summaryrefslogtreecommitdiff
path: root/backend/Locations.v
blob: 5674b93aa215c8bc843a30e45f6d94fee55b28bb (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
(* *********************************************************************)
(*                                                                     *)
(*              The Compcert verified compiler                         *)
(*                                                                     *)
(*          Xavier Leroy, INRIA Paris-Rocquencourt                     *)
(*                                                                     *)
(*  Copyright Institut National de Recherche en Informatique et en     *)
(*  Automatique.  All rights reserved.  This file is distributed       *)
(*  under the terms of the INRIA Non-Commercial License Agreement.     *)
(*                                                                     *)
(* *********************************************************************)

(** Locations are a refinement of RTL pseudo-registers, used to reflect
  the results of register allocation (file [Allocation]). *)

Require Import OrderedType.
Require Import Coqlib.
Require Import Maps.
Require Import Ordered.
Require Import AST.
Require Import Values.
Require Export Machregs.

(** * Representation of locations *)

(** A location is either a processor register or (an abstract designation of)
  a slot in the activation record of the current function. *)

(** ** Processor registers *)

(** Processor registers usable for register allocation are defined
  in module [Machregs]. *)

(** ** Slots in activation records *)

(** A slot in an activation record is designated abstractly by a kind,
  a type and an integer offset.  Three kinds are considered:
- [Local]: these are the slots used by register allocation for 
  pseudo-registers that cannot be assigned a hardware register.
- [Incoming]: used to store the parameters of the current function
  that cannot reside in hardware registers, as determined by the 
  calling conventions.
- [Outgoing]: used to store arguments to called functions that 
  cannot reside in hardware registers, as determined by the 
  calling conventions. *)

Inductive slot: Type :=
  | Local
  | Incoming
  | Outgoing.

(** Morally, the [Incoming] slots of a function are the [Outgoing]
slots of its caller function.

The type of a slot indicates how it will be accessed later once mapped to
actual memory locations inside a memory-allocated activation record:
as 32-bit integers/pointers (type [Tint]) or as 64-bit floats (type [Tfloat]).

The offset of a slot, combined with its type and its kind, identifies
uniquely the slot and will determine later where it resides within the
memory-allocated activation record.  Offsets are always positive.
*)

Lemma slot_eq: forall (p q: slot), {p = q} + {p <> q}.
Proof.
  decide equality.
Defined.

Open Scope Z_scope.

Definition typesize (ty: typ) : Z :=
  match ty with
  | Tint => 1
  | Tlong => 2
  | Tfloat => 2
  | Tsingle => 1
  | Tany32 => 1
  | Tany64 => 2
  end.

Lemma typesize_pos:
  forall (ty: typ), typesize ty > 0.
Proof.
  destruct ty; compute; auto.
Qed.

(** ** Locations *)

(** Locations are just the disjoint union of machine registers and
  activation record slots. *)

Inductive loc : Type :=
  | R (r: mreg)
  | S (sl: slot) (pos: Z) (ty: typ).

Module Loc.

  Definition type (l: loc) : typ :=
    match l with
    | R r => mreg_type r
    | S sl pos ty => ty
    end.

  Lemma eq: forall (p q: loc), {p = q} + {p <> q}.
  Proof.
    decide equality.
    apply mreg_eq.
    apply typ_eq.
    apply zeq.
    apply slot_eq.
  Defined.

(** As mentioned previously, two locations can be different (in the sense
  of the [<>] mathematical disequality), yet denote 
  overlapping memory chunks within the activation record.
  Given two locations, three cases are possible:
- They are equal (in the sense of the [=] equality)
- They are different and non-overlapping.
- They are different but overlapping.

  The second case (different and non-overlapping) is characterized 
  by the following [Loc.diff] predicate.
*)
  Definition diff (l1 l2: loc) : Prop :=
    match l1, l2 with
    | R r1, R r2 => 
        r1 <> r2
    | S s1 d1 t1, S s2 d2 t2 =>
        s1 <> s2 \/ d1 + typesize t1 <= d2 \/ d2 + typesize t2 <= d1
    | _, _ =>
        True
    end.

