summaryrefslogtreecommitdiff
path: root/backend/Selectionproof.v
blob: 0269438564723074f2935f41b801f364f930b894 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
(* *********************************************************************)
(*                                                                     *)
(*              The Compcert verified compiler                         *)
(*                                                                     *)
(*          Xavier Leroy, INRIA Paris-Rocquencourt                     *)
(*                                                                     *)
(*  Copyright Institut National de Recherche en Informatique et en     *)
(*  Automatique.  All rights reserved.  This file is distributed       *)
(*  under the terms of the INRIA Non-Commercial License Agreement.     *)
(*                                                                     *)
(* *********************************************************************)

(** Correctness of instruction selection *)

Require Import Coqlib.
Require Import Maps.
Require Import AST.
Require Import Integers.
Require Import Values.
Require Import Memory.
Require Import Events.
Require Import Globalenvs.
Require Import Smallstep.
Require Import Cminor.
Require Import Op.
Require Import CminorSel.
Require Import SelectOp.
Require Import Selection.
Require Import SelectOpproof.

Open Local Scope cminorsel_scope.

(** * Correctness of the instruction selection functions for expressions *)

Section CMCONSTR.

Variable ge: genv.
Variable sp: val.
Variable e: env.
Variable m: mem.

Lemma eval_condition_of_expr:
  forall le a v b,
  eval_expr ge sp e m le a v ->
  Val.bool_of_val v b ->
  match condition_of_expr a with (cond, args) =>
    exists vl,
    eval_exprlist ge sp e m le args vl /\
    eval_condition cond vl m = Some b
  end.
Proof.
  intros until a. functional induction (condition_of_expr a); intros.
(* compare *)
  inv H. exists vl; split; auto.
  simpl in H6. inv H6. apply Val.bool_of_val_of_optbool. auto.
(* default *)
  exists (v :: nil); split. constructor. auto. constructor.
  simpl. inv H0. auto. auto. 
Qed.

Lemma eval_load:
  forall le a v chunk v',
  eval_expr ge sp e m le a v ->
  Mem.loadv chunk m v = Some v' ->
  eval_expr ge sp e m le (load chunk a) v'.
Proof.
  intros. generalize H0; destruct v; simpl; intro; try discriminate.
  unfold load. 
  generalize (eval_addressing _ _ _ _ _ chunk _ _ _ _ H (refl_equal _)).
  destruct (addressing chunk a). intros [vl [EV EQ]]. 
  eapply eval_Eload; eauto. 
Qed.

Lemma eval_store:
  forall chunk a1 a2 v1 v2 f k m',
  eval_expr ge sp e m nil a1 v1 ->
  eval_expr ge sp e m nil a2 v2 ->
  Mem.storev chunk m v1 v2 = Some m' ->
  step ge (State f (store chunk a1 a2) k sp e m)
       E0 (State f Sskip k sp e m').
Proof.
  intros. generalize H1; destruct v1; simpl; intro; try discriminate.
  unfold store.
  generalize (eval_addressing _ _ _ _ _ chunk _ _ _ _ H (refl_equal _)).
  destruct (addressing chunk a1). intros [vl [EV EQ]]. 
  eapply step_store; eauto. 
Qed.

(** Correctness of instruction selection for operators *)

Lemma eval_sel_unop:
  forall le op a1 v1 v,
  eval_expr ge sp e m le a1 v1 ->
  eval_unop op v1 = Some v ->
  exists v', eval_expr ge sp e m le (sel_unop op a1) v' /\ Val.lessdef v v'.
Proof.
  destruct op; simpl; intros; FuncInv; try subst v.
  apply eval_cast8unsigned; auto.
  apply eval_cast8signed; auto.
  apply eval_cast16unsigned; auto.
  apply eval_cast16signed; auto.
  apply eval_negint; auto.
  apply eval_notint; auto.
  apply eval_negf; auto.
  apply eval_absf; auto.
  apply eval_singleoffloat; auto.
  eapply eval_intoffloat; eauto.
  eapply eval_intuoffloat; eauto.
  eapply eval_floatofint; eauto.
  eapply eval_floatofintu; eauto.
Qed.

