summaryrefslogtreecommitdiff
path: root/backend/Machabstr2concr.v
blob: 89529fd4b62386ffb25572a6ddc6847222a71b00 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
(* *********************************************************************)
(*                                                                     *)
(*              The Compcert verified compiler                         *)
(*                                                                     *)
(*          Xavier Leroy, INRIA Paris-Rocquencourt                     *)
(*                                                                     *)
(*  Copyright Institut National de Recherche en Informatique et en     *)
(*  Automatique.  All rights reserved.  This file is distributed       *)
(*  under the terms of the INRIA Non-Commercial License Agreement.     *)
(*                                                                     *)
(* *********************************************************************)

(** Simulation between the two semantics for the Mach language. *)

Require Import Coqlib.
Require Import Maps.
Require Import AST.
Require Import Integers.
Require Import Values.
Require Import Mem.
Require Import Events.
Require Import Globalenvs.
Require Import Smallstep.
Require Import Op.
Require Import Locations.
Require Import Mach.
Require Import Machtyping.
Require Import Machabstr.
Require Import Machconcr.
Require Import Asmgenretaddr.

(** Two semantics were defined for the Mach intermediate language:
- The concrete semantics (file [Mach]), where the whole activation
  record resides in memory and the [Mgetstack], [Msetstack] and
  [Mgetparent] are interpreted as [sp]-relative memory accesses.
- The abstract semantics (file [Machabstr]), where the activation
  record is split in two parts: the Cminor stack data, resident in
  memory, and the frame information, residing not in memory but
  in additional evaluation environments.

  In this file, we show a simulation result between these
  semantics: if a program executes with some behaviour [beh] in the
  abstract semantics, it also executes with the same behaviour in
  the concrete semantics.  This result bridges the correctness proof
  in file [Stackingproof] (which uses the abstract Mach semantics
  as output) and that in file [Asmgenproof] (which uses the concrete
  Mach semantics as input).
*)

Remark size_type_chunk:
  forall ty, size_chunk (chunk_of_type ty) = AST.typesize ty.
Proof.
  destruct ty; reflexivity.
Qed.

(** * Agreement between frames and memory-resident activation records *)

(** ** Agreement for one frame *)

Section FRAME_MATCH.

Variable f: function.
Hypothesis wt_f: wt_function f.

(** The core idea of the simulation proof is that for all active
  functions, the memory-allocated activation record, in the concrete 
  semantics, contains the same data as the Cminor stack block
  (at positive offsets) and the frame of the function (at negative
  offsets) in the abstract semantics

  This intuition (activation record = Cminor stack data + frame)
  is formalized by the following predicate [frame_match fr sp base mm ms].
  [fr] is a frame and [mm] the current memory state in the abstract
  semantics. [ms] is the current memory state in the concrete semantics.
  The stack pointer is [Vptr sp base] in both semantics. *)

Inductive frame_match (fr: frame)
                      (sp: block) (base: int) 
                      (mm ms: mem) : Prop :=
  frame_match_intro:
    valid_block ms sp ->
    low_bound mm sp = 0 ->
    low_bound ms sp = -f.(fn_framesize) ->
    high_bound ms sp >= 0 ->
    base = Int.repr (-f.(fn_framesize)) ->
    (forall ty ofs,
       -f.(fn_framesize) <= ofs -> ofs + AST.typesize ty <= 0 -> (4 | ofs) ->
       load (chunk_of_type ty) ms sp ofs = Some(fr ty ofs)) ->
    frame_match fr sp base mm ms.

(** The following two innocuous-looking lemmas are the key results
  showing that [sp]-relative memory accesses in the concrete
  semantics behave like the direct frame accesses in the abstract
  semantics.  First, a value [v] that has type [ty] is preserved
  when stored in memory with chunk [chunk_of_type ty], then read
  back with the same chunk.  The typing hypothesis is crucial here:
  for instance, a float value reads back as [Vundef] when stored
  and load with chunk [Mint32]. *)

Lemma load_result_ty:
  forall v ty,
  Val.has_type v ty -> Val.load_result (chunk_of_type ty) v = v.
Proof.
  destruct v; destruct ty; simpl; contradiction || reflexivity.
Qed.

(** Second, computations of [sp]-relative offsets using machine
  arithmetic (as done in the concrete semantics) never overflows
  and behaves identically to the offset computations using exact
  arithmetic (as done in the abstract semantics). *)

Lemma int_add_no_overflow:
  forall x y,
  Int.min_signed <= Int.signed x + Int.signed y <= Int.max_signed ->
  Int.signed (Int.add x y) = Int.signed x + Int.signed y.
Proof.
  intros. rewrite Int.add_signed. rewrite Int.signed_repr. auto. auto.
Qed.