  Lemma same_not_diff:
    forall l, ~(diff l l).
  Proof.
    destruct l; unfold diff; auto.
    red; intros. destruct H; auto. generalize (typesize_pos ty); omega. 
  Qed.

  Lemma diff_not_eq:
    forall l1 l2, diff l1 l2 -> l1 <> l2.
  Proof.
    unfold not; intros. subst l2. elim (same_not_diff l1 H).
  Qed.

  Lemma diff_sym:
    forall l1 l2, diff l1 l2 -> diff l2 l1.
  Proof.
    destruct l1; destruct l2; unfold diff; auto.
    intuition.
  Qed.

  Definition diff_dec (l1 l2: loc) : { Loc.diff l1 l2 } + { ~Loc.diff l1 l2 }.
  Proof.
    intros. destruct l1; destruct l2; simpl.
  - destruct (mreg_eq r r0). right; tauto. left; auto.
  - left; auto.
  - left; auto.
  - destruct (slot_eq sl sl0).
    destruct (zle (pos + typesize ty) pos0).
    left; auto.
    destruct (zle (pos0 + typesize ty0) pos).
    left; auto.
    right; red; intros [P | [P | P]]. congruence. omega. omega. 
    left; auto.
  Defined.

(** We now redefine some standard notions over lists, using the [Loc.diff]
  predicate instead of standard disequality [<>].

  [Loc.notin l ll] holds if the location [l] is different from all locations
  in the list [ll]. *)

  Fixpoint notin (l: loc) (ll: list loc) {struct ll} : Prop :=
    match ll with
    | nil => True
    | l1 :: ls => diff l l1 /\ notin l ls
    end.

  Lemma notin_iff:
    forall l ll, notin l ll <-> (forall l', In l' ll -> Loc.diff l l').
  Proof.
    induction ll; simpl. 
    tauto.
    rewrite IHll. intuition. subst a. auto. 
  Qed.

  Lemma notin_not_in:
    forall l ll, notin l ll -> ~(In l ll).
  Proof.
    intros; red; intros. rewrite notin_iff in H.
    elim (diff_not_eq l l); auto.
  Qed.

  Lemma notin_dec (l: loc) (ll: list loc) : {notin l ll} + {~notin l ll}.
  Proof.
    induction ll; simpl.
    left; auto.
    destruct (diff_dec l a).
    destruct IHll.
    left; auto.
    right; tauto.
    right; tauto.
  Defined.

(** [Loc.disjoint l1 l2] is true if the locations in list [l1]
  are different from all locations in list [l2]. *)

  Definition disjoint (l1 l2: list loc) : Prop :=
    forall x1 x2, In x1 l1 -> In x2 l2 -> diff x1 x2.

  Lemma disjoint_cons_left:
    forall a l1 l2,
    disjoint (a :: l1) l2 -> disjoint l1 l2.
  Proof.
    unfold disjoint; intros. auto with coqlib.    
  Qed.
  Lemma disjoint_cons_right:
    forall a l1 l2,
    disjoint l1 (a :: l2) -> disjoint l1 l2.
  Proof.
    unfold disjoint; intros. auto with coqlib.    
  Qed.

  Lemma disjoint_sym:
    forall l1 l2, disjoint l1 l2 -> disjoint l2 l1.
  Proof.
    unfold disjoint; intros. apply diff_sym; auto.
  Qed.

  Lemma in_notin_diff:
    forall l1 l2 ll, notin l1 ll -> In l2 ll -> diff l1 l2.
  Proof.
    intros. rewrite notin_iff in H. auto. 
  Qed.

