblock m) (Mem.nextblock m'))
        (TRANSL: transf_fundef f = OK tf)
        (FIND: Genv.find_funct_ptr tge fb = Some tf)
        (AGREGS: agree_regs j ls rs)
        (AGLOCS: agree_callee_save ls (parent_locset cs)),
      match_states (Linear.Callstate cs f ls m)
                  (Mach.Callstate cs' fb rs m')
  | match_states_return:
      forall cs ls m cs' rs m' j sg 
        (MINJ: Mem.inject j m m')
        (STACKS: match_stacks j m m' cs cs' sg (Mem.nextblock m) (Mem.nextblock m'))
        (AGREGS: agree_regs j ls rs)
        (AGLOCS: agree_callee_save ls (parent_locset cs)),
      match_states (Linear.Returnstate cs ls m)
                  (Mach.Returnstate cs' rs m').

Theorem transf_step_correct:
  forall s1 t s2, Linear.step ge s1 t s2 ->
  forall (WTS: wt_state s1) s1' (MS: match_states s1 s1'),
  exists s2', plus step tge s1' t s2' /\ match_states s2 s2'.
Proof.
(*
  assert (USEWTF: forall f i c,
          wt_function f = true -> is_tail (i :: c) (Linear.fn_code f) ->
          wt_instr f i = true).
    intros. unfold wt_function, wt_code in H. rewrite forallb_forall in H.
    apply H. eapply is_tail_in; eauto. 
*)
  induction 1; intros;
  try inv MS;
  try rewrite transl_code_eq;
  try (generalize (function_is_within_bounds f _ (is_tail_in TAIL));
       intro BOUND; simpl in BOUND);
  unfold transl_instr.

- (* Lgetstack *)
  destruct BOUND.
  exploit wt_state_getstack; eauto. intros SV.
  unfold destroyed_by_getstack; destruct sl.
+ (* Lgetstack, local *)
  exploit agree_locals; eauto. intros [v [A B]].
  econstructor; split.
  apply plus_one. apply exec_Mgetstack. 
  eapply index_contains_load_stack; eauto.
  econstructor; eauto with coqlib.
  apply agree_regs_set_reg; auto.
  apply agree_frame_set_reg; auto.
+ (* Lgetstack, incoming *)
  unfold slot_valid in SV. InvBooleans.
  exploit incoming_slot_in_parameters; eauto. intros IN_ARGS.
  inversion STACKS; clear STACKS.
  elim (H6 _ IN_ARGS).
  subst bound bound' s cs'.
  exploit agree_outgoing. eexact FRM. eapply ARGS; eauto.
  exploit loc_arguments_acceptable; eauto. intros [A B].
  unfold slot_valid, proj_sumbool. rewrite zle_true. 
  destruct ty; reflexivity || congruence. omega.
  intros [v [A B]].
  econstructor; split.
  apply plus_one. eapply exec_Mgetparam; eauto. 
  rewrite (unfold_transf_function _ _ TRANSL). unfold fn_link_ofs. 
  eapply index_contains_load_stack with (idx := FI_link). eapply TRANSL. eapply agree_link; eauto.
  simpl parent_sp.
  change (offset_of_index (make_env (function_bounds f)) (FI_arg ofs ty))
    with (offset_of_index (make_env (function_bounds f0)) (FI_arg ofs ty)).
  eapply index_contains_load_stack with (idx := FI_arg ofs ty). eauto. eauto.
  exploit agree_incoming; eauto. intros EQ; simpl in EQ.
  econstructor; eauto with coqlib. econstructor; eauto.
  apply agree_regs_set_reg. apply agree_regs_set_reg. auto. auto. congruence. 
  eapply agree_frame_set_reg; eauto. eapply agree_frame_set_reg; eauto. 
  apply caller_save_reg_within_bounds. 
  apply temp_for_parent_frame_caller_save.
+ (* Lgetstack, outgoing *)
  exploit agree_outgoing; eauto. intros [v [A B]].
  econstructor; split.
  apply plus_one. apply exec_Mgetstack. 
  eapply index_contains_load_stack; eauto.
  econstructor; eauto with coqlib.
  apply agree_regs_set_reg; auto.
  apply agree_frame_set_reg; auto.

