1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
|
(* *********************************************************************)
(* *)
(* The Compcert verified compiler *)
(* *)
(* Xavier Leroy, INRIA Paris-Rocquencourt *)
(* *)
(* Copyright Institut National de Recherche en Informatique et en *)
(* Automatique. All rights reserved. This file is distributed *)
(* under the terms of the INRIA Non-Commercial License Agreement. *)
(* *)
(* *********************************************************************)
(** Correctness proof for PPC generation: main proof. *)
Require Import Coqlib.
Require Import Maps.
Require Import Errors.
Require Import AST.
Require Import Integers.
Require Import Floats.
Require Import Values.
Require Import Mem.
Require Import Events.
Require Import Globalenvs.
Require Import Smallstep.
Require Import Op.
Require Import Locations.
Require Import Mach.
Require Import Machconcr.
Require Import Machtyping.
Require Import PPC.
Require Import PPCgen.
Require Import PPCgenretaddr.
Require Import PPCgenproof1.
Section PRESERVATION.
Variable prog: Mach.program.
Variable tprog: PPC.program.
Hypothesis TRANSF: transf_program prog = Errors.OK tprog.
Let ge := Genv.globalenv prog.
Let tge := Genv.globalenv tprog.
Lemma symbols_preserved:
forall id, Genv.find_symbol tge id = Genv.find_symbol ge id.
Proof.
intros. unfold ge, tge.
apply Genv.find_symbol_transf_partial with transf_fundef.
exact TRANSF.
Qed.
Lemma functions_translated:
forall b f,
Genv.find_funct_ptr ge b = Some f ->
exists tf, Genv.find_funct_ptr tge b = Some tf /\ transf_fundef f = Errors.OK tf.
Proof
(Genv.find_funct_ptr_transf_partial transf_fundef TRANSF).
Lemma functions_transl:
forall f b,
Genv.find_funct_ptr ge b = Some (Internal f) ->
Genv.find_funct_ptr tge b = Some (Internal (transl_function f)).
Proof.
intros.
destruct (functions_translated _ _ H) as [tf [A B]].
rewrite A. generalize B. unfold transf_fundef, transf_partial_fundef, transf_function.
case (zlt Int.max_unsigned (code_size (transl_function f))); simpl; intro.
congruence. intro. inv B0. auto.
Qed.
Lemma functions_transl_no_overflow:
forall b f,
Genv.find_funct_ptr ge b = Some (Internal f) ->
code_size (transl_function f) <= Int.max_unsigned.
Proof.
intros.
destruct (functions_translated _ _ H) as [tf [A B]].
generalize B. unfold transf_fundef, transf_partial_fundef, transf_function.
case (zlt Int.max_unsigned (code_size (transl_function f))); simpl; intro.
congruence. intro; omega.
Qed.
(** * Properties of control flow *)
Lemma find_instr_in:
forall c pos i,
find_instr pos c = Some i -> In i c.
Proof.
induction c; simpl. intros; discriminate.
intros until i. case (zeq pos 0); intros.
left; congruence. right; eauto.
Qed.
Lemma find_instr_tail:
forall c1 i c2 pos,
code_tail pos c1 (i :: c2) ->
find_instr pos c1 = Some i.
Proof.
induction c1; simpl; intros.
inv H.
destruct (zeq pos 0). subst pos.
inv H. auto. generalize (code_tail_pos _ _ _ H4). intro. omegaContradiction.
inv H. congruence. replace (pos0 + 1 - 1) with pos0 by omega.
eauto.
Qed.
Remark code_size_pos:
forall fn, code_size fn >= 0.
Proof.
induction fn; simpl; omega.
Qed.
Remark code_tail_bounds:
forall fn ofs i c,
code_tail ofs fn (i :: c) -> 0 <= ofs < code_size fn.
Proof.
assert (forall ofs fn c, code_tail ofs fn c ->
forall i c', c = i :: c' -> 0 <= ofs < code_size fn).
induction 1; intros; simpl.
rewrite H. simpl. generalize (code_size_pos c'). omega.
generalize (IHcode_tail _ _ H0). omega.
eauto.
Qed.
Lemma code_tail_next:
forall fn ofs i c,
code_tail ofs fn (i :: c) ->
code_tail (ofs + 1) fn c.
Proof.
assert (forall ofs fn c, code_tail ofs fn c ->
forall i c', c = i :: c' -> code_tail (ofs + 1) fn c').
induction 1; intros.
subst c. constructor. constructor.
constructor. eauto.
eauto.
Qed.
Lemma code_tail_next_int:
forall fn ofs i c,
code_size fn <= Int.max_unsigned ->
code_tail (Int.unsigned ofs) fn (i :: c) ->
code_tail (Int.unsigned (Int.add ofs Int.one)) fn c.
Proof.
intros. rewrite Int.add_unsigned.
change (Int.unsigned Int.one) with 1.
rewrite Int.unsigned_repr. apply code_tail_next with i; auto.
generalize (code_tail_bounds _ _ _ _ H0). omega.
Qed.
(** [transl_code_at_pc pc fn c] holds if the code pointer [pc] points
within the PPC code generated by translating Mach function [fn],
and [c] is the tail of the generated code at the position corresponding
to the code pointer [pc]. *)
Inductive transl_code_at_pc: val -> block -> Mach.function -> Mach.code -> Prop :=
transl_code_at_pc_intro:
forall b ofs f c,
Genv.find_funct_ptr ge b = Some (Internal f) ->
code_tail (Int.unsigned ofs) (transl_function f) (transl_code f c) ->
transl_code_at_pc (Vptr b ofs) b f c.
(** The following lemmas show that straight-line executions
(predicate [exec_straight]) correspond to correct PPC executions
(predicate [exec_steps]) under adequate [transl_code_at_pc] hypotheses. *)
Lemma exec_straight_steps_1:
forall fn c rs m c' rs' m',
exec_straight tge fn c rs m c' rs' m' ->
code_size fn <= Int.max_unsigned ->
forall b ofs,
rs#PC = Vptr b ofs ->
Genv.find_funct_ptr tge b = Some (Internal fn) ->
code_tail (Int.unsigned ofs) fn c ->
plus step tge (State rs m) E0 (State rs' m').
Proof.
induction 1; intros.
apply plus_one.
econstructor; eauto.
eapply find_instr_tail. eauto.
eapply plus_left'.
econstructor; eauto.
eapply find_instr_tail. eauto.
apply IHexec_straight with b (Int.add ofs Int.one).
auto. rewrite H0. rewrite H3. reflexivity.
auto.
apply code_tail_next_int with i; auto.
traceEq.
Qed.
Lemma exec_straight_steps_2:
forall fn c rs m c' rs' m',
exec_straight tge fn c rs m c' rs' m' ->
code_size fn <= Int.max_unsigned ->
forall b ofs,
rs#PC = Vptr b ofs ->
Genv.find_funct_ptr tge b = Some (Internal fn) ->
code_tail (Int.unsigned ofs) fn c ->
exists ofs',
rs'#PC = Vptr b ofs'
/\ code_tail (Int.unsigned ofs') fn c'.
Proof.
induction 1; intros.
exists (Int.add ofs Int.one). split.
rewrite H0. rewrite H2. auto.
apply code_tail_next_int with i1; auto.
apply IHexec_straight with (Int.add ofs Int.one).
auto. rewrite H0. rewrite H3. reflexivity. auto.
apply code_tail_next_int with i; auto.
Qed.
Lemma exec_straight_exec:
forall fb f c c' rs m rs' m',
transl_code_at_pc (rs PC) fb f c ->
exec_straight tge (transl_function f)
(transl_code f c) rs m c' rs' m' ->
plus step tge (State rs m) E0 (State rs' m').
Proof.
intros. inversion H. subst.
eapply exec_straight_steps_1; eauto.
eapply functions_transl_no_overflow; eauto.
eapply functions_transl; eauto.