(** Given matching frames and activation records, loading from the
  activation record (in the concrete semantics) behaves identically
  to reading the corresponding slot from the frame
  (in the abstract semantics).  *)

Lemma frame_match_load_stack:
  forall fr sp base mm ms ty ofs,
  frame_match fr sp base mm ms ->
  0 <= Int.signed ofs /\ Int.signed ofs + AST.typesize ty <= f.(fn_framesize) ->
  (4 | Int.signed ofs) ->
  load_stack ms (Vptr sp base) ty ofs = 
  Some (fr ty (Int.signed ofs - f.(fn_framesize))).
Proof.
  intros. inv H. inv wt_f.
  unfold load_stack, Val.add, loadv.
  replace (Int.signed (Int.add (Int.repr (- fn_framesize f)) ofs))
     with (Int.signed ofs - fn_framesize f).
  apply H7. omega. omega.
  apply Zdivide_minus_l; auto. 
  assert (Int.signed (Int.repr (-fn_framesize f)) = -fn_framesize f).
    apply Int.signed_repr.
    assert (0 <= Int.max_signed). compute; congruence. omega.
  rewrite int_add_no_overflow. rewrite H. omega.
  rewrite H. split. omega.
  apply Zle_trans with 0. generalize (AST.typesize_pos ty). omega. 
  compute; congruence.
Qed.

Lemma frame_match_get_slot:
  forall fr sp base mm ms ty ofs v,
  frame_match fr sp base mm ms ->
  get_slot f fr ty (Int.signed ofs) v ->
  load_stack ms (Vptr sp base) ty ofs = Some v.
Proof.
  intros. inversion H. inv H0. inv H7. eapply frame_match_load_stack; eauto.
Qed.

(** Assigning a value to a frame slot (in the abstract semantics)
  corresponds to storing this value in the activation record
  (in the concrete semantics).  Moreover, agreement between frames
  and activation records is preserved. *)

Lemma frame_match_store_stack:
  forall fr sp base mm ms ty ofs v,
  frame_match fr sp base mm ms ->
  0 <= Int.signed ofs /\ Int.signed ofs + AST.typesize ty <= f.(fn_framesize) ->
  (4 | Int.signed ofs) ->
  Val.has_type v ty ->
  Mem.extends mm ms ->
  exists ms',
    store_stack ms (Vptr sp base) ty ofs v = Some ms' /\
    frame_match (update ty (Int.signed ofs - f.(fn_framesize)) v fr) sp base mm ms' /\
    Mem.extends mm ms'.
Proof.
  intros. inv H. inv wt_f.
  unfold store_stack, Val.add, storev.
  assert (Int.signed (Int.add (Int.repr (- fn_framesize f)) ofs) =
          Int.signed ofs - fn_framesize f).
  assert (Int.signed (Int.repr (-fn_framesize f)) = -fn_framesize f).
    apply Int.signed_repr. 
    assert (0 <= Int.max_signed). compute; congruence. omega.
  rewrite int_add_no_overflow. rewrite H. omega.
  rewrite H. split. omega.
  apply Zle_trans with 0. generalize (AST.typesize_pos ty). omega. 
  compute; congruence.
  rewrite H.
  assert (exists ms', store (chunk_of_type ty) ms sp (Int.signed ofs - fn_framesize f) v = Some ms').
    apply valid_access_store. 
    constructor. auto. omega.
    rewrite size_type_chunk. omega.
    replace (align_chunk (chunk_of_type ty)) with 4.
    apply Zdivide_minus_l; auto.
    destruct ty; auto.
  destruct H8 as [ms' STORE]. 
  generalize (low_bound_store _ _ _ _ _ _ STORE sp). intro LB.
  generalize (high_bound_store _ _ _ _ _ _ STORE sp). intro HB.
  exists ms'. 
  split. exact STORE.
  (* frame match *)
  split. constructor; try congruence.
    eauto with mem. intros. unfold update.
    destruct (zeq (Int.signed ofs - fn_framesize f) ofs0). subst ofs0.
    destruct (typ_eq ty ty0). subst ty0.
    (* same *)
    transitivity (Some (Val.load_result (chunk_of_type ty) v)).
    eapply load_store_same; eauto.
    decEq. apply load_result_ty; auto.
    (* mismatch *)
    eapply load_store_mismatch'; eauto with mem.
    destruct ty; destruct ty0; simpl; congruence.
    destruct (zle (ofs0 + AST.typesize ty0) (Int.signed ofs - fn_framesize f)).
    (* disjoint *)
    rewrite <- H9; auto. eapply load_store_other; eauto.
    right; left. rewrite size_type_chunk; auto.
    destruct (zle (Int.signed ofs - fn_framesize f + AST.typesize ty)).
    rewrite <- H9; auto. eapply load_store_other; eauto.
    right; right. rewrite size_type_chunk; auto.
    (* overlap *)
    eapply load_store_overlap'; eauto with mem.
    rewrite size_type_chunk; auto. 
    rewrite size_type_chunk; auto.
  (* extends *)
  eapply store_outside_extends; eauto.
  left. rewrite size_type_chunk. omega.
Qed.