Lemma eval_sel_binop:
  forall le op a1 a2 v1 v2 v,
  eval_expr ge sp e m le a1 v1 ->
  eval_expr ge sp e m le a2 v2 ->
  eval_binop op v1 v2 m = Some v ->
  exists v', eval_expr ge sp e m le (sel_binop op a1 a2) v' /\ Val.lessdef v v'.
Proof.
  destruct op; simpl; intros; FuncInv; try subst v.
  apply eval_add; auto.
  apply eval_sub; auto.
  apply eval_mul; auto.
  eapply eval_divs; eauto.
  eapply eval_divu; eauto.
  eapply eval_mods; eauto.
  eapply eval_modu; eauto.
  apply eval_and; auto.
  apply eval_or; auto.
  apply eval_xor; auto.
  apply eval_shl; auto.
  apply eval_shr; auto.
  apply eval_shru; auto.
  apply eval_addf; auto.
  apply eval_subf; auto.
  apply eval_mulf; auto.
  apply eval_divf; auto.
  apply eval_comp; auto.
  apply eval_compu; auto.
  apply eval_compf; auto.
Qed.

End CMCONSTR.

(** Recognition of calls to built-in functions *)

Lemma expr_is_addrof_ident_correct:
  forall e id,
  expr_is_addrof_ident e = Some id ->
  e = Cminor.Econst (Cminor.Oaddrsymbol id Int.zero).
Proof.
  intros e id. unfold expr_is_addrof_ident. 
  destruct e; try congruence.
  destruct c; try congruence.
  predSpec Int.eq Int.eq_spec i0 Int.zero; congruence.
Qed.

Lemma classify_call_correct:
  forall ge sp e m a v fd,
  Cminor.eval_expr ge sp e m a v ->
  Genv.find_funct ge v = Some fd ->
  match classify_call ge a with
  | Call_default => True
  | Call_imm id => exists b, Genv.find_symbol ge id = Some b /\ v = Vptr b Int.zero
  | Call_builtin ef => fd = External ef
  end.
Proof.
  unfold classify_call; intros. 
  destruct (expr_is_addrof_ident a) as [id|] eqn:?. 
  exploit expr_is_addrof_ident_correct; eauto. intros EQ; subst a.
  inv H. inv H2. 
  destruct (Genv.find_symbol ge id) as [b|] eqn:?. 
  rewrite Genv.find_funct_find_funct_ptr in H0. 
  rewrite H0. 
  destruct fd. exists b; auto. 
  destruct (ef_inline e0). auto. exists b; auto.
  simpl in H0. discriminate.
  auto.
Qed.

(** Compatibility of evaluation functions with the "less defined than" relation. *)

Ltac TrivialExists :=
  match goal with
  | [ |- exists v, Some ?x = Some v /\ _ ] => exists x; split; auto
  | _ => idtac
  end.

Lemma eval_unop_lessdef:
  forall op v1 v1' v,
  eval_unop op v1 = Some v -> Val.lessdef v1 v1' ->
  exists v', eval_unop op v1' = Some v' /\ Val.lessdef v v'.
Proof.
  intros until v; intros EV LD. inv LD. 
  exists v; auto.
  destruct op; simpl in *; inv EV; TrivialExists.
Qed.