Qed.
Lemma exec_straight_at:
forall fb f c c' rs m rs' m',
transl_code_at_pc (rs PC) fb f c ->
exec_straight tge (transl_function f)
(transl_code f c) rs m (transl_code f c') rs' m' ->
transl_code_at_pc (rs' PC) fb f c'.
Proof.
intros. inversion H. subst.
generalize (functions_transl_no_overflow _ _ H2). intro.
generalize (functions_transl _ _ H2). intro.
generalize (exec_straight_steps_2 _ _ _ _ _ _ _
H0 H4 _ _ (sym_equal H1) H5 H3).
intros [ofs' [PC' CT']].
rewrite PC'. constructor; auto.
Qed.
(** Correctness of the return addresses predicted by
[PPCgen.return_address_offset]. *)
Remark code_tail_no_bigger:
forall pos c1 c2, code_tail pos c1 c2 -> (length c2 <= length c1)%nat.
Proof.
induction 1; simpl; omega.
Qed.
Remark code_tail_unique:
forall fn c pos pos',
code_tail pos fn c -> code_tail pos' fn c -> pos = pos'.
Proof.
induction fn; intros until pos'; intros ITA CT; inv ITA; inv CT; auto.
generalize (code_tail_no_bigger _ _ _ H3); simpl; intro; omega.
generalize (code_tail_no_bigger _ _ _ H3); simpl; intro; omega.
f_equal. eauto.
Qed.
Lemma return_address_offset_correct:
forall b ofs fb f c ofs',
transl_code_at_pc (Vptr b ofs) fb f c ->
return_address_offset f c ofs' ->
ofs' = ofs.
Proof.
intros. inv H0. inv H.
generalize (code_tail_unique _ _ _ _ H1 H7). intro. rewrite H.
apply Int.repr_unsigned.
Qed.
(** The [find_label] function returns the code tail starting at the
given label. A connection with [code_tail] is then established. *)
Fixpoint find_label (lbl: label) (c: code) {struct c} : option code :=
match c with
| nil => None
| instr :: c' =>
if is_label lbl instr then Some c' else find_label lbl c'
end.
Lemma label_pos_code_tail:
forall lbl c pos c',
find_label lbl c = Some c' ->
exists pos',
label_pos lbl pos c = Some pos'
/\ code_tail (pos' - pos) c c'
/\ pos < pos' <= pos + code_size c.
Proof.
induction c.
simpl; intros. discriminate.
simpl; intros until c'.
case (is_label lbl a).
intro EQ; injection EQ; intro; subst c'.
exists (pos + 1). split. auto. split.
replace (pos + 1 - pos) with (0 + 1) by omega. constructor. constructor.
generalize (code_size_pos c). omega.
intros. generalize (IHc (pos + 1) c' H). intros [pos' [A [B C]]].
exists pos'. split. auto. split.
replace (pos' - pos) with ((pos' - (pos + 1)) + 1) by omega.
constructor. auto.
omega.
Qed.
(** The following lemmas show that the translation from Mach to PPC
preserves labels, in the sense that the following diagram commutes:
<<
translation
Mach code ------------------------ PPC instr sequence
| |
| Mach.find_label lbl find_label lbl |
| |
v v
Mach code tail ------------------- PPC instr seq tail
translation
>>
The proof demands many boring lemmas showing that PPC constructor
functions do not introduce new labels.
*)
Section TRANSL_LABEL.
Variable lbl: label.
Remark loadimm_label:
forall r n k, find_label lbl (loadimm r n k) = find_label lbl k.
Proof.
intros. unfold loadimm.
case (Int.eq (high_s n) Int.zero). reflexivity.
case (Int.eq (low_s n) Int.zero). reflexivity.
reflexivity.
Qed.
Hint Rewrite loadimm_label: labels.
Remark addimm_1_label:
forall r1 r2 n k, find_label lbl (addimm_1 r1 r2 n k) = find_label lbl k.
Proof.
intros; unfold addimm_1.
case (Int.eq (high_s n) Int.zero). reflexivity.
case (Int.eq (low_s n) Int.zero). reflexivity. reflexivity.
Qed.
Remark addimm_2_label:
forall r1 r2 n k, find_label lbl (addimm_2 r1 r2 n k) = find_label lbl k.
Proof.
intros; unfold addimm_2. autorewrite with labels. reflexivity.
Qed.
Remark addimm_label:
forall r1 r2 n k, find_label lbl (addimm r1 r2 n k) = find_label lbl k.
Proof.
intros; unfold addimm.
case (ireg_eq r1 GPR0); intro. apply addimm_2_label.
case (ireg_eq r2 GPR0); intro. apply addimm_2_label.
apply addimm_1_label.
Qed.
Hint Rewrite addimm_label: labels.
Remark andimm_label:
forall r1 r2 n k, find_label lbl (andimm r1 r2 n k) = find_label lbl k.
Proof.
intros; unfold andimm.
case (Int.eq (high_u n) Int.zero). reflexivity.
case (Int.eq (low_u n) Int.zero). reflexivity.
autorewrite with labels. reflexivity.
Qed.
Hint Rewrite andimm_label: labels.
Remark orimm_label:
forall r1 r2 n k, find_label lbl (orimm r1 r2 n k) = find_label lbl k.
Proof.
intros; unfold orimm.
case (Int.eq (high_u n) Int.zero). reflexivity.
case (Int.eq (low_u n) Int.zero). reflexivity. reflexivity.
Qed.
Hint Rewrite orimm_label: labels.
Remark xorimm_label:
forall r1 r2 n k, find_label lbl (xorimm r1 r2 n k) = find_label lbl k.
Proof.
intros; unfold xorimm.
case (Int.eq (high_u n) Int.zero). reflexivity.
case (Int.eq (low_u n) Int.zero). reflexivity. reflexivity.
Qed.
Hint Rewrite xorimm_label: labels.
Remark loadind_aux_label:
forall base ofs ty dst k, find_label lbl (loadind_aux base ofs ty dst :: k) = find_label lbl k.
Proof.
intros; unfold loadind_aux.
case ty; reflexivity.
Qed.
Remark loadind_label:
forall base ofs ty dst k, find_label lbl (loadind base ofs ty dst k) = find_label lbl k.
Proof.
intros; unfold loadind.
case (Int.eq (high_s ofs) Int.zero). apply loadind_aux_label.
transitivity (find_label lbl (loadind_aux GPR12 (low_s ofs) ty dst :: k)).
reflexivity. apply loadind_aux_label.
Qed.
Hint Rewrite loadind_label: labels.
Remark storeind_aux_label:
forall base ofs ty dst k, find_label lbl (storeind_aux base ofs ty dst :: k) = find_label lbl k.
Proof.
intros; unfold storeind_aux.
case dst; reflexivity.
Qed.
Remark storeind_label:
forall base ofs ty src k, find_label lbl (storeind base src ofs ty k) = find_label lbl k.
Proof.
intros; unfold storeind.
case (Int.eq (high_s ofs) Int.zero). apply storeind_aux_label.
transitivity (find_label lbl (storeind_aux base GPR12 (low_s ofs) ty :: k)).
reflexivity. apply storeind_aux_label.
Qed.
Hint Rewrite storeind_label: labels.
Remark floatcomp_label:
forall cmp r1 r2 k, find_label lbl (floatcomp cmp r1 r2 k) = find_label lbl k.
Proof.
intros; unfold floatcomp. destruct cmp; reflexivity.
Qed.
Remark transl_cond_label:
forall cond args k, find_label lbl (transl_cond cond args k) = find_label lbl k.
