summaryrefslogtreecommitdiff
path: root/backend/RTLgenproof.v
blob: e02463a2e5aa98b64b4a99b38c15bb023943bc17 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
(* *********************************************************************)
(*                                                                     *)
(*              The Compcert verified compiler                         *)
(*                                                                     *)
(*          Xavier Leroy, INRIA Paris-Rocquencourt                     *)
(*                                                                     *)
(*  Copyright Institut National de Recherche en Informatique et en     *)
(*  Automatique.  All rights reserved.  This file is distributed       *)
(*  under the terms of the INRIA Non-Commercial License Agreement.     *)
(*                                                                     *)
(* *********************************************************************)

(** Correctness proof for RTL generation. *)

Require Import Coqlib.
Require Import Maps.
Require Import AST.
Require Import Integers.
Require Import Values.
Require Import Mem.
Require Import Events.
Require Import Smallstep.
Require Import Globalenvs.
Require Import Switch.
Require Import Registers.
Require Import Cminor.
Require Import Op.
Require Import CminorSel.
Require Import RTL.
Require Import RTLgen.
Require Import RTLgenspec.

(** * Correspondence between Cminor environments and RTL register sets *)

(** A compilation environment (mapping) is well-formed if
  the following properties hold:
- Two distinct Cminor local variables are mapped to distinct pseudo-registers.
- A Cminor local variable and a let-bound variable are mapped to
  distinct pseudo-registers.
*)

Record map_wf (m: mapping) : Prop :=
  mk_map_wf {
    map_wf_inj:
      (forall id1 id2 r,
         m.(map_vars)!id1 = Some r -> m.(map_vars)!id2 = Some r -> id1 = id2);
     map_wf_disj:
      (forall id r,
         m.(map_vars)!id = Some r -> In r m.(map_letvars) -> False)
  }.

Lemma init_mapping_wf:
  map_wf init_mapping.
Proof.
  unfold init_mapping; split; simpl.
  intros until r. rewrite PTree.gempty. congruence.
  tauto.
Qed.

Lemma add_var_wf:
  forall s1 s2 map name r map' i,
  add_var map name s1 = OK (r,map') s2 i -> 
  map_wf map -> map_valid map s1 -> map_wf map'.
Proof.
  intros. monadInv H. 
  apply mk_map_wf; simpl.
  intros until r0. repeat rewrite PTree.gsspec.
  destruct (peq id1 name); destruct (peq id2 name).
  congruence.
  intros. inv H. elimtype False. 
  apply valid_fresh_absurd with r0 s1. 
  apply H1. left; exists id2; auto.
  eauto with rtlg.
  intros. inv H2. elimtype False. 
  apply valid_fresh_absurd with r0 s1. 
  apply H1. left; exists id1; auto.
  eauto with rtlg.
  inv H0. eauto.
  intros until r0. rewrite PTree.gsspec.
  destruct (peq id name). 
  intros. inv H.
  apply valid_fresh_absurd with r0 s1.
  apply H1. right; auto.
  eauto with rtlg.
  inv H0; eauto.
Qed.

Lemma add_vars_wf:
  forall names s1 s2 map map' rl i,
  add_vars map names s1 = OK (rl,map') s2 i ->
  map_wf map -> map_valid map s1 -> map_wf map'.
Proof.
  induction names; simpl; intros; monadInv H. 
  auto.
  exploit add_vars_valid; eauto. intros [A B].
  eapply add_var_wf; eauto.
Qed.

Lemma add_letvar_wf:
  forall map r,
  map_wf map -> ~reg_in_map map r -> map_wf (add_letvar map r).
Proof.
  intros. inv H. unfold add_letvar; constructor; simpl.
  auto.
  intros. elim H1; intro. subst r0. elim H0. left; exists id; auto.
  eauto.
Qed.

(** An RTL register environment matches a CminorSel local environment and
  let-environment if the value of every local or let-bound variable in
  the CminorSel environments is identical to the value of the
  corresponding pseudo-register in the RTL register environment. *)

Record match_env
      (map: mapping) (e: env) (le: letenv) (rs: regset) : Prop :=
  mk_match_env {
    me_vars:
      (forall id v,
         e!id = Some v -> exists r, map.(map_vars)!id = Some r /\ rs#r = v);
    me_letvars:
      rs##(map.(map_letvars)) = le
  }.

Lemma match_env_find_var:
  forall map e le rs id v r,
  match_env map e le rs ->
  e!id = Some v ->
  map.(map_vars)!id = Some r ->
  rs#r = v.
Proof.
  intros. exploit me_vars; eauto. intros [r' [EQ' RS]].
  replace r with r'. auto. congruence.
Qed.

Lemma match_env_find_letvar:
  forall map e le rs idx v r,
  match_env map e le rs ->
  List.nth_error le idx = Some v ->
  List.nth_error map.(map_letvars) idx = Some r ->
  rs#r = v.
Proof.
  intros. exploit me_letvars; eauto. intros.
  rewrite <- H2 in H0. rewrite list_map_nth in H0. 
  change reg with positive in H1. rewrite H1 in H0. 
  simpl in H0. congruence.
Qed.

Lemma match_env_invariant:
  forall map e le rs rs',
  match_env map e le rs ->
  (forall r, (reg_in_map map r) -> rs'#r = rs#r) ->
  match_env map e le rs'.
Proof.
  intros. inversion H. apply mk_match_env.
  intros. exploit me_vars0; eauto. intros [r [A B]].
  exists r; split. auto. rewrite H0; auto. left; exists id; auto.
  rewrite <- me_letvars0. apply list_map_exten. intros.
  symmetry. apply H0. right; auto.
Qed.

(** Matching between environments is preserved when an unmapped register
  (not corresponding to any Cminor variable) is assigned in the RTL
  execution. *)

Lemma match_env_update_temp:
  forall map e le rs r v,
  match_env map e le rs ->
  ~(reg_in_map map r) ->
  match_env map e le (rs#r <- v).
Proof.
  intros. apply match_env_invariant with rs; auto.
  intros. case (Reg.eq r r0); intro. 
  subst r0; contradiction.
  apply Regmap.gso; auto.
Qed.
Hint Resolve match_env_update_temp: rtlg.

(** Matching between environments is preserved by simultaneous
  assignment to a Cminor local variable (in the Cminor environments)
  and to the corresponding RTL pseudo-register (in the RTL register
  environment). *)

Lemma match_env_update_var:
  forall map e le rs id r v,
  map_wf map ->
  map.(map_vars)!id = Some r ->
  match_env map e le rs ->
  match_env map (PTree.set id v e) le (rs#r <- v).
Proof.
  intros. inversion H. inversion H1. apply mk_match_env.
  intros id' v'. rewrite PTree.gsspec. destruct (peq id' id); intros.
  subst id'. inv H2. exists r; split. auto. apply PMap.gss.
  exploit me_vars0; eauto. intros [r' [A B]].
  exists r'; split. auto. rewrite PMap.gso; auto.
  red; intros. subst r'. elim n. eauto.
  rewrite <- me_letvars0. apply list_map_exten; intros.
  symmetry. apply PMap.gso. red; intros. subst x. eauto. 
Qed.

Lemma match_env_bind_letvar:
  forall map e le rs r v,
  match_env map e le rs ->
  rs#r = v ->
  match_env (add_letvar map r) e (v :: le) rs.
Proof.
  intros. inv H. unfold add_letvar. apply mk_match_env; simpl; auto.
Qed.

Lemma match_env_unbind_letvar:
  forall map e le rs r v,
  match_env (add_letvar map r) e (v :: le) rs ->
  match_env map e le rs.
Proof.
  unfold add_letvar; intros. inv H. simpl in *. 
  constructor. auto. congruence.
Qed.

Lemma match_env_empty:
  forall map,
  map.(map_letvars) = nil ->
  match_env map (PTree.empty val) nil (Regmap.init Vundef).
Proof.
  intros. apply mk_match_env.
  intros. rewrite PTree.gempty in H0. discriminate.
  rewrite H. reflexivity.
Qed.