- (* Lsetstack *)
  exploit wt_state_setstack; eauto. intros (SV & SW). 
  set (idx := match sl with
              | Local => FI_local ofs ty
              | Incoming => FI_link (*dummy*)
              | Outgoing => FI_arg ofs ty
              end).
  assert (index_valid f idx).
  { unfold idx; destruct sl.
    apply index_local_valid; auto.
    red; auto.
    apply index_arg_valid; auto. }
  exploit store_index_succeeds; eauto. eapply agree_perm; eauto.
  instantiate (1 := rs0 src). intros [m1' STORE].
  econstructor; split.
  apply plus_one. destruct sl; simpl in SW.
    econstructor. eapply store_stack_succeeds with (idx := idx); eauto. eauto.
    discriminate.
    econstructor. eapply store_stack_succeeds with (idx := idx); eauto. auto. 
  econstructor. 
  eapply Mem.store_outside_inject; eauto. 
    intros. exploit agree_inj_unique; eauto. intros [EQ1 EQ2]; subst b' delta.
    rewrite size_type_chunk in H2.
    exploit offset_of_index_disj_stack_data_2; eauto.
    exploit agree_bounds. eauto. apply Mem.perm_cur_max. eauto. 
    omega.
  apply match_stacks_change_mach_mem with m'; auto.
  eauto with mem. eauto with mem. intros. rewrite <- H1; eapply Mem.load_store_other; eauto. left; apply Plt_ne; auto. 
  eauto. eauto. 
  apply agree_regs_set_slot. apply agree_regs_undef_regs; auto. 
  destruct sl.
  + eapply agree_frame_set_local. eapply agree_frame_undef_locs; eauto.
    apply destroyed_by_setstack_caller_save. auto. auto. auto.
    assumption. 
  + simpl in SW; discriminate.
  + eapply agree_frame_set_outgoing. eapply agree_frame_undef_locs; eauto.
    apply destroyed_by_setstack_caller_save. auto. auto. auto.
    assumption.
  + eauto with coqlib.

- (* Lop *)
  assert (exists v',
          eval_operation ge (Vptr sp' Int.zero) (transl_op (make_env (function_bounds f)) op) rs0##args m' = Some v'
       /\ val_inject j v v').
  eapply eval_operation_inject; eauto.
  eapply match_stacks_preserves_globals; eauto.
  eapply agree_inj; eauto. eapply agree_reglist; eauto.
  destruct H0 as [v' [A B]].
  econstructor; split. 
  apply plus_one. econstructor. 
  instantiate (1 := v'). rewrite <- A. apply eval_operation_preserved. 
  exact symbols_preserved. eauto.
  econstructor; eauto with coqlib.
  apply agree_regs_set_reg; auto.
  rewrite transl_destroyed_by_op.  apply agree_regs_undef_regs; auto. 
  apply agree_frame_set_reg; auto. apply agree_frame_undef_locs; auto.
  apply destroyed_by_op_caller_save.

- (* Lload *)
  assert (exists a',
          eval_addressing ge (Vptr sp' Int.zero) (transl_addr (make_env (function_bounds f)) addr) rs0##args = Some a'
       /\ val_inject j a a').
  eapply eval_addressing_inject; eauto. 
  eapply match_stacks_preserves_globals; eauto.
  eapply agree_inj; eauto. eapply agree_reglist; eauto.
  destruct H1 as [a' [A B]].
  exploit Mem.loadv_inject; eauto. intros [v' [C D]].
  econstructor; split. 
  apply plus_one. econstructor. 
  instantiate (1 := a'). rewrite <- A. apply eval_addressing_preserved. exact symbols_preserved.
  eexact C. eauto.
  econstructor; eauto with coqlib.
  apply agree_regs_set_reg. rewrite transl_destroyed_by_load. apply agree_regs_undef_regs; auto. auto. 
  apply agree_frame_set_reg. apply agree_frame_undef_locs; auto.
  apply destroyed_by_load_caller_save. auto. 

- (* Lstore *)
  assert (exists a',
          eval_addressing ge (Vptr sp' Int.zero) (transl_addr (make_env (function_bounds f)) addr) rs0##args = Some a'
       /\ val_inject j a a').
  eapply eval_addressing_inject; eauto. 
  eapply match_stacks_preserves_globals; eauto.
  eapply agree_inj; eauto. eapply agree_reglist; eauto.
  destruct H1 as [a' [A B]].
  exploit Mem.storev_mapped_inject; eauto. intros [m1' [C D]].
  econstructor; split. 
  apply plus_one. econstructor. 
  instantiate (1 := a'). rewrite <- A. apply eval_addressing_preserved. exact symbols_preserved.
  eexact C. eauto.
  econstructor. eauto.
  eapply match_stacks_parallel_stores. eexact MINJ. eexact B. eauto. eauto. auto. 
  eauto. eauto. 
  rewrite transl_destroyed_by_store. 
  apply agree_regs_undef_regs; auto. 
  apply agree_frame_undef_locs; auto.
  eapply agree_frame_parallel_stores; eauto.
  apply destroyed_by_store_caller_save.
  eauto with coqlib.

