summaryrefslogtreecommitdiff
path: root/backend/SelectDivproof.v
blob: d4bd4f5ce4c881f76993993286eec7c9aba5adaa (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
(* *********************************************************************)
(*                                                                     *)
(*              The Compcert verified compiler                         *)
(*                                                                     *)
(*          Xavier Leroy, INRIA Paris-Rocquencourt                     *)
(*                                                                     *)
(*  Copyright Institut National de Recherche en Informatique et en     *)
(*  Automatique.  All rights reserved.  This file is distributed       *)
(*  under the terms of the INRIA Non-Commercial License Agreement.     *)
(*                                                                     *)
(* *********************************************************************)

(** Correctness of instruction selection for integer division *)

Require Import Coqlib.
Require Import Zquot.
Require Import AST.
Require Import Integers.
Require Import Floats.
Require Import Values.
Require Import Memory.
Require Import Globalenvs.
Require Import Events.
Require Import Cminor.
Require Import Op.
Require Import CminorSel.
Require Import SelectOp.
Require Import SelectOpproof.
Require Import SelectDiv.

Open Local Scope cminorsel_scope.

(** * Main approximation theorems *)

Section Z_DIV_MUL.

Variable N: Z.      (**r number of relevant bits *)
Hypothesis N_pos: N >= 0.
Variable d: Z.      (**r divisor *)
Hypothesis d_pos: d > 0.

(** This is theorem 4.2 from Granlund and Montgomery, PLDI 1994. *)

Lemma Zdiv_mul_pos:
  forall m l,
  l >= 0 ->
  two_p (N+l) <= m * d <= two_p (N+l) + two_p l ->
  forall n,
  0 <= n < two_p N ->
  Zdiv n d = Zdiv (m * n) (two_p (N + l)).
Proof.
  intros m l l_pos [LO HI] n RANGE.
  exploit (Z_div_mod_eq n d). auto. 
  set (q := n / d).
  set (r := n mod d).
  intro EUCL.
  assert (0 <= r <= d - 1).
    unfold r. generalize (Z_mod_lt n d d_pos). omega.
  assert (0 <= m). 
    apply Zmult_le_0_reg_r with d. auto.
    exploit (two_p_gt_ZERO (N + l)). omega. omega. 
  set (k := m * d - two_p (N + l)).
  assert (0 <= k <= two_p l). 
    unfold k; omega.
  assert ((m * n - two_p (N + l) * q) * d = k * n + two_p (N + l) * r).
    unfold k. rewrite EUCL. ring.
  assert (0 <= k * n).
    apply Zmult_le_0_compat; omega.
  assert (k * n <= two_p (N + l) - two_p l).
    apply Zle_trans with (two_p l * n).
    apply Zmult_le_compat_r. omega. omega.
    replace (N + l) with (l + N) by omega.
    rewrite two_p_is_exp. 
    replace (two_p l * two_p N - two_p l)
       with (two_p l * (two_p N - 1))
         by ring.
    apply Zmult_le_compat_l. omega. exploit (two_p_gt_ZERO l). omega. omega.
    omega. omega.
  assert (0 <= two_p (N + l) * r).
    apply Zmult_le_0_compat. 
    exploit (two_p_gt_ZERO (N + l)). omega. omega.
    omega.
  assert (two_p (N + l) * r <= two_p (N + l) * d - two_p (N + l)).
    replace (two_p (N + l) * d - two_p (N + l))
       with (two_p (N + l) * (d - 1)) by ring.
    apply Zmult_le_compat_l.
    omega.
    exploit (two_p_gt_ZERO (N + l)). omega. omega.
  assert (0 <= m * n - two_p (N + l) * q).
    apply Zmult_le_reg_r with d. auto. 
    replace (0 * d) with 0 by ring.  rewrite H2. omega. 
  assert (m * n - two_p (N + l) * q < two_p (N + l)).
    apply Zmult_lt_reg_r with d. omega.
    rewrite H2. 
    apply Zle_lt_trans with (two_p (N + l) * d - two_p l).
    omega. 
    exploit (two_p_gt_ZERO l). omega. omega.
  symmetry. apply Zdiv_unique with (m * n - two_p (N + l) * q). 
  ring. omega.
Qed.