(** The assignment of function arguments to local variables (on the Cminor
  side) and pseudo-registers (on the RTL side) preserves matching
  between environments. *)

Lemma match_set_params_init_regs:
  forall il rl s1 map2 s2 vl i,
  add_vars init_mapping il s1 = OK (rl, map2) s2 i ->
  match_env map2 (set_params vl il) nil (init_regs vl rl)
  /\ (forall r, reg_fresh r s2 -> (init_regs vl rl)#r = Vundef).
Proof.
  induction il; intros.

  inv H. split. apply match_env_empty. auto. intros. 
  simpl. apply Regmap.gi.

  monadInv H. simpl.
  exploit add_vars_valid; eauto. apply init_mapping_valid. intros [A B].
  exploit add_var_valid; eauto. intros [A' B']. clear B'.
  monadInv EQ1. 
  destruct vl as [ | v1 vs].
  (* vl = nil *)
  destruct (IHil _ _ _ _ nil _ EQ) as [ME UNDEF]. inv ME. split.
  constructor; simpl.
  intros id v. repeat rewrite PTree.gsspec. destruct (peq id a); intros.
  subst a. inv H. exists x1; split. auto. apply Regmap.gi.
  replace (init_regs nil x) with (Regmap.init Vundef) in me_vars0. eauto.
  destruct x; reflexivity.
  destruct (map_letvars x0). auto. simpl in me_letvars0. congruence.
  intros. apply Regmap.gi.
  (* vl = v1 :: vs *)
  destruct (IHil _ _ _ _ vs _ EQ) as [ME UNDEF]. inv ME. split.
  constructor; simpl.
  intros id v. repeat rewrite PTree.gsspec. destruct (peq id a); intros.
  subst a. inv H. exists x1; split. auto. apply Regmap.gss.
  exploit me_vars0; eauto. intros [r' [C D]]. 
  exists r'; split. auto. rewrite Regmap.gso. auto.
  apply valid_fresh_different with s.
  apply B. left; exists id; auto.
  eauto with rtlg. 
  destruct (map_letvars x0). auto. simpl in me_letvars0. congruence.
  intros. rewrite Regmap.gso. apply UNDEF. 
  apply reg_fresh_decr with s2; eauto with rtlg.
  apply sym_not_equal. apply valid_fresh_different with s2; auto.
Qed.

Lemma match_set_locals:
  forall map1 s1,
  map_wf map1 ->
  forall il rl map2 s2 e le rs i,
  match_env map1 e le rs ->
  (forall r, reg_fresh r s1 -> rs#r = Vundef) ->
  add_vars map1 il s1 = OK (rl, map2) s2 i ->
  match_env map2 (set_locals il e) le rs.
Proof.
  induction il; simpl in *; intros.

  inv H2. auto.

  monadInv H2. 
  exploit IHil; eauto. intro. 
  monadInv EQ1.
  constructor.
  intros id v. simpl. repeat rewrite PTree.gsspec. 
  destruct (peq id a). subst a. intro. 
  exists x1. split. auto. inv H3. 
  apply H1. apply reg_fresh_decr with s. auto.
  eauto with rtlg.
  intros. eapply me_vars; eauto. 
  simpl. eapply me_letvars; eauto.
Qed.

Lemma match_init_env_init_reg:
  forall params s0 rparams map1 s1 i1 vars rvars map2 s2 i2 vparams,
  add_vars init_mapping params s0 = OK (rparams, map1) s1 i1 ->
  add_vars map1 vars s1 = OK (rvars, map2) s2 i2 ->
  match_env map2 (set_locals vars (set_params vparams params))
            nil (init_regs vparams rparams).
Proof.
  intros.
  exploit match_set_params_init_regs; eauto. intros [A B].
  eapply match_set_locals; eauto.
  eapply add_vars_wf; eauto. apply init_mapping_wf.
  apply init_mapping_valid.
Qed.

(** * The simulation argument *)

Require Import Errors.

Section CORRECTNESS.

Variable prog: CminorSel.program.
Variable tprog: RTL.program.
Hypothesis TRANSL: transl_program prog = OK tprog.

Let ge : CminorSel.genv := Genv.globalenv prog.
Let tge : RTL.genv := Genv.globalenv tprog.

(** Relationship between the global environments for the original
  CminorSel program and the generated RTL program. *)

Lemma symbols_preserved:
  forall (s: ident), Genv.find_symbol tge s = Genv.find_symbol ge s.
Proof
  (Genv.find_symbol_transf_partial transl_fundef _ TRANSL).

Lemma function_ptr_translated:
  forall (b: block) (f: CminorSel.fundef),
  Genv.find_funct_ptr ge b = Some f ->
  exists tf,
  Genv.find_funct_ptr tge b = Some tf /\ transl_fundef f = OK tf.
Proof
  (Genv.find_funct_ptr_transf_partial transl_fundef TRANSL).

Lemma functions_translated:
  forall (v: val) (f: CminorSel.fundef),
  Genv.find_funct ge v = Some f ->
  exists tf,
  Genv.find_funct tge v = Some tf /\ transl_fundef f = OK tf.
Proof
  (Genv.find_funct_transf_partial transl_fundef TRANSL).

Lemma sig_transl_function:
  forall (f: CminorSel.fundef) (tf: RTL.fundef),
  transl_fundef f = OK tf ->
  RTL.funsig tf = CminorSel.funsig f.
Proof.
  intros until tf. unfold transl_fundef, transf_partial_fundef.
  case f; intro.
  unfold transl_function. 
  case (transl_fun f0 init_state); simpl; intros.
  discriminate.
  destruct p. simpl in H. inversion H. reflexivity.
  intro. inversion H. reflexivity.
Qed.

(** Correctness of the code generated by [add_move]. *)

Lemma tr_move_correct:
  forall r1 ns r2 nd cs code sp rs m,
  tr_move code ns r1 nd r2 ->
  exists rs',
  star step tge (State cs code sp ns rs m) E0 (State cs code sp nd rs' m) /\
  rs'#r2 = rs#r1 /\
  (forall r, r <> r2 -> rs'#r = rs#r).
Proof.
  intros. inv H. 
  exists rs; split. constructor. auto.
  exists (rs#r2 <- (rs#r1)); split. 
  apply star_one. eapply exec_Iop. eauto. auto. 
  split. apply Regmap.gss. intros; apply Regmap.gso; auto.
Qed.

(** Correctness of the code generated by [store_var] and [store_optvar]. *)

Lemma tr_store_var_correct:
  forall rs cs code map r id ns nd e sp m,
  tr_store_var code map r id ns nd ->
  map_wf map ->
  match_env map e nil rs ->
  exists rs',
     star step tge (State cs code sp ns rs m)
                E0 (State cs code sp nd rs' m)
  /\ match_env map (PTree.set id rs#r e) nil rs'.
Proof.
  intros. destruct H as [rv [A B]].
  exploit tr_move_correct; eauto. intros [rs' [EX [RES OTHER]]].
  exists rs'; split. eexact EX.
  apply match_env_invariant with (rs#rv <- (rs#r)).
  apply match_env_update_var; auto.
  intros. rewrite Regmap.gsspec. destruct (peq r0 rv).
  subst r0; auto.
  auto.
Qed.

Lemma tr_store_optvar_correct:
  forall rs cs code map r optid ns nd e sp m,
  tr_store_optvar code map r optid ns nd ->
  map_wf map ->
  match_env map e nil rs ->
  exists rs',
     star step tge (State cs code sp ns rs m)
                E0 (State cs code sp nd rs' m)
  /\ match_env map (set_optvar optid rs#r e) nil rs'.
Proof.
  intros. destruct optid; simpl in *.
  eapply tr_store_var_correct; eauto.
  exists rs; split. subst nd. apply star_refl. auto.  
Qed.

(** ** Semantic preservation for the translation of expressions *)

Section CORRECTNESS_EXPR.

Variable sp: val.
Variable e: env.
Variable m: mem.

(** The proof of semantic preservation for the translation of expressions
  is a simulation argument based on diagrams of the following form:
<<
                    I /\ P
    e, le, m, a ------------- State cs code sp ns rs m
         ||                      |
        t||                     t|*
         ||                      |
         \/                      v
    e, le, m', v ------------ State cs code sp nd rs' m'
                    I /\ Q
>>
  where [tr_expr code map pr a ns nd rd] is assumed to hold.
  The left vertical arrow represents an evaluation of the expression [a].
  The right vertical arrow represents the execution of zero, one or
  several instructions in the generated RTL flow graph [code].