Proof.
intros; unfold transl_cond.
destruct cond; (destruct args;
[try reflexivity | destruct args;
[try reflexivity | destruct args; try reflexivity]]).
case (Int.eq (high_s i) Int.zero). reflexivity.
autorewrite with labels; reflexivity.
case (Int.eq (high_u i) Int.zero). reflexivity.
autorewrite with labels; reflexivity.
apply floatcomp_label. apply floatcomp_label.
apply andimm_label. apply andimm_label.
Qed.
Hint Rewrite transl_cond_label: labels.
Remark transl_op_label:
forall op args r k, find_label lbl (transl_op op args r k) = find_label lbl k.
Proof.
intros; unfold transl_op;
destruct op; destruct args; try (destruct args); try (destruct args); try (destruct args);
try reflexivity; autorewrite with labels; try reflexivity.
case (mreg_type m); reflexivity.
case (Int.eq (high_s i) Int.zero); autorewrite with labels; reflexivity.
case (Int.eq (high_s i) Int.zero); autorewrite with labels; reflexivity.
case (snd (crbit_for_cond c)); reflexivity.
case (snd (crbit_for_cond c)); reflexivity.
case (snd (crbit_for_cond c)); reflexivity.
case (snd (crbit_for_cond c)); reflexivity.
case (snd (crbit_for_cond c)); reflexivity.
Qed.
Hint Rewrite transl_op_label: labels.
Remark transl_load_store_label:
forall (mk1: constant -> ireg -> instruction) (mk2: ireg -> ireg -> instruction)
addr args k,
(forall c r, is_label lbl (mk1 c r) = false) ->
(forall r1 r2, is_label lbl (mk2 r1 r2) = false) ->
find_label lbl (transl_load_store mk1 mk2 addr args k) = find_label lbl k.
Proof.
intros; unfold transl_load_store.
destruct addr; destruct args; try (destruct args); try (destruct args);
try reflexivity.
case (ireg_eq (ireg_of m) GPR0); intro.
simpl. rewrite H. auto.
case (Int.eq (high_s i) Int.zero). simpl; rewrite H; auto.
simpl; rewrite H; auto.
simpl; rewrite H0; auto.
simpl; rewrite H; auto.
case (ireg_eq (ireg_of m) GPR0); intro; simpl; rewrite H; auto.
case (Int.eq (high_s i) Int.zero); simpl; rewrite H; auto.
Qed.
Hint Rewrite transl_load_store_label: labels.
Lemma transl_instr_label:
forall f i k,
find_label lbl (transl_instr f i k) =
if Mach.is_label lbl i then Some k else find_label lbl k.
Proof.
intros. generalize (Mach.is_label_correct lbl i).
case (Mach.is_label lbl i); intro.
subst i. simpl. rewrite peq_true. auto.
destruct i; simpl; autorewrite with labels; try reflexivity.
destruct m; rewrite transl_load_store_label; intros; reflexivity.
destruct m; rewrite transl_load_store_label; intros; reflexivity.
destruct s0; reflexivity.
destruct s0; reflexivity.
rewrite peq_false. auto. congruence.
case (snd (crbit_for_cond c)); reflexivity.
Qed.
Lemma transl_code_label:
forall f c,
find_label lbl (transl_code f c) =
option_map (transl_code f) (Mach.find_label lbl c).
Proof.
induction c; simpl; intros.
auto. rewrite transl_instr_label.
case (Mach.is_label lbl a). reflexivity.
auto.
Qed.
Lemma transl_find_label:
forall f,
find_label lbl (transl_function f) =
option_map (transl_code f) (Mach.find_label lbl f.(fn_code)).
Proof.
intros. unfold transl_function. simpl. apply transl_code_label.
Qed.
End TRANSL_LABEL.
(** A valid branch in a piece of Mach code translates to a valid ``go to''
transition in the generated PPC code. *)
Lemma find_label_goto_label:
forall f lbl rs m c' b ofs,
Genv.find_funct_ptr ge b = Some (Internal f) ->
rs PC = Vptr b ofs ->
Mach.find_label lbl f.(fn_code) = Some c' ->
exists rs',
goto_label (transl_function f) lbl rs m = OK rs' m
/\ transl_code_at_pc (rs' PC) b f c'
/\ forall r, r <> PC -> rs'#r = rs#r.
Proof.
intros.
generalize (transl_find_label lbl f).
rewrite H1; simpl. intro.
generalize (label_pos_code_tail lbl (transl_function f) 0
(transl_code f c') H2).
intros [pos' [A [B C]]].
exists (rs#PC <- (Vptr b (Int.repr pos'))).
split. unfold goto_label. rewrite A. rewrite H0. auto.
split. rewrite Pregmap.gss. constructor; auto.
rewrite Int.unsigned_repr. replace (pos' - 0) with pos' in B.
auto. omega.
generalize (functions_transl_no_overflow _ _ H).
omega.
intros. apply Pregmap.gso; auto.
Qed.
(** * Memory properties *)
(** The PowerPC has no instruction for ``load 8-bit signed integer''.
We show that it can be synthesized as a ``load 8-bit unsigned integer''
followed by a sign extension. *)
Remark valid_access_equiv:
forall chunk1 chunk2 m b ofs,
size_chunk chunk1 = size_chunk chunk2 ->
valid_access m chunk1 b ofs ->
valid_access m chunk2 b ofs.
Proof.
intros. inv H0. rewrite H in H3. constructor; auto.
Qed.
Remark in_bounds_equiv:
forall chunk1 chunk2 m b ofs (A: Set) (a1 a2: A),
size_chunk chunk1 = size_chunk chunk2 ->
(if in_bounds m chunk1 b ofs then a1 else a2) =
(if in_bounds m chunk2 b ofs then a1 else a2).
Proof.
intros. destruct (in_bounds m chunk1 b ofs).
rewrite in_bounds_true. auto. eapply valid_access_equiv; eauto.
destruct (in_bounds m chunk2 b ofs); auto.
elim n. eapply valid_access_equiv with (chunk1 := chunk2); eauto.
Qed.
Lemma loadv_8_signed_unsigned:
forall m a,
Mem.loadv Mint8signed m a =
option_map Val.cast8signed (Mem.loadv Mint8unsigned m a).
Proof.
intros. unfold Mem.loadv. destruct a; try reflexivity.
unfold load. rewrite (in_bounds_equiv Mint8signed Mint8unsigned).
destruct (in_bounds m Mint8unsigned b (Int.signed i)); auto.
simpl.
destruct (getN 0 (Int.signed i) (contents (blocks m b))); auto.
simpl. rewrite Int.cast8_signed_unsigned. auto.
auto.
Qed.
(** Similarly, we show that signed 8- and 16-bit stores can be performed
like unsigned stores. *)
Lemma storev_8_signed_unsigned:
forall m a v,
Mem.storev Mint8signed m a v = Mem.storev Mint8unsigned m a v.
Proof.
intros. unfold storev. destruct a; auto.
unfold store. rewrite (in_bounds_equiv Mint8signed Mint8unsigned).
auto. auto.
Qed.
Lemma storev_16_signed_unsigned:
forall m a v,
Mem.storev Mint16signed m a v = Mem.storev Mint16unsigned m a v.
Proof.
intros. unfold storev. destruct a; auto.
unfold store. rewrite (in_bounds_equiv Mint16signed Mint16unsigned).
auto. auto.
Qed.
(** * Proof of semantic preservation *)
(** Semantic preservation is proved using simulation diagrams
of the following form.
<<
st1 --------------- st2
| |
t| *|t
| |
v v
st1'--------------- st2'
>>
The invariant is the [match_states] predicate below, which includes:
- The PPC code pointed by the PC register is the translation of
the current Mach code sequence.
- Mach register values and PPC register values agree.