Lemma eval_binop_lessdef:
  forall op v1 v1' v2 v2' v m m',
  eval_binop op v1 v2 m = Some v -> 
  Val.lessdef v1 v1' -> Val.lessdef v2 v2' -> Mem.extends m m' ->
  exists v', eval_binop op v1' v2' m' = Some v' /\ Val.lessdef v v'.
Proof.
  intros until m'; intros EV LD1 LD2 ME.
  assert (exists v', eval_binop op v1' v2' m = Some v' /\ Val.lessdef v v').
  inv LD1. inv LD2. exists v; auto. 
  destruct op; destruct v1'; simpl in *; inv EV; TrivialExists.
  destruct op; simpl in *; inv EV; TrivialExists.
  destruct op; try (exact H). 
  simpl in *. TrivialExists. inv EV. apply Val.of_optbool_lessdef. 
  intros. apply Val.cmpu_bool_lessdef with (Mem.valid_pointer m) v1 v2; auto.
  intros; eapply Mem.valid_pointer_extends; eauto.
Qed.

(** * Semantic preservation for instruction selection. *)

Section PRESERVATION.

Variable prog: Cminor.program.
Let tprog := sel_program prog.
Let ge := Genv.globalenv prog.
Let tge := Genv.globalenv tprog.

(** Relationship between the global environments for the original
  Cminor program and the generated CminorSel program. *)

Lemma symbols_preserved:
  forall (s: ident), Genv.find_symbol tge s = Genv.find_symbol ge s.
Proof.
  intros; unfold ge, tge, tprog, sel_program. 
  apply Genv.find_symbol_transf.
Qed.

Lemma function_ptr_translated:
  forall (b: block) (f: Cminor.fundef),
  Genv.find_funct_ptr ge b = Some f ->
  Genv.find_funct_ptr tge b = Some (sel_fundef ge f).
Proof.  
  intros. 
  exact (Genv.find_funct_ptr_transf (sel_fundef ge) _ _ H).
Qed.

Lemma functions_translated:
  forall (v v': val) (f: Cminor.fundef),
  Genv.find_funct ge v = Some f ->
  Val.lessdef v v' ->
  Genv.find_funct tge v' = Some (sel_fundef ge f).
Proof.  
  intros. inv H0.
  exact (Genv.find_funct_transf (sel_fundef ge) _ _ H).
  simpl in H. discriminate.
Qed.

Lemma sig_function_translated:
  forall f,
  funsig (sel_fundef ge f) = Cminor.funsig f.
Proof.
  intros. destruct f; reflexivity.
Qed.

Lemma varinfo_preserved:
  forall b, Genv.find_var_info tge b = Genv.find_var_info ge b.
Proof.
  intros; unfold ge, tge, tprog, sel_program. 
  apply Genv.find_var_info_transf.
Qed.

(** Relationship between the local environments. *)

Definition env_lessdef (e1 e2: env) : Prop :=
  forall id v1, e1!id = Some v1 -> exists v2, e2!id = Some v2 /\ Val.lessdef v1 v2.

Lemma set_var_lessdef:
  forall e1 e2 id v1 v2,
  env_lessdef e1 e2 -> Val.lessdef v1 v2 ->
  env_lessdef (PTree.set id v1 e1) (PTree.set id v2 e2).
Proof.
  intros; red; intros. rewrite PTree.gsspec in *. destruct (peq id0 id).
  exists v2; split; congruence.
  auto.
Qed.

Lemma set_params_lessdef:
  forall il vl1 vl2, 
  Val.lessdef_list vl1 vl2 ->
  env_lessdef (set_params vl1 il) (set_params vl2 il).
Proof.
  induction il; simpl; intros.
  red; intros. rewrite PTree.gempty in H0; congruence.
  inv H; apply set_var_lessdef; auto.
Qed.

Lemma set_locals_lessdef:
  forall e1 e2, env_lessdef e1 e2 ->
  forall il, env_lessdef (set_locals il e1) (set_locals il e2).
Proof.
  induction il; simpl. auto. apply set_var_lessdef; auto.
Qed.