- (* Lcall *)
  exploit find_function_translated; eauto. intros [bf [tf' [A [B C]]]].
  exploit is_tail_transf_function; eauto. intros IST.
  rewrite transl_code_eq in IST. simpl in IST.
  exploit return_address_offset_exists. eexact IST.
  intros [ra D].
  econstructor; split.
  apply plus_one. econstructor; eauto.
  econstructor; eauto.
  econstructor; eauto with coqlib.
  simpl; auto.
  intros; red.
    apply Zle_trans with (size_arguments (Linear.funsig f')); auto.
    apply loc_arguments_bounded; auto.
  eapply agree_valid_linear; eauto.
  eapply agree_valid_mach; eauto.
  simpl; red; auto.

- (* Ltailcall *)
  exploit function_epilogue_correct; eauto.
  intros [rs1 [m1' [P [Q [R [S [T [U V]]]]]]]].
  exploit find_function_translated; eauto. intros [bf [tf' [A [B C]]]].
  econstructor; split.
  eapply plus_right. eexact S. econstructor; eauto. traceEq.
  econstructor; eauto.
  apply match_stacks_change_sig with (Linear.fn_sig f); auto.
  apply match_stacks_change_bounds with stk sp'.
  apply match_stacks_change_linear_mem with m. 
  apply match_stacks_change_mach_mem with m'0.
  auto. 
  eauto with mem. intros. eapply Mem.perm_free_1; eauto. left; apply Plt_ne; auto. 
  intros. rewrite <- H1. eapply Mem.load_free; eauto. left; apply Plt_ne; auto. 
  eauto with mem. intros. eapply Mem.perm_free_3; eauto. 
  apply Plt_Ple. change (Mem.valid_block m' stk). eapply Mem.valid_block_free_1; eauto. eapply agree_valid_linear; eauto. 
  apply Plt_Ple. change (Mem.valid_block m1' sp'). eapply Mem.valid_block_free_1; eauto. eapply agree_valid_mach; eauto. 
  apply zero_size_arguments_tailcall_possible. eapply wt_state_tailcall; eauto. 

- (* Lbuiltin *)
  exploit external_call_mem_inject'; eauto. 
    eapply match_stacks_preserves_globals; eauto.
    eapply agree_reglist; eauto. 
  intros [j' [res' [m1' [A [B [C [D [E [F G]]]]]]]]].
  econstructor; split.
  apply plus_one. econstructor; eauto. 
  eapply external_call_symbols_preserved'; eauto.
  exact symbols_preserved. exact varinfo_preserved.
  econstructor; eauto with coqlib.
  inversion H; inversion A; subst.
  eapply match_stack_change_extcall; eauto.
  apply Plt_Ple. change (Mem.valid_block m sp0). eapply agree_valid_linear; eauto.
  apply Plt_Ple. change (Mem.valid_block m'0 sp'). eapply agree_valid_mach; eauto.
  apply agree_regs_set_regs; auto. apply agree_regs_undef_regs; auto. eapply agree_regs_inject_incr; eauto.
  apply agree_frame_set_regs; auto. apply agree_frame_undef_regs; auto.
  eapply agree_frame_inject_incr; eauto. 
  apply agree_frame_extcall_invariant with m m'0; auto.
  eapply external_call_valid_block'; eauto.
  intros. inv H; eapply external_call_max_perm; eauto. eapply agree_valid_linear; eauto.
  eapply external_call_valid_block'; eauto.
  eapply agree_valid_mach; eauto.

- (* Lannot *)
  exploit transl_annot_params_correct; eauto. eapply wt_state_annot; eauto.
  intros [vargs' [P Q]]. 
  exploit external_call_mem_inject'; eauto. 
    eapply match_stacks_preserves_globals; eauto.
  intros [j' [res' [m1' [A [B [C [D [E [F G]]]]]]]]].
  econstructor; split.
  apply plus_one. econstructor; eauto. 
  eapply external_call_symbols_preserved'; eauto.
  exact symbols_preserved. exact varinfo_preserved.
  econstructor; eauto with coqlib.
  inv H; inv A. eapply match_stack_change_extcall; eauto.
  apply Plt_Ple. change (Mem.valid_block m sp0). eapply agree_valid_linear; eauto.
  apply Plt_Ple. change (Mem.valid_block m'0 sp'). eapply agree_valid_mach; eauto.
  eapply agree_regs_inject_incr; eauto.
  eapply agree_frame_inject_incr; eauto. 
  apply agree_frame_extcall_invariant with m m'0; auto.
  eapply external_call_valid_block'; eauto.
  intros. inv H; eapply external_call_max_perm; eauto. eapply agree_valid_linear; eauto.
  eapply external_call_valid_block'; eauto.
  eapply agree_valid_mach; eauto.

