1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
|
(* *********************************************************************)
(* *)
(* The Compcert verified compiler *)
(* *)
(* Xavier Leroy, INRIA Paris-Rocquencourt *)
(* *)
(* Copyright Institut National de Recherche en Informatique et en *)
(* Automatique. All rights reserved. This file is distributed *)
(* under the terms of the INRIA Non-Commercial License Agreement. *)
(* *)
(* *********************************************************************)
(** Abstract specification of RTL generation *)
(** In this module, we define inductive predicates that specify the
translations from Cminor to RTL performed by the functions in module
[RTLgen]. We then show that these functions satisfy these relational
specifications. The relational specifications will then be used
instead of the actual functions to show semantic equivalence between
the source Cminor code and the the generated RTL code
(see module [RTLgenproof]). *)
Require Import Coqlib.
Require Errors.
Require Import Maps.
Require Import AST.
Require Import Integers.
Require Import Values.
Require Import Events.
Require Import Memory.
Require Import Globalenvs.
Require Import Switch.
Require Import Op.
Require Import Registers.
Require Import CminorSel.
Require Import RTL.
Require Import RTLgen.
(** * Reasoning about monadic computations *)
(** The tactics below simplify hypotheses of the form [f ... = OK x s i]
where [f] is a monadic computation. For instance, the hypothesis
[(do x <- a; b) s = OK y s' i] will generate the additional witnesses
[x], [s1], [i1], [i'] and the additional hypotheses
[a s = OK x s1 i1] and [b x s1 = OK y s' i'], reflecting the fact that
both monadic computations [a] and [b] succeeded.
*)
Remark bind_inversion:
forall (A B: Type) (f: mon A) (g: A -> mon B)
(y: B) (s1 s3: state) (i: state_incr s1 s3),
bind f g s1 = OK y s3 i ->
exists x, exists s2, exists i1, exists i2,
f s1 = OK x s2 i1 /\ g x s2 = OK y s3 i2.
Proof.
intros until i. unfold bind. destruct (f s1); intros.
discriminate.
exists a; exists s'; exists s.
destruct (g a s'); inv H.
exists s0; auto.
Qed.
Remark bind2_inversion:
forall (A B C: Type) (f: mon (A*B)) (g: A -> B -> mon C)
(z: C) (s1 s3: state) (i: state_incr s1 s3),
bind2 f g s1 = OK z s3 i ->
exists x, exists y, exists s2, exists i1, exists i2,
f s1 = OK (x, y) s2 i1 /\ g x y s2 = OK z s3 i2.
Proof.
unfold bind2; intros.
exploit bind_inversion; eauto.
intros [[x y] [s2 [i1 [i2 [P Q]]]]]. simpl in Q.
exists x; exists y; exists s2; exists i1; exists i2; auto.
Qed.
Ltac monadInv1 H :=
match type of H with
| (OK _ _ _ = OK _ _ _) =>
inversion H; clear H; try subst
| (Error _ _ = OK _ _ _) =>
discriminate
| (ret _ _ = OK _ _ _) =>
inversion H; clear H; try subst
| (error _ _ = OK _ _ _) =>
discriminate
| (bind ?F ?G ?S = OK ?X ?S' ?I) =>
let x := fresh "x" in (
let s := fresh "s" in (
let i1 := fresh "INCR" in (
let i2 := fresh "INCR" in (
let EQ1 := fresh "EQ" in (
let EQ2 := fresh "EQ" in (
destruct (bind_inversion _ _ F G X S S' I H) as [x [s [i1 [i2 [EQ1 EQ2]]]]];
clear H;
try (monadInv1 EQ2)))))))
| (bind2 ?F ?G ?S = OK ?X ?S' ?I) =>
let x1 := fresh "x" in (
let x2 := fresh "x" in (
let s := fresh "s" in (
let i1 := fresh "INCR" in (
let i2 := fresh "INCR" in (
let EQ1 := fresh "EQ" in (
let EQ2 := fresh "EQ" in (
destruct (bind2_inversion _ _ _ F G X S S' I H) as [x1 [x2 [s [i1 [i2 [EQ1 EQ2]]]]]];
clear H;
try (monadInv1 EQ2))))))))
end.
Ltac monadInv H :=
match type of H with
| (ret _ _ = OK _ _ _) => monadInv1 H
| (error _ _ = OK _ _ _) => monadInv1 H
| (bind ?F ?G ?S = OK ?X ?S' ?I) => monadInv1 H
| (bind2 ?F ?G ?S = OK ?X ?S' ?I) => monadInv1 H
| (?F _ _ _ _ _ _ _ _ = OK _ _ _) =>
((progress simpl in H) || unfold F in H); monadInv1 H
| (?F _ _ _ _ _ _ _ = OK _ _ _) =>
((progress simpl in H) || unfold F in H); monadInv1 H
| (?F _ _ _ _ _ _ = OK _ _ _) =>
((progress simpl in H) || unfold F in H); monadInv1 H
| (?F _ _ _ _ _ = OK _ _ _) =>
((progress simpl in H) || unfold F in H); monadInv1 H
| (?F _ _ _ _ = OK _ _ _) =>
((progress simpl in H) || unfold F in H); monadInv1 H
| (?F _ _ _ = OK _ _ _) =>
((progress simpl in H) || unfold F in H); monadInv1 H
| (?F _ _ = OK _ _ _) =>
((progress simpl in H) || unfold F in H); monadInv1 H
| (?F _ = OK _ _ _) =>
((progress simpl in H) || unfold F in H); monadInv1 H
end.
(** * Monotonicity properties of the state *)
Hint Resolve state_incr_refl: rtlg.
Lemma instr_at_incr:
forall s1 s2 n i,
state_incr s1 s2 -> s1.(st_code)!n = Some i -> s2.(st_code)!n = Some i.
Proof.
intros. inv H.
destruct (H3 n); congruence.
Qed.
Hint Resolve instr_at_incr: rtlg.
(** The following tactic saturates the hypotheses with
[state_incr] properties that follow by transitivity from
the known hypotheses. *)
Ltac saturateTrans :=
match goal with
| H1: state_incr ?x ?y, H2: state_incr ?y ?z |- _ =>
match goal with
| H: state_incr x z |- _ =>
fail 1
| _ =>
let i := fresh "INCR" in
(generalize (state_incr_trans x y z H1 H2); intro i;
saturateTrans)
end
| _ => idtac
end.
(** * Validity and freshness of registers *)
(** An RTL pseudo-register is valid in a given state if it was created
earlier, that is, it is less than the next fresh register of the state.
Otherwise, the pseudo-register is said to be fresh. *)
Definition reg_valid (r: reg) (s: state) : Prop :=
Plt r s.(st_nextreg).
Definition reg_fresh (r: reg) (s: state) : Prop :=
~(Plt r s.(st_nextreg)).