  The invariant [I] is the agreement between Cminor environments and
  RTL register environment, as captured by [match_envs].

  The precondition [P] includes the well-formedness of the compilation
  environment [mut].

  The postconditions [Q] state that in the final register environment
  [rs'], register [rd] contains value [v], and the registers in
  the set of preserved registers [pr] are unchanged, as are the registers
  in the codomain of [map].

  We formalize this simulation property by the following predicate
  parameterized by the CminorSel evaluation (left arrow).  *)

Definition transl_expr_prop 
     (le: letenv) (a: expr) (v: val) : Prop :=
  forall cs code map pr ns nd rd rs
    (MWF: map_wf map)
    (TE: tr_expr code map pr a ns nd rd)
    (ME: match_env map e le rs),
  exists rs',
     star step tge (State cs code sp ns rs m) E0 (State cs code sp nd rs' m)
  /\ match_env map e le rs'
  /\ rs'#rd = v
  /\ (forall r, reg_in_map map r \/ In r pr -> rs'#r = rs#r).

(** The simulation properties for lists of expressions and for
  conditional expressions are similar. *)

Definition transl_exprlist_prop 
     (le: letenv) (al: exprlist) (vl: list val) : Prop :=
  forall cs code map pr ns nd rl rs
    (MWF: map_wf map)
    (TE: tr_exprlist code map pr al ns nd rl)
    (ME: match_env map e le rs),
  exists rs',
     star step tge (State cs code sp ns rs m) E0 (State cs code sp nd rs' m)
  /\ match_env map e le rs'
  /\ rs'##rl = vl
  /\ (forall r, reg_in_map map r \/ In r pr -> rs'#r = rs#r).

Definition transl_condition_prop 
     (le: letenv) (a: condexpr) (vb: bool) : Prop :=
  forall cs code map pr ns ntrue nfalse rs
    (MWF: map_wf map)
    (TE: tr_condition code map pr a ns ntrue nfalse)
    (ME: match_env map e le rs),
  exists rs',
     star step tge (State cs code sp ns rs m) E0
                   (State cs code sp (if vb then ntrue else nfalse) rs' m)
  /\ match_env map e le rs'
  /\ (forall r, reg_in_map map r \/ In r pr -> rs'#r = rs#r).



(** The correctness of the translation is a huge induction over
  the Cminor evaluation derivation for the source program.  To keep
  the proof manageable, we put each case of the proof in a separate
  lemma.  There is one lemma for each Cminor evaluation rule.
  It takes as hypotheses the premises of the Cminor evaluation rule,
  plus the induction hypotheses, that is, the [transl_expr_prop], etc,
  corresponding to the evaluations of sub-expressions or sub-statements. *)

Lemma transl_expr_Evar_correct:
  forall (le : letenv) (id : positive) (v : val),
  e ! id = Some v ->
  transl_expr_prop le (Evar id) v.
Proof.
  intros; red; intros. inv TE.
  exploit tr_move_correct; eauto. intros [rs' [A [B C]]]. 
  exists rs'; split. eauto.
  destruct H2 as [D | [E F]].
  (* optimized case *)
  subst r.
  assert (forall r, rs'#r = rs#r).
    intros. destruct (Reg.eq r rd). subst r. auto. auto. 
  split. eapply match_env_invariant; eauto.
  split. rewrite B. eapply match_env_find_var; eauto.
  auto.
  (* general case *)
  split. eapply match_env_invariant; eauto. 
    intros. apply C. congruence. 
  split. rewrite B. eapply match_env_find_var; eauto. 
  intros. apply C. intuition congruence.
Qed.

Lemma transl_expr_Eop_correct:
  forall (le : letenv) (op : operation) (args : exprlist)
         (vargs : list val) (v : val),
  eval_exprlist ge sp e m le args vargs ->
  transl_exprlist_prop le args vargs ->
  eval_operation ge sp op vargs m = Some v ->
  transl_expr_prop le (Eop op args) v.
Proof.
  intros; red; intros. inv TE. 
  exploit H0; eauto. intros [rs1 [EX1 [ME1 [RR1 RO1]]]].
  exists (rs1#rd <- v).
(* Exec *)
  split. eapply star_right. eexact EX1.
  eapply exec_Iop; eauto.  
  subst vargs.
  rewrite (@eval_operation_preserved CminorSel.fundef RTL.fundef ge tge). 
  auto. 
  exact symbols_preserved. traceEq.
(* Match-env *)
  split. eauto with rtlg.  
(* Result reg *)
  split. apply Regmap.gss.
(* Other regs *)
  intros. rewrite Regmap.gso. auto. intuition congruence.
Qed.

Lemma transl_expr_Eload_correct:
  forall (le : letenv) (chunk : memory_chunk) (addr : Op.addressing)
         (args : exprlist) (vargs : list val) (vaddr v : val),
  eval_exprlist ge sp e m le args vargs ->
  transl_exprlist_prop le args vargs ->
  Op.eval_addressing ge sp addr vargs = Some vaddr ->
  loadv chunk m vaddr = Some v ->
  transl_expr_prop le (Eload chunk addr args) v.
Proof.
  intros; red; intros. inv TE.
  exploit H0; eauto. intros [rs1 [EX1 [ME1 [RES1 OTHER1]]]].
  exists (rs1#rd <- v).
(* Exec *)
  split. eapply star_right. eexact EX1. eapply exec_Iload; eauto.
  rewrite RES1. rewrite (@eval_addressing_preserved _ _ ge tge).
  exact H1. exact symbols_preserved. traceEq.
(* Match-env *)
  split. eauto with rtlg. 
(* Result *)
  split. apply Regmap.gss.
(* Other regs *)
  intros. rewrite Regmap.gso. auto. intuition congruence. 
Qed.

Lemma transl_expr_Econdition_correct:
  forall (le : letenv) (cond : condexpr) (ifso ifnot : expr)
         (vcond : bool) (v : val),
  eval_condexpr ge sp e m le cond vcond ->
  transl_condition_prop le cond vcond ->
  eval_expr ge sp e m le (if vcond then ifso else ifnot) v ->
  transl_expr_prop le (if vcond then ifso else ifnot) v ->
  transl_expr_prop le (Econdition cond ifso ifnot) v.
Proof.
  intros; red; intros; inv TE. 
  exploit H0; eauto. intros [rs1 [EX1 [ME1 OTHER1]]].
  assert (tr_expr code map pr (if vcond then ifso else ifnot) (if vcond then ntrue else nfalse) nd rd).
    destruct vcond; auto.
  exploit H2; eauto. intros [rs2 [EX2 [ME2 [RES2 OTHER2]]]].
  exists rs2.
(* Exec *)
  split. eapply star_trans. eexact EX1. eexact EX2. auto. 
(* Match-env *)
  split. assumption.
(* Result value *)
  split. assumption.
(* Other regs *)
  intros. transitivity (rs1#r); auto.
Qed.

Lemma transl_expr_Elet_correct:
  forall (le : letenv) (a1 a2 : expr) (v1 v2 : val),
  eval_expr ge sp e m le a1 v1 ->
  transl_expr_prop le a1 v1 ->
  eval_expr ge sp e m (v1 :: le) a2 v2 ->
  transl_expr_prop (v1 :: le) a2 v2 ->
  transl_expr_prop le (Elet a1 a2) v2.
Proof.
  intros; red; intros; inv TE. 
  exploit H0; eauto. intros [rs1 [EX1 [ME1 [RES1 OTHER1]]]].
  assert (map_wf (add_letvar map r)).
    eapply add_letvar_wf; eauto. 
  exploit H2; eauto. eapply match_env_bind_letvar; eauto. 
  intros [rs2 [EX2 [ME3 [RES2 OTHER2]]]].
  exists rs2.
(* Exec *)
  split. eapply star_trans. eexact EX1. eexact EX2. auto.
(* Match-env *)
  split. eapply match_env_unbind_letvar; eauto.
(* Result *)
  split. assumption.
(* Other regs *)
  intros. transitivity (rs1#r0). 
  apply OTHER2. elim H4; intro; auto.
  unfold reg_in_map, add_letvar; simpl.
  unfold reg_in_map in H6; tauto.
  auto.
Qed.