Lemma Zdiv_unique_2:
  forall x y q, y > 0 -> 0 < y * q - x <= y -> Zdiv x y = q - 1.
Proof.
  intros. apply Zdiv_unique with (x - (q - 1) * y). ring. 
  replace ((q - 1) * y) with (y * q - y) by ring. omega. 
Qed.

Lemma Zdiv_mul_opp:
  forall m l,
  l >= 0 ->
  two_p (N+l) < m * d <= two_p (N+l) + two_p l ->
  forall n,
  0 < n <= two_p N ->
  Zdiv n d = - Zdiv (m * (-n)) (two_p (N + l)) - 1.
Proof.
  intros m l l_pos [LO HI] n RANGE.
  replace (m * (-n)) with (- (m * n)) by ring.
  exploit (Z_div_mod_eq n d). auto. 
  set (q := n / d).
  set (r := n mod d).
  intro EUCL.
  assert (0 <= r <= d - 1).
    unfold r. generalize (Z_mod_lt n d d_pos). omega.
  assert (0 <= m). 
    apply Zmult_le_0_reg_r with d. auto.
    exploit (two_p_gt_ZERO (N + l)). omega. omega.
  cut (Zdiv (- (m * n)) (two_p (N + l)) = -q - 1).
    omega.
  apply Zdiv_unique_2. 
  apply two_p_gt_ZERO. omega.
  replace (two_p (N + l) * - q - - (m * n))
     with (m * n - two_p (N + l) * q)
       by ring.
  set (k := m * d - two_p (N + l)).
  assert (0 < k <= two_p l). 
    unfold k; omega.
  assert ((m * n - two_p (N + l) * q) * d = k * n + two_p (N + l) * r).
    unfold k. rewrite EUCL. ring.
  split.
  apply Zmult_lt_reg_r with d. omega. 
  replace (0 * d) with 0 by omega.
  rewrite H2.
  assert (0 < k * n). apply Zmult_lt_0_compat; omega.
  assert (0 <= two_p (N + l) * r).
    apply Zmult_le_0_compat. exploit (two_p_gt_ZERO (N + l)); omega. omega.
  omega.
  apply Zmult_le_reg_r with d. omega.
  rewrite H2. 
  assert (k * n <= two_p (N + l)).
    rewrite Zplus_comm. rewrite two_p_is_exp; try omega. 
    apply Zle_trans with (two_p l * n). apply Zmult_le_compat_r. omega. omega. 
    apply Zmult_le_compat_l. omega. exploit (two_p_gt_ZERO l). omega. omega.
  assert (two_p (N + l) * r <= two_p (N + l) * d - two_p (N + l)).
    replace (two_p (N + l) * d - two_p (N + l))
       with (two_p (N + l) * (d - 1))
         by ring.
    apply Zmult_le_compat_l. omega. exploit (two_p_gt_ZERO (N + l)). omega. omega.
  omega.
Qed.

(** This is theorem 5.1 from Granlund and Montgomery, PLDI 1994. *)

Lemma Zquot_mul:
  forall m l,
  l >= 0 ->
  two_p (N+l) < m * d <= two_p (N+l) + two_p l ->
  forall n,
  - two_p N <= n < two_p N ->
  Z.quot n d = Zdiv (m * n) (two_p (N + l)) + (if zlt n 0 then 1 else 0).
Proof.
  intros. destruct (zlt n 0).
  exploit (Zdiv_mul_opp m l H H0 (-n)). omega. 
  replace (- - n) with n by ring.
  replace (Z.quot n d) with (- Z.quot (-n) d).
  rewrite Zquot_Zdiv_pos by omega. omega.
  rewrite Z.quot_opp_l by omega. ring.
  rewrite Zplus_0_r. rewrite Zquot_Zdiv_pos by omega. 
  apply Zdiv_mul_pos; omega.
Qed.

End Z_DIV_MUL.