Lemma valid_fresh_absurd:
forall r s, reg_valid r s -> reg_fresh r s -> False.
Proof.
intros r s. unfold reg_valid, reg_fresh; case r; tauto.
Qed.
Hint Resolve valid_fresh_absurd: rtlg.
Lemma valid_fresh_different:
forall r1 r2 s, reg_valid r1 s -> reg_fresh r2 s -> r1 <> r2.
Proof.
unfold not; intros. subst r2. eauto with rtlg.
Qed.
Hint Resolve valid_fresh_different: rtlg.
Lemma reg_valid_incr:
forall r s1 s2, state_incr s1 s2 -> reg_valid r s1 -> reg_valid r s2.
Proof.
intros r s1 s2 INCR.
inversion INCR.
unfold reg_valid. intros; apply Plt_Ple_trans with (st_nextreg s1); auto.
Qed.
Hint Resolve reg_valid_incr: rtlg.
Lemma reg_fresh_decr:
forall r s1 s2, state_incr s1 s2 -> reg_fresh r s2 -> reg_fresh r s1.
Proof.
intros r s1 s2 INCR. inversion INCR.
unfold reg_fresh; unfold not; intros.
apply H4. apply Plt_Ple_trans with (st_nextreg s1); auto.
Qed.
Hint Resolve reg_fresh_decr: rtlg.
(** Validity of a list of registers. *)
Definition regs_valid (rl: list reg) (s: state) : Prop :=
forall r, In r rl -> reg_valid r s.
Lemma regs_valid_nil:
forall s, regs_valid nil s.
Proof.
intros; red; intros. elim H.
Qed.
Hint Resolve regs_valid_nil: rtlg.
Lemma regs_valid_cons:
forall r1 rl s,
reg_valid r1 s -> regs_valid rl s -> regs_valid (r1 :: rl) s.
Proof.
intros; red; intros. elim H1; intro. subst r1; auto. auto.
Qed.
Lemma regs_valid_incr:
forall s1 s2 rl, state_incr s1 s2 -> regs_valid rl s1 -> regs_valid rl s2.
Proof.
unfold regs_valid; intros; eauto with rtlg.
Qed.
Hint Resolve regs_valid_incr: rtlg.
(** A register is ``in'' a mapping if it is associated with a Cminor
local or let-bound variable. *)
Definition reg_in_map (m: mapping) (r: reg) : Prop :=
(exists id, m.(map_vars)!id = Some r) \/ In r m.(map_letvars).
(** A compilation environment (mapping) is valid in a given state if
the registers associated with Cminor local variables and let-bound variables
are valid in the state. *)
Definition map_valid (m: mapping) (s: state) : Prop :=
forall r, reg_in_map m r -> reg_valid r s.
Lemma map_valid_incr:
forall s1 s2 m,
state_incr s1 s2 -> map_valid m s1 -> map_valid m s2.
Proof.
unfold map_valid; intros; eauto with rtlg.
Qed.
Hint Resolve map_valid_incr: rtlg.
(** * Properties of basic operations over the state *)
(** Properties of [add_instr]. *)
Lemma add_instr_at:
forall s1 s2 incr i n,
add_instr i s1 = OK n s2 incr -> s2.(st_code)!n = Some i.
Proof.
intros. monadInv H. simpl. apply PTree.gss.
Qed.
Hint Resolve add_instr_at: rtlg.
(** Properties of [update_instr]. *)
Lemma update_instr_at:
forall n i s1 s2 incr u,
update_instr n i s1 = OK u s2 incr -> s2.(st_code)!n = Some i.
Proof.
intros. unfold update_instr in H.
destruct (plt n (st_nextnode s1)); try discriminate.
destruct (check_empty_node s1 n); try discriminate.
inv H. simpl. apply PTree.gss.
Qed.
Hint Resolve update_instr_at: rtlg.
(** Properties of [new_reg]. *)
Lemma new_reg_valid:
forall s1 s2 r i,
new_reg s1 = OK r s2 i -> reg_valid r s2.
Proof.
intros. monadInv H.
unfold reg_valid; simpl. apply Plt_succ.
Qed.
Hint Resolve new_reg_valid: rtlg.
Lemma new_reg_fresh:
forall s1 s2 r i,
new_reg s1 = OK r s2 i -> reg_fresh r s1.
Proof.
intros. monadInv H.
unfold reg_fresh; simpl.
exact (Plt_strict _).
Qed.
Hint Resolve new_reg_fresh: rtlg.
Lemma new_reg_not_in_map:
forall s1 s2 m r i,
new_reg s1 = OK r s2 i -> map_valid m s1 -> ~(reg_in_map m r).
Proof.
unfold not; intros; eauto with rtlg.
Qed.
Hint Resolve new_reg_not_in_map: rtlg.
(** * Properties of operations over compilation environments *)
Lemma init_mapping_valid:
forall s, map_valid init_mapping s.
Proof.
unfold map_valid, init_mapping.
intros s r [[id A] | B].
simpl in A. rewrite PTree.gempty in A; discriminate.
simpl in B. tauto.
Qed.
(** Properties of [find_var]. *)
Lemma find_var_in_map:
forall s1 s2 map name r i,
find_var map name s1 = OK r s2 i -> reg_in_map map r.
Proof.
intros until r. unfold find_var; caseEq (map.(map_vars)!name).
intros. inv H0. left; exists name; auto.
intros. inv H0.
Qed.
Hint Resolve find_var_in_map: rtlg.
Lemma find_var_valid:
forall s1 s2 map name r i,
find_var map name s1 = OK r s2 i -> map_valid map s1 -> reg_valid r s1.
Proof.
eauto with rtlg.
Qed.
Hint Resolve find_var_valid: rtlg.
(** Properties of [find_letvar]. *)
Lemma find_letvar_in_map:
forall s1 s2 map idx r i,
find_letvar map idx s1 = OK r s2 i -> reg_in_map map r.
Proof.
intros until r. unfold find_letvar.
caseEq (nth_error (map_letvars map) idx); intros; monadInv H0.
right; apply nth_error_in with idx; auto.
Qed.
Hint Resolve find_letvar_in_map: rtlg.
Lemma find_letvar_valid:
forall s1 s2 map idx r i,
find_letvar map idx s1 = OK r s2 i -> map_valid map s1 -> reg_valid r s1.
Proof.
eauto with rtlg.
Qed.
Hint Resolve find_letvar_valid: rtlg.
(** Properties of [add_var]. *)
Lemma add_var_valid:
forall s1 s2 map1 map2 name r i,
add_var map1 name s1 = OK (r, map2) s2 i ->
map_valid map1 s1 ->
reg_valid r s2 /\ map_valid map2 s2.