Lemma transl_expr_Eletvar_correct:
  forall (le : list val) (n : nat) (v : val),
  nth_error le n = Some v ->
  transl_expr_prop le (Eletvar n) v.
Proof.
  intros; red; intros; inv TE.
  exploit tr_move_correct; eauto. intros [rs1 [EX1 [RES1 OTHER1]]].
  exists rs1.
(* Exec *)
  split. eexact EX1.
(* Match-env *)
  split. apply match_env_invariant with rs. auto.
  intros. destruct H2 as [A | [B C]]. 
  subst r. destruct (Reg.eq r0 rd). subst r0; auto. auto.
  apply OTHER1. intuition congruence.
(* Result *)
  split. rewrite RES1. eapply match_env_find_letvar; eauto. 
(* Other regs *)
  intros. destruct H2 as [A | [B C]]. 
  subst r. destruct (Reg.eq r0 rd). subst r0; auto. auto.
  apply OTHER1. intuition congruence.
Qed.

Lemma transl_condition_CEtrue_correct:
  forall (le : letenv),
  transl_condition_prop le CEtrue true.
Proof.
  intros; red; intros; inv TE. 
  exists rs. split. apply star_refl. split. auto. auto.
Qed.    

Lemma transl_condition_CEfalse_correct:
  forall (le : letenv),
  transl_condition_prop le CEfalse false.
Proof.
  intros; red; intros; inv TE. 
  exists rs. split. apply star_refl. split. auto. auto.
Qed.    

Lemma transl_condition_CEcond_correct:
  forall (le : letenv) (cond : condition) (args : exprlist)
         (vargs : list val) (b : bool),
  eval_exprlist ge sp e m le args vargs ->
  transl_exprlist_prop le args vargs ->
  eval_condition cond vargs m = Some b ->
  transl_condition_prop le (CEcond cond args) b.
Proof.
  intros; red; intros; inv TE.
  exploit H0; eauto. intros [rs1 [EX1 [ME1 [RES1 OTHER1]]]].
  exists rs1.
(* Exec *)
  split. eapply star_right. eexact EX1. 
  destruct b.
  eapply exec_Icond_true; eauto. 
  rewrite RES1. assumption.
  eapply exec_Icond_false; eauto. 
  rewrite RES1. assumption.
  traceEq.
(* Match-env *)
  split. assumption.
(* Regs *)
  auto.
Qed.

Lemma transl_condition_CEcondition_correct:
  forall (le : letenv) (cond ifso ifnot : condexpr) (vcond v : bool),
  eval_condexpr ge sp e m le cond vcond ->
  transl_condition_prop le cond vcond ->
  eval_condexpr ge sp e m le (if vcond then ifso else ifnot) v ->
  transl_condition_prop le (if vcond then ifso else ifnot) v ->
  transl_condition_prop le (CEcondition cond ifso ifnot) v.
Proof.
  intros; red; intros; inv TE. 
  exploit H0; eauto. intros [rs1 [EX1 [ME1 OTHER1]]].
  assert (tr_condition code map pr (if vcond then ifso else ifnot)
             (if vcond then ntrue' else nfalse') ntrue nfalse).
    destruct vcond; auto.
  exploit H2; eauto. intros [rs2 [EX2 [ME2 OTHER2]]].
  exists rs2.
(* Execution *)
  split. eapply star_trans. eexact EX1. eexact EX2. auto. 
(* Match-env *)
  split. auto.
(* Regs *)
  intros. transitivity (rs1#r); auto.
Qed.
 
Lemma transl_exprlist_Enil_correct:
  forall (le : letenv),
  transl_exprlist_prop le Enil nil.
Proof.
  intros; red; intros; inv TE.
  exists rs.
  split. apply star_refl.
  split. assumption.
  split. reflexivity.
  auto.
Qed.

Lemma transl_exprlist_Econs_correct:
  forall (le : letenv) (a1 : expr) (al : exprlist) (v1 : val)
         (vl : list val),
  eval_expr ge sp e m le a1 v1 ->
  transl_expr_prop le a1 v1 ->
  eval_exprlist ge sp e m le al vl ->
  transl_exprlist_prop le al vl ->
  transl_exprlist_prop le (Econs a1 al) (v1 :: vl).
Proof.
  intros; red; intros; inv TE.
  exploit H0; eauto. intros [rs1 [EX1 [ME1 [RES1 OTHER1]]]].
  exploit H2; eauto. intros [rs2 [EX2 [ME2 [RES2 OTHER2]]]].
  exists rs2.
(* Exec *)
  split. eapply star_trans. eexact EX1. eexact EX2. auto. 
(* Match-env *)
  split. assumption.
(* Results *)
  split. simpl. rewrite RES2. rewrite OTHER2. rewrite RES1. auto.
  simpl; tauto. 
(* Other regs *)
  intros. transitivity (rs1#r).
  apply OTHER2; auto. simpl; tauto. 
  apply OTHER1; auto.
Qed.

Theorem transl_expr_correct:
  forall le a v,
  eval_expr ge sp e m le a v ->
  transl_expr_prop le a v.
Proof
  (eval_expr_ind3 ge sp e m
     transl_expr_prop
     transl_condition_prop
     transl_exprlist_prop
     transl_expr_Evar_correct
     transl_expr_Eop_correct
     transl_expr_Eload_correct
     transl_expr_Econdition_correct
     transl_expr_Elet_correct
     transl_expr_Eletvar_correct
     transl_condition_CEtrue_correct
     transl_condition_CEfalse_correct
     transl_condition_CEcond_correct
     transl_condition_CEcondition_correct
     transl_exprlist_Enil_correct
     transl_exprlist_Econs_correct).

Theorem transl_condexpr_correct:
  forall le a v,
  eval_condexpr ge sp e m le a v ->
  transl_condition_prop le a v.
Proof
  (eval_condexpr_ind3 ge sp e m
     transl_expr_prop
     transl_condition_prop
     transl_exprlist_prop
     transl_expr_Evar_correct
     transl_expr_Eop_correct
     transl_expr_Eload_correct
     transl_expr_Econdition_correct
     transl_expr_Elet_correct
     transl_expr_Eletvar_correct
     transl_condition_CEtrue_correct
     transl_condition_CEfalse_correct
     transl_condition_CEcond_correct
     transl_condition_CEcondition_correct
     transl_exprlist_Enil_correct
     transl_exprlist_Econs_correct).


Theorem transl_exprlist_correct:
  forall le a v,
  eval_exprlist ge sp e m le a v ->
  transl_exprlist_prop le a v.
Proof
  (eval_exprlist_ind3 ge sp e m
     transl_expr_prop
     transl_condition_prop
     transl_exprlist_prop
     transl_expr_Evar_correct
     transl_expr_Eop_correct
     transl_expr_Eload_correct
     transl_expr_Econdition_correct
     transl_expr_Elet_correct
     transl_expr_Eletvar_correct
     transl_condition_CEtrue_correct
     transl_condition_CEfalse_correct
     transl_condition_CEcond_correct
     transl_condition_CEcondition_correct
     transl_exprlist_Enil_correct
     transl_exprlist_Econs_correct).

End CORRECTNESS_EXPR.

(** ** Semantic preservation for the translation of terminating statements *)   

(** The simulation diagram for the translation of statements
  is of the following form:
<<
                    I /\ P
       e, m, a ---------------- State cs code sp ns rs m
         ||                          |
        t||                         t|*
         ||                          |
         \/                          v
     e', m', out ------------------ st'
                    I /\ Q
>>
  where [tr_stmt code map a ns ncont nexits nret rret] holds.
  The left vertical arrow represents an execution of the statement [a].
  The right vertical arrow represents the execution of
  zero, one or several instructions in the generated RTL flow graph [code].

  The invariant [I] is the agreement between Cminor environments and
  RTL register environment, as captured by [match_envs].

  The precondition [P] is the well-formedness of the compilation
  environment [mut].