Lemma frame_match_set_slot:
  forall fr sp base mm ms ty ofs v fr',
  frame_match fr sp base mm ms ->
  set_slot f fr ty (Int.signed ofs) v fr' ->
  Val.has_type v ty ->
  Mem.extends mm ms ->
  exists ms',
    store_stack ms (Vptr sp base) ty ofs v = Some ms' /\
    frame_match fr' sp base mm ms' /\
    Mem.extends mm ms'.
Proof.
  intros. inv H0. inv H3. eapply frame_match_store_stack; eauto. 
Qed.

(** Agreement is preserved by stores within blocks other than the
  one pointed to by [sp]. *)

Lemma frame_match_store_other:
  forall fr sp base mm ms chunk b ofs v ms',
  frame_match fr sp base mm ms ->
  store chunk ms b ofs v = Some ms' ->
  sp <> b ->
  frame_match fr sp base mm ms'.
Proof.
  intros. inv H. 
  generalize (low_bound_store _ _ _ _ _ _ H0 sp). intro LB.
  generalize (high_bound_store _ _ _ _ _ _ H0 sp). intro HB.
  apply frame_match_intro; auto.
  eauto with mem. 
  congruence.
  congruence.
  intros. rewrite <- H7; auto. 
  eapply load_store_other; eauto.
Qed.

(** Agreement is preserved by parallel stores in the Machabstr
  and the Machconcr semantics. *)

Lemma frame_match_store:
  forall fr sp base mm ms chunk b ofs v mm' ms',
  frame_match fr sp base mm ms ->
  store chunk mm b ofs v = Some mm' ->
  store chunk ms b ofs v = Some ms' ->
  frame_match fr sp base mm' ms'.
Proof.
  intros. inv H.  
  generalize (low_bound_store _ _ _ _ _ _ H0 sp). intro LBm.
  generalize (low_bound_store _ _ _ _ _ _ H1 sp). intro LBs.
  generalize (high_bound_store _ _ _ _ _ _ H0 sp). intro HBm.
  generalize (high_bound_store _ _ _ _ _ _ H1 sp). intro HBs.
  apply frame_match_intro; auto.
  eauto with mem.
  congruence. congruence. congruence.
  intros. rewrite <- H7; auto. eapply load_store_other; eauto.
  destruct (zeq sp b). subst b. right. 
  rewrite size_type_chunk. 
  assert (valid_access mm chunk sp ofs) by eauto with mem.
  inv H9. left. omega.
  auto.
Qed.

(** Memory allocation of the Cminor stack data block (in the abstract
  semantics) and of the whole activation record (in the concrete
  semantics) return memory states that agree according to [frame_match].
  Moreover, [frame_match] relations over already allocated blocks
  remain true. *)

Lemma frame_match_new:
  forall mm ms mm' ms' sp sp',
  mm.(nextblock) = ms.(nextblock) ->
  alloc mm 0 f.(fn_stacksize) = (mm', sp) ->
  alloc ms (- f.(fn_framesize)) f.(fn_stacksize) = (ms', sp') ->
  sp = sp' /\
  frame_match empty_frame sp (Int.repr (-f.(fn_framesize))) mm' ms'.
Proof.
  intros. 
  assert (sp = sp').
    exploit alloc_result. eexact H0. exploit alloc_result. eexact H1. 
    congruence. 
  subst sp'. split. auto.
  generalize (low_bound_alloc_same _ _ _ _ _ H0). intro LBm.
  generalize (low_bound_alloc_same _ _ _ _ _ H1). intro LBs.
  generalize (high_bound_alloc_same _ _ _ _ _ H0). intro HBm.
  generalize (high_bound_alloc_same _ _ _ _ _ H1). intro HBs.
  inv wt_f.
  constructor; simpl; eauto with mem.
  rewrite HBs. auto.
  intros.
  eapply load_alloc_same'; eauto.  
  rewrite size_type_chunk. omega.
  replace (align_chunk (chunk_of_type ty)) with 4; auto. destruct ty; auto.
Qed.

Lemma frame_match_alloc:
  forall mm ms fr sp base lom him los his mm' ms' bm bs,
  mm.(nextblock) = ms.(nextblock) ->
  frame_match fr sp base mm ms ->
  alloc mm lom him = (mm', bm) ->
  alloc ms los his = (ms', bs) ->
  frame_match fr sp base mm' ms'.
Proof.
  intros. inversion H0.
  assert (valid_block mm sp). red. rewrite H. auto.
  exploit low_bound_alloc_other. eexact H1. eexact H9. intro LBm.
  exploit high_bound_alloc_other. eexact H1. eexact H9. intro HBm.
  exploit low_bound_alloc_other. eexact H2. eexact H3. intro LBs.
  exploit high_bound_alloc_other. eexact H2. eexact H3. intro HBs.
  apply frame_match_intro.
  eapply valid_block_alloc; eauto.
  congruence. congruence. congruence. auto. auto.
  intros. eapply load_alloc_other; eauto. 
Qed.