Proof.
intros. monadInv H.
split. eauto with rtlg.
inversion EQ. subst. red. intros r' [[id A] | B].
simpl in A. rewrite PTree.gsspec in A. destruct (peq id name).
inv A. eauto with rtlg.
apply reg_valid_incr with s1. eauto with rtlg.
apply H0. left; exists id; auto.
simpl in B. apply reg_valid_incr with s1. eauto with rtlg.
apply H0. right; auto.
Qed.
Lemma add_var_find:
forall s1 s2 map name r map' i,
add_var map name s1 = OK (r,map') s2 i -> map'.(map_vars)!name = Some r.
Proof.
intros. monadInv H. simpl. apply PTree.gss.
Qed.
Lemma add_vars_valid:
forall namel s1 s2 map1 map2 rl i,
add_vars map1 namel s1 = OK (rl, map2) s2 i ->
map_valid map1 s1 ->
regs_valid rl s2 /\ map_valid map2 s2.
Proof.
induction namel; simpl; intros; monadInv H.
split. red; simpl; intros; tauto. auto.
exploit IHnamel; eauto. intros [A B].
exploit add_var_valid; eauto. intros [C D].
split. apply regs_valid_cons; eauto with rtlg.
auto.
Qed.
Lemma add_var_letenv:
forall map1 id s1 r map2 s2 i,
add_var map1 id s1 = OK (r, map2) s2 i ->
map2.(map_letvars) = map1.(map_letvars).
Proof.
intros; monadInv H. reflexivity.
Qed.
Lemma add_vars_letenv:
forall il map1 s1 rl map2 s2 i,
add_vars map1 il s1 = OK (rl, map2) s2 i ->
map2.(map_letvars) = map1.(map_letvars).
Proof.
induction il; simpl; intros; monadInv H.
reflexivity.
transitivity (map_letvars x0).
eapply add_var_letenv; eauto.
eauto.
Qed.
(** Properties of [add_letvar]. *)
Lemma add_letvar_valid:
forall map s r,
map_valid map s ->
reg_valid r s ->
map_valid (add_letvar map r) s.
Proof.
intros; red; intros.
destruct H1 as [[id A]|B].
simpl in A. apply H. left; exists id; auto.
simpl in B. elim B; intro.
subst r0; auto. apply H. right; auto.
Qed.
(** * Properties of [alloc_reg] and [alloc_regs] *)
Lemma alloc_reg_valid:
forall a s1 s2 map r i,
map_valid map s1 ->
alloc_reg map a s1 = OK r s2 i -> reg_valid r s2.
Proof.
intros until r. unfold alloc_reg.
case a; eauto with rtlg.
Qed.
Hint Resolve alloc_reg_valid: rtlg.
Lemma alloc_reg_fresh_or_in_map:
forall map a s r s' i,
map_valid map s ->
alloc_reg map a s = OK r s' i ->
reg_in_map map r \/ reg_fresh r s.
Proof.
intros until s'. unfold alloc_reg.
destruct a; intros; try (right; eauto with rtlg; fail).
left; eauto with rtlg.
left; eauto with rtlg.
Qed.
Lemma alloc_regs_valid:
forall al s1 s2 map rl i,
map_valid map s1 ->
alloc_regs map al s1 = OK rl s2 i ->
regs_valid rl s2.
Proof.
induction al; simpl; intros; monadInv H0.
apply regs_valid_nil.
apply regs_valid_cons. eauto with rtlg. eauto with rtlg.
Qed.
Hint Resolve alloc_regs_valid: rtlg.
Lemma alloc_regs_fresh_or_in_map:
forall map al s rl s' i,
map_valid map s ->
alloc_regs map al s = OK rl s' i ->
forall r, In r rl -> reg_in_map map r \/ reg_fresh r s.
Proof.
induction al; simpl; intros; monadInv H0.
elim H1.
elim H1; intro.
subst r.
eapply alloc_reg_fresh_or_in_map; eauto.
exploit IHal. 2: eauto. apply map_valid_incr with s; eauto with rtlg. eauto.
intros [A|B]. auto. right; eauto with rtlg.
Qed.
Lemma alloc_optreg_valid:
forall dest s1 s2 map r i,
map_valid map s1 ->
alloc_optreg map dest s1 = OK r s2 i -> reg_valid r s2.
Proof.
intros until r. unfold alloc_reg.
case dest; eauto with rtlg.
Qed.
Hint Resolve alloc_optreg_valid: rtlg.
Lemma alloc_optreg_fresh_or_in_map:
forall map dest s r s' i,
map_valid map s ->
alloc_optreg map dest s = OK r s' i ->
reg_in_map map r \/ reg_fresh r s.
Proof.
intros until s'. unfold alloc_optreg. destruct dest; intros.
left; eauto with rtlg.
right; eauto with rtlg.
Qed.
(** A register is an adequate target for holding the value of an
expression if
- either the register is associated with a Cminor let-bound variable
or a Cminor local variable;
- or the register is not associated with any Cminor variable
and does not belong to the preserved set [pr]. *)
Inductive target_reg_ok (map: mapping) (pr: list reg): expr -> reg -> Prop :=
| target_reg_var:
forall id r,
map.(map_vars)!id = Some r ->
target_reg_ok map pr (Evar id) r
| target_reg_letvar:
forall idx r,
nth_error map.(map_letvars) idx = Some r ->
target_reg_ok map pr (Eletvar idx) r
| target_reg_other:
forall a r,
~(reg_in_map map r) -> ~In r pr ->
target_reg_ok map pr a r.
Inductive target_regs_ok (map: mapping) (pr: list reg): exprlist -> list reg -> Prop :=
| target_regs_nil:
target_regs_ok map pr Enil nil
| target_regs_cons: forall a1 al r1 rl,
target_reg_ok map pr a1 r1 ->
target_regs_ok map (r1 :: pr) al rl ->
target_regs_ok map pr (Econs a1 al) (r1 :: rl).
Lemma target_reg_ok_append:
forall map pr a r,
target_reg_ok map pr a r ->
forall pr',
(forall r', In r' pr' -> reg_in_map map r' \/ r' <> r) ->
target_reg_ok map (pr' ++ pr) a r.
Proof.
induction 1; intros.
constructor; auto.
constructor; auto.
constructor; auto. red; intros.
elim (in_app_or _ _ _ H2); intro.
generalize (H1 _ H3). tauto. tauto.
Qed.
Lemma target_reg_ok_cons:
forall map pr a r,
target_reg_ok map pr a r ->
forall r',
reg_in_map map r' \/ r' <> r ->
target_reg_ok map (r' :: pr) a r.
Proof.
intros. change (r' :: pr) with ((r' :: nil) ++ pr).
apply target_reg_ok_append; auto.
intros r'' [A|B]. subst r''; auto. contradiction.
Qed.