- (* Llabel *)
  econstructor; split.
  apply plus_one; apply exec_Mlabel.
  econstructor; eauto with coqlib.

- (* Lgoto *)
  econstructor; split.
  apply plus_one; eapply exec_Mgoto; eauto.
  apply transl_find_label; eauto.
  econstructor; eauto. 
  eapply find_label_tail; eauto.

- (* Lcond, true *)
  econstructor; split.
  apply plus_one. eapply exec_Mcond_true; eauto.
  eapply eval_condition_inject; eauto. eapply agree_reglist; eauto.
  eapply transl_find_label; eauto.
  econstructor. eauto. eauto. eauto. eauto.
  apply agree_regs_undef_regs; auto. 
  apply agree_frame_undef_locs; auto. apply destroyed_by_cond_caller_save. 
  eapply find_label_tail; eauto.

- (* Lcond, false *)
  econstructor; split.
  apply plus_one. eapply exec_Mcond_false; eauto.
  eapply eval_condition_inject; eauto. eapply agree_reglist; eauto.
  econstructor. eauto. eauto. eauto. eauto.
  apply agree_regs_undef_regs; auto. 
  apply agree_frame_undef_locs; auto. apply destroyed_by_cond_caller_save. 
  eauto with coqlib.

- (* Ljumptable *)
  assert (rs0 arg = Vint n).
  { generalize (AGREGS arg). rewrite H. intro IJ; inv IJ; auto. }
  econstructor; split.
  apply plus_one; eapply exec_Mjumptable; eauto. 
  apply transl_find_label; eauto.
  econstructor. eauto. eauto. eauto. eauto.
  apply agree_regs_undef_regs; auto.
  apply agree_frame_undef_locs; auto. apply destroyed_by_jumptable_caller_save.
  eapply find_label_tail; eauto.

- (* Lreturn *)
  exploit function_epilogue_correct; eauto.
  intros [rs1 [m1' [P [Q [R [S [T [U V]]]]]]]].
  econstructor; split.
  eapply plus_right. eexact S. econstructor; eauto.
  traceEq.
  econstructor; eauto.
  apply match_stacks_change_bounds with stk sp'.
  apply match_stacks_change_linear_mem with m. 
  apply match_stacks_change_mach_mem with m'0.
  eauto. 
  eauto with mem. intros. eapply Mem.perm_free_1; eauto. left; apply Plt_ne; auto. 
  intros. rewrite <- H1. eapply Mem.load_free; eauto. left; apply Plt_ne; auto. 
  eauto with mem. intros. eapply Mem.perm_free_3; eauto. 
  apply Plt_Ple. change (Mem.valid_block m' stk). eapply Mem.valid_block_free_1; eauto. eapply agree_valid_linear; eauto. 
  apply Plt_Ple. change (Mem.valid_block m1' sp'). eapply Mem.valid_block_free_1; eauto. eapply agree_valid_mach; eauto. 

- (* internal function *)
  revert TRANSL. unfold transf_fundef, transf_partial_fundef.
  caseEq (transf_function f); simpl; try congruence.
  intros tfn TRANSL EQ. inversion EQ; clear EQ; subst tf.
  exploit function_prologue_correct; eauto. eapply wt_callstate_wt_regs; eauto.
  eapply match_stacks_type_sp; eauto. 
  eapply match_stacks_type_retaddr; eauto.
  intros [j' [rs' [m2' [sp' [m3' [m4' [m5' [A [B [C [D [E [F [G [J [K L]]]]]]]]]]]]]]]].
  econstructor; split.
  eapply plus_left. econstructor; eauto. 
  rewrite (unfold_transf_function _ _ TRANSL). unfold fn_code. unfold transl_body. 
  eexact D. traceEq.
  generalize (Mem.alloc_result _ _ _ _ _ H). intro SP_EQ. 
  generalize (Mem.alloc_result _ _ _ _ _ A). intro SP'_EQ.
  econstructor; eauto. 
  apply match_stacks_change_mach_mem with m'0.
  apply match_stacks_change_linear_mem with m.
  rewrite SP_EQ; rewrite SP'_EQ.
  eapply match_stacks_change_meminj; eauto. apply Ple_refl. 
  eauto with mem. intros. exploit Mem.perm_alloc_inv. eexact H. eauto. 
  rewrite dec_eq_false; auto. apply Plt_ne; auto. 
  intros. eapply stores_in_frame_valid; eauto with mem. 
  intros. eapply stores_in_frame_perm; eauto with mem.
  intros. rewrite <- H1. transitivity (Mem.load chunk m2' b ofs). eapply stores_in_frame_contents; eauto.
  eapply Mem.load_alloc_unchanged; eauto. red. congruence.
  auto with coqlib.