(** Semantic preservation for expressions. *)

Lemma sel_expr_correct:
  forall sp e m a v,
  Cminor.eval_expr ge sp e m a v ->
  forall e' le m',
  env_lessdef e e' -> Mem.extends m m' ->
  exists v', eval_expr tge sp e' m' le (sel_expr a) v' /\ Val.lessdef v v'.
Proof.
  induction 1; intros; simpl.
  (* Evar *)
  exploit H0; eauto. intros [v' [A B]]. exists v'; split; auto. constructor; auto.
  (* Econst *)
  destruct cst; simpl in *; inv H. 
  exists (Vint i); split; auto. econstructor. constructor. auto. 
  exists (Vfloat f); split; auto. econstructor. constructor. auto.
  rewrite <- symbols_preserved. fold (symbol_address tge i i0). apply eval_addrsymbol.
  apply eval_addrstack.
  (* Eunop *)
  exploit IHeval_expr; eauto. intros [v1' [A B]].
  exploit eval_unop_lessdef; eauto. intros [v' [C D]].
  exploit eval_sel_unop; eauto. intros [v'' [E F]].
  exists v''; split; eauto. eapply Val.lessdef_trans; eauto. 
  (* Ebinop *)
  exploit IHeval_expr1; eauto. intros [v1' [A B]].
  exploit IHeval_expr2; eauto. intros [v2' [C D]].
  exploit eval_binop_lessdef; eauto. intros [v' [E F]].
  exploit eval_sel_binop. eexact A. eexact C. eauto. intros [v'' [P Q]].
  exists v''; split; eauto. eapply Val.lessdef_trans; eauto. 
  (* Eload *)
  exploit IHeval_expr; eauto. intros [vaddr' [A B]].
  exploit Mem.loadv_extends; eauto. intros [v' [C D]].
  exists v'; split; auto. eapply eval_load; eauto.
Qed.

Lemma sel_exprlist_correct:
  forall sp e m a v,
  Cminor.eval_exprlist ge sp e m a v ->
  forall e' le m',
  env_lessdef e e' -> Mem.extends m m' ->
  exists v', eval_exprlist tge sp e' m' le (sel_exprlist a) v' /\ Val.lessdef_list v v'.
Proof.
  induction 1; intros; simpl. 
  exists (@nil val); split; auto. constructor.
  exploit sel_expr_correct; eauto. intros [v1' [A B]].
  exploit IHeval_exprlist; eauto. intros [vl' [C D]].
  exists (v1' :: vl'); split; auto. constructor; eauto.
Qed.

(** Semantic preservation for functions and statements. *)

Inductive match_cont: Cminor.cont -> CminorSel.cont -> Prop :=
  | match_cont_stop:
      match_cont Cminor.Kstop Kstop
  | match_cont_seq: forall s k k',
      match_cont k k' ->
      match_cont (Cminor.Kseq s k) (Kseq (sel_stmt ge s) k')
  | match_cont_block: forall k k',
      match_cont k k' ->
      match_cont (Cminor.Kblock k) (Kblock k')
  | match_cont_call: forall id f sp e k e' k',
      match_cont k k' -> env_lessdef e e' ->
      match_cont (Cminor.Kcall id f sp e k) (Kcall id (sel_function ge f) sp e' k').