Lemma new_reg_target_ok:
forall map pr s1 a r s2 i,
map_valid map s1 ->
regs_valid pr s1 ->
new_reg s1 = OK r s2 i ->
target_reg_ok map pr a r.
Proof.
intros. constructor.
red; intro. apply valid_fresh_absurd with r s1.
eauto with rtlg. eauto with rtlg.
red; intro. apply valid_fresh_absurd with r s1.
auto. eauto with rtlg.
Qed.
Lemma alloc_reg_target_ok:
forall map pr s1 a r s2 i,
map_valid map s1 ->
regs_valid pr s1 ->
alloc_reg map a s1 = OK r s2 i ->
target_reg_ok map pr a r.
Proof.
intros. unfold alloc_reg in H1. destruct a;
try (eapply new_reg_target_ok; eauto; fail).
(* Evar *)
generalize H1; unfold find_var. caseEq (map_vars map)!i0; intros.
inv H3. constructor. auto. inv H3.
(* Elet *)
generalize H1; unfold find_letvar. caseEq (nth_error (map_letvars map) n); intros.
inv H3. constructor. auto. inv H3.
Qed.
Lemma alloc_regs_target_ok:
forall map al pr s1 rl s2 i,
map_valid map s1 ->
regs_valid pr s1 ->
alloc_regs map al s1 = OK rl s2 i ->
target_regs_ok map pr al rl.
Proof.
induction al; intros; monadInv H1.
constructor.
constructor.
eapply alloc_reg_target_ok; eauto.
apply IHal with s s2 INCR1; eauto with rtlg.
apply regs_valid_cons; eauto with rtlg.
Qed.
Hint Resolve new_reg_target_ok alloc_reg_target_ok alloc_regs_target_ok: rtlg.
(** The following predicate is a variant of [target_reg_ok] used
to characterize registers that are adequate for holding the return
value of a function. *)
Inductive return_reg_ok: state -> mapping -> option reg -> Prop :=
| return_reg_ok_none:
forall s map,
return_reg_ok s map None
| return_reg_ok_some:
forall s map r,
~(reg_in_map map r) -> reg_valid r s ->
return_reg_ok s map (Some r).
Lemma return_reg_ok_incr:
forall s map rret, return_reg_ok s map rret ->
forall s', state_incr s s' -> return_reg_ok s' map rret.
Proof.
induction 1; intros; econstructor; eauto with rtlg.
Qed.
Hint Resolve return_reg_ok_incr: rtlg.
Lemma new_reg_return_ok:
forall s1 r s2 map sig i,
new_reg s1 = OK r s2 i ->
map_valid map s1 ->
return_reg_ok s2 map (ret_reg sig r).
Proof.
intros. unfold ret_reg. destruct (sig_res sig); constructor.
eauto with rtlg. eauto with rtlg.
Qed.
(** * Relational specification of the translation *)
(** We now define inductive predicates that characterize the fact that
the control-flow graph produced by compilation of a Cminor function
contains sub-graphs that correspond to the translation of each
Cminor expression or statement in the original code. *)
(** [tr_move c ns rs nd rd] holds if the graph [c], between nodes [ns]
and [nd], contains instructions that move the value of register [rs]
to register [rd]. *)
Inductive tr_move (c: code):
node -> reg -> node -> reg -> Prop :=
| tr_move_0: forall n r,
tr_move c n r n r
| tr_move_1: forall ns rs nd rd,
c!ns = Some (Iop Omove (rs :: nil) rd nd) ->
tr_move c ns rs nd rd.
(** [reg_map_ok map r optid] characterizes the destination register
for an expression: if [optid] is [None], the destination is
a fresh register (not associated with any variable);
if [optid] is [Some id], the destination is the register
associated with local variable [id]. *)
Inductive reg_map_ok: mapping -> reg -> option ident -> Prop :=
| reg_map_ok_novar: forall map rd,
~reg_in_map map rd ->
reg_map_ok map rd None
| reg_map_ok_somevar: forall map rd id,
map.(map_vars)!id = Some rd ->
reg_map_ok map rd (Some id).
Hint Resolve reg_map_ok_novar: rtlg.
(** [tr_expr c map pr expr ns nd rd optid] holds if the graph [c],
between nodes [ns] and [nd], contains instructions that compute the
value of the Cminor expression [expr] and deposit this value in
register [rd]. [map] is a mapping from Cminor variables to the
corresponding RTL registers. [pr] is a list of RTL registers whose
values must be preserved during this computation. All registers
mentioned in [map] must also be preserved during this computation.
(Exception: if [optid = Some id], the register associated with
local variable [id] can be assigned, but only at the end of the
expression evaluation.)
To ensure this property, we demand that the result registers of the
instructions appearing on the path from [ns] to [nd] are not in [pr],
and moreover that they satisfy the [reg_map_ok] predicate.