(** * Correctness of the division parameters *)

Lemma divs_mul_params_sound:
  forall d m p,
  divs_mul_params d = Some(p, m) ->
  0 <= m < Int.modulus /\ 0 <= p < 32 /\
  forall n,
  Int.min_signed <= n <= Int.max_signed ->
  Z.quot n d = Zdiv (m * n) (two_p (32 + p)) + (if zlt n 0 then 1 else 0).
Proof with (try discriminate).
  unfold divs_mul_params; intros d m' p' EQ.
  destruct (find_div_mul_params Int.wordsize
               (Int.half_modulus - Int.half_modulus mod d - 1) d 32)
  as [[p m] | ]...
  destruct (zlt 0 d)...
  destruct (zlt (two_p (32 + p)) (m * d))...
  destruct (zle (m * d) (two_p (32 + p) + two_p (p + 1)))...
  destruct (zle 0 m)...
  destruct (zlt m Int.modulus)...
  destruct (zle 0 p)...
  destruct (zlt p 32)...
  simpl in EQ. inv EQ. 
  split. auto. split. auto. intros. 
  replace (32 + p') with (31 + (p' + 1)) by omega. 
  apply Zquot_mul; try omega.
  replace (31 + (p' + 1)) with (32 + p') by omega. omega.
  change (Int.min_signed <= n < Int.half_modulus). 
  unfold Int.max_signed in H. omega. 
Qed.

Lemma divu_mul_params_sound:
  forall d m p,
  divu_mul_params d = Some(p, m) ->
  0 <= m < Int.modulus /\ 0 <= p < 32 /\
  forall n,
  0 <= n < Int.modulus ->
  Zdiv n d = Zdiv (m * n) (two_p (32 + p)).
Proof with (try discriminate).
  unfold divu_mul_params; intros d m' p' EQ.
  destruct (find_div_mul_params Int.wordsize
               (Int.modulus - Int.modulus mod d - 1) d 32)
  as [[p m] | ]...
  destruct (zlt 0 d)...
  destruct (zle (two_p (32 + p)) (m * d))...
  destruct (zle (m * d) (two_p (32 + p) + two_p p))...
  destruct (zle 0 m)...
  destruct (zlt m Int.modulus)...
  destruct (zle 0 p)...
  destruct (zlt p 32)...
  simpl in EQ. inv EQ. 
  split. auto. split. auto. intros.
  apply Zdiv_mul_pos; try omega. assumption.
Qed.

Lemma divs_mul_shift_gen:
  forall x y m p,
  divs_mul_params (Int.signed y) = Some(p, m) ->
  0 <= m < Int.modulus /\ 0 <= p < 32 /\
  Int.divs x y = Int.add (Int.shr (Int.repr ((Int.signed x * m) / Int.modulus)) (Int.repr p))
                         (Int.shru x (Int.repr 31)).
Proof.
  intros. set (n := Int.signed x). set (d := Int.signed y) in *.
  exploit divs_mul_params_sound; eauto. intros (A & B & C).
  split. auto. split. auto.
  unfold Int.divs. fold n; fold d. rewrite C by (apply Int.signed_range). 
  rewrite two_p_is_exp by omega. rewrite <- Zdiv_Zdiv. 
  rewrite Int.shru_lt_zero. unfold Int.add. apply Int.eqm_samerepr. apply Int.eqm_add.
  rewrite Int.shr_div_two_p. apply Int.eqm_unsigned_repr_r. apply Int.eqm_refl2. 
  rewrite Int.unsigned_repr. f_equal.
  rewrite Int.signed_repr. rewrite Int.modulus_power. f_equal. ring.
  cut (Int.min_signed <= n * m / Int.modulus < Int.half_modulus). 
  unfold Int.max_signed; omega. 
  apply Zdiv_interval_1. generalize Int.min_signed_neg; omega. apply Int.half_modulus_pos. 
  apply Int.modulus_pos.
  split. apply Zle_trans with (Int.min_signed * m). apply Zmult_le_compat_l_neg. omega. generalize Int.min_signed_neg; omega.
  apply Zmult_le_compat_r. unfold n; generalize (Int.signed_range x); tauto. tauto.
  apply Zle_lt_trans with (Int.half_modulus * m). 
  apply Zmult_le_compat_r. generalize (Int.signed_range x); unfold n, Int.max_signed; omega. tauto.
  apply Zmult_lt_compat_l. generalize Int.half_modulus_pos; omega. tauto. 
  assert (32 < Int.max_unsigned) by (compute; auto). omega.
  unfold Int.lt; fold n. rewrite Int.signed_zero. destruct (zlt n 0); apply Int.eqm_unsigned_repr. 
  apply two_p_gt_ZERO. omega.
  apply two_p_gt_ZERO. omega.
Qed.