- (* external function *)
  simpl in TRANSL. inversion TRANSL; subst tf.
  exploit transl_external_arguments; eauto. intros [vl [ARGS VINJ]].
  exploit external_call_mem_inject'; eauto. 
  eapply match_stacks_preserves_globals; eauto.
  intros [j' [res' [m1' [A [B [C [D [E [F G]]]]]]]]].
  econstructor; split.
  apply plus_one. eapply exec_function_external; eauto.
  eapply external_call_symbols_preserved'; eauto.
  exact symbols_preserved. exact varinfo_preserved.
  econstructor; eauto.
  apply match_stacks_change_bounds with (Mem.nextblock m) (Mem.nextblock m'0).
  inv H0; inv A. eapply match_stack_change_extcall; eauto. apply Ple_refl. apply Ple_refl. 
  eapply external_call_nextblock'; eauto.
  eapply external_call_nextblock'; eauto.
  apply agree_regs_set_regs; auto. apply agree_regs_inject_incr with j; auto. 
  apply agree_callee_save_set_result; auto. 

- (* return *)
  inv STACKS. simpl in AGLOCS.  
  econstructor; split.
  apply plus_one. apply exec_return. 
  econstructor; eauto.
  apply agree_frame_return with rs0; auto. 
Qed.

Lemma transf_initial_states:
  forall st1, Linear.initial_state prog st1 ->
  exists st2, Mach.initial_state tprog st2 /\ match_states st1 st2.
Proof.
  intros. inv H.
  exploit function_ptr_translated; eauto. intros [tf [FIND TR]].
  econstructor; split.
  econstructor. 
  eapply Genv.init_mem_transf_partial; eauto.
  rewrite (transform_partial_program_main _ _ TRANSF). 
  rewrite symbols_preserved. eauto.
  econstructor; eauto.
  eapply Genv.initmem_inject; eauto.
  apply match_stacks_empty with (Mem.nextblock m0). apply Ple_refl. apply Ple_refl. 
  constructor.
    intros. unfold Mem.flat_inj. apply pred_dec_true; auto.
    unfold Mem.flat_inj; intros. destruct (plt b1 (Mem.nextblock m0)); congruence.
    intros. change (Mem.valid_block m0 b0). eapply Genv.find_symbol_not_fresh; eauto.
    intros. change (Mem.valid_block m0 b0). eapply Genv.find_funct_ptr_not_fresh; eauto.
    intros. change (Mem.valid_block m0 b0). eapply Genv.find_var_info_not_fresh; eauto.
  rewrite H3. red; intros. rewrite loc_arguments_main in H. contradiction.
  unfold Locmap.init. red; intros; auto.
  unfold parent_locset. red; auto.
Qed.

Lemma transf_final_states:
  forall st1 st2 r, 
  match_states st1 st2 -> Linear.final_state st1 r -> Mach.final_state st2 r.
Proof.
  intros. inv H0. inv H. inv STACKS.
  generalize (AGREGS r0). rewrite H2. intros A; inv A. 
  econstructor; eauto. 
Qed.

Lemma wt_prog:
  forall i fd, In (i, Gfun fd) prog.(prog_defs) -> wt_fundef fd.
Proof.
  intros. exploit transform_partial_program_succeeds; eauto. 
  intros [tfd TF]. destruct fd; simpl in *. 
- monadInv TF. unfold transf_function in EQ.
  destruct (wt_function f). auto. discriminate.  
- auto.
Qed.

Theorem transf_program_correct:
  forward_simulation (Linear.semantics prog) (Mach.semantics return_address_offset tprog).
Proof.
  set (ms := fun s s' => wt_state s /\ match_states s s').
  eapply forward_simulation_plus with (match_states := ms). 
- exact symbols_preserved.
- intros. exploit transf_initial_states; eauto. intros [st2 [A B]]. 
  exists st2; split; auto. split; auto.
  apply wt_initial_state with (prog := prog); auto. exact wt_prog. 
- intros. destruct H. eapply transf_final_states; eauto. 
- intros. destruct H0. 
  exploit transf_step_correct; eauto. intros [s2' [A B]].
  exists s2'; split. exact A. split.
  eapply step_type_preservation; eauto. eexact wt_prog. eexact H. 
  auto.
Qed.

End PRESERVATION.