*)
Inductive tr_expr (c: code):
mapping -> list reg -> expr -> node -> node -> reg -> option ident -> Prop :=
| tr_Evar: forall map pr id ns nd r rd dst,
map.(map_vars)!id = Some r ->
((rd = r /\ dst = None) \/ (reg_map_ok map rd dst /\ ~In rd pr)) ->
tr_move c ns r nd rd ->
tr_expr c map pr (Evar id) ns nd rd dst
| tr_Eop: forall map pr op al ns nd rd n1 rl dst,
tr_exprlist c map pr al ns n1 rl ->
c!n1 = Some (Iop op rl rd nd) ->
reg_map_ok map rd dst -> ~In rd pr ->
tr_expr c map pr (Eop op al) ns nd rd dst
| tr_Eload: forall map pr chunk addr al ns nd rd n1 rl dst,
tr_exprlist c map pr al ns n1 rl ->
c!n1 = Some (Iload chunk addr rl rd nd) ->
reg_map_ok map rd dst -> ~In rd pr ->
tr_expr c map pr (Eload chunk addr al) ns nd rd dst
| tr_Econdition: forall map pr b ifso ifnot ns nd rd ntrue nfalse dst,
tr_condition c map pr b ns ntrue nfalse ->
tr_expr c map pr ifso ntrue nd rd dst ->
tr_expr c map pr ifnot nfalse nd rd dst ->
tr_expr c map pr (Econdition b ifso ifnot) ns nd rd dst
| tr_Elet: forall map pr b1 b2 ns nd rd n1 r dst,
~reg_in_map map r ->
tr_expr c map pr b1 ns n1 r None ->
tr_expr c (add_letvar map r) pr b2 n1 nd rd dst ->
tr_expr c map pr (Elet b1 b2) ns nd rd dst
| tr_Eletvar: forall map pr n ns nd rd r dst,
List.nth_error map.(map_letvars) n = Some r ->
((rd = r /\ dst = None) \/ (reg_map_ok map rd dst /\ ~In rd pr)) ->
tr_move c ns r nd rd ->
tr_expr c map pr (Eletvar n) ns nd rd dst
(** [tr_condition c map pr cond ns ntrue nfalse rd] holds if the graph [c],
starting at node [ns], contains instructions that compute the truth
value of the Cminor conditional expression [cond] and terminate
on node [ntrue] if the condition holds and on node [nfalse] otherwise. *)
with tr_condition (c: code):
mapping -> list reg -> condexpr -> node -> node -> node -> Prop :=
| tr_CEtrue: forall map pr ntrue nfalse,
tr_condition c map pr CEtrue ntrue ntrue nfalse
| tr_CEfalse: forall map pr ntrue nfalse,
tr_condition c map pr CEfalse nfalse ntrue nfalse
| tr_CEcond: forall map pr cond bl ns ntrue nfalse n1 rl,
tr_exprlist c map pr bl ns n1 rl ->
c!n1 = Some (Icond cond rl ntrue nfalse) ->
tr_condition c map pr (CEcond cond bl) ns ntrue nfalse
| tr_CEcondition: forall map pr b ifso ifnot ns ntrue nfalse ntrue' nfalse',
tr_condition c map pr b ns ntrue' nfalse' ->
tr_condition c map pr ifso ntrue' ntrue nfalse ->
tr_condition c map pr ifnot nfalse' ntrue nfalse ->
tr_condition c map pr (CEcondition b ifso ifnot) ns ntrue nfalse
(** [tr_exprlist c map pr exprs ns nd rds] holds if the graph [c],
between nodes [ns] and [nd], contains instructions that compute the values
of the list of Cminor expression [exprlist] and deposit these values
in registers [rds]. *)
with tr_exprlist (c: code):
mapping -> list reg -> exprlist -> node -> node -> list reg -> Prop :=
| tr_Enil: forall map pr n,
tr_exprlist c map pr Enil n n nil
| tr_Econs: forall map pr a1 al ns nd r1 rl n1,
tr_expr c map pr a1 ns n1 r1 None ->
tr_exprlist c map (r1 :: pr) al n1 nd rl ->
tr_exprlist c map pr (Econs a1 al) ns nd (r1 :: rl).
(** Auxiliary for the compilation of [switch] statements. *)
Definition tr_jumptable (nexits: list node) (tbl: list nat) (ttbl: list node) : Prop :=
forall v act,
list_nth_z tbl v = Some act ->
exists n, list_nth_z ttbl v = Some n /\ nth_error nexits act = Some n.
Inductive tr_switch
(c: code) (map: mapping) (r: reg) (nexits: list node):
comptree -> node -> Prop :=
| tr_switch_action: forall act n,
nth_error nexits act = Some n ->
tr_switch c map r nexits (CTaction act) n
| tr_switch_ifeq: forall key act t' n ncont nfound,
tr_switch c map r nexits t' ncont ->
nth_error nexits act = Some nfound ->
c!n = Some(Icond (Ccompimm Ceq key) (r :: nil) nfound ncont) ->
tr_switch c map r nexits (CTifeq key act t') n
| tr_switch_iflt: forall key t1 t2 n n1 n2,
tr_switch c map r nexits t1 n1 ->
tr_switch c map r nexits t2 n2 ->
c!n = Some(Icond (Ccompuimm Clt key) (r :: nil) n1 n2) ->
tr_switch c map r nexits (CTiflt key t1 t2) n
| tr_switch_jumptable: forall ofs sz tbl t n n1 n2 n3 rt ttbl,
~reg_in_map map rt -> rt <> r ->
c!n = Some(Iop (if Int.eq ofs Int.zero then Omove else Oaddimm (Int.neg ofs))
(r ::nil) rt n1) ->
c!n1 = Some(Icond (Ccompuimm Clt sz) (rt :: nil) n2 n3) ->
c!n2 = Some(Ijumptable rt ttbl) ->
tr_switch c map r nexits t n3 ->
tr_jumptable nexits tbl ttbl ->
tr_switch c map r nexits (CTjumptable ofs sz tbl t) n.
(** [tr_stmt c map stmt ns ncont nexits nret rret] holds if the graph [c],
starting at node [ns], contains instructions that perform the Cminor
statement [stmt]. These instructions branch to node [ncont] if
the statement terminates normally, to the [n]-th node in [nexits]
if the statement terminates prematurely on a [exit n] statement,
and to [nret] if the statement terminates prematurely on a [return]
statement. Moreover, if the [return] statement has an argument,
its value is deposited in register [rret]. *)
Inductive tr_stmt (c: code) (map: mapping):
stmt -> node -> node -> list node -> labelmap -> node -> option reg -> Prop :=
| tr_Sskip: forall ns nexits ngoto nret rret,
tr_stmt c map Sskip ns ns nexits ngoto nret rret
| tr_Sassign: forall id a ns nd nexits ngoto nret rret r,
map.(map_vars)!id = Some r ->
tr_expr c map nil a ns nd r (Some id) ->
tr_stmt c map (Sassign id a) ns nd nexits ngoto nret rret
| tr_Sstore: forall chunk addr al b ns nd nexits ngoto nret rret rd n1 rl n2,
tr_exprlist c map nil al ns n1 rl ->
tr_expr c map rl b n1 n2 rd None ->
c!n2 = Some (Istore chunk addr rl rd nd) ->
tr_stmt c map (Sstore chunk addr al b) ns nd nexits ngoto nret rret
| tr_Scall: forall optid sig b cl ns nd nexits ngoto nret rret rd n1 rf n2 rargs,
tr_expr c map nil b ns n1 rf None ->