*)
Inductive match_stack: list Machconcr.stackframe -> Prop :=
| match_stack_nil:
match_stack nil
| match_stack_cons: forall fb sp ra c s f,
Genv.find_funct_ptr ge fb = Some (Internal f) ->
wt_function f ->
incl c f.(fn_code) ->
transl_code_at_pc ra fb f c ->
match_stack s ->
match_stack (Stackframe fb sp ra c :: s).
Inductive match_states: Machconcr.state -> PPC.state -> Prop :=
| match_states_intro:
forall s fb sp c ms m rs f
(STACKS: match_stack s)
(FIND: Genv.find_funct_ptr ge fb = Some (Internal f))
(WTF: wt_function f)
(INCL: incl c f.(fn_code))
(AT: transl_code_at_pc (rs PC) fb f c)
(AG: agree ms sp rs),
match_states (Machconcr.State s fb sp c ms m)
(PPC.State rs m)
| match_states_call:
forall s fb ms m rs
(STACKS: match_stack s)
(AG: agree ms (parent_sp s) rs)
(ATPC: rs PC = Vptr fb Int.zero)
(ATLR: rs LR = parent_ra s),
match_states (Machconcr.Callstate s fb ms m)
(PPC.State rs m)
| match_states_return:
forall s ms m rs
(STACKS: match_stack s)
(AG: agree ms (parent_sp s) rs)
(ATPC: rs PC = parent_ra s),
match_states (Machconcr.Returnstate s ms m)
(PPC.State rs m).
Lemma exec_straight_steps:
forall s fb sp m1 f c1 rs1 c2 m2 ms2,
match_stack s ->
Genv.find_funct_ptr ge fb = Some (Internal f) ->
wt_function f ->
incl c2 f.(fn_code) ->
transl_code_at_pc (rs1 PC) fb f c1 ->
(exists rs2,
exec_straight tge (transl_function f) (transl_code f c1) rs1 m1 (transl_code f c2) rs2 m2
/\ agree ms2 sp rs2) ->
exists st',
plus step tge (State rs1 m1) E0 st' /\
match_states (Machconcr.State s fb sp c2 ms2 m2) st'.
Proof.
intros. destruct H4 as [rs2 [A B]].
exists (State rs2 m2); split.
eapply exec_straight_exec; eauto.
econstructor; eauto. eapply exec_straight_at; eauto.
Qed.
(** We need to show that, in the simulation diagram, we cannot
take infinitely many Mach transitions that correspond to zero
transitions on the PPC side. Actually, all Mach transitions
correspond to at least one PPC transition, except the
transition from [Machconcr.Returnstate] to [Machconcr.State].
So, the following integer measure will suffice to rule out
the unwanted behaviour. *)
Definition measure (s: Machconcr.state) : nat :=
match s with
| Machconcr.State _ _ _ _ _ _ => 0%nat
| Machconcr.Callstate _ _ _ _ => 0%nat
| Machconcr.Returnstate _ _ _ => 1%nat
end.
(** We show the simulation diagram by case analysis on the Mach transition
on the left. Since the proof is large, we break it into one lemma
per transition. *)
Definition exec_instr_prop (s1: Machconcr.state) (t: trace) (s2: Machconcr.state) : Prop :=
forall s1' (MS: match_states s1 s1'),
(exists s2', plus step tge s1' t s2' /\ match_states s2 s2')
\/ (measure s2 < measure s1 /\ t = E0 /\ match_states s2 s1')%nat.
Lemma exec_Mlabel_prop:
forall (s : list stackframe) (fb : block) (sp : val)
(lbl : Mach.label) (c : list Mach.instruction) (ms : Mach.regset)
(m : mem),
exec_instr_prop (Machconcr.State s fb sp (Mlabel lbl :: c) ms m) E0
(Machconcr.State s fb sp c ms m).
Proof.
intros; red; intros; inv MS.
left; eapply exec_straight_steps; eauto with coqlib.
exists (nextinstr rs); split.
simpl. apply exec_straight_one. reflexivity. reflexivity.
apply agree_nextinstr; auto.
Qed.
Lemma exec_Mgetstack_prop:
forall (s : list stackframe) (fb : block) (sp : val) (ofs : int)
(ty : typ) (dst : mreg) (c : list Mach.instruction)
(ms : Mach.regset) (m : mem) (v : val),
load_stack m sp ty ofs = Some v ->
exec_instr_prop (Machconcr.State s fb sp (Mgetstack ofs ty dst :: c) ms m) E0
(Machconcr.State s fb sp c (Regmap.set dst v ms) m).
Proof.
intros; red; intros; inv MS.
unfold load_stack in H.
generalize (wt_function_instrs _ WTF _ (INCL _ (in_eq _ _))).
intro WTI. inversion WTI.
rewrite (sp_val _ _ _ AG) in H.
assert (NOTE: GPR1 <> GPR0). congruence.
generalize (loadind_correct tge (transl_function f) GPR1 ofs ty
dst (transl_code f c) rs m v H H1 NOTE).
intros [rs2 [EX [RES OTH]]].
left; eapply exec_straight_steps; eauto with coqlib.
simpl. exists rs2; split. auto.
apply agree_exten_2 with (rs#(preg_of dst) <- v).
auto with ppcgen.
intros. case (preg_eq r0 (preg_of dst)); intro.
subst r0. rewrite Pregmap.gss. auto.
rewrite Pregmap.gso; auto.
Qed.
Lemma exec_Msetstack_prop:
forall (s : list stackframe) (fb : block) (sp : val) (src : mreg)
(ofs : int) (ty : typ) (c : list Mach.instruction)
(ms : mreg -> val) (m m' : mem),
store_stack m sp ty ofs (ms src) = Some m' ->
exec_instr_prop (Machconcr.State s fb sp (Msetstack src ofs ty :: c) ms m) E0
(Machconcr.State s fb sp c ms m').
Proof.
intros; red; intros; inv MS.
unfold store_stack in H.
generalize (wt_function_instrs _ WTF _ (INCL _ (in_eq _ _))).
intro WTI. inversion WTI.
rewrite (sp_val _ _ _ AG) in H.
rewrite (preg_val ms sp rs) in H; auto.
assert (NOTE: GPR1 <> GPR0). congruence.
generalize (storeind_correct tge (transl_function f) GPR1 ofs ty
src (transl_code f c) rs m m' H H1 NOTE).
intros [rs2 [EX OTH]].
left; eapply exec_straight_steps; eauto with coqlib.
exists rs2; split; auto.
apply agree_exten_2 with rs; auto.
Qed.
Lemma exec_Mgetparam_prop:
forall (s : list stackframe) (fb : block) (f: Mach.function) (sp parent : val)
(ofs : int) (ty : typ) (dst : mreg) (c : list Mach.instruction)
(ms : Mach.regset) (m : mem) (v : val),
Genv.find_funct_ptr ge fb = Some (Internal f) ->
load_stack m sp Tint f.(fn_link_ofs) = Some parent ->
load_stack m parent ty ofs = Some v ->
exec_instr_prop (Machconcr.State s fb sp (Mgetparam ofs ty dst :: c) ms m) E0
(Machconcr.State s fb sp c (Regmap.set dst v ms) m).
Proof.
intros; red; intros; inv MS.
assert (f0 = f) by congruence. subst f0.
set (rs2 := nextinstr (rs#GPR12 <- parent)).
assert (EX1: exec_straight tge (transl_function f)
(transl_code f (Mgetparam ofs ty dst :: c)) rs m
(loadind GPR12 ofs ty dst (transl_code f c)) rs2 m).
simpl. apply exec_straight_one.
simpl. unfold load1. rewrite gpr_or_zero_not_zero; auto with ppcgen.
unfold const_low. rewrite <- (sp_val ms sp rs); auto.
unfold load_stack in H0. simpl chunk_of_type in H0.
rewrite H0. reflexivity. reflexivity.
generalize (wt_function_instrs _ WTF _ (INCL _ (in_eq _ _))).
intro WTI. inversion WTI.
unfold load_stack in H1. change parent with rs2#GPR12 in H1.
assert (NOTE: GPR12 <> GPR0). congruence.
generalize (loadind_correct tge (transl_function f) GPR12 ofs ty
dst (transl_code f c) rs2 m v H1 H3 NOTE).
intros [rs3 [EX2 [RES OTH]]].
left; eapply exec_straight_steps; eauto with coqlib.
exists rs3; split; simpl.
eapply exec_straight_trans; eauto.
apply agree_exten_2 with (rs2#(preg_of dst) <- v).
unfold rs2; auto with ppcgen.
intros. case (preg_eq r0 (preg_of dst)); intro.
subst r0. rewrite Pregmap.gss. auto.
rewrite Pregmap.gso; auto.