  Lemma notin_disjoint:
    forall l1 l2,
    (forall x, In x l1 -> notin x l2) -> disjoint l1 l2.
  Proof.
    intros; red; intros. exploit H; eauto. rewrite notin_iff; intros. auto. 
  Qed.

  Lemma disjoint_notin:
    forall l1 l2 x, disjoint l1 l2 -> In x l1 -> notin x l2.
  Proof.
    intros; rewrite notin_iff; intros. red in H. auto. 
  Qed.

(** [Loc.norepet ll] holds if the locations in list [ll] are pairwise
  different. *)

  Inductive norepet : list loc -> Prop :=
  | norepet_nil:
      norepet nil
  | norepet_cons:
      forall hd tl, notin hd tl -> norepet tl -> norepet (hd :: tl).

  Lemma norepet_dec (ll: list loc) : {norepet ll} + {~norepet ll}.
  Proof.
    induction ll.
    left; constructor.
    destruct (notin_dec a ll).
    destruct IHll.
    left; constructor; auto.
    right; red; intros P; inv P; contradiction.
    right; red; intros P; inv P; contradiction.
  Defined.

(** [Loc.no_overlap l1 l2] holds if elements of [l1] never overlap partially
  with elements of [l2]. *)

  Definition no_overlap (l1 l2 : list loc) :=
   forall r, In r l1 -> forall s, In s l2 ->  r = s \/ Loc.diff r s.

End Loc.

(** * Mappings from locations to values *)

(** The [Locmap] module defines mappings from locations to values,
  used as evaluation environments for the semantics of the [LTL] 
  and [Linear] intermediate languages.  *)

Set Implicit Arguments.

Module Locmap.

  Definition t := loc -> val.

  Definition init (x: val) : t := fun (_: loc) => x.

  Definition get (l: loc) (m: t) : val := m l.

  (** The [set] operation over location mappings reflects the overlapping
      properties of locations: changing the value of a location [l]
      invalidates (sets to [Vundef]) the locations that partially overlap
      with [l].  In other terms, the result of [set l v m]
      maps location [l] to value [v], locations that overlap with [l]
      to [Vundef], and locations that are different (and non-overlapping)
      from [l] to their previous values in [m].  This is apparent in the
      ``good variables'' properties [Locmap.gss] and [Locmap.gso].

      Additionally, the [set] operation also anticipates the fact that
      abstract stack slots are mapped to concrete memory locations
      in the [Stacking] phase.  Hence, values stored in stack slots
      are normalized according to the type of the slot. *)

  Definition set (l: loc) (v: val) (m: t) : t :=
    fun (p: loc) =>
      if Loc.eq l p then
        match l with R r => v | S sl ofs ty => Val.load_result (chunk_of_type ty) v end
      else if Loc.diff_dec l p then
        m p
      else Vundef.

  Lemma gss: forall l v m,
    (set l v m) l = 
    match l with R r => v | S sl ofs ty => Val.load_result (chunk_of_type ty) v end.
  Proof.
    intros. unfold set. apply dec_eq_true.
  Qed.

  Lemma gss_reg: forall r v m, (set (R r) v m) (R r) = v.
  Proof.
    intros. unfold set. rewrite dec_eq_true. auto.
  Qed.

  Lemma gss_typed: forall l v m, Val.has_type v (Loc.type l) -> (set l v m) l = v.
  Proof.
    intros. rewrite gss. destruct l. auto. apply Val.load_result_same; auto. 
  Qed.

  Lemma gso: forall l v m p, Loc.diff l p -> (set l v m) p = m p.
  Proof.
    intros. unfold set. destruct (Loc.eq l p).
    subst p. elim (Loc.same_not_diff _ H).
    destruct (Loc.diff_dec l p).
    auto.
    contradiction.
  Qed.

  Fixpoint undef (ll: list loc) (m: t) {struct ll} : t :=
    match ll with
    | nil => m
    | l1 :: ll' => undef ll' (set l1 Vundef m)
    end.