  The postcondition [Q] characterizes the final RTL state [st'].
  It must have memory state [m'] and register state [rs'] that matches
  [e'].  Moreover, the program point reached must correspond to the outcome
  [out].  This is captured by the following [state_for_outcome] predicate. *)

Inductive state_for_outcome
           (ncont: node) (nexits: list node) (nret: node) (rret: option reg)
           (cs: list stackframe) (c: code) (sp: val) (rs: regset) (m: mem):
           outcome -> RTL.state -> Prop :=
  | state_for_normal:
      state_for_outcome ncont nexits nret rret cs c sp rs m
                        Out_normal (State cs c sp ncont rs m)
  | state_for_exit: forall n nexit,
      nth_error nexits n = Some nexit ->
      state_for_outcome ncont nexits nret rret cs c sp rs m
                        (Out_exit n) (State cs c sp nexit rs m)
  | state_for_return_none:
      rret = None ->
      state_for_outcome ncont nexits nret rret cs c sp rs m
                        (Out_return None) (State cs c sp nret rs m)
  | state_for_return_some: forall r v,
      rret = Some r ->
      rs#r = v ->
      state_for_outcome ncont nexits nret rret cs c sp rs m
                        (Out_return (Some v)) (State cs c sp nret rs m)
  | state_for_return_tail: forall v,
      state_for_outcome ncont nexits nret rret cs c sp rs m
                        (Out_tailcall_return v) (Returnstate cs v m).

Definition transl_stmt_prop 
  (sp: val) (e: env) (m: mem) (a: stmt)
  (t: trace) (e': env) (m': mem) (out: outcome) : Prop :=
  forall cs code map ns ncont nexits nret rret rs
    (MWF: map_wf map)
    (TE: tr_stmt code map a ns ncont nexits nret rret)
    (ME: match_env map e nil rs),
  exists rs', exists st,
     state_for_outcome ncont nexits nret rret cs code sp rs' m' out st
  /\ star step tge (State cs code sp ns rs m) t st
  /\ match_env map e' nil rs'.

(** Finally, the correctness condition for the translation of functions
  is that the translated RTL function, when applied to the same arguments
  as the original Cminor function, returns the same value and performs
  the same modifications on the memory state. *)

Definition transl_function_prop
    (m: mem) (f: CminorSel.fundef) (vargs: list val)
    (t: trace) (m': mem) (vres: val) : Prop :=
  forall cs tf
    (TE: transl_fundef f = OK tf),
  star step tge (Callstate cs tf vargs m) t (Returnstate cs vres m').

Lemma transl_funcall_internal_correct:
  forall (m : mem) (f : CminorSel.function)
         (vargs : list val) (m1 : mem) (sp : block) (e : env) (t : trace)
         (e2 : env) (m2 : mem) (out: outcome) (vres : val),
  Mem.alloc m 0 (fn_stackspace f) = (m1, sp) ->
  set_locals (fn_vars f) (set_params vargs (CminorSel.fn_params f)) = e ->
  exec_stmt ge (Vptr sp Int.zero) e m1 (fn_body f) t e2 m2 out ->
  transl_stmt_prop (Vptr sp Int.zero) e m1 (fn_body f) t e2 m2 out ->
  outcome_result_value out f.(CminorSel.fn_sig).(sig_res) vres ->
  transl_function_prop m (Internal f) vargs t 
                            (outcome_free_mem out m2 sp) vres.
Proof.
  intros; red; intros.
  generalize TE; simpl. caseEq (transl_function f); simpl. 2: congruence.
  intros tfi EQ1 EQ2. injection EQ2; clear EQ2; intro EQ2.
  assert (TR: tr_function f tfi). apply transl_function_charact; auto.
  rewrite <- EQ2. inversion TR. subst f0. 

  pose (rs := init_regs vargs rparams).
  assert (ME: match_env map2 e nil rs).
  rewrite <- H0. unfold rs. 
  eapply match_init_env_init_reg; eauto.

  assert (MWF: map_wf map2).
    assert (map_valid init_mapping init_state) by apply init_mapping_valid.
    exploit (add_vars_valid (CminorSel.fn_params f)); eauto. intros [A B].
    eapply add_vars_wf; eauto. eapply add_vars_wf; eauto. apply init_mapping_wf.

  exploit H2; eauto. intros [rs' [st [OUT [EX ME']]]].

  eapply star_left.
  eapply exec_function_internal; eauto. simpl.
  inversion OUT; clear OUT; subst out st; simpl in H3; simpl.

  (* Out_normal *)
  unfold ret_reg in H6. destruct (sig_res (CminorSel.fn_sig f)). contradiction. 
  subst vres orret. 
  eapply star_right. unfold rs in EX. eexact EX.
  change Vundef with (regmap_optget None Vundef rs').
  apply exec_Ireturn. auto. reflexivity.

  (* Out_exit *)
  contradiction.

  (* Out_return None *)
  subst orret.
  unfold ret_reg in H8. destruct (sig_res (CminorSel.fn_sig f)). contradiction.
  subst vres. 
  eapply star_right. unfold rs in EX. eexact EX. 
  change Vundef with (regmap_optget None Vundef rs').
  apply exec_Ireturn. auto.
  reflexivity. 

  (* Out_return Some *)
  subst orret. 
  unfold ret_reg in H8. unfold ret_reg in H9.
  destruct (sig_res (CminorSel.fn_sig f)). inversion H9.
  subst vres.    
  eapply star_right. unfold rs in EX. eexact EX.
  replace v with (regmap_optget (Some rret) Vundef rs').
  apply exec_Ireturn. auto.
  simpl. congruence. 
  reflexivity.
  contradiction.

  (* a tail call *)
  subst v. rewrite E0_right. auto. traceEq.
Qed.

Lemma transl_funcall_external_correct:
  forall (ef : external_function) (m : mem) (args : list val) (t: trace) (res : val),
  event_match ef args t res ->
  transl_function_prop m (External ef) args t m res.
Proof.
  intros; red; intros. unfold transl_function in TE; simpl in TE.
  inversion TE; subst tf. 
  apply star_one. apply exec_function_external. auto.
Qed.

Lemma transl_stmt_Sskip_correct:
  forall (sp: val) (e : env) (m : mem),
  transl_stmt_prop sp e m Sskip E0 e m Out_normal.
Proof.
  intros; red; intros; inv TE.
  exists rs; econstructor.
  split. constructor.
  split. apply star_refl.
  auto.
Qed.

Remark state_for_outcome_stop:
  forall ncont1 ncont2 nexits nret rret cs code sp rs m out st,
  state_for_outcome ncont1 nexits nret rret cs code sp rs m out st ->
  out <> Out_normal ->
  state_for_outcome ncont2 nexits nret rret cs code sp rs m out st.
Proof.
  intros. inv H; congruence || econstructor; eauto.
Qed.

Lemma transl_stmt_Sseq_continue_correct:
  forall (sp : val) (e : env) (m : mem) (t: trace) (s1 : stmt)
         (t1: trace) (e1 : env) (m1 : mem) (s2 : stmt) (t2: trace)
         (e2 : env) (m2 : mem) (out : outcome),
  exec_stmt ge sp e m s1 t1 e1 m1 Out_normal ->
  transl_stmt_prop sp e m s1 t1 e1 m1 Out_normal ->
  exec_stmt ge sp e1 m1 s2 t2 e2 m2 out ->
  transl_stmt_prop sp e1 m1 s2 t2 e2 m2 out ->
  t = t1 ** t2 ->
  transl_stmt_prop sp e m (Sseq s1 s2) t e2 m2 out.
Proof.
  intros; red; intros; inv TE. 
  exploit H0; eauto. intros [rs1 [st1 [OUT1 [EX1 ME1]]]]. inv OUT1. 
  exploit H2; eauto. intros [rs2 [st2 [OUT2 [EX2 ME2]]]].
  exists rs2; exists st2.
  split. eauto.
  split. eapply star_trans; eauto.
  auto.
Qed.

Lemma transl_stmt_Sseq_stop_correct:
  forall (sp : val) (e : env) (m : mem) (t: trace) (s1 s2 : stmt) (e1 : env)
         (m1 : mem) (out : outcome),
  exec_stmt ge sp e m s1 t e1 m1 out ->
  transl_stmt_prop sp e m s1 t e1 m1 out ->
  out <> Out_normal ->
  transl_stmt_prop sp e m (Sseq s1 s2) t e1 m1 out.
Proof.
  intros; red; intros; inv TE.
  exploit H0; eauto. intros [rs1 [st1 [OUT1 [EX1 ME1]]]].
  exists rs1; exists st1.
  split. eapply state_for_outcome_stop; eauto. 
  auto.
Qed.