Qed.
Lemma exec_Mop_prop:
forall (s : list stackframe) (fb : block) (sp : val) (op : operation)
(args : list mreg) (res : mreg) (c : list Mach.instruction)
(ms : mreg -> val) (m : mem) (v : val),
eval_operation ge sp op ms ## args m = Some v ->
exec_instr_prop (Machconcr.State s fb sp (Mop op args res :: c) ms m) E0
(Machconcr.State s fb sp c (Regmap.set res v ms) m).
Proof.
intros; red; intros; inv MS.
generalize (wt_function_instrs _ WTF _ (INCL _ (in_eq _ _))).
intro WTI.
left; eapply exec_straight_steps; eauto with coqlib.
simpl. eapply transl_op_correct; auto.
rewrite <- H. apply eval_operation_preserved. exact symbols_preserved.
Qed.
Lemma exec_Mload_prop:
forall (s : list stackframe) (fb : block) (sp : val)
(chunk : memory_chunk) (addr : addressing) (args : list mreg)
(dst : mreg) (c : list Mach.instruction) (ms : mreg -> val)
(m : mem) (a v : val),
eval_addressing ge sp addr ms ## args = Some a ->
loadv chunk m a = Some v ->
exec_instr_prop (Machconcr.State s fb sp (Mload chunk addr args dst :: c) ms m)
E0 (Machconcr.State s fb sp c (Regmap.set dst v ms) m).
Proof.
intros; red; intros; inv MS.
generalize (wt_function_instrs _ WTF _ (INCL _ (in_eq _ _))).
intro WTI; inversion WTI.
assert (eval_addressing tge sp addr ms##args = Some a).
rewrite <- H. apply eval_addressing_preserved. exact symbols_preserved.
left; eapply exec_straight_steps; eauto with coqlib;
destruct chunk; simpl; simpl in H6;
(* all cases but Mint8signed *)
try (eapply transl_load_correct; eauto;
intros; simpl; unfold preg_of; rewrite H6; auto).
(* Mint8signed *)
generalize (loadv_8_signed_unsigned m a).
rewrite H0.
caseEq (loadv Mint8unsigned m a);
[idtac | simpl;intros;discriminate].
intros v' LOAD' EQ. simpl in EQ. injection EQ. intro EQ1. clear EQ.
assert (X1: forall (cst : constant) (r1 : ireg) (rs1 : regset),
exec_instr tge (transl_function f) (Plbz (ireg_of dst) cst r1) rs1 m =
load1 tge Mint8unsigned (preg_of dst) cst r1 rs1 m).
intros. unfold preg_of; rewrite H6. reflexivity.
assert (X2: forall (r1 r2 : ireg) (rs1 : regset),
exec_instr tge (transl_function f) (Plbzx (ireg_of dst) r1 r2) rs1 m =
load2 Mint8unsigned (preg_of dst) r1 r2 rs1 m).
intros. unfold preg_of; rewrite H6. reflexivity.
generalize (transl_load_correct tge (transl_function f)
(Plbz (ireg_of dst)) (Plbzx (ireg_of dst))
Mint8unsigned addr args
(Pextsb (ireg_of dst) (ireg_of dst) :: transl_code f c)
ms sp rs m dst a v'
X1 X2 AG H3 H7 LOAD').
intros [rs2 [EX1 AG1]].
exists (nextinstr (rs2#(ireg_of dst) <- v)).
split. eapply exec_straight_trans. eexact EX1.
apply exec_straight_one. simpl.
rewrite <- (ireg_val _ _ _ dst AG1);auto. rewrite Regmap.gss.
rewrite EQ1. reflexivity. reflexivity.
eauto with ppcgen.
Qed.
Lemma exec_Mstore_prop:
forall (s : list stackframe) (fb : block) (sp : val)
(chunk : memory_chunk) (addr : addressing) (args : list mreg)
(src : mreg) (c : list Mach.instruction) (ms : mreg -> val)
(m m' : mem) (a : val),
eval_addressing ge sp addr ms ## args = Some a ->
storev chunk m a (ms src) = Some m' ->
exec_instr_prop (Machconcr.State s fb sp (Mstore chunk addr args src :: c) ms m) E0
(Machconcr.State s fb sp c ms m').
Proof.
intros; red; intros; inv MS.
generalize (wt_function_instrs _ WTF _ (INCL _ (in_eq _ _))).
intro WTI; inversion WTI.
rewrite <- (eval_addressing_preserved symbols_preserved) in H.
left; eapply exec_straight_steps; eauto with coqlib.
destruct chunk; simpl; simpl in H6;
try (rewrite storev_8_signed_unsigned in H0);
try (rewrite storev_16_signed_unsigned in H0);
simpl; eapply transl_store_correct; eauto;
intros; unfold preg_of; rewrite H6; reflexivity.
Qed.
Lemma exec_Mcall_prop:
forall (s : list stackframe) (fb : block) (sp : val)
(sig : signature) (ros : mreg + ident) (c : Mach.code)
(ms : Mach.regset) (m : mem) (f : function) (f' : block)
(ra : int),
find_function_ptr ge ros ms = Some f' ->
Genv.find_funct_ptr ge fb = Some (Internal f) ->
return_address_offset f c ra ->
exec_instr_prop (Machconcr.State s fb sp (Mcall sig ros :: c) ms m) E0
(Callstate (Stackframe fb sp (Vptr fb ra) c :: s) f' ms m).
Proof.
intros; red; intros; inv MS.
assert (f0 = f) by congruence. subst f0.
generalize (wt_function_instrs _ WTF _ (INCL _ (in_eq _ _))).
intro WTI. inversion WTI.
inv AT.
assert (NOOV: code_size (transl_function f) <= Int.max_unsigned).
eapply functions_transl_no_overflow; eauto.
destruct ros; simpl in H; simpl transl_code in H7.
(* Indirect call *)
generalize (code_tail_next_int _ _ _ _ NOOV H7). intro CT1.
generalize (code_tail_next_int _ _ _ _ NOOV CT1). intro CT2.
set (rs2 := nextinstr (rs#CTR <- (ms m0))).
set (rs3 := rs2 #LR <- (Val.add rs2#PC Vone) #PC <- (ms m0)).
assert (ATPC: rs3 PC = Vptr f' Int.zero).
change (rs3 PC) with (ms m0).
destruct (ms m0); try discriminate.
generalize H; predSpec Int.eq Int.eq_spec i Int.zero; intros; congruence.
exploit return_address_offset_correct; eauto. constructor; eauto.
intro RA_EQ.
assert (ATLR: rs3 LR = Vptr fb ra).
rewrite RA_EQ.
change (rs3 LR) with (Val.add (Val.add (rs PC) Vone) Vone).
rewrite <- H5. reflexivity.
assert (AG3: agree ms sp rs3).
unfold rs3, rs2; auto 8 with ppcgen.
left; exists (State rs3 m); split.
apply plus_left with E0 (State rs2 m) E0.
econstructor. eauto. apply functions_transl. eexact H0.
eapply find_instr_tail. eauto.
simpl. rewrite <- (ireg_val ms sp rs); auto.
apply star_one. econstructor.
change (rs2 PC) with (Val.add (rs PC) Vone). rewrite <- H5.
simpl. auto.
apply functions_transl. eexact H0.
eapply find_instr_tail. eauto.
simpl. reflexivity.
traceEq.
econstructor; eauto.
econstructor; eauto with coqlib.
rewrite RA_EQ. econstructor; eauto.