Theorem divs_mul_shift_1:
  forall x y m p,
  divs_mul_params (Int.signed y) = Some(p, m) ->
  m < Int.half_modulus ->
  0 <= p < 32 /\
  Int.divs x y = Int.add (Int.shr (Int.mulhs x (Int.repr m)) (Int.repr p))
                         (Int.shru x (Int.repr 31)).
Proof.
  intros. exploit divs_mul_shift_gen; eauto. instantiate (1 := x). 
  intros (A & B & C). split. auto. rewrite C. 
  unfold Int.mulhs. rewrite Int.signed_repr. auto.
  generalize Int.min_signed_neg; unfold Int.max_signed; omega.
Qed.

Theorem divs_mul_shift_2:
  forall x y m p,
  divs_mul_params (Int.signed y) = Some(p, m) ->
  m >= Int.half_modulus ->
  0 <= p < 32 /\
  Int.divs x y = Int.add (Int.shr (Int.add (Int.mulhs x (Int.repr m)) x) (Int.repr p))
                         (Int.shru x (Int.repr 31)).
Proof.
  intros. exploit divs_mul_shift_gen; eauto. instantiate (1 := x). 
  intros (A & B & C). split. auto. rewrite C. f_equal. f_equal.
  rewrite Int.add_signed. unfold Int.mulhs. set (n := Int.signed x).
  transitivity (Int.repr (n * (m - Int.modulus) / Int.modulus + n)).
  f_equal. 
  replace (n * (m - Int.modulus)) with (n * m +  (-n) * Int.modulus) by ring.
  rewrite Z_div_plus. ring. apply Int.modulus_pos. 
  apply Int.eqm_samerepr. apply Int.eqm_add; auto with ints. 
  apply Int.eqm_sym. eapply Int.eqm_trans. apply Int.eqm_signed_unsigned. 
  apply Int.eqm_unsigned_repr_l. apply Int.eqm_refl2. f_equal. f_equal. 
  rewrite Int.signed_repr_eq. rewrite Zmod_small by assumption. 
  apply zlt_false. omega.
Qed.

Theorem divu_mul_shift:
  forall x y m p,
  divu_mul_params (Int.unsigned y) = Some(p, m) ->
  0 <= p < 32 /\
  Int.divu x y = Int.shru (Int.mulhu x (Int.repr m)) (Int.repr p).
Proof.
  intros. exploit divu_mul_params_sound; eauto. intros (A & B & C).
  split. auto. 
  rewrite Int.shru_div_two_p. rewrite Int.unsigned_repr. 
  unfold Int.divu, Int.mulhu. f_equal. rewrite C by apply Int.unsigned_range.
  rewrite two_p_is_exp by omega. rewrite <- Zdiv_Zdiv by (apply two_p_gt_ZERO; omega).
  f_equal. rewrite (Int.unsigned_repr m). 
  rewrite Int.unsigned_repr. f_equal. ring.
  cut (0 <= Int.unsigned x * m / Int.modulus < Int.modulus).
  unfold Int.max_unsigned; omega.
  apply Zdiv_interval_1. omega. compute; auto. compute; auto.
  split. simpl. apply Z.mul_nonneg_nonneg. generalize (Int.unsigned_range x); omega. omega. 
  apply Zle_lt_trans with (Int.modulus * m).
  apply Zmult_le_compat_r. generalize (Int.unsigned_range x); omega. omega. 
  apply Zmult_lt_compat_l. compute; auto. omega. 
  unfold Int.max_unsigned; omega.
  assert (32 < Int.max_unsigned) by (compute; auto). omega.
Qed.

(** * Correctness of the smart constructors for division and modulus *)

Section CMCONSTRS.

Variable ge: genv.
Variable sp: val.
Variable e: env.
Variable m: mem.