Lemma transl_stmt_Sassign_correct:
  forall (sp : val) (e : env) (m : mem) (id : ident) (a : expr)
         (v : val),
  eval_expr ge sp e m nil a v ->
  transl_stmt_prop sp e m (Sassign id a) E0 (PTree.set id v e) m Out_normal.
Proof.
  intros; red; intros; inv TE.
  exploit transl_expr_correct; eauto.
  intros [rs1 [EX1 [ME1 [RES1 OTHER1]]]].
  exploit tr_store_var_correct; eauto. intros [rs2 [EX2 ME2]].
  exists rs2; econstructor.
  split. constructor.
  split. eapply star_trans. eexact EX1. eexact EX2. traceEq.
  congruence. 
Qed.

Lemma transl_stmt_Sstore_correct:
  forall (sp : val) (e : env) (m : mem) (chunk : memory_chunk)
         (addr: addressing) (al: exprlist) (b: expr)
         (vl: list val) (v: val) (vaddr: val) (m' : mem),
  eval_exprlist ge sp e m nil al vl ->
  eval_expr ge sp e m nil b v ->
  eval_addressing ge sp addr vl = Some vaddr ->
  storev chunk m vaddr v = Some m' ->
  transl_stmt_prop sp e m (Sstore chunk addr al b) E0 e m' Out_normal.
Proof.
  intros; red; intros; inv TE.
  exploit transl_exprlist_correct; eauto. intros [rs1 [EX1 [ME1 [RES1 OTHER1]]]].
  exploit transl_expr_correct; eauto. intros [rs2 [EX2 [ME2 [RES2 OTHER2]]]].
  exists rs2; econstructor.
  (* Outcome *)
  split. constructor.
  (* Exec *)
  split. eapply star_trans. eexact EX1. 
  eapply star_right. eexact EX2.
  eapply exec_Istore; eauto.
  assert (rs2##rl = rs1##rl).
    apply list_map_exten. intros r' IN. symmetry. apply OTHER2. auto.
  rewrite H3; rewrite RES1. 
  rewrite (@eval_addressing_preserved _ _ ge tge). eexact H1.
  exact symbols_preserved.
  rewrite RES2. auto.
  reflexivity. traceEq.
  (* Match-env *)
  auto.
Qed.

Lemma transl_stmt_Scall_correct:
  forall (sp : val) (e : env) (m : mem) (optid : option ident)
         (sig : signature) (a : expr) (bl : exprlist) (vf : val)
         (vargs : list val) (f : CminorSel.fundef) (t : trace) (m' : mem)
         (vres : val) (e' : env),
  eval_expr ge sp e m nil a vf ->
  eval_exprlist ge sp e m nil bl vargs ->
  Genv.find_funct ge vf = Some f ->
  CminorSel.funsig f = sig ->
  eval_funcall ge m f vargs t m' vres ->
  transl_function_prop m f vargs t m' vres ->
  e' = set_optvar optid vres e ->
  transl_stmt_prop sp e m (Scall optid sig a bl) t e' m' Out_normal.
Proof.
  intros; red; intros; inv TE.
  exploit transl_expr_correct; eauto.
  intros [rs1 [EX1 [ME1 [RES1 OTHER1]]]].
  exploit transl_exprlist_correct; eauto.
  intros [rs2 [EX2 [ME2 [RES2 OTHER2]]]].
  exploit functions_translated; eauto. intros [tf [TFIND TF]].
  exploit H4; eauto. intro EXF.
  exploit (tr_store_optvar_correct (rs2#rd <- vres)); eauto.
    apply match_env_update_temp; eauto.
  intros [rs3 [EX3 ME3]].
  exists rs3; econstructor.
  (* Outcome *)
  split. constructor.
  (* Exec *)
  split. eapply star_trans. eexact EX1.
  eapply star_trans. eexact EX2. 
  eapply star_left. eapply exec_Icall; eauto.
  simpl. rewrite OTHER2. rewrite RES1. eauto. simpl; tauto. 
  eapply sig_transl_function; eauto.
  eapply star_trans. rewrite RES2. eexact EXF.
  eapply star_left. apply exec_return.
  eexact EX3. 
  reflexivity. reflexivity. reflexivity. reflexivity. traceEq.
  (* Match-env *)
  rewrite Regmap.gss in ME3. auto.
Qed. 

Lemma transl_stmt_Salloc_correct:
  forall (sp : val) (e : env) (m : mem) (id : ident) (a : expr)
         (n : int) (m' : mem) (b : block),
  eval_expr ge sp e m nil a (Vint n) ->
  alloc m 0 (Int.signed n) = (m', b) ->
  transl_stmt_prop sp e m (Salloc id a) E0
                      (PTree.set id (Vptr b Int.zero) e) m' Out_normal.
Proof.
  intros; red; intros; inv TE.
  exploit transl_expr_correct; eauto.
  intros [rs1 [EX1 [ME1 [RES1 OTHER1]]]].
  exploit (tr_store_var_correct (rs1#rd <- (Vptr b Int.zero))); eauto.
    apply match_env_update_temp; eauto.
  intros [rs2 [EX2 ME2]].
  exists rs2; econstructor.
  (* Outcome *)
  split. constructor.
  (* Execution *)
  split. eapply star_trans. eexact EX1. 
  eapply star_left. 2: eexact EX2. 
  eapply exec_Ialloc; eauto. 
  reflexivity. traceEq.
  (* Match-env *)
  rewrite Regmap.gss in ME2. auto.
Qed.

Lemma transl_stmt_Sifthenelse_correct:
  forall (sp : val) (e : env) (m : mem) (a : condexpr) (s1 s2 : stmt)
         (v : bool) (t : trace) (e' : env) (m' : mem) (out : outcome),
  eval_condexpr ge sp e m nil a v ->
  exec_stmt ge sp e m (if v then s1 else s2) t e' m' out ->
  transl_stmt_prop sp e m (if v then s1 else s2) t e' m' out ->
  transl_stmt_prop sp e m (Sifthenelse a s1 s2) t e' m' out.
Proof.
  intros; red; intros; inv TE.
  exploit transl_condexpr_correct; eauto.
  intros [rs1 [EX1 [ME1 OTHER1]]].
  assert (tr_stmt code map (if v then s1 else s2) (if v then ntrue else nfalse)
                  ncont nexits nret rret).
    destruct v; auto. 
  exploit H1; eauto. intros [rs2 [st2 [OUT2 [EX2 ME2]]]].
  exists rs2; exists st2.
  split. eauto.
  split. eapply star_trans. eexact EX1. eexact EX2. auto.
  auto.
Qed.

Lemma transl_stmt_Sloop_loop_correct:
  forall (sp: val) (e : env) (m : mem) (sl : stmt) (t t1: trace)
    (e1 : env) (m1 : mem) (t2: trace) (e2 : env) (m2 : mem) 
    (out : outcome),
  exec_stmt ge sp e m sl t1 e1 m1 Out_normal ->
  transl_stmt_prop sp e m sl t1 e1 m1 Out_normal ->
  exec_stmt ge sp e1 m1 (Sloop sl) t2 e2 m2 out ->
  transl_stmt_prop sp e1 m1 (Sloop sl) t2 e2 m2 out ->
  t = t1 ** t2 ->
  transl_stmt_prop sp e m (Sloop sl) t e2 m2 out.
Proof.
  intros; red; intros; inversion TE. subst. 
  exploit H0; eauto. intros [rs1 [st1 [OUT1 [EX1 ME1]]]]. inv OUT1.
  exploit H2; eauto. intros [rs2 [st2 [OUT2 [EX2 ME2]]]].
  exists rs2; exists st2. 
  split. eauto.
  split. eapply star_trans. eexact EX1. 
  eapply star_left. apply exec_Inop; eauto. eexact EX2. 
  reflexivity. traceEq.
  auto.
Qed.

Lemma transl_stmt_Sloop_stop_correct:
  forall (sp: val) (e : env) (m : mem) (t: trace) (sl : stmt) 
    (e1 : env) (m1 : mem) (out : outcome),
  exec_stmt ge sp e m sl t e1 m1 out ->
  transl_stmt_prop sp e m sl t e1 m1 out ->
  out <> Out_normal ->
  transl_stmt_prop sp e m (Sloop sl) t e1 m1 out.
Proof.
  intros; red; intros; inv TE. 
  exploit H0; eauto. intros [rs1 [st1 [OUT1 [EX1 ME1]]]].
  exists rs1; exists st1.
  split. eapply state_for_outcome_stop; eauto.
  auto.
Qed.