(** [frame_match] relations are preserved by freeing a block
  other than the one pointed to by [sp]. *)

Lemma frame_match_free:
  forall fr sp base mm ms b,
  frame_match fr sp base mm ms ->
  sp <> b ->
  frame_match fr sp base (free mm b) (free ms b).
Proof.
  intros. inversion H.
  generalize (low_bound_free mm _ _ H0); intro LBm.
  generalize (low_bound_free ms _ _ H0); intro LBs.
  generalize (high_bound_free mm _ _ H0); intro HBm.
  generalize (high_bound_free ms _ _ H0); intro HBs.
  apply frame_match_intro; auto.
  congruence. congruence. congruence.
  intros. rewrite <- H6; auto. apply load_free. auto.
Qed.

End FRAME_MATCH.

(** ** Accounting for the return address and back link *)

Section EXTEND_FRAME.

Variable f: function.
Hypothesis wt_f: wt_function f.
Variable cs: list Machconcr.stackframe.

Definition extend_frame (fr: frame) : frame :=
  update Tint (Int.signed f.(fn_retaddr_ofs) - f.(fn_framesize)) (parent_ra cs)
    (update Tint (Int.signed f.(fn_link_ofs) - f.(fn_framesize)) (parent_sp cs)
      fr).

Lemma get_slot_extends:
  forall fr ty ofs v,
  get_slot f fr ty ofs v ->
  get_slot f (extend_frame fr) ty ofs v.
Proof.
  intros. inv H. constructor. auto.
  inv H0. inv wt_f. generalize (AST.typesize_pos ty); intro.
  unfold extend_frame. rewrite update_other. rewrite update_other. auto.
  simpl; omega. simpl; omega.
Qed.

Lemma update_commut:
  forall ty1 ofs1 v1 ty2 ofs2 v2 fr,
  ofs1 + AST.typesize ty1 <= ofs2 \/
  ofs2 + AST.typesize ty2 <= ofs1 ->
  update ty1 ofs1 v1 (update ty2 ofs2 v2 fr) =
  update ty2 ofs2 v2 (update ty1 ofs1 v1 fr).
Proof.
  intros. unfold frame.
  apply extensionality. intro ty. apply extensionality. intro ofs.
  generalize (AST.typesize_pos ty1).
  generalize (AST.typesize_pos ty2).
  generalize (AST.typesize_pos ty); intros.
  unfold update.
  set (sz1 := AST.typesize ty1) in *.
  set (sz2 := AST.typesize ty2) in *.
  set (sz := AST.typesize ty) in *.
  destruct (zeq ofs1 ofs).
  rewrite zeq_false. 
  destruct (zle (ofs + sz) ofs2). auto.
  destruct (zle (ofs2 + sz2) ofs). auto.
  destruct (typ_eq ty1 ty); auto.
  replace sz with sz1 in z. omegaContradiction. unfold sz1, sz; congruence.
  omega.

  destruct (zle (ofs + sz) ofs1).
  auto.
  destruct (zle (ofs1 + sz1) ofs).
  auto.

  destruct (zeq ofs2 ofs).
  destruct (typ_eq ty2 ty); auto.
  replace sz with sz2 in z. omegaContradiction. unfold sz2, sz; congruence.
  destruct (zle (ofs + sz) ofs2); auto.
  destruct (zle (ofs2 + sz2) ofs); auto.
Qed.

Lemma set_slot_extends:
  forall fr ty ofs v fr',
  set_slot f fr ty ofs v fr' ->
  set_slot f (extend_frame fr) ty ofs v (extend_frame fr').
Proof.
  intros. inv H. constructor. auto.
  inv H0. inv wt_f. generalize (AST.typesize_pos ty); intro.
  unfold extend_frame. 
  rewrite (update_commut ty). rewrite (update_commut ty). auto.
  simpl. omega. 
  simpl. omega.
Qed.

Lemma frame_match_load_link:
  forall fr sp base mm ms,
  frame_match f (extend_frame fr) sp base mm ms ->
  load_stack ms (Vptr sp base) Tint f.(fn_link_ofs) = Some (parent_sp cs).
Proof.
  intros. inversion wt_f.
  replace (parent_sp cs) with
   (extend_frame fr Tint (Int.signed f.(fn_link_ofs) - f.(fn_framesize))).
  eapply frame_match_load_stack; eauto.
  
  unfold extend_frame. rewrite update_other. apply update_same. simpl. omega. 
Qed.