Inductive match_states: Cminor.state -> CminorSel.state -> Prop :=
  | match_state: forall f s k s' k' sp e m e' m',
      s' = sel_stmt ge s ->
      match_cont k k' ->
      env_lessdef e e' ->
      Mem.extends m m' ->
      match_states
        (Cminor.State f s k sp e m)
        (State (sel_function ge f) s' k' sp e' m')
  | match_callstate: forall f args args' k k' m m',
      match_cont k k' ->
      Val.lessdef_list args args' ->
      Mem.extends m m' ->
      match_states
        (Cminor.Callstate f args k m)
        (Callstate (sel_fundef ge f) args' k' m')
  | match_returnstate: forall v v' k k' m m',
      match_cont k k' ->
      Val.lessdef v v' ->
      Mem.extends m m' ->
      match_states
        (Cminor.Returnstate v k m)
        (Returnstate v' k' m')
  | match_builtin_1: forall ef args args' optid f sp e k m al e' k' m',
      match_cont k k' ->
      Val.lessdef_list args args' ->
      env_lessdef e e' ->
      Mem.extends m m' ->
      eval_exprlist tge sp e' m' nil al args' ->
      match_states
        (Cminor.Callstate (External ef) args (Cminor.Kcall optid f sp e k) m)
        (State (sel_function ge f) (Sbuiltin optid ef al) k' sp e' m')
  | match_builtin_2: forall v v' optid f sp e k m e' m' k',
      match_cont k k' ->
      Val.lessdef v v' ->
      env_lessdef e e' ->
      Mem.extends m m' ->
      match_states
        (Cminor.Returnstate v (Cminor.Kcall optid f sp e k) m)
        (State (sel_function ge f) Sskip k' sp (set_optvar optid v' e') m').

Remark call_cont_commut:
  forall k k', match_cont k k' -> match_cont (Cminor.call_cont k) (call_cont k').
Proof.
  induction 1; simpl; auto. constructor. constructor; auto.
Qed.

Remark find_label_commut:
  forall lbl s k k',
  match_cont k k' ->
  match Cminor.find_label lbl s k, find_label lbl (sel_stmt ge s) k' with
  | None, None => True
  | Some(s1, k1), Some(s1', k1') => s1' = sel_stmt ge s1 /\ match_cont k1 k1'
  | _, _ => False
  end.
Proof.
  induction s; intros; simpl; auto.
(* store *)
  unfold store. destruct (addressing m (sel_expr e)); simpl; auto.
(* call *)
  destruct (classify_call ge e); simpl; auto.
(* tailcall *)
  destruct (classify_call ge e); simpl; auto.
(* seq *)
  exploit (IHs1 (Cminor.Kseq s2 k)). constructor; eauto. 
  destruct (Cminor.find_label lbl s1 (Cminor.Kseq s2 k)) as [[sx kx] | ];
  destruct (find_label lbl (sel_stmt ge s1) (Kseq (sel_stmt ge s2) k')) as [[sy ky] | ];
  intuition. apply IHs2; auto.
(* ifthenelse *)
  destruct (condition_of_expr (sel_expr e)) as [cond args]. simpl.
  exploit (IHs1 k); eauto. 
  destruct (Cminor.find_label lbl s1 k) as [[sx kx] | ];
  destruct (find_label lbl (sel_stmt ge s1) k') as [[sy ky] | ];
  intuition. apply IHs2; auto.
(* loop *)
  apply IHs. constructor; auto.
(* block *)
  apply IHs. constructor; auto.
(* return *)
  destruct o; simpl; auto. 
(* label *)
  destruct (ident_eq lbl l). auto. apply IHs; auto.
Qed.

Definition measure (s: Cminor.state) : nat :=
  match s with
  | Cminor.Callstate _ _ _ _ => 0%nat
  | Cminor.State _ _ _ _ _ _ => 1%nat
  | Cminor.Returnstate _ _ _ => 2%nat
  end.

