1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
|
(* *********************************************************************)
(* *)
(* The Compcert verified compiler *)
(* *)
(* Xavier Leroy, INRIA Paris-Rocquencourt *)
(* *)
(* Copyright Institut National de Recherche en Informatique et en *)
(* Automatique. All rights reserved. This file is distributed *)
(* under the terms of the INRIA Non-Commercial License Agreement. *)
(* *)
(* *********************************************************************)
(** Postorder renumbering of RTL control-flow graphs. *)
Require Import Coqlib.
Require Import Maps.
Require Import Postorder.
Require Import Events.
Require Import Globalenvs.
Require Import Smallstep.
Require Import Op.
Require Import Registers.
Require Import RTL.
Require Import Renumber.
Section PRESERVATION.
Variable prog: program.
Let tprog := transf_program prog.
Let ge := Genv.globalenv prog.
Let tge := Genv.globalenv tprog.
Lemma functions_translated:
forall v f,
Genv.find_funct ge v = Some f ->
Genv.find_funct tge v = Some (transf_fundef f).
Proof (@Genv.find_funct_transf _ _ _ transf_fundef prog).
Lemma function_ptr_translated:
forall v f,
Genv.find_funct_ptr ge v = Some f ->
Genv.find_funct_ptr tge v = Some (transf_fundef f).
Proof (@Genv.find_funct_ptr_transf _ _ _ transf_fundef prog).
Lemma symbols_preserved:
forall id,
Genv.find_symbol tge id = Genv.find_symbol ge id.
Proof (@Genv.find_symbol_transf _ _ _ transf_fundef prog).
Lemma varinfo_preserved:
forall b, Genv.find_var_info tge b = Genv.find_var_info ge b.
Proof (@Genv.find_var_info_transf _ _ _ transf_fundef prog).
Lemma sig_preserved:
forall f, funsig (transf_fundef f) = funsig f.
Proof.
destruct f; reflexivity.
Qed.
Lemma find_function_translated:
forall ros rs fd,
find_function ge ros rs = Some fd ->
find_function tge ros rs = Some (transf_fundef fd).
Proof.
unfold find_function; intros. destruct ros as [r|id].
eapply functions_translated; eauto.
rewrite symbols_preserved. destruct (Genv.find_symbol ge id); try congruence.
eapply function_ptr_translated; eauto.
Qed.
(** Effect of an injective renaming of nodes on a CFG. *)
Section RENUMBER.
Variable f: PTree.t positive.
Hypothesis f_inj: forall x1 x2 y, f!x1 = Some y -> f!x2 = Some y -> x1 = x2.
Lemma renum_cfg_nodes:
forall c x y i,
c!x = Some i -> f!x = Some y -> (renum_cfg f c)!y = Some(renum_instr f i).
Proof.
set (P := fun (c c': code) =>
forall x y i, c!x = Some i -> f!x = Some y -> c'!y = Some(renum_instr f i)).
intros c0. change (P c0 (renum_cfg f c0)). unfold renum_cfg.
apply PTree_Properties.fold_rec; unfold P; intros.
(* extensionality *)
eapply H0; eauto. rewrite H; auto.
(* base *)
rewrite PTree.gempty in H; congruence.
(* induction *)
rewrite PTree.gsspec in H2. unfold renum_node. destruct (peq x k).
inv H2. rewrite H3. apply PTree.gss.
destruct f!k as [y'|] eqn:?.
rewrite PTree.gso. eauto. red; intros; subst y'. elim n. eapply f_inj; eauto.
eauto.
Qed.
End RENUMBER.
Definition pnum (f: function) := postorder (successors_map f) f.(fn_entrypoint).
Definition reach (f: function) (pc: node) := reachable (successors_map f) f.(fn_entrypoint) pc.
Lemma transf_function_at:
forall f pc i,
f.(fn_code)!pc = Some i ->
reach f pc ->
(transf_function f).(fn_code)!(renum_pc (pnum f) pc) = Some(renum_instr (pnum f) i).
Proof.
intros.
destruct (postorder_correct (successors_map f) f.(fn_entrypoint)) as [A B].
fold (pnum f) in *.
unfold renum_pc. destruct (pnum f)! pc as [pc'|] eqn:?.
simpl. eapply renum_cfg_nodes; eauto.
elim (B pc); auto. unfold successors_map. rewrite PTree.gmap1. rewrite H. simpl. congruence.
Qed.
Ltac TR_AT :=
match goal with
| [ A: (fn_code _)!_ = Some _ , B: reach _ _ |- _ ] =>
generalize (transf_function_at _ _ _ A B); simpl renum_instr; intros
end.
Lemma reach_succ:
forall f pc i s,
f.(fn_code)!pc = Some i -> In s (successors_instr i) ->
reach f pc -> reach f s.
Proof.
unfold reach; intros. econstructor; eauto.
unfold successors_map. rewrite PTree.gmap1. rewrite H. auto.
Qed.