Lemma frame_match_load_retaddr:
  forall fr sp base mm ms,
  frame_match f (extend_frame fr) sp base mm ms ->
  load_stack ms (Vptr sp base) Tint f.(fn_retaddr_ofs) = Some (parent_ra cs).
Proof.
  intros. inversion wt_f.
  replace (parent_ra cs) with
   (extend_frame fr Tint (Int.signed f.(fn_retaddr_ofs) - f.(fn_framesize))).
  eapply frame_match_load_stack; eauto.
  unfold extend_frame. apply update_same.
Qed.

Lemma frame_match_function_entry:
  forall mm ms mm' ms1 sp sp',
  extends mm ms ->
  alloc mm 0 f.(fn_stacksize) = (mm', sp) ->
  alloc ms (- f.(fn_framesize)) f.(fn_stacksize) = (ms1, sp') ->
  Val.has_type (parent_sp cs) Tint ->
  Val.has_type (parent_ra cs) Tint ->
  let base := Int.repr (-f.(fn_framesize)) in
  exists ms2, exists ms3,
  sp = sp' /\
  store_stack ms1 (Vptr sp base) Tint f.(fn_link_ofs) (parent_sp cs) = Some ms2 /\
  store_stack ms2 (Vptr sp base) Tint f.(fn_retaddr_ofs) (parent_ra cs) = Some ms3 /\
  frame_match f (extend_frame empty_frame) sp base mm' ms3 /\
  extends mm' ms3.
Proof.
  intros. inversion wt_f.
  exploit alloc_extends; eauto. omega. omega. intros [A EXT0].
  exploit frame_match_new. eauto. inv H. eexact H4. eauto. eauto. eauto.
  fold base. intros [C FM0].
  destruct (frame_match_store_stack _ wt_f _ _ _ _ _ Tint _ _
              FM0 wt_function_link wt_function_link_aligned H2 EXT0)
  as [ms2 [STORE1 [FM1 EXT1]]].
  destruct (frame_match_store_stack _ wt_f _ _ _ _ _ Tint _ _
              FM1 wt_function_retaddr wt_function_retaddr_aligned H3 EXT1)
  as [ms3 [STORE2 [FM3 EXT3]]].
  exists ms2; exists ms3; auto.
Qed.

End EXTEND_FRAME.

(** ** Invariant for stacks *)

Section SIMULATION.

Variable p: program.
Let ge := Genv.globalenv p.

(** The [match_stacks] predicate relates a Machabstr call stack
  with the corresponding Machconcr stack.  In addition to enforcing
  the [frame_match] predicate for each stack frame, we also enforce:
- Proper chaining of activation record on the Machconcr side.
- Preservation of the return address stored at the bottom of the
  activation record.
- Separation between the memory blocks holding the activation records:
  their addresses increase strictly from caller to callee.
*)

Definition stack_below (ts: list Machconcr.stackframe) (b: block) : Prop :=
  match parent_sp ts with
  | Vptr sp base' => sp < b
  | _ => False
  end.

Inductive match_stacks: 
      list Machabstr.stackframe -> list Machconcr.stackframe ->
      mem -> mem -> Prop :=
  | match_stacks_nil: forall mm ms,
      match_stacks nil nil mm ms
  | match_stacks_cons: forall fb sp base c fr s f ra ts mm ms,
      Genv.find_funct_ptr ge fb = Some (Internal f) ->
      wt_function f ->
      frame_match f (extend_frame f ts fr) sp base mm ms ->
      stack_below ts sp ->
      Val.has_type ra Tint ->
      match_stacks s ts mm ms ->
      match_stacks (Machabstr.Stackframe f (Vptr sp base) c fr :: s)
                   (Machconcr.Stackframe fb (Vptr sp base) ra c :: ts)
                   mm ms.

(** If [match_stacks] holds, a lookup in the parent frame in the
  Machabstr semantics corresponds to two memory loads in the
  Machconcr semantics, one to load the pointer to the parent's
  activation record, the second to read within this record. *)

Lemma match_stacks_get_parent:
  forall s ts mm ms ty ofs v,
  match_stacks s ts mm ms ->
  get_slot (parent_function s) (parent_frame s) ty (Int.signed ofs) v ->
  load_stack ms (Machconcr.parent_sp ts) ty ofs = Some v.
Proof.
  intros. inv H; simpl in H0. 
  inv H0. inv H. simpl in H1. elimtype False. generalize (AST.typesize_pos ty). omega.
  simpl. eapply frame_match_get_slot; eauto.
  eapply get_slot_extends; eauto. 
Qed.

(** Preservation of the [match_stacks] invariant
    by various kinds of memory stores. *)

Remark stack_below_trans:
  forall ts b b', 
  stack_below ts b -> b <= b' -> stack_below ts b'.
Proof.
  unfold stack_below; intros. 
  destruct (parent_sp ts); auto. omega.
Qed.