Lemma sel_step_correct:
  forall S1 t S2, Cminor.step ge S1 t S2 ->
  forall T1, match_states S1 T1 ->
  (exists T2, step tge T1 t T2 /\ match_states S2 T2)
  \/ (measure S2 < measure S1 /\ t = E0 /\ match_states S2 T1)%nat.
Proof.
  induction 1; intros T1 ME; inv ME; simpl.
  (* skip seq *)
  inv H7. left; econstructor; split. econstructor. constructor; auto.
  (* skip block *)
  inv H7. left; econstructor; split. econstructor. constructor; auto.
  (* skip call *)
  exploit Mem.free_parallel_extends; eauto. intros [m2' [A B]].
  left; econstructor; split. 
  econstructor. inv H9; simpl in H; simpl; auto. 
  eauto. 
  constructor; auto.
  (* assign *)
  exploit sel_expr_correct; eauto. intros [v' [A B]].
  left; econstructor; split.
  econstructor; eauto.
  constructor; auto. apply set_var_lessdef; auto.
  (* store *)
  exploit sel_expr_correct. eexact H. eauto. eauto. intros [vaddr' [A B]].
  exploit sel_expr_correct. eexact H0. eauto. eauto. intros [v' [C D]].
  exploit Mem.storev_extends; eauto. intros [m2' [P Q]].
  left; econstructor; split.
  eapply eval_store; eauto.
  constructor; auto.
  (* Scall *)
  exploit sel_exprlist_correct; eauto. intros [vargs' [C D]].
  exploit classify_call_correct; eauto. 
  destruct (classify_call ge a) as [ | id | ef].
  (* indirect *)
  exploit sel_expr_correct; eauto. intros [vf' [A B]].
  left; econstructor; split.
  econstructor; eauto. econstructor; eauto. 
  eapply functions_translated; eauto. 
  apply sig_function_translated.
  constructor; auto. constructor; auto.
  (* direct *)
  intros [b [U V]]. 
  left; econstructor; split.
  econstructor; eauto. econstructor; eauto. rewrite symbols_preserved; eauto.
  eapply functions_translated; eauto. subst vf; auto. 
  apply sig_function_translated.
  constructor; auto. constructor; auto.
  (* turned into Sbuiltin *)
  intros EQ. subst fd. 
  right; split. omega. split. auto. 
  econstructor; eauto.
  (* Stailcall *)
  exploit Mem.free_parallel_extends; eauto. intros [m2' [P Q]].
  exploit sel_expr_correct; eauto. intros [vf' [A B]].
  exploit sel_exprlist_correct; eauto. intros [vargs' [C D]].
  left; econstructor; split.
  exploit classify_call_correct; eauto. 
  destruct (classify_call ge a) as [ | id | ef]; intros. 
  econstructor; eauto. econstructor; eauto. eapply functions_translated; eauto. apply sig_function_translated.
  destruct H2 as [b [U V]].
  econstructor; eauto. econstructor; eauto. rewrite symbols_preserved; eauto. eapply functions_translated; eauto. subst vf; auto. apply sig_function_translated.
  econstructor; eauto. econstructor; eauto. eapply functions_translated; eauto. apply sig_function_translated.
  constructor; auto. apply call_cont_commut; auto.
  (* Sbuiltin *)
  exploit sel_exprlist_correct; eauto. intros [vargs' [P Q]].
  exploit external_call_mem_extends; eauto. 
  intros [vres' [m2 [A [B [C D]]]]].
  left; econstructor; split.
  econstructor. eauto. eapply external_call_symbols_preserved; eauto.
  exact symbols_preserved. exact varinfo_preserved.
  constructor; auto.
  destruct optid; simpl; auto. apply set_var_lessdef; auto.
  (* Seq *)
  left; econstructor; split. constructor. constructor; auto. constructor; auto.
  (* Sifthenelse *)
  exploit sel_expr_correct; eauto. intros [v' [A B]].
  assert (Val.bool_of_val v' b). inv B. auto. inv H0.
  exploit eval_condition_of_expr; eauto.
  destruct (condition_of_expr (sel_expr a)) as [cond args].
  intros [vl' [C D]].
  left; exists (State (sel_function ge f) (if b then sel_stmt ge s1 else sel_stmt ge s2) k' sp e' m'); split.
  econstructor; eauto. 