(* Direct call *)
generalize (code_tail_next_int _ _ _ _ NOOV H7). intro CT1.
set (rs2 := rs #LR <- (Val.add rs#PC Vone) #PC <- (symbol_offset tge i Int.zero)).
assert (ATPC: rs2 PC = Vptr f' Int.zero).
change (rs2 PC) with (symbol_offset tge i Int.zero).
unfold symbol_offset. rewrite symbols_preserved. rewrite H. auto.
exploit return_address_offset_correct; eauto. constructor; eauto.
intro RA_EQ.
assert (ATLR: rs2 LR = Vptr fb ra).
rewrite RA_EQ.
change (rs2 LR) with (Val.add (rs PC) Vone).
rewrite <- H5. reflexivity.
assert (AG2: agree ms sp rs2).
unfold rs2; auto 8 with ppcgen.
left; exists (State rs2 m); split.
apply plus_one. econstructor.
eauto.
apply functions_transl. eexact H0.
eapply find_instr_tail. eauto.
simpl. reflexivity.
econstructor; eauto with coqlib.
econstructor; eauto with coqlib.
rewrite RA_EQ. econstructor; eauto.
Qed.
Lemma exec_Mtailcall_prop:
forall (s : list stackframe) (fb stk : block) (soff : int)
(sig : signature) (ros : mreg + ident) (c : list Mach.instruction)
(ms : Mach.regset) (m : mem) (f: Mach.function) (f' : block),
find_function_ptr ge ros ms = Some f' ->
Genv.find_funct_ptr ge fb = Some (Internal f) ->
load_stack m (Vptr stk soff) Tint f.(fn_link_ofs) = Some (parent_sp s) ->
load_stack m (Vptr stk soff) Tint f.(fn_retaddr_ofs) = Some (parent_ra s) ->
exec_instr_prop
(Machconcr.State s fb (Vptr stk soff) (Mtailcall sig ros :: c) ms m) E0
(Callstate s f' ms (free m stk)).
Proof.
intros; red; intros; inv MS.
assert (f0 = f) by congruence. subst f0.
generalize (wt_function_instrs _ WTF _ (INCL _ (in_eq _ _))).
intro WTI. inversion WTI.
inversion AT. subst b f0 c0.
assert (NOOV: code_size (transl_function f) <= Int.max_unsigned).
eapply functions_transl_no_overflow; eauto.
destruct ros; simpl in H; simpl in H9.
(* Indirect call *)
set (rs2 := nextinstr (rs#CTR <- (ms m0))).
set (rs3 := nextinstr (rs2#GPR12 <- (parent_ra s))).
set (rs4 := nextinstr (rs3#LR <- (parent_ra s))).
set (rs5 := nextinstr (rs4#GPR1 <- (parent_sp s))).
set (rs6 := rs5#PC <- (rs5 CTR)).
assert (exec_straight tge (transl_function f)
(transl_code f (Mtailcall sig (inl ident m0) :: c)) rs m
(Pbctr :: transl_code f c) rs5 (free m stk)).
simpl. apply exec_straight_step with rs2 m.
simpl. rewrite <- (ireg_val _ _ _ _ AG H6). reflexivity. reflexivity.
apply exec_straight_step with rs3 m.
simpl. unfold load1. rewrite gpr_or_zero_not_zero. unfold const_low.
change (rs2 GPR1) with (rs GPR1). rewrite <- (sp_val _ _ _ AG).
simpl. unfold load_stack in H2. simpl in H2. rewrite H2.
reflexivity. discriminate. reflexivity.
apply exec_straight_step with rs4 m.
simpl. reflexivity. reflexivity.
apply exec_straight_one.
simpl. change (rs4 GPR1) with (rs GPR1). rewrite <- (sp_val _ _ _ AG).
unfold load_stack in H1; simpl in H1.
simpl. rewrite H1. reflexivity. reflexivity.
left; exists (State rs6 (free m stk)); split.
(* execution *)
eapply plus_right'. eapply exec_straight_exec; eauto.
econstructor.
change (rs5 PC) with (Val.add (Val.add (Val.add (Val.add (rs PC) Vone) Vone) Vone) Vone).
rewrite <- H7; simpl. eauto.
eapply functions_transl; eauto.
eapply find_instr_tail.
repeat (eapply code_tail_next_int; auto). eauto.
simpl. reflexivity. traceEq.
(* match states *)
econstructor; eauto.
assert (AG4: agree ms (Vptr stk soff) rs4).
unfold rs4, rs3, rs2; auto 10 with ppcgen.
assert (AG5: agree ms (parent_sp s) rs5).
unfold rs5. apply agree_nextinstr.
split. reflexivity. intros. inv AG4. rewrite H12.
rewrite Pregmap.gso; auto with ppcgen.
unfold rs6; auto with ppcgen.
change (rs6 PC) with (ms m0).
generalize H. destruct (ms m0); try congruence.
predSpec Int.eq Int.eq_spec i Int.zero; intros; congruence.
(* direct call *)
set (rs2 := nextinstr (rs#GPR12 <- (parent_ra s))).
set (rs3 := nextinstr (rs2#LR <- (parent_ra s))).
set (rs4 := nextinstr (rs3#GPR1 <- (parent_sp s))).
set (rs5 := rs4#PC <- (Vptr f' Int.zero)).
assert (exec_straight tge (transl_function f)
(transl_code f (Mtailcall sig (inr mreg i) :: c)) rs m
(Pbs i :: transl_code f c) rs4 (free m stk)).
simpl. apply exec_straight_step with rs2 m.
simpl. unfold load1. rewrite gpr_or_zero_not_zero. unfold const_low.
rewrite <- (sp_val _ _ _ AG).
simpl. unfold load_stack in H2. simpl in H2. rewrite H2.
reflexivity. discriminate. reflexivity.
apply exec_straight_step with rs3 m.
simpl. reflexivity. reflexivity.
apply exec_straight_one.
simpl. change (rs3 GPR1) with (rs GPR1). rewrite <- (sp_val _ _ _ AG).
unfold load_stack in H1; simpl in H1.
simpl. rewrite H1. reflexivity. reflexivity.
left; exists (State rs5 (free m stk)); split.
(* execution *)
eapply plus_right'. eapply exec_straight_exec; eauto.
econstructor.
change (rs4 PC) with (Val.add (Val.add (Val.add (rs PC) Vone) Vone) Vone).
rewrite <- H7; simpl. eauto.
eapply functions_transl; eauto.
eapply find_instr_tail.
repeat (eapply code_tail_next_int; auto). eauto.
simpl. unfold symbol_offset. rewrite symbols_preserved. rewrite H.
reflexivity. traceEq.
(* match states *)
econstructor; eauto.
assert (AG3: agree ms (Vptr stk soff) rs3).
unfold rs3, rs2; auto 10 with ppcgen.
assert (AG4: agree ms (parent_sp s) rs4).
unfold rs4. apply agree_nextinstr.
split. reflexivity. intros. inv AG3. rewrite H12.
rewrite Pregmap.gso; auto with ppcgen.
unfold rs5; auto with ppcgen.
Qed.
Lemma exec_Malloc_prop:
forall (s : list stackframe) (fb : block) (sp : val)
(c : list Mach.instruction) (ms : mreg -> val) (m : mem) (sz : int)
(m' : mem) (blk : block),
ms Conventions.loc_alloc_argument = Vint sz ->
alloc m 0 (Int.signed sz) = (m', blk) ->
exec_instr_prop (Machconcr.State s fb sp (Malloc :: c) ms m) E0
(Machconcr.State s fb sp c
(Regmap.set (Conventions.loc_alloc_result) (Vptr blk Int.zero) ms) m').