Lemma match_stacks_store_other:
  forall s ts ms mm,
  match_stacks s ts mm ms ->
  forall chunk b ofs v ms',
  store chunk ms b ofs v = Some ms' ->
  stack_below ts b ->
  match_stacks s ts mm ms'.
Proof.
  induction 1; intros.
  constructor.
  red in H6; simpl in H6. 
  econstructor; eauto.
  eapply frame_match_store_other; eauto.
  unfold block; omega.
  eapply IHmatch_stacks; eauto.
  eapply stack_below_trans; eauto. omega.
Qed.

Lemma match_stacks_store_slot:
  forall s ts ms mm,
  match_stacks s ts mm ms ->
  forall ty ofs v ms' b i,
  stack_below ts b ->
  store_stack ms (Vptr b i) ty ofs v = Some ms' ->
  match_stacks s ts mm ms'.
Proof.
  intros.
  unfold store_stack in H1. simpl in H1.
  inv H.
  constructor.
  red in H0; simpl in H0.
  econstructor; eauto.
  eapply frame_match_store_other; eauto.
  unfold block; omega.
  eapply match_stacks_store_other; eauto. 
  eapply stack_below_trans; eauto. omega.
Qed.

Lemma match_stacks_store:
  forall s ts ms mm,
  match_stacks s ts mm ms ->
  forall chunk b ofs v mm' ms',
  store chunk mm b ofs v = Some mm' ->
  store chunk ms b ofs v = Some ms' ->
  match_stacks s ts mm' ms'.
Proof.
  induction 1; intros.
  constructor.
  econstructor; eauto.
  eapply frame_match_store; eauto.
Qed.

Lemma match_stacks_alloc:
  forall s ts ms mm,
  match_stacks s ts mm ms ->
  forall lom him mm' bm los his ms' bs,
  mm.(nextblock) = ms.(nextblock) ->
  alloc mm lom him = (mm', bm) ->
  alloc ms los his = (ms', bs) ->
  match_stacks s ts mm' ms'.
Proof.
  induction 1; intros.
  constructor.
  econstructor; eauto.
  eapply frame_match_alloc; eauto.
Qed.

Lemma match_stacks_free:
  forall s ts ms mm,
  match_stacks s ts mm ms ->
  forall b,
  stack_below ts b ->
  match_stacks s ts (Mem.free mm b) (Mem.free ms b).
Proof.
  induction 1; intros.
  constructor.
  red in H5; simpl in H5.
  econstructor; eauto.
  eapply frame_match_free; eauto. unfold block; omega.
  eapply IHmatch_stacks; eauto.
  eapply stack_below_trans; eauto. omega.
Qed.

Lemma match_stacks_function_entry:
  forall s ts mm ms lom him mm' los his ms' stk,
  match_stacks s ts mm ms ->
  alloc mm lom him = (mm', stk) ->
  alloc ms los his = (ms', stk) ->
  match_stacks s ts mm' ms' /\ stack_below ts stk.
Proof.
  intros.
  assert (stk = nextblock mm). eapply Mem.alloc_result; eauto.
  assert (stk = nextblock ms). eapply Mem.alloc_result; eauto.
  split.
  eapply match_stacks_alloc; eauto. congruence.
  red. 
  inv H; simpl.
  unfold nullptr. apply Zgt_lt. apply nextblock_pos. 
  inv H6. red in H. rewrite H3. auto. 
Qed.

(** ** Invariant between states. *)

(** The [match_state] predicate relates a Machabstr state with
  a Machconcr state.  In addition to [match_stacks] between the
  stacks, we ask that
- The Machabstr frame is properly stored in the activation record,
  as characterized by [frame_match].
- The Machconcr memory state extends the Machabstr memory state,
  in the sense of the [Mem.extends] relation defined in module [Mem]. *)

Inductive match_states:
            Machabstr.state -> Machconcr.state -> Prop :=
  | match_states_intro:
      forall s f sp base c rs fr mm ts fb ms
        (STACKS: match_stacks s ts mm ms)
        (FM: frame_match f (extend_frame f ts fr) sp base mm ms)
        (BELOW: stack_below ts sp)
        (MEXT: Mem.extends mm ms)
        (FIND: Genv.find_funct_ptr ge fb = Some (Internal f)),
      match_states (Machabstr.State s f (Vptr sp base) c rs fr mm)
                   (Machconcr.State ts fb (Vptr sp base) c rs ms)
  | match_states_call:
      forall s f rs mm ts fb ms
        (STACKS: match_stacks s ts mm ms)
        (MEXT: Mem.extends mm ms)
        (FIND: Genv.find_funct_ptr ge fb = Some f),
      match_states (Machabstr.Callstate s f rs mm)
                   (Machconcr.Callstate ts fb rs ms)
  | match_states_return:
      forall s rs mm ts ms
        (STACKS: match_stacks s ts mm ms)
        (MEXT: Mem.extends mm ms),
      match_states (Machabstr.Returnstate s rs mm)
                   (Machconcr.Returnstate ts rs ms).