Inductive match_frames: RTL.stackframe -> RTL.stackframe -> Prop :=
| match_frames_intro: forall res f sp pc rs
(REACH: reach f pc),
match_frames (Stackframe res f sp pc rs)
(Stackframe res (transf_function f) sp (renum_pc (pnum f) pc) rs).
Inductive match_states: RTL.state -> RTL.state -> Prop :=
| match_regular_states: forall stk f sp pc rs m stk'
(STACKS: list_forall2 match_frames stk stk')
(REACH: reach f pc),
match_states (State stk f sp pc rs m)
(State stk' (transf_function f) sp (renum_pc (pnum f) pc) rs m)
| match_callstates: forall stk f args m stk'
(STACKS: list_forall2 match_frames stk stk'),
match_states (Callstate stk f args m)
(Callstate stk' (transf_fundef f) args m)
| match_returnstates: forall stk v m stk'
(STACKS: list_forall2 match_frames stk stk'),
match_states (Returnstate stk v m)
(Returnstate stk' v m).
Lemma step_simulation:
forall S1 t S2, RTL.step ge S1 t S2 ->
forall S1', match_states S1 S1' ->
exists S2', RTL.step tge S1' t S2' /\ match_states S2 S2'.
Proof.
induction 1; intros S1' MS; inv MS; try TR_AT.
(* nop *)
econstructor; split. eapply exec_Inop; eauto.
constructor; auto. eapply reach_succ; eauto. simpl; auto.
(* op *)
econstructor; split.
eapply exec_Iop; eauto.
instantiate (1 := v). rewrite <- H0. apply eval_operation_preserved. exact symbols_preserved.
constructor; auto. eapply reach_succ; eauto. simpl; auto.
(* load *)
econstructor; split.
assert (eval_addressing tge sp addr rs ## args = Some a).
rewrite <- H0. apply eval_addressing_preserved. exact symbols_preserved.
eapply exec_Iload; eauto.
constructor; auto. eapply reach_succ; eauto. simpl; auto.
(* store *)
econstructor; split.
assert (eval_addressing tge sp addr rs ## args = Some a).
rewrite <- H0. apply eval_addressing_preserved. exact symbols_preserved.
eapply exec_Istore; eauto.
constructor; auto. eapply reach_succ; eauto. simpl; auto.
(* call *)
econstructor; split.
eapply exec_Icall with (fd := transf_fundef fd); eauto.
eapply find_function_translated; eauto.
apply sig_preserved.
constructor. constructor; auto. constructor. eapply reach_succ; eauto. simpl; auto.
(* tailcall *)
econstructor; split.
eapply exec_Itailcall with (fd := transf_fundef fd); eauto.
eapply find_function_translated; eauto.
apply sig_preserved.
constructor. auto.
(* builtin *)
econstructor; split.
eapply exec_Ibuiltin; eauto.
eapply external_call_symbols_preserved; eauto.
exact symbols_preserved. exact varinfo_preserved.
constructor; auto. eapply reach_succ; eauto. simpl; auto.
(* cond *)
econstructor; split.
eapply exec_Icond; eauto.
replace (if b then renum_pc (pnum f) ifso else renum_pc (pnum f) ifnot)
with (renum_pc (pnum f) (if b then ifso else ifnot)).
constructor; auto. eapply reach_succ; eauto. simpl. destruct b; auto.
destruct b; auto.
(* jumptbl *)
econstructor; split.
eapply exec_Ijumptable; eauto. rewrite list_nth_z_map. rewrite H1. simpl; eauto.
constructor; auto. eapply reach_succ; eauto. simpl. eapply list_nth_z_in; eauto.
(* return *)
econstructor; split.
eapply exec_Ireturn; eauto.
constructor; auto.
(* internal function *)
simpl. econstructor; split.
eapply exec_function_internal; eauto.
constructor; auto. unfold reach. constructor.
(* external function *)
econstructor; split.
eapply exec_function_external; eauto.
eapply external_call_symbols_preserved; eauto.
exact symbols_preserved. exact varinfo_preserved.
constructor; auto.
(* return *)
inv STACKS. inv H1.
econstructor; split.
eapply exec_return; eauto.
constructor; auto.
Qed.
Lemma transf_initial_states:
forall S1, RTL.initial_state prog S1 ->
exists S2, RTL.initial_state tprog S2 /\ match_states S1 S2.
Proof.
intros. inv H. econstructor; split.
econstructor.
eapply Genv.init_mem_transf; eauto.
simpl. rewrite symbols_preserved. eauto.
eapply function_ptr_translated; eauto.
rewrite <- H3; apply sig_preserved.
constructor. constructor.
Qed.
Lemma transf_final_states:
forall S1 S2 r, match_states S1 S2 -> RTL.final_state S1 r -> RTL.final_state S2 r.
Proof.
intros. inv H0. inv H. inv STACKS. constructor.
Qed.
Theorem transf_program_correct:
forward_simulation (RTL.semantics prog) (RTL.semantics tprog).
Proof.
eapply forward_simulation_step.
eexact symbols_preserved.
eexact transf_initial_states.
eexact transf_final_states.
exact step_simulation.
Qed.
End PRESERVATION.
|