Proof.
intros; red; intros; inv MS.
left; eapply exec_straight_steps; eauto with coqlib.
simpl. eapply transl_alloc_correct; eauto.
Qed.
Lemma exec_Mgoto_prop:
forall (s : list stackframe) (fb : block) (f : function) (sp : val)
(lbl : Mach.label) (c : list Mach.instruction) (ms : Mach.regset)
(m : mem) (c' : Mach.code),
Genv.find_funct_ptr ge fb = Some (Internal f) ->
Mach.find_label lbl (fn_code f) = Some c' ->
exec_instr_prop (Machconcr.State s fb sp (Mgoto lbl :: c) ms m) E0
(Machconcr.State s fb sp c' ms m).
Proof.
intros; red; intros; inv MS.
assert (f0 = f) by congruence. subst f0.
inv AT. simpl in H3.
generalize (find_label_goto_label f lbl rs m _ _ _ FIND (sym_equal H1) H0).
intros [rs2 [GOTO [AT2 INV]]].
left; exists (State rs2 m); split.
apply plus_one. econstructor; eauto.
apply functions_transl; eauto.
eapply find_instr_tail; eauto.
simpl; auto.
econstructor; eauto.
eapply Mach.find_label_incl; eauto.
apply agree_exten_2 with rs; auto.
Qed.
Lemma exec_Mcond_true_prop:
forall (s : list stackframe) (fb : block) (f : function) (sp : val)
(cond : condition) (args : list mreg) (lbl : Mach.label)
(c : list Mach.instruction) (ms : mreg -> val) (m : mem)
(c' : Mach.code),
eval_condition cond ms ## args m = Some true ->
Genv.find_funct_ptr ge fb = Some (Internal f) ->
Mach.find_label lbl (fn_code f) = Some c' ->
exec_instr_prop (Machconcr.State s fb sp (Mcond cond args lbl :: c) ms m) E0
(Machconcr.State s fb sp c' ms m).
Proof.
intros; red; intros; inv MS. assert (f0 = f) by congruence. subst f0.
generalize (wt_function_instrs _ WTF _ (INCL _ (in_eq _ _))).
intro WTI. inv WTI.
pose (k1 :=
if snd (crbit_for_cond cond)
then Pbt (fst (crbit_for_cond cond)) lbl :: transl_code f c
else Pbf (fst (crbit_for_cond cond)) lbl :: transl_code f c).
generalize (transl_cond_correct tge (transl_function f)
cond args k1 ms sp rs m true H3 AG H).
simpl. intros [rs2 [EX [RES AG2]]].
inv AT. simpl in H5.
generalize (functions_transl _ _ H4); intro FN.
generalize (functions_transl_no_overflow _ _ H4); intro NOOV.
exploit exec_straight_steps_2; eauto.
intros [ofs' [PC2 CT2]].
generalize (find_label_goto_label f lbl rs2 m _ _ _ FIND PC2 H1).
intros [rs3 [GOTO [AT3 INV3]]].
left; exists (State rs3 m); split.
eapply plus_right'.
eapply exec_straight_steps_1; eauto.
caseEq (snd (crbit_for_cond cond)); intro ISSET; rewrite ISSET in RES.
econstructor; eauto.
eapply find_instr_tail. unfold k1 in CT2; rewrite ISSET in CT2. eauto.
simpl. rewrite RES. simpl. auto.
econstructor; eauto.
eapply find_instr_tail. unfold k1 in CT2; rewrite ISSET in CT2. eauto.
simpl. rewrite RES. simpl. auto.
traceEq.
econstructor; eauto.
eapply Mach.find_label_incl; eauto.
apply agree_exten_2 with rs2; auto.
Qed.
Lemma exec_Mcond_false_prop:
forall (s : list stackframe) (fb : block) (sp : val)
(cond : condition) (args : list mreg) (lbl : Mach.label)
(c : list Mach.instruction) (ms : mreg -> val) (m : mem),
eval_condition cond ms ## args m = Some false ->
exec_instr_prop (Machconcr.State s fb sp (Mcond cond args lbl :: c) ms m) E0
(Machconcr.State s fb sp c ms m).
Proof.
intros; red; intros; inv MS.
generalize (wt_function_instrs _ WTF _ (INCL _ (in_eq _ _))).
intro WTI. inversion WTI.
pose (k1 :=
if snd (crbit_for_cond cond)
then Pbt (fst (crbit_for_cond cond)) lbl :: transl_code f c
else Pbf (fst (crbit_for_cond cond)) lbl :: transl_code f c).
generalize (transl_cond_correct tge (transl_function f)
cond args k1 ms sp rs m false H1 AG H).
simpl. intros [rs2 [EX [RES AG2]]].
left; eapply exec_straight_steps; eauto with coqlib.
exists (nextinstr rs2); split.
simpl. eapply exec_straight_trans. eexact EX.
caseEq (snd (crbit_for_cond cond)); intro ISSET; rewrite ISSET in RES.
unfold k1; rewrite ISSET; apply exec_straight_one.
simpl. rewrite RES. reflexivity.
reflexivity.
unfold k1; rewrite ISSET; apply exec_straight_one.
simpl. rewrite RES. reflexivity.
reflexivity.
auto with ppcgen.
Qed.
Lemma exec_Mreturn_prop:
forall (s : list stackframe) (fb stk : block) (soff : int)
(c : list Mach.instruction) (ms : Mach.regset) (m : mem) (f: Mach.function),
Genv.find_funct_ptr ge fb = Some (Internal f) ->
load_stack m (Vptr stk soff) Tint f.(fn_link_ofs) = Some (parent_sp s) ->
load_stack m (Vptr stk soff) Tint f.(fn_retaddr_ofs) = Some (parent_ra s) ->
exec_instr_prop (Machconcr.State s fb (Vptr stk soff) (Mreturn :: c) ms m) E0
(Returnstate s ms (free m stk)).
Proof.
intros; red; intros; inv MS.
assert (f0 = f) by congruence. subst f0.
set (rs2 := nextinstr (rs#GPR12 <- (parent_ra s))).
set (rs3 := nextinstr (rs2#LR <- (parent_ra s))).
set (rs4 := nextinstr (rs3#GPR1 <- (parent_sp s))).
set (rs5 := rs4#PC <- (parent_ra s)).
assert (exec_straight tge (transl_function f)
(transl_code f (Mreturn :: c)) rs m
(Pblr :: transl_code f c) rs4 (free m stk)).
simpl. apply exec_straight_three with rs2 m rs3 m.
simpl. unfold load1. rewrite gpr_or_zero_not_zero. unfold const_low.
unfold load_stack in H1. simpl in H1.
rewrite <- (sp_val _ _ _ AG). simpl. rewrite H1.
reflexivity. discriminate.
unfold rs3. change (parent_ra s) with rs2#GPR12. reflexivity.
simpl. change (rs3 GPR1) with (rs GPR1). rewrite <- (sp_val _ _ _ AG).
simpl.
unfold load_stack in H0. simpl in H0.
rewrite H0. reflexivity.
reflexivity. reflexivity. reflexivity.
left; exists (State rs5 (free m stk)); split.
(* execution *)
apply plus_right' with E0 (State rs4 (free m stk)) E0.
eapply exec_straight_exec; eauto.
inv AT. econstructor.
change (rs4 PC) with (Val.add (Val.add (Val.add (rs PC) Vone) Vone) Vone).
rewrite <- H3. simpl. eauto.
apply functions_transl; eauto.
generalize (functions_transl_no_overflow _ _ H4); intro NOOV.
simpl in H5. eapply find_instr_tail.
eapply code_tail_next_int; auto.
eapply code_tail_next_int; auto.
eapply code_tail_next_int; eauto.
reflexivity. traceEq.