(** * The proof of simulation *)

(** The proof of simulation relies on diagrams of the following form:
<<
           st1 --------------- st2
            |                   |
           t|                   |t
            |                   |
            v                   v
           st1'--------------- st2'
>>
  The precondition is matching between the initial states [st1] and
  [st2], as usual, plus the fact that [st1] is well-typed
  in the sense of predicate [wt_state] from module [Machtyping].
  The postcondition is matching between the final states [st1']
  and [st2'].  The well-typedness of [st2] is not part of the
  postcondition, since it follows from that of [st1] if the
  program is well-typed.  (See the subject reduction property
  in module [Machtyping].)
*)

Lemma find_function_find_function_ptr:
  forall ros rs f',
  find_function ge ros rs = Some f' ->
  exists fb', Genv.find_funct_ptr ge fb' = Some f' /\ find_function_ptr ge ros rs = Some fb'.
Proof.
  intros until f'. destruct ros; simpl.
  intro. exploit Genv.find_funct_inv; eauto. intros [fb' EQ].
  rewrite EQ in H. rewrite Genv.find_funct_find_funct_ptr in H.
  exists fb'; split. auto. rewrite EQ. simpl. auto.
  destruct (Genv.find_symbol ge i); intro.
  exists b; auto. congruence.
Qed.

(** Preservation of arguments to external functions. *)

Lemma transl_extcall_arguments:
  forall rs s sg args ts m ms,
  Machabstr.extcall_arguments (parent_function s) rs (parent_frame s) sg args ->
  match_stacks s ts m ms ->
  extcall_arguments rs ms (parent_sp ts) sg args.
Proof.
  unfold Machabstr.extcall_arguments, extcall_arguments; intros.
  assert (forall locs vals,
    Machabstr.extcall_args (parent_function s) rs (parent_frame s) locs vals ->
    extcall_args rs ms (parent_sp ts) locs vals).
  induction locs; intros; inv H1.
  constructor.
  constructor; auto.
  inv H6. constructor. constructor. eapply match_stacks_get_parent; eauto.
  auto.
Qed.

Hypothesis wt_prog: wt_program p.

Theorem step_equiv:
  forall s1 t s2, Machabstr.step ge s1 t s2 ->
  forall s1' (MS: match_states s1 s1') (WTS: wt_state s1),
  exists s2', Machconcr.step ge s1' t s2' /\ match_states s2 s2'.
Proof.
  induction 1; intros; inv MS.

  (* Mlabel *)
  econstructor; split.
  apply exec_Mlabel; auto.
  econstructor; eauto with coqlib.

  (* Mgetstack *)
  assert (WTF: wt_function f) by (inv WTS; auto).
  exists (State ts fb (Vptr sp0 base) c (rs#dst <- v) ms); split.
  constructor; auto.
  eapply frame_match_get_slot; eauto.
  eapply get_slot_extends; eauto.
  econstructor; eauto with coqlib.

  (* Msetstack *)
  assert (WTF: wt_function f) by (inv WTS; auto).
  assert (Val.has_type (rs src) ty).
    inv WTS. 
    generalize (wt_function_instrs _ WTF _ (is_tail_in TAIL)); intro WTI.
    inv WTI. apply WTRS.
  exploit frame_match_set_slot; eauto.
    eapply set_slot_extends; eauto.
  intros [ms' [STORE [FM' EXT']]].
  exists (State ts fb (Vptr sp0 base) c rs ms'); split.
  apply exec_Msetstack; auto.
  econstructor; eauto.
  eapply match_stacks_store_slot; eauto.

  (* Mgetparam *)
  assert (WTF: wt_function f) by (inv WTS; auto).
  exists (State ts fb (Vptr sp0 base) c (rs#dst <- v) ms); split.
  eapply exec_Mgetparam; eauto.
    eapply frame_match_load_link; eauto.
    eapply match_stacks_get_parent; eauto.
  econstructor; eauto with coqlib. 
 
  (* Mop *)
  exists (State ts fb (Vptr sp0 base) c (rs#res <- v) ms); split.
  apply exec_Mop; auto.
  econstructor; eauto with coqlib.

  (* Mload *)
  exists (State ts fb (Vptr sp0 base) c (rs#dst <- v) ms); split.
  eapply exec_Mload; eauto.
  destruct a; simpl in H0; try discriminate.
  simpl. eapply Mem.load_extends; eauto.
  econstructor; eauto with coqlib.

  (* Mstore *)
  destruct a; simpl in H0; try discriminate.
  exploit Mem.store_within_extends; eauto. intros [ms' [STORE MEXT']].
  exists (State ts fb (Vptr sp0 base) c rs ms'); split.
  eapply exec_Mstore; eauto.
  econstructor; eauto with coqlib.
  eapply match_stacks_store; eauto.
  eapply frame_match_store; eauto.