tr_exprlist c map (rf :: nil) cl n1 n2 rargs ->
c!n2 = Some (Icall sig (inl _ rf) rargs rd nd) ->
reg_map_ok map rd optid ->
tr_stmt c map (Scall optid sig b cl) ns nd nexits ngoto nret rret
| tr_Stailcall: forall sig b cl ns nd nexits ngoto nret rret n1 rf n2 rargs,
tr_expr c map nil b ns n1 rf None ->
tr_exprlist c map (rf :: nil) cl n1 n2 rargs ->
c!n2 = Some (Itailcall sig (inl _ rf) rargs) ->
tr_stmt c map (Stailcall sig b cl) ns nd nexits ngoto nret rret
| tr_Sbuiltin: forall optid ef al ns nd nexits ngoto nret rret rd n1 rargs,
tr_exprlist c map nil al ns n1 rargs ->
c!n1 = Some (Ibuiltin ef rargs rd nd) ->
reg_map_ok map rd optid ->
tr_stmt c map (Sbuiltin optid ef al) ns nd nexits ngoto nret rret
| tr_Sseq: forall s1 s2 ns nd nexits ngoto nret rret n,
tr_stmt c map s2 n nd nexits ngoto nret rret ->
tr_stmt c map s1 ns n nexits ngoto nret rret ->
tr_stmt c map (Sseq s1 s2) ns nd nexits ngoto nret rret
| tr_Sifthenelse: forall a strue sfalse ns nd nexits ngoto nret rret ntrue nfalse,
tr_stmt c map strue ntrue nd nexits ngoto nret rret ->
tr_stmt c map sfalse nfalse nd nexits ngoto nret rret ->
tr_condition c map nil a ns ntrue nfalse ->
tr_stmt c map (Sifthenelse a strue sfalse) ns nd nexits ngoto nret rret
| tr_Sloop: forall sbody ns nd nexits ngoto nret rret nloop,
tr_stmt c map sbody nloop ns nexits ngoto nret rret ->
c!ns = Some(Inop nloop) ->
tr_stmt c map (Sloop sbody) ns nd nexits ngoto nret rret
| tr_Sblock: forall sbody ns nd nexits ngoto nret rret,
tr_stmt c map sbody ns nd (nd :: nexits) ngoto nret rret ->
tr_stmt c map (Sblock sbody) ns nd nexits ngoto nret rret
| tr_Sexit: forall n ns nd nexits ngoto nret rret,
nth_error nexits n = Some ns ->
tr_stmt c map (Sexit n) ns nd nexits ngoto nret rret
| tr_Sswitch: forall a cases default ns nd nexits ngoto nret rret n r t,
validate_switch default cases t = true ->
tr_expr c map nil a ns n r None ->
tr_switch c map r nexits t n ->
tr_stmt c map (Sswitch a cases default) ns nd nexits ngoto nret rret
| tr_Sreturn_none: forall nret nd nexits ngoto,
tr_stmt c map (Sreturn None) nret nd nexits ngoto nret None
| tr_Sreturn_some: forall a ns nd nexits ngoto nret rret,
tr_expr c map nil a ns nret rret None ->
tr_stmt c map (Sreturn (Some a)) ns nd nexits ngoto nret (Some rret)
| tr_Slabel: forall lbl s ns nd nexits ngoto nret rret n,
ngoto!lbl = Some n ->
c!n = Some (Inop ns) ->
tr_stmt c map s ns nd nexits ngoto nret rret ->
tr_stmt c map (Slabel lbl s) ns nd nexits ngoto nret rret
| tr_Sgoto: forall lbl ns nd nexits ngoto nret rret,
ngoto!lbl = Some ns ->
tr_stmt c map (Sgoto lbl) ns nd nexits ngoto nret rret.
(** [tr_function f tf] specifies the RTL function [tf] that
[RTLgen.transl_function] returns. *)
Inductive tr_function: CminorSel.function -> RTL.function -> Prop :=
| tr_function_intro:
forall f code rparams map1 s0 s1 i1 rvars map2 s2 i2 nentry ngoto nret rret orret,
add_vars init_mapping f.(CminorSel.fn_params) s0 = OK (rparams, map1) s1 i1 ->
add_vars map1 f.(CminorSel.fn_vars) s1 = OK (rvars, map2) s2 i2 ->
orret = ret_reg f.(CminorSel.fn_sig) rret ->
tr_stmt code map2 f.(CminorSel.fn_body) nentry nret nil ngoto nret orret ->
code!nret = Some(Ireturn orret) ->
tr_function f (RTL.mkfunction
f.(CminorSel.fn_sig)
rparams
f.(CminorSel.fn_stackspace)
code
nentry).
(** * Correctness proof of the translation functions *)
(** We now show that the translation functions in module [RTLgen]
satisfy the specifications given above as inductive predicates. *)
Lemma tr_move_incr:
forall s1 s2, state_incr s1 s2 ->
forall ns rs nd rd,
tr_move s1.(st_code) ns rs nd rd ->
tr_move s2.(st_code) ns rs nd rd.
Proof.
induction 2; econstructor; eauto with rtlg.
Qed.
Lemma tr_expr_incr:
forall s1 s2, state_incr s1 s2 ->
forall map pr a ns nd rd dst,
tr_expr s1.(st_code) map pr a ns nd rd dst ->
tr_expr s2.(st_code) map pr a ns nd rd dst
with tr_condition_incr:
forall s1 s2, state_incr s1 s2 ->
forall map pr a ns ntrue nfalse,
tr_condition s1.(st_code) map pr a ns ntrue nfalse ->
tr_condition s2.(st_code) map pr a ns ntrue nfalse
with tr_exprlist_incr:
forall s1 s2, state_incr s1 s2 ->
forall map pr al ns nd rl,
tr_exprlist s1.(st_code) map pr al ns nd rl ->
tr_exprlist s2.(st_code) map pr al ns nd rl.
Proof.
intros s1 s2 EXT.
pose (AT := fun pc i => instr_at_incr s1 s2 pc i EXT).
induction 1; econstructor; eauto.
eapply tr_move_incr; eauto.
eapply tr_move_incr; eauto.
intros s1 s2 EXT.
pose (AT := fun pc i => instr_at_incr s1 s2 pc i EXT).
induction 1; econstructor; eauto.
intros s1 s2 EXT.
pose (AT := fun pc i => instr_at_incr s1 s2 pc i EXT).
induction 1; econstructor; eauto.
Qed.
Lemma add_move_charact:
forall s ns rs nd rd s' i,
add_move rs rd nd s = OK ns s' i ->
tr_move s'.(st_code) ns rs nd rd.
Proof.
intros. unfold add_move in H. destruct (Reg.eq rs rd).
inv H. constructor.
constructor. eauto with rtlg.
Qed.
Lemma transl_expr_charact:
forall a map rd nd s ns s' pr INCR
(TR: transl_expr map a rd nd s = OK ns s' INCR)
(WF: map_valid map s)
(OK: target_reg_ok map pr a rd)
(VALID: regs_valid pr s)
(VALID2: reg_valid rd s),
tr_expr s'.(st_code) map pr a ns nd rd None
with transl_condexpr_charact:
forall a map ntrue nfalse s ns s' pr INCR
(TR: transl_condition map a ntrue nfalse s = OK ns s' INCR)
(VALID: regs_valid pr s)
(WF: map_valid map s),
tr_condition s'.(st_code) map pr a ns ntrue nfalse
with transl_exprlist_charact:
forall al map rl nd s ns s' pr INCR
(TR: transl_exprlist map al rl nd s = OK ns s' INCR)
(WF: map_valid map s)
(OK: target_regs_ok map pr al rl)
(VALID1: regs_valid pr s)
(VALID2: regs_valid rl s),
tr_exprlist s'.(st_code) map pr al ns nd rl.
Proof.
induction a; intros; try (monadInv TR); saturateTrans.