Lemma eval_divu_mul:
  forall le x y p M,
  divu_mul_params (Int.unsigned y) = Some(p, M) ->
  nth_error le O = Some (Vint x) ->
  eval_expr ge sp e m le (divu_mul p M) (Vint (Int.divu x y)).
Proof.
  intros. unfold divu_mul. exploit (divu_mul_shift x); eauto. intros [A B].
  assert (eval_expr ge sp e m le
           (Eop Omulhu (Eletvar 0 ::: Eop (Ointconst (Int.repr M)) Enil ::: Enil))
           (Vint (Int.mulhu x (Int.repr M)))).
  { EvalOp. econstructor. econstructor; eauto. econstructor. EvalOp. simpl; reflexivity. constructor.
    auto. }
  exploit eval_shruimm. eexact H1. instantiate (1 := Int.repr p). 
  intros [v [P Q]]. simpl in Q. 
  replace (Int.ltu (Int.repr p) Int.iwordsize) with true in Q. 
  inv Q. rewrite B. auto. 
  unfold Int.ltu. rewrite Int.unsigned_repr. rewrite zlt_true; auto. tauto.
  assert (32 < Int.max_unsigned) by (compute; auto). omega.
Qed.

Theorem eval_divuimm:
  forall le e1 x n2 z,
  eval_expr ge sp e m le e1 x ->
  Val.divu x (Vint n2) = Some z ->
  exists v, eval_expr ge sp e m le (divuimm e1 n2) v /\ Val.lessdef z v.
Proof.
  unfold divuimm; intros. generalize H0; intros DIV.
  destruct x; simpl in DIV; try discriminate.
  destruct (Int.eq n2 Int.zero) eqn:Z2; inv DIV. 
  destruct (Int.is_power2 n2) as [l | ] eqn:P2.
- erewrite Int.divu_pow2 by eauto. 
  replace (Vint (Int.shru i l)) with (Val.shru (Vint i) (Vint l)). 
  apply eval_shruimm; auto.
  simpl. erewrite Int.is_power2_range; eauto. 
- destruct (Compopts.optim_for_size tt).
  + eapply eval_divu_base; eauto. EvalOp.
  + destruct (divu_mul_params (Int.unsigned n2)) as [[p M] | ] eqn:PARAMS.
    * exists (Vint (Int.divu i n2)); split; auto.
      econstructor; eauto. eapply eval_divu_mul; eauto. 
    * eapply eval_divu_base; eauto. EvalOp.
Qed.

Theorem eval_divu:
  forall le a b x y z,
  eval_expr ge sp e m le a x ->
  eval_expr ge sp e m le b y ->
  Val.divu x y = Some z ->
  exists v, eval_expr ge sp e m le (divu a b) v /\ Val.lessdef z v.
Proof.
  unfold divu; intros until b. destruct (divu_match b); intros.
- inv H0. inv H5. simpl in H7. inv H7. eapply eval_divuimm; eauto.
- eapply eval_divu_base; eauto. 
Qed.

Lemma eval_mod_from_div:
  forall le a n x y,
  eval_expr ge sp e m le a (Vint y) ->
  nth_error le O = Some (Vint x) ->
  eval_expr ge sp e m le (mod_from_div a n) (Vint (Int.sub x (Int.mul y n))).
Proof.
  unfold mod_from_div; intros. 
  exploit eval_mulimm; eauto. instantiate (1 := n). intros [v [A B]]. 
  simpl in B. inv B. EvalOp.
Qed.

Theorem eval_moduimm:
  forall le e1 x n2 z,
  eval_expr ge sp e m le e1 x ->
  Val.modu x (Vint n2) = Some z ->
  exists v, eval_expr ge sp e m le (moduimm e1 n2) v /\ Val.lessdef z v.
Proof.
  unfold moduimm; intros. generalize H0; intros MOD.
  destruct x; simpl in MOD; try discriminate.
  destruct (Int.eq n2 Int.zero) eqn:Z2; inv MOD. 
  destruct (Int.is_power2 n2) as [l | ] eqn:P2.
- erewrite Int.modu_and by eauto.
  change (Vint (Int.and i (Int.sub n2 Int.one)))
    with (Val.and (Vint i) (Vint (Int.sub n2 Int.one))).
  apply eval_andimm. auto.
- destruct (Compopts.optim_for_size tt).
  + eapply eval_modu_base; eauto. EvalOp.
  + destruct (divu_mul_params (Int.unsigned n2)) as [[p M] | ] eqn:PARAMS.
    * econstructor; split. 
      econstructor; eauto. eapply eval_mod_from_div. 
      eapply eval_divu_mul; eauto. simpl; eauto. simpl; eauto. 
      rewrite Int.modu_divu. auto. 
      red; intros; subst n2; discriminate.
    * eapply eval_modu_base; eauto. EvalOp.
Qed.