(* match states *)
econstructor; eauto.
assert (AG3: agree ms (Vptr stk soff) rs3).
unfold rs3, rs2; auto 10 with ppcgen.
assert (AG4: agree ms (parent_sp s) rs4).
split. reflexivity. intros. unfold rs4.
rewrite nextinstr_inv. rewrite Pregmap.gso.
elim AG3; auto. auto with ppcgen. auto with ppcgen.
unfold rs5; auto with ppcgen.
Qed.
Hypothesis wt_prog: wt_program prog.
Lemma exec_function_internal_prop:
forall (s : list stackframe) (fb : block) (ms : Mach.regset)
(m : mem) (f : function) (m1 m2 m3 : mem) (stk : block),
Genv.find_funct_ptr ge fb = Some (Internal f) ->
alloc m (- fn_framesize f) (fn_stacksize f) = (m1, stk) ->
let sp := Vptr stk (Int.repr (- fn_framesize f)) in
store_stack m1 sp Tint f.(fn_link_ofs) (parent_sp s) = Some m2 ->
store_stack m2 sp Tint f.(fn_retaddr_ofs) (parent_ra s) = Some m3 ->
exec_instr_prop (Machconcr.Callstate s fb ms m) E0
(Machconcr.State s fb sp (fn_code f) ms m3).
Proof.
intros; red; intros; inv MS.
assert (WTF: wt_function f).
generalize (Genv.find_funct_ptr_prop wt_fundef wt_prog H); intro TY.
inversion TY; auto.
exploit functions_transl; eauto. intro TFIND.
generalize (functions_transl_no_overflow _ _ H); intro NOOV.
set (rs2 := nextinstr (rs#GPR1 <- sp #GPR12 <- Vundef)).
set (rs3 := nextinstr (rs2#GPR12 <- (parent_ra s))).
set (rs4 := nextinstr rs3).
(* Execution of function prologue *)
assert (EXEC_PROLOGUE:
exec_straight tge (transl_function f)
(transl_function f) rs m
(transl_code f (fn_code f)) rs4 m3).
unfold transl_function at 2.
apply exec_straight_three with rs2 m2 rs3 m2.
unfold exec_instr. rewrite H0. fold sp.
unfold store_stack in H1. simpl chunk_of_type in H1.
rewrite <- (sp_val _ _ _ AG). rewrite H1. reflexivity.
simpl. change (rs2 LR) with (rs LR). rewrite ATLR. reflexivity.
simpl. unfold store1. rewrite gpr_or_zero_not_zero.
unfold const_low. change (rs3 GPR1) with sp. change (rs3 GPR12) with (parent_ra s).
unfold store_stack in H2. simpl chunk_of_type in H2. rewrite H2. reflexivity.
discriminate. reflexivity. reflexivity. reflexivity.
(* Agreement at end of prologue *)
assert (AT4: transl_code_at_pc rs4#PC fb f f.(fn_code)).
change (rs4 PC) with (Val.add (Val.add (Val.add (rs PC) Vone) Vone) Vone).
rewrite ATPC. simpl. constructor. auto.
eapply code_tail_next_int; auto.
eapply code_tail_next_int; auto.
eapply code_tail_next_int; auto.
change (Int.unsigned Int.zero) with 0.
unfold transl_function. constructor.
assert (AG2: agree ms sp rs2).
split. reflexivity.
intros. unfold rs2. rewrite nextinstr_inv.
repeat (rewrite Pregmap.gso). elim AG; auto.
auto with ppcgen. auto with ppcgen. auto with ppcgen.
assert (AG4: agree ms sp rs4).
unfold rs4, rs3; auto with ppcgen.
left; exists (State rs4 m3); split.
(* execution *)
eapply exec_straight_steps_1; eauto.
change (Int.unsigned Int.zero) with 0. constructor.
(* match states *)
econstructor; eauto with coqlib.
Qed.
Lemma exec_function_external_prop:
forall (s : list stackframe) (fb : block) (ms : Mach.regset)
(m : mem) (t0 : trace) (ms' : RegEq.t -> val)
(ef : external_function) (args : list val) (res : val),
Genv.find_funct_ptr ge fb = Some (External ef) ->
event_match ef args t0 res ->
Machconcr.extcall_arguments ms m (parent_sp s) (ef_sig ef) args ->
ms' = Regmap.set (Conventions.loc_result (ef_sig ef)) res ms ->
exec_instr_prop (Machconcr.Callstate s fb ms m)
t0 (Machconcr.Returnstate s ms' m).
Proof.
intros; red; intros; inv MS.
exploit functions_translated; eauto.
intros [tf [A B]]. simpl in B. inv B.
left; exists (State (rs#(loc_external_result (ef_sig ef)) <- res #PC <- (rs LR))
m); split.
apply plus_one. eapply exec_step_external; eauto.
eapply extcall_arguments_match; eauto.
econstructor; eauto.
rewrite loc_external_result_match. auto with ppcgen.
Qed.
Lemma exec_return_prop:
forall (s : list stackframe) (fb : block) (sp ra : val)
(c : Mach.code) (ms : Mach.regset) (m : mem),
exec_instr_prop (Machconcr.Returnstate (Stackframe fb sp ra c :: s) ms m) E0
(Machconcr.State s fb sp c ms m).
Proof.
intros; red; intros; inv MS. inv STACKS. simpl in *.
right. split. omega. split. auto.
econstructor; eauto. rewrite ATPC; auto.
Qed.
Theorem transf_instr_correct:
forall s1 t s2, Machconcr.step ge s1 t s2 ->
exec_instr_prop s1 t s2.
Proof
(Machconcr.step_ind ge exec_instr_prop
exec_Mlabel_prop
exec_Mgetstack_prop
exec_Msetstack_prop
exec_Mgetparam_prop
exec_Mop_prop
exec_Mload_prop
exec_Mstore_prop
exec_Mcall_prop
exec_Mtailcall_prop
exec_Malloc_prop
exec_Mgoto_prop
exec_Mcond_true_prop
exec_Mcond_false_prop
exec_Mreturn_prop
exec_function_internal_prop
exec_function_external_prop
exec_return_prop).
Lemma transf_initial_states:
forall st1, Machconcr.initial_state prog st1 ->
exists st2, PPC.initial_state tprog st2 /\ match_states st1 st2.
Proof.
intros. inversion H. unfold ge0 in *.
econstructor; split.
econstructor.
replace (symbol_offset (Genv.globalenv tprog) (prog_main tprog) Int.zero)
with (Vptr fb Int.zero).
rewrite (Genv.init_mem_transf_partial _ _ TRANSF).
econstructor; eauto. constructor.
split. auto. intros. repeat rewrite Pregmap.gso; auto with ppcgen.
unfold symbol_offset.
rewrite (transform_partial_program_main _ _ TRANSF).
rewrite symbols_preserved. unfold ge; rewrite H0. auto.
Qed.
Lemma transf_final_states:
forall st1 st2 r,
match_states st1 st2 -> Machconcr.final_state st1 r -> PPC.final_state st2 r.
Proof.
intros. inv H0. inv H. constructor. auto.
rewrite (ireg_val _ _ _ R3 AG) in H1. auto. auto.
Qed.
Theorem transf_program_correct:
forall (beh: program_behavior),
Machconcr.exec_program prog beh -> PPC.exec_program tprog beh.
Proof.
unfold Machconcr.exec_program, PPC.exec_program; intros.
eapply simulation_star_preservation with (measure := measure); eauto.
eexact transf_initial_states.
eexact transf_final_states.
exact transf_instr_correct.
Qed.
End PRESERVATION.
|