(* Evar *)
generalize EQ; unfold find_var. caseEq (map_vars map)!i; intros; inv EQ1.
econstructor; eauto.
inv OK. left; split; congruence. right; eauto with rtlg.
eapply add_move_charact; eauto.
(* Eop *)
inv OK.
econstructor; eauto with rtlg.
eapply transl_exprlist_charact; eauto with rtlg.
(* Eload *)
inv OK.
econstructor; eauto with rtlg.
eapply transl_exprlist_charact; eauto with rtlg.
(* Econdition *)
inv OK.
econstructor; eauto with rtlg.
apply tr_expr_incr with s1; auto.
eapply transl_expr_charact; eauto 2 with rtlg. constructor; auto.
apply tr_expr_incr with s0; auto.
eapply transl_expr_charact; eauto 2 with rtlg. constructor; auto.
(* Elet *)
inv OK.
econstructor. eapply new_reg_not_in_map; eauto with rtlg.
eapply transl_expr_charact; eauto 3 with rtlg.
apply tr_expr_incr with s1; auto.
eapply transl_expr_charact. eauto.
apply add_letvar_valid; eauto with rtlg.
constructor; auto.
red; unfold reg_in_map. simpl. intros [[id A] | [B | C]].
elim H. left; exists id; auto.
subst x. apply valid_fresh_absurd with rd s. auto. eauto with rtlg.
elim H. right; auto.
eauto with rtlg. eauto with rtlg.
(* Eletvar *)
generalize EQ; unfold find_letvar. caseEq (nth_error (map_letvars map) n); intros; inv EQ0.
monadInv EQ1.
econstructor; eauto with rtlg.
inv OK. left; split; congruence. right; eauto with rtlg.
eapply add_move_charact; eauto.
monadInv EQ1.
(* Conditions *)
induction a; intros; try (monadInv TR); saturateTrans.
(* CEtrue *)
constructor.
(* CEfalse *)
constructor.
(* CEcond *)
econstructor; eauto with rtlg.
eapply transl_exprlist_charact; eauto with rtlg.
(* CEcondition *)
econstructor.
eapply transl_condexpr_charact; eauto with rtlg.
apply tr_condition_incr with s1; auto.
eapply transl_condexpr_charact; eauto with rtlg.
apply tr_condition_incr with s0; auto.
eapply transl_condexpr_charact; eauto with rtlg.
(* Lists *)
induction al; intros; try (monadInv TR); saturateTrans.
(* Enil *)
destruct rl; inv TR. constructor.
(* Econs *)
destruct rl; simpl in TR; monadInv TR. inv OK.
econstructor.
eapply transl_expr_charact; eauto with rtlg.
generalize (VALID2 r (in_eq _ _)). eauto with rtlg.
apply tr_exprlist_incr with s0; auto.
eapply transl_exprlist_charact; eauto with rtlg.
apply regs_valid_cons. apply VALID2. auto with coqlib. auto.
red; intros; apply VALID2; auto with coqlib.
Qed.
(** A variant of [transl_expr_charact], for use when the destination
register is the one associated with a variable. *)
Lemma transl_expr_assign_charact:
forall id a map rd nd s ns s' INCR
(TR: transl_expr map a rd nd s = OK ns s' INCR)
(WF: map_valid map s)
(OK: reg_map_ok map rd (Some id)),
tr_expr s'.(st_code) map nil a ns nd rd (Some id).
Proof.
induction a; intros; monadInv TR; saturateTrans.
(* Evar *)
generalize EQ; unfold find_var. caseEq (map_vars map)!i; intros; inv EQ1.
econstructor; eauto.
eapply add_move_charact; eauto.
(* Eop *)
econstructor; eauto with rtlg.
eapply transl_exprlist_charact; eauto with rtlg.
(* Eload *)
econstructor; eauto with rtlg.
eapply transl_exprlist_charact; eauto with rtlg.
(* Econdition *)
econstructor; eauto with rtlg.
eapply transl_condexpr_charact; eauto with rtlg.
apply tr_expr_incr with s1; auto.
eapply IHa1; eauto 2 with rtlg.
apply tr_expr_incr with s0; auto.
eapply IHa2; eauto 2 with rtlg.
(* Elet *)
econstructor. eapply new_reg_not_in_map; eauto with rtlg.
eapply transl_expr_charact; eauto 3 with rtlg.
apply tr_expr_incr with s1; auto.
eapply IHa2; eauto.
apply add_letvar_valid; eauto with rtlg.
inv OK. constructor. auto.
(* Eletvar *)
generalize EQ; unfold find_letvar. caseEq (nth_error (map_letvars map) n); intros; inv EQ0.
monadInv EQ1.
econstructor; eauto with rtlg.
eapply add_move_charact; eauto.
monadInv EQ1.
Qed.
Lemma alloc_optreg_map_ok:
forall map optid s1 r s2 i,
map_valid map s1 ->
alloc_optreg map optid s1 = OK r s2 i ->
reg_map_ok map r optid.
Proof.
unfold alloc_optreg; intros. destruct optid.
constructor. unfold find_var in H0. destruct (map_vars map)!i0; monadInv H0. auto.
constructor. eapply new_reg_not_in_map; eauto.
Qed.
Lemma tr_switch_incr:
forall s1 s2, state_incr s1 s2 ->
forall map r nexits t ns,
tr_switch s1.(st_code) map r nexits t ns ->
tr_switch s2.(st_code) map r nexits t ns.
Proof.
induction 2; econstructor; eauto with rtlg.
Qed.
Lemma tr_stmt_incr:
forall s1 s2, state_incr s1 s2 ->
forall map s ns nd nexits ngoto nret rret,
tr_stmt s1.(st_code) map s ns nd nexits ngoto nret rret ->
tr_stmt s2.(st_code) map s ns nd nexits ngoto nret rret.
Proof.
intros s1 s2 EXT.
generalize tr_expr_incr tr_condition_incr tr_exprlist_incr; intros I1 I2 I3.
pose (AT := fun pc i => instr_at_incr s1 s2 pc i EXT).
induction 1; econstructor; eauto.
eapply tr_switch_incr; eauto.
Qed.
Lemma transl_exit_charact:
forall nexits n s ne s' incr,
transl_exit nexits n s = OK ne s' incr ->
nth_error nexits n = Some ne /\ s' = s.
Proof.
intros until incr. unfold transl_exit.
destruct (nth_error nexits n); intro; monadInv H. auto.
Qed.
Lemma transl_jumptable_charact:
forall nexits tbl s nl s' incr,
transl_jumptable nexits tbl s = OK nl s' incr ->
tr_jumptable nexits tbl nl /\ s' = s.
Proof.
induction tbl; intros.
monadInv H. split. red. simpl. intros. discriminate. auto.
monadInv H. exploit transl_exit_charact; eauto. intros [A B].
exploit IHtbl; eauto. intros [C D].
split. red. simpl. intros. destruct (zeq v 0). inv H. exists x; auto. auto.
congruence.