Lemma transl_stmt_Sblock_correct:
  forall (sp: val) (e : env) (m : mem) (sl : stmt) (t: trace)
    (e1 : env) (m1 : mem) (out : outcome),
  exec_stmt ge sp e m sl t e1 m1 out ->
  transl_stmt_prop sp e m sl t e1 m1 out ->
  transl_stmt_prop sp e m (Sblock sl) t e1 m1 (outcome_block out).
Proof.
  intros; red; intros; inv TE.
  exploit H0; eauto. intros [rs1 [st1 [OUT1 [EX1 ME1]]]].
  exists rs1; exists st1.
  split. inv OUT1; simpl; try (econstructor; eauto).
  destruct n; simpl in H1.
    inv H1. constructor.
    constructor. auto.
  auto.
Qed.

Lemma transl_stmt_Sexit_correct:
  forall (sp: val) (e : env) (m : mem) (n : nat),
  transl_stmt_prop sp e m (Sexit n) E0 e m (Out_exit n).
Proof.
  intros; red; intros; inv TE.
  exists rs; econstructor.
  split. econstructor; eauto.
  split. apply star_refl.
  auto.
Qed.

Lemma transl_switch_correct:
  forall cs sp rs m i code r nexits t ns,
  tr_switch code r nexits t ns ->
  rs#r = Vint i ->
  exists nd,
  star step tge (State cs code sp ns rs m) E0 (State cs code sp nd rs m) /\
  nth_error nexits (comptree_match i t) = Some nd.
Proof.
  induction 1; intros; simpl.
  exists n. split. apply star_refl. auto. 

  caseEq (Int.eq i key); intros.
  exists nfound; split. 
  apply star_one. eapply exec_Icond_true; eauto. 
  simpl. rewrite H2. congruence. auto.
  exploit IHtr_switch; eauto. intros [nd [EX MATCH]].
  exists nd; split.
  eapply star_step. eapply exec_Icond_false; eauto. 
  simpl. rewrite H2. congruence. eexact EX. traceEq.
  auto.

  caseEq (Int.ltu i key); intros.
  exploit IHtr_switch1; eauto. intros [nd [EX MATCH]].
  exists nd; split. 
  eapply star_step. eapply exec_Icond_true; eauto. 
  simpl. rewrite H2. congruence. eexact EX. traceEq.
  auto.
  exploit IHtr_switch2; eauto. intros [nd [EX MATCH]].
  exists nd; split. 
  eapply star_step. eapply exec_Icond_false; eauto. 
  simpl. rewrite H2. congruence. eexact EX. traceEq.
  auto.
Qed.

Lemma transl_stmt_Sswitch_correct:
  forall (sp : val) (e : env) (m : mem) (a : expr)
         (cases : list (int * nat)) (default : nat) (n : int),
  eval_expr ge sp e m nil a (Vint n) ->
  transl_stmt_prop sp e m (Sswitch a cases default) E0 e m
         (Out_exit (switch_target n default cases)).
Proof.
  intros; red; intros; inv TE.
  exploit transl_expr_correct; eauto. 
  intros [rs1 [EX1 [ME1 [RES1 OTHER1]]]].
  exploit transl_switch_correct; eauto. intros [nd [EX2 MO2]].
  exists rs1; econstructor.
  split. econstructor. 
  rewrite (validate_switch_correct _ _ _ H3 n). eauto.  
  split. eapply star_trans. eexact EX1. eexact EX2. traceEq.
  auto.
Qed.

Lemma transl_stmt_Sreturn_none_correct:
  forall (sp: val) (e : env) (m : mem),
  transl_stmt_prop sp e m (Sreturn None) E0 e m (Out_return None).
Proof.
  intros; red; intros; inv TE.
  exists rs; econstructor.
  split. constructor. auto.
  split. apply star_refl. 
  auto.
Qed.

Lemma transl_stmt_Sreturn_some_correct:
  forall (sp : val) (e : env) (m : mem) (a : expr) (v : val),
  eval_expr ge sp e m nil a v ->
  transl_stmt_prop sp e m (Sreturn (Some a)) E0 e m (Out_return (Some v)).
Proof.
  intros; red; intros; inv TE. 
  exploit transl_expr_correct; eauto.
  intros [rs1 [EX1 [ME1 [RES1 OTHER1]]]].
  exists rs1; econstructor.
  split. econstructor. reflexivity. auto.
  eauto.
Qed.

Lemma transl_stmt_Stailcall_correct:
  forall (sp : block) (e : env) (m : mem) (sig : signature) (a : expr)
         (bl : exprlist) (vf : val) (vargs : list val) (f : CminorSel.fundef)
         (t : trace) (m' : mem) (vres : val),
  eval_expr ge (Vptr sp Int.zero) e m nil a vf ->
  eval_exprlist ge (Vptr sp Int.zero) e m nil bl vargs ->
  Genv.find_funct ge vf = Some f ->
  CminorSel.funsig f = sig ->
  eval_funcall ge (free m sp) f vargs t m' vres ->
  transl_function_prop (free m sp) f vargs t m' vres ->
  transl_stmt_prop (Vptr sp Int.zero) e m (Stailcall sig a bl) t e
          m' (Out_tailcall_return vres).
Proof.
  intros; red; intros; inv TE.
  exploit transl_expr_correct; eauto. intros [rs1 [EX1 [ME1 [RES1 OTHER1]]]].
  exploit transl_exprlist_correct; eauto. intros [rs2 [EX2 [ME2 [RES2 OTHER2]]]].
  exploit functions_translated; eauto. intros [tf [TFIND TF]].
  exploit H4; eauto. intro EXF.
  exists rs2; econstructor. 
  split. constructor. 
  split. 
  eapply star_trans. eexact EX1. 
  eapply star_trans. eexact EX2. 
  eapply star_step. 
  eapply exec_Itailcall; eauto.
  simpl. rewrite OTHER2. rewrite RES1. eauto. simpl; tauto.
  eapply sig_transl_function; eauto.
  rewrite RES2. eexact EXF. 
  reflexivity. reflexivity. traceEq.
  auto.
Qed.

(** The correctness of the translation then follows by application
  of the mutual induction principle for Cminor evaluation derivations
  to the lemmas above. *)

Theorem transl_function_correct:
  forall m f vargs t m' vres,
  eval_funcall ge m f vargs t m' vres ->
  transl_function_prop m f vargs t m' vres.
Proof
  (eval_funcall_ind2 ge
    transl_function_prop
    transl_stmt_prop

    transl_funcall_internal_correct
    transl_funcall_external_correct
    transl_stmt_Sskip_correct
    transl_stmt_Sassign_correct
    transl_stmt_Sstore_correct
    transl_stmt_Scall_correct
    transl_stmt_Salloc_correct
    transl_stmt_Sifthenelse_correct
    transl_stmt_Sseq_continue_correct
    transl_stmt_Sseq_stop_correct
    transl_stmt_Sloop_loop_correct
    transl_stmt_Sloop_stop_correct
    transl_stmt_Sblock_correct
    transl_stmt_Sexit_correct
    transl_stmt_Sswitch_correct
    transl_stmt_Sreturn_none_correct
    transl_stmt_Sreturn_some_correct
    transl_stmt_Stailcall_correct).

Theorem transl_stmt_correct:
  forall sp e m s t e' m' out,
  exec_stmt ge sp e m s t e' m' out ->
  transl_stmt_prop sp e m s t e' m' out.
Proof
  (exec_stmt_ind2 ge
    transl_function_prop
    transl_stmt_prop

    transl_funcall_internal_correct
    transl_funcall_external_correct
    transl_stmt_Sskip_correct
    transl_stmt_Sassign_correct
    transl_stmt_Sstore_correct
    transl_stmt_Scall_correct
    transl_stmt_Salloc_correct
    transl_stmt_Sifthenelse_correct
    transl_stmt_Sseq_continue_correct
    transl_stmt_Sseq_stop_correct
    transl_stmt_Sloop_loop_correct
    transl_stmt_Sloop_stop_correct
    transl_stmt_Sblock_correct
    transl_stmt_Sexit_correct
    transl_stmt_Sswitch_correct
    transl_stmt_Sreturn_none_correct
    transl_stmt_Sreturn_some_correct
    transl_stmt_Stailcall_correct).