Theorem eval_modu:
  forall le a b x y z,
  eval_expr ge sp e m le a x ->
  eval_expr ge sp e m le b y ->
  Val.modu x y = Some z ->
  exists v, eval_expr ge sp e m le (modu a b) v /\ Val.lessdef z v.
Proof.
  unfold modu; intros until b. destruct (modu_match b); intros.
- inv H0. inv H5. simpl in H7. inv H7. eapply eval_moduimm; eauto.
- eapply eval_modu_base; eauto. 
Qed.

Lemma eval_divs_mul:
  forall le x y p M,
  divs_mul_params (Int.signed y) = Some(p, M) ->
  nth_error le O = Some (Vint x) ->
  eval_expr ge sp e m le (divs_mul p M) (Vint (Int.divs x y)).
Proof.
  intros. unfold divs_mul.
  assert (V: eval_expr ge sp e m le (Eletvar O) (Vint x)).
  { constructor; auto. }
  assert (X: eval_expr ge sp e m le
           (Eop Omulhs (Eletvar 0 ::: Eop (Ointconst (Int.repr M)) Enil ::: Enil))
           (Vint (Int.mulhs x (Int.repr M)))).
  { EvalOp. econstructor. eauto. econstructor. EvalOp. simpl; reflexivity. constructor.
    auto. }
  exploit eval_shruimm. eexact V. instantiate (1 := Int.repr (Int.zwordsize - 1)). 
  intros [v1 [Y LD]]. simpl in LD. 
  change (Int.ltu (Int.repr 31) Int.iwordsize) with true in LD. 
  simpl in LD. inv LD. 
  assert (RANGE: 0 <= p < 32 -> Int.ltu (Int.repr p) Int.iwordsize = true).
  { intros. unfold Int.ltu. rewrite Int.unsigned_repr. rewrite zlt_true by tauto. auto.
    assert (32 < Int.max_unsigned) by (compute; auto). omega. }
  destruct (zlt M Int.half_modulus).
- exploit (divs_mul_shift_1 x); eauto. intros [A B].
  exploit eval_shrimm. eexact X. instantiate (1 := Int.repr p). intros [v1 [Z LD]].
  simpl in LD. rewrite RANGE in LD by auto. inv LD.
  exploit eval_add. eexact Z. eexact Y. intros [v1 [W LD]].
  simpl in LD. inv LD. 
  rewrite B. exact W.
- exploit (divs_mul_shift_2 x); eauto. intros [A B].
  exploit eval_add. eexact X. eexact V. intros [v1 [Z LD]]. 
  simpl in LD. inv LD. 
  exploit eval_shrimm. eexact Z. instantiate (1 := Int.repr p). intros [v1 [U LD]].
  simpl in LD. rewrite RANGE in LD by auto. inv LD.
  exploit eval_add. eexact U. eexact Y. intros [v1 [W LD]].
  simpl in LD. inv LD. 
  rewrite B. exact W.
Qed.

Theorem eval_divsimm:
  forall le e1 x n2 z,
  eval_expr ge sp e m le e1 x ->
  Val.divs x (Vint n2) = Some z ->
  exists v, eval_expr ge sp e m le (divsimm e1 n2) v /\ Val.lessdef z v.
Proof.
  unfold divsimm; intros. generalize H0; intros DIV.
  destruct x; simpl in DIV; try discriminate.
  destruct (Int.eq n2 Int.zero
            || Int.eq i (Int.repr Int.min_signed) && Int.eq n2 Int.mone) eqn:Z2; inv DIV. 
  destruct (Int.is_power2 n2) as [l | ] eqn:P2.
- destruct (Int.ltu l (Int.repr 31)) eqn:LT31.
  + eapply eval_shrximm; eauto. eapply Val.divs_pow2; eauto.
  + eapply eval_divs_base; eauto. EvalOp.
- destruct (Compopts.optim_for_size tt).
  + eapply eval_divs_base; eauto. EvalOp.
  + destruct (divs_mul_params (Int.signed n2)) as [[p M] | ] eqn:PARAMS.
    * exists (Vint (Int.divs i n2)); split; auto.
      econstructor; eauto. eapply eval_divs_mul; eauto. 
    * eapply eval_divs_base; eauto. EvalOp.
Qed.