  constructor; auto. destruct b; auto.
  (* Sloop *)
  left; econstructor; split. constructor. constructor; auto. constructor; auto.
  (* Sblock *)
  left; econstructor; split. constructor. constructor; auto. constructor; auto.
  (* Sexit seq *)
  inv H7. left; econstructor; split. constructor. constructor; auto.
  (* Sexit0 block *)
  inv H7. left; econstructor; split. constructor. constructor; auto.
  (* SexitS block *)
  inv H7. left; econstructor; split. constructor. constructor; auto.
  (* Sswitch *)
  exploit sel_expr_correct; eauto. intros [v' [A B]]. inv B.
  left; econstructor; split. econstructor; eauto. constructor; auto.
  (* Sreturn None *)
  exploit Mem.free_parallel_extends; eauto. intros [m2' [P Q]].
  left; econstructor; split. 
  econstructor. simpl; eauto. 
  constructor; auto. apply call_cont_commut; auto.
  (* Sreturn Some *)
  exploit Mem.free_parallel_extends; eauto. intros [m2' [P Q]].
  exploit sel_expr_correct; eauto. intros [v' [A B]].
  left; econstructor; split. 
  econstructor; eauto.
  constructor; auto. apply call_cont_commut; auto.
  (* Slabel *)
  left; econstructor; split. constructor. constructor; auto.
  (* Sgoto *)
  exploit (find_label_commut lbl (Cminor.fn_body f) (Cminor.call_cont k)).
    apply call_cont_commut; eauto.
  rewrite H. 
  destruct (find_label lbl (sel_stmt ge (Cminor.fn_body f)) (call_cont k'0))
  as [[s'' k'']|] eqn:?; intros; try contradiction.
  destruct H0. 
  left; econstructor; split.
  econstructor; eauto. 
  constructor; auto.
  (* internal function *)
  exploit Mem.alloc_extends. eauto. eauto. apply Zle_refl. apply Zle_refl. 
  intros [m2' [A B]].
  left; econstructor; split.
  econstructor; eauto.
  constructor; auto. apply set_locals_lessdef. apply set_params_lessdef; auto.
  (* external call *)
  exploit external_call_mem_extends; eauto. 
  intros [vres' [m2 [A [B [C D]]]]].
  left; econstructor; split.
  econstructor. eapply external_call_symbols_preserved; eauto.
  exact symbols_preserved. exact varinfo_preserved.
  constructor; auto.
  (* external call turned into a Sbuiltin *)
  exploit external_call_mem_extends; eauto. 
  intros [vres' [m2 [A [B [C D]]]]].
  left; econstructor; split.
  econstructor. eauto. eapply external_call_symbols_preserved; eauto.
  exact symbols_preserved. exact varinfo_preserved.
  constructor; auto.
  (* return *)
  inv H2. 
  left; econstructor; split. 
  econstructor. 
  constructor; auto. destruct optid; simpl; auto. apply set_var_lessdef; auto.
  (* return of an external call turned into a Sbuiltin *)
  right; split. omega. split. auto. constructor; auto. 
  destruct optid; simpl; auto. apply set_var_lessdef; auto.
Qed.

Lemma sel_initial_states:
  forall S, Cminor.initial_state prog S ->
  exists R, initial_state tprog R /\ match_states S R.
Proof.
  induction 1.
  econstructor; split.
  econstructor.
  apply Genv.init_mem_transf; eauto.
  simpl. fold tge. rewrite symbols_preserved. eexact H0.
  apply function_ptr_translated. eauto. 
  rewrite <- H2. apply sig_function_translated; auto.
  constructor; auto. constructor. apply Mem.extends_refl.
Qed.

Lemma sel_final_states:
  forall S R r,
  match_states S R -> Cminor.final_state S r -> final_state R r.
Proof.
  intros. inv H0. inv H. inv H3. inv H5. constructor.
Qed.

Theorem transf_program_correct:
  forward_simulation (Cminor.semantics prog) (CminorSel.semantics tprog).
Proof.
  eapply forward_simulation_opt.
  eexact symbols_preserved.
  eexact sel_initial_states.
  eexact sel_final_states.
  eexact sel_step_correct. 
Qed.

End PRESERVATION.