(** ** Semantic preservation for the translation of divering statements *)   

Fixpoint size_stmt (s: stmt) : nat :=
  match s with
  | Sseq s1 s2 => (1 + size_stmt s1 + size_stmt s2)%nat
  | Sifthenelse e s1 s2 => (1 + size_stmt s1 + size_stmt s2)%nat
  | Sloop s1 => (1 + size_stmt s1)%nat
  | Sblock s1 => (1 + size_stmt s1)%nat
  | _ => 1%nat
  end.

Theorem transl_function_correct_divergence:
  forall m fd vargs t tfd cs,
  evalinf_funcall ge m fd vargs t ->
  transl_fundef fd = OK tfd ->
  forever_N step tge O (Callstate cs tfd vargs m) t.
Proof.
  cofix FUNCALL.
  assert (STMT: forall sp e m s t,
     execinf_stmt ge sp e m s t ->
     forall cs code map ns ncont nexits nret rret rs
       (MWF: map_wf map)
       (TE: tr_stmt code map s ns ncont nexits nret rret)
       (ME: match_env map e nil rs),
     forever_N step tge (size_stmt s) (State cs code sp ns rs m) t).
  cofix STMT; intros. 
  inv H; inversion TE; subst.
  (* Scall *)
  destruct (transl_expr_correct _ _ _ _ _ _ H0
              cs _ _ _ _ _ _ _ MWF H7 ME)
  as [rs1 [EX1 [ME1 [RES1 OTHER1]]]].
  destruct (transl_exprlist_correct _ _ _ _ _ _ H1
              cs _ _ _ _ _ _ _ MWF H8 ME1)
  as [rs2 [EX2 [ME2 [RES2 OTHER2]]]].
  destruct (functions_translated _ _ H2) as [tf [TFIND TF]].
  eapply forever_N_star with (p := O).
  eapply star_trans. eexact EX1. eexact EX2. reflexivity.
  simpl; omega. 
  eapply forever_N_plus with (p := O).
  apply plus_one. eapply exec_Icall; eauto. 
  simpl. rewrite OTHER2. rewrite RES1. eauto. simpl; tauto. 
  eapply sig_transl_function; eauto.
  eapply FUNCALL. rewrite RES2. eexact H4. assumption.
  reflexivity. traceEq.    
  (* Sifthenelse *)
  destruct (transl_condexpr_correct _ _ _ _ _ _ H0
              cs _ _ _ _ _ _ _ MWF H11 ME)
  as [rs1 [EX1 [ME1 OTHER1]]].
  eapply forever_N_star with (p := size_stmt (if v then s1 else s2)).
  eexact EX1. destruct v; simpl; omega.
  eapply STMT. eexact H1. eauto. destruct v; eauto. eauto.
  traceEq. 
  (* Sseq, 1 *)
  eapply forever_N_star with (p := size_stmt s1).
  apply star_refl. simpl; omega.
  eapply STMT; eauto.
  traceEq.
  (* Sseq, 2 *)
  destruct (transl_stmt_correct _ _ _ _ _ _ _ _ H0
              cs _ _ _ _ _ _ _ _ MWF H9 ME)
  as [rs1 [st1 [OUT1 [EX1 ME1]]]].
  inv OUT1. 
  eapply forever_N_star with (p := size_stmt s2).
  eexact EX1. simpl; omega.
  eapply STMT; eauto.
  traceEq.
  (* Sloop, body *)
  eapply forever_N_star with (p := size_stmt s0).
  apply star_refl. simpl; omega.
  eapply STMT; eauto.
  traceEq.
  (* Sloop, loop *)
  destruct (transl_stmt_correct _ _ _ _ _ _ _ _ H0
              cs _ _ _ _ _ _ _ _ MWF H2 ME)
  as [rs1 [st1 [OUT1 [EX1 ME1]]]].
  inv OUT1. 
  eapply forever_N_plus with (p := size_stmt (Sloop s0)).
  eapply plus_right. eexact EX1. eapply exec_Inop; eauto. reflexivity.
  eapply STMT; eauto.
  traceEq. 
  (* Sblock *)
  eapply forever_N_star with (p := size_stmt s0).
  apply star_refl. simpl; omega.
  eapply STMT; eauto.
  traceEq.
  (* Stailcall *)
  destruct (transl_expr_correct _ _ _ _ _ _ H0
              cs _ _ _ _ _ _ _ MWF H6 ME)
  as [rs1 [EX1 [ME1 [RES1 OTHER1]]]].
  destruct (transl_exprlist_correct _ _ _ _ _ _ H1
              cs _ _ _ _ _ _ _ MWF H12 ME1)
  as [rs2 [EX2 [ME2 [RES2 OTHER2]]]].
  destruct (functions_translated _ _ H2) as [tf [TFIND TF]].
  eapply forever_N_star with (p := O).
  eapply star_trans. eexact EX1. eexact EX2. reflexivity.
  simpl; omega. 
  eapply forever_N_plus with (p := O).
  apply plus_one. eapply exec_Itailcall; eauto. 
  simpl. rewrite OTHER2. rewrite RES1. eauto. simpl; tauto. 
  eapply sig_transl_function; eauto.
  eapply FUNCALL. rewrite RES2. eexact H4. assumption.
  reflexivity. traceEq.
  (* funcall *)
  intros. inversion H. subst m0 fd vargs0 t0. 
  generalize H0; simpl. caseEq (transl_function f); simpl. 2: congruence.
  intros tfi EQ1 EQ2. injection EQ2; clear EQ2; intro EQ2.
  assert (TR: tr_function f tfi). apply transl_function_charact; auto.
  rewrite <- EQ2. inversion TR. subst f0. 
  pose (rs := init_regs vargs rparams).
  assert (ME: match_env map2 e nil rs).
  rewrite <- H2. unfold rs. 
  eapply match_init_env_init_reg; eauto.
  assert (MWF: map_wf map2).
    assert (map_valid init_mapping init_state) by apply init_mapping_valid.
    exploit (add_vars_valid (CminorSel.fn_params f)); eauto. intros [A B].
    eapply add_vars_wf; eauto. eapply add_vars_wf; eauto. apply init_mapping_wf.
  eapply forever_N_plus with (p := size_stmt (fn_body f)).
  apply plus_one. eapply exec_function_internal; eauto.
  simpl. eapply STMT; eauto.
  traceEq.
Qed.

(** ** Semantic preservation for whole programs. *)

(** The correctness of the translation follows: 
  if the original Cminor program executes with observable behavior [beh],
  then the generated RTL program executes with the same behavior. *)

Theorem transl_program_correct:
  forall (beh: program_behavior),
  CminorSel.exec_program prog beh ->
  RTL.exec_program tprog beh.
Proof.
  intros. inv H.
  (* termination *)
  exploit function_ptr_translated; eauto. intros [tf [TFIND TRANSLF]].
  exploit transl_function_correct; eauto. intro EX.
  econstructor.
  econstructor. 
  rewrite symbols_preserved. 
  replace (prog_main tprog) with (prog_main prog). eauto.
  symmetry; apply transform_partial_program_main with transl_fundef.
  exact TRANSL.
  eexact TFIND.
  generalize (sig_transl_function _ _ TRANSLF). congruence.
  unfold fundef; rewrite (Genv.init_mem_transf_partial transl_fundef prog TRANSL).
  eexact EX. 
  constructor.
  (* divergence *)
  exploit function_ptr_translated; eauto. intros [tf [TFIND TRANSLF]].
  exploit transl_function_correct_divergence; eauto. intro EX.
  econstructor.
  econstructor. 
  rewrite symbols_preserved. 
  replace (prog_main tprog) with (prog_main prog). eauto.
  symmetry; apply transform_partial_program_main with transl_fundef.
  exact TRANSL.
  eexact TFIND.
  generalize (sig_transl_function _ _ TRANSLF). congruence.
  eapply forever_N_forever. 
  unfold fundef; rewrite (Genv.init_mem_transf_partial transl_fundef prog TRANSL).
  eexact EX. 
Qed.

End CORRECTNESS.