Theorem eval_divs:
  forall le a b x y z,
  eval_expr ge sp e m le a x ->
  eval_expr ge sp e m le b y ->
  Val.divs x y = Some z ->
  exists v, eval_expr ge sp e m le (divs a b) v /\ Val.lessdef z v.
Proof.
  unfold divs; intros until b. destruct (divs_match b); intros.
- inv H0. inv H5. simpl in H7. inv H7. eapply eval_divsimm; eauto.
- eapply eval_divs_base; eauto. 
Qed.

Theorem eval_modsimm:
  forall le e1 x n2 z,
  eval_expr ge sp e m le e1 x ->
  Val.mods x (Vint n2) = Some z ->
  exists v, eval_expr ge sp e m le (modsimm e1 n2) v /\ Val.lessdef z v.
Proof.
  unfold modsimm; intros. 
  exploit Val.mods_divs; eauto. intros [y [A B]].
  generalize A; intros DIV.
  destruct x; simpl in DIV; try discriminate.
  destruct (Int.eq n2 Int.zero
            || Int.eq i (Int.repr Int.min_signed) && Int.eq n2 Int.mone) eqn:Z2; inv DIV. 
  destruct (Int.is_power2 n2) as [l | ] eqn:P2.
- destruct (Int.ltu l (Int.repr 31)) eqn:LT31.
  + exploit (eval_shrximm ge sp e m (Vint i :: le) (Eletvar O)).
    constructor. simpl; eauto. eapply Val.divs_pow2; eauto. 
    intros [v1 [X LD]]. inv LD. 
    econstructor; split. econstructor. eauto. 
    apply eval_mod_from_div. eexact X. simpl; eauto. 
    simpl. auto.
  + eapply eval_mods_base; eauto. EvalOp.
- destruct (Compopts.optim_for_size tt).
  + eapply eval_mods_base; eauto. EvalOp.
  + destruct (divs_mul_params (Int.signed n2)) as [[p M] | ] eqn:PARAMS.
    * econstructor; split. 
      econstructor. eauto. apply eval_mod_from_div with (x := i); auto.
      eapply eval_divs_mul with (x := i); eauto.
      simpl. auto.
    * eapply eval_mods_base; eauto. EvalOp.
Qed.

Theorem eval_mods:
  forall le a b x y z,
  eval_expr ge sp e m le a x ->
  eval_expr ge sp e m le b y ->
  Val.mods x y = Some z ->
  exists v, eval_expr ge sp e m le (mods a b) v /\ Val.lessdef z v.
Proof.
  unfold mods; intros until b. destruct (mods_match b); intros.
- inv H0. inv H5. simpl in H7. inv H7. eapply eval_modsimm; eauto.
- eapply eval_mods_base; eauto. 
Qed.

(** * Floating-point division *)

Theorem eval_divf:
  forall le a b x y,
  eval_expr ge sp e m le a x ->
  eval_expr ge sp e m le b y ->
  exists v, eval_expr ge sp e m le (divf a b) v /\ Val.lessdef (Val.divf x y) v.
Proof.
  intros until y. unfold divf. destruct (divf_match b); intros.
- unfold divfimm. destruct (Float.exact_inverse n2) as [n2' | ] eqn:EINV.
  + inv H0. inv H4. simpl in H6. inv H6. econstructor; split.
    EvalOp. constructor. eauto. constructor. EvalOp. simpl; eauto. constructor. 
    simpl; eauto. 
    destruct x; simpl; auto. erewrite Float.div_mul_inverse; eauto. 
  + TrivialExists. 
- TrivialExists.
Qed.

Theorem eval_divfs:
  forall le a b x y,
  eval_expr ge sp e m le a x ->
  eval_expr ge sp e m le b y ->
  exists v, eval_expr ge sp e m le (divfs a b) v /\ Val.lessdef (Val.divfs x y) v.
Proof.
  intros until y. unfold divfs. destruct (divfs_match b); intros.
- unfold divfsimm. destruct (Float32.exact_inverse n2) as [n2' | ] eqn:EINV.
  + inv H0. inv H4. simpl in H6. inv H6. econstructor; split.
    EvalOp. constructor. eauto. constructor. EvalOp. simpl; eauto. constructor. 
    simpl; eauto. 
    destruct x; simpl; auto. erewrite Float32.div_mul_inverse; eauto. 
  + TrivialExists. 
- TrivialExists.
Qed.

End CMCONSTRS.