  (* Mcall *)
  exploit find_function_find_function_ptr; eauto. 
  intros [fb' [FIND' FINDFUNCT]].
  assert (exists ra', return_address_offset f c ra').
    apply return_address_exists.
    inv WTS. eapply is_tail_cons_left; eauto.
  destruct H0 as [ra' RETADDR].
  econstructor; split.
  eapply exec_Mcall; eauto. 
  econstructor; eauto. 
  econstructor; eauto. inv WTS; auto. exact I.

  (* Mtailcall *)
  assert (WTF: wt_function f) by (inv WTS; auto).
  exploit find_function_find_function_ptr; eauto. 
  intros [fb' [FIND' FINDFUNCT]].
  econstructor; split.
  eapply exec_Mtailcall; eauto.
    eapply frame_match_load_link; eauto.
    eapply frame_match_load_retaddr; eauto.
  econstructor; eauto. eapply match_stacks_free; auto.
  apply free_extends; auto.

  (* Mgoto *)
  econstructor; split.
  eapply exec_Mgoto; eauto.
  econstructor; eauto.

  (* Mcond *)
  econstructor; split.
  eapply exec_Mcond_true; eauto.
  econstructor; eauto.
  econstructor; split.
  eapply exec_Mcond_false; eauto.
  econstructor; eauto.

  (* Mjumptable *)
  econstructor; split.
  eapply exec_Mjumptable; eauto. 
  econstructor; eauto.

  (* Mreturn *)
  assert (WTF: wt_function f) by (inv WTS; auto).
  econstructor; split.
  eapply exec_Mreturn; eauto.
    eapply frame_match_load_link; eauto.
    eapply frame_match_load_retaddr; eauto.
  econstructor; eauto. eapply match_stacks_free; eauto.   
  apply free_extends; auto.

  (* internal function *)
  assert (WTF: wt_function f). inv WTS. inv H5. auto.
  caseEq (alloc ms (- f.(fn_framesize)) f.(fn_stacksize)).
  intros ms' stk' ALLOC.
  assert (Val.has_type (parent_sp ts) Tint).
    inv STACKS; simpl; auto.
  assert (Val.has_type (parent_ra ts) Tint).
    inv STACKS; simpl; auto.
  destruct (frame_match_function_entry _ WTF _ _ _ _ _ _ _
              MEXT H ALLOC H0 H1)
  as [ms2 [ms3 [EQ [STORE1 [STORE2 [FM MEXT']]]]]].
  subst stk'.
  econstructor; split.
  eapply exec_function_internal; eauto.
  exploit match_stacks_function_entry; eauto. intros [STACKS' BELOW].
  econstructor; eauto.
  eapply match_stacks_store_slot with (ms := ms2); eauto.
  eapply match_stacks_store_slot with (ms := ms'); eauto.

  (* external function *)
  econstructor; split.
  eapply exec_function_external; eauto. 
  eapply transl_extcall_arguments; eauto.
  econstructor; eauto.

  (* return *)
  inv STACKS.
  econstructor; split.
  eapply exec_return. 
  econstructor; eauto.
Qed.

Lemma equiv_initial_states:
  forall st1, Machabstr.initial_state p st1 ->
  exists st2, Machconcr.initial_state p st2 /\ match_states st1 st2 /\ wt_state st1.
Proof.
  intros. inversion H.
  econstructor; split.
  econstructor. eauto. 
  split. econstructor. constructor. apply Mem.extends_refl. auto.
  econstructor. simpl; intros; contradiction.
  eapply Genv.find_funct_ptr_prop; eauto.
  red; intros; exact I.
Qed.

Lemma equiv_final_states:
  forall st1 st2 r, 
  match_states st1 st2 /\ wt_state st1 -> Machabstr.final_state st1 r -> Machconcr.final_state st2 r.
Proof.
  intros. inv H0. destruct H. inv H. inv STACKS.
  constructor; auto.
Qed.

Theorem exec_program_equiv:
  forall (beh: program_behavior), not_wrong beh ->
  Machabstr.exec_program p beh -> Machconcr.exec_program p beh.
Proof.
  unfold Machconcr.exec_program, Machabstr.exec_program; intros.
  eapply simulation_step_preservation with
    (step1 := Machabstr.step)
    (step2 := Machconcr.step)
    (match_states := fun st1 st2 => match_states st1 st2 /\ wt_state st1).
  eexact equiv_initial_states.
  eexact equiv_final_states.
  intros. destruct H2. exploit step_equiv; eauto.
  intros [st2' [A B]]. exists st2'; split. auto. split. auto.
  eapply Machtyping.subject_reduction; eauto. 
  auto. auto.
Qed.

End SIMULATION.