Qed.
Lemma transl_switch_charact:
forall map r nexits t s ns s' incr,
map_valid map s -> reg_valid r s ->
transl_switch r nexits t s = OK ns s' incr ->
tr_switch s'.(st_code) map r nexits t ns.
Proof.
induction t; simpl; intros; saturateTrans.
exploit transl_exit_charact; eauto. intros [A B].
econstructor; eauto.
monadInv H1.
exploit transl_exit_charact; eauto. intros [A B]. subst s1.
econstructor; eauto 2 with rtlg.
apply tr_switch_incr with s0; eauto with rtlg.
monadInv H1.
econstructor; eauto 2 with rtlg.
apply tr_switch_incr with s1; eauto with rtlg.
apply tr_switch_incr with s0; eauto with rtlg.
monadInv H1.
exploit transl_jumptable_charact; eauto. intros [A B]. subst s1.
econstructor. eauto with rtlg.
apply sym_not_equal. apply valid_fresh_different with s; eauto with rtlg.
eauto with rtlg. eauto with rtlg. eauto with rtlg.
apply tr_switch_incr with s3. eauto with rtlg.
eapply IHt with (s := s2); eauto with rtlg.
auto.
Qed.
Lemma transl_stmt_charact:
forall map stmt nd nexits ngoto nret rret s ns s' INCR
(TR: transl_stmt map stmt nd nexits ngoto nret rret s = OK ns s' INCR)
(WF: map_valid map s)
(OK: return_reg_ok s map rret),
tr_stmt s'.(st_code) map stmt ns nd nexits ngoto nret rret.
Proof.
induction stmt; intros; simpl in TR; try (monadInv TR); saturateTrans.
(* Sskip *)
constructor.
(* Sassign *)
revert EQ. unfold find_var. case_eq (map_vars map)!i; intros; monadInv EQ.
econstructor. eauto.
eapply transl_expr_assign_charact; eauto with rtlg.
constructor. auto.
(* Sstore *)
econstructor; eauto with rtlg.
eapply transl_exprlist_charact; eauto 3 with rtlg.
apply tr_expr_incr with s3; auto.
eapply transl_expr_charact; eauto 4 with rtlg.
(* Scall *)
econstructor; eauto 4 with rtlg.
eapply transl_expr_charact; eauto 3 with rtlg.
apply tr_exprlist_incr with s5. auto.
eapply transl_exprlist_charact; eauto 3 with rtlg.
eapply alloc_regs_target_ok with (s1 := s1); eauto 3 with rtlg.
apply regs_valid_cons; eauto 3 with rtlg.
apply regs_valid_incr with s1; eauto 3 with rtlg.
apply regs_valid_cons; eauto 3 with rtlg.
apply regs_valid_incr with s2; eauto 3 with rtlg.
eapply alloc_optreg_map_ok with (s1 := s2); eauto 3 with rtlg.
(* Stailcall *)
assert (RV: regs_valid (x :: nil) s1).
apply regs_valid_cons; eauto 3 with rtlg.
econstructor; eauto 3 with rtlg.
eapply transl_expr_charact; eauto 3 with rtlg.
apply tr_exprlist_incr with s4; auto.
eapply transl_exprlist_charact; eauto 4 with rtlg.
(* Sbuiltin *)
econstructor; eauto 4 with rtlg.
eapply transl_exprlist_charact; eauto 3 with rtlg.
eapply alloc_optreg_map_ok with (s1 := s0); eauto with rtlg.
(* Sseq *)
econstructor.
apply tr_stmt_incr with s0; auto.
eapply IHstmt2; eauto with rtlg.
eapply IHstmt1; eauto with rtlg.
(* Sifthenelse *)
destruct (more_likely c stmt1 stmt2); monadInv TR.
econstructor.
apply tr_stmt_incr with s1; auto.
eapply IHstmt1; eauto with rtlg.
apply tr_stmt_incr with s0; auto.
eapply IHstmt2; eauto with rtlg.
eapply transl_condexpr_charact; eauto with rtlg.
econstructor.
apply tr_stmt_incr with s0; auto.
eapply IHstmt1; eauto with rtlg.
apply tr_stmt_incr with s1; auto.
eapply IHstmt2; eauto with rtlg.
eapply transl_condexpr_charact; eauto with rtlg.
(* Sloop *)
econstructor.
apply tr_stmt_incr with s1; auto.
eapply IHstmt; eauto with rtlg.
eauto with rtlg.
(* Sblock *)
econstructor.
eapply IHstmt; eauto with rtlg.
(* Sexit *)
exploit transl_exit_charact; eauto. intros [A B].
econstructor. eauto.
(* Sswitch *)
generalize TR; clear TR.
set (t := compile_switch n l).
caseEq (validate_switch n l t); intro VALID; intros.
monadInv TR.
econstructor; eauto with rtlg.
eapply transl_expr_charact; eauto with rtlg.
apply tr_switch_incr with s1; auto with rtlg.
eapply transl_switch_charact with (s := s0); eauto with rtlg.
monadInv TR.
(* Sreturn *)
destruct o; destruct rret; inv TR.
inv OK.
econstructor; eauto with rtlg.
eapply transl_expr_charact; eauto with rtlg.
constructor. auto. simpl; tauto.
constructor.
(* Slabel *)
generalize EQ0; clear EQ0. case_eq (ngoto!l); intros; monadInv EQ0.
generalize EQ1; clear EQ1. unfold handle_error.
case_eq (update_instr n (Inop ns) s0); intros; inv EQ1.
econstructor. eauto. eauto with rtlg.
eapply tr_stmt_incr with s0; eauto with rtlg.
(* Sgoto *)
generalize TR; clear TR. case_eq (ngoto!l); intros; monadInv TR.
econstructor. auto.
Qed.
Lemma transl_function_charact:
forall f tf,
transl_function f = Errors.OK tf ->
tr_function f tf.
Proof.
intros until tf. unfold transl_function.
caseEq (reserve_labels (fn_body f) (PTree.empty node, init_state)).
intros ngoto s0 RESERVE.
caseEq (transl_fun f ngoto s0). congruence.
intros [nentry rparams] sfinal INCR TR E. inv E.
monadInv TR.
exploit add_vars_valid. eexact EQ. apply init_mapping_valid.
intros [A B].
exploit add_vars_valid. eexact EQ1. auto.
intros [C D].
eapply tr_function_intro; eauto with rtlg.
eapply transl_stmt_charact; eauto with rtlg.
unfold ret_reg. destruct (sig_res (CminorSel.fn_sig f)).
constructor. eauto with rtlg. eauto with rtlg.
constructor.
Qed.
|