  Lemma guo: forall ll l m, Loc.notin l ll -> (undef ll m) l = m l.
  Proof.
    induction ll; simpl; intros. auto. 
    destruct H. rewrite IHll; auto. apply gso. apply Loc.diff_sym; auto. 
  Qed.

  Lemma gus: forall ll l m, In l ll -> (undef ll m) l = Vundef.
  Proof.
    assert (P: forall ll l m, m l = Vundef -> (undef ll m) l = Vundef).
      induction ll; simpl; intros. auto. apply IHll. 
      unfold set. destruct (Loc.eq a l).
      destruct a. auto. destruct ty; reflexivity. 
      destruct (Loc.diff_dec a l); auto.
    induction ll; simpl; intros. contradiction. 
    destruct H. apply P. subst a. apply gss_typed. exact I. 
    auto.
  Qed.

  Fixpoint setlist (ll: list loc) (vl: list val) (m: t) {struct ll} : t :=
    match ll, vl with
    | l1 :: ls, v1 :: vs => setlist ls vs (set l1 v1 m)
    | _, _ => m
    end.

  Lemma gsetlisto: forall l ll vl m, Loc.notin l ll -> (setlist ll vl m) l = m l.
  Proof.
    induction ll; simpl; intros. 
    auto.
    destruct vl; auto. destruct H. rewrite IHll; auto. apply gso; auto. apply Loc.diff_sym; auto.
  Qed.

End Locmap.

(** * Total ordering over locations *)

Module IndexedTyp <: INDEXED_TYPE.
  Definition t := typ.
  Definition index (x: t) :=
    match x with
    | Tany32 => 1%positive
    | Tint => 2%positive
    | Tsingle => 3%positive
    | Tany64 => 4%positive
    | Tfloat => 5%positive
    | Tlong => 6%positive
    end.
  Lemma index_inj: forall x y, index x = index y -> x = y.
  Proof. destruct x; destruct y; simpl; congruence. Qed.
  Definition eq := typ_eq.
End IndexedTyp.

Module OrderedTyp := OrderedIndexed(IndexedTyp).

Module IndexedSlot <: INDEXED_TYPE.
  Definition t := slot.
  Definition index (x: t) :=
    match x with Local => 1%positive | Incoming => 2%positive | Outgoing => 3%positive end.
  Lemma index_inj: forall x y, index x = index y -> x = y.
  Proof. destruct x; destruct y; simpl; congruence. Qed.
  Definition eq := slot_eq.
End IndexedSlot.

Module OrderedSlot := OrderedIndexed(IndexedSlot).

Module OrderedLoc <: OrderedType.
  Definition t := loc.
  Definition eq (x y: t) := x = y.
  Definition lt (x y: t) :=
    match x, y with
    | R r1, R r2 => Plt (IndexedMreg.index r1) (IndexedMreg.index r2)
    | R _, S _ _ _ => True
    | S _ _ _, R _ => False
    | S sl1 ofs1 ty1, S sl2 ofs2 ty2 =>
        OrderedSlot.lt sl1 sl2 \/ (sl1 = sl2 /\
        (ofs1 < ofs2 \/ (ofs1 = ofs2 /\ OrderedTyp.lt ty1 ty2)))
    end.
  Lemma eq_refl : forall x : t, eq x x.
  Proof (@refl_equal t). 
  Lemma eq_sym : forall x y : t, eq x y -> eq y x.
  Proof (@sym_equal t).
  Lemma eq_trans : forall x y z : t, eq x y -> eq y z -> eq x z.
  Proof (@trans_equal t).
  Lemma lt_trans : forall x y z : t, lt x y -> lt y z -> lt x z.
  Proof.
    unfold lt; intros. 
    destruct x; destruct y; destruct z; try tauto.
    eapply Plt_trans; eauto.
    destruct H. 
    destruct H0. left; eapply OrderedSlot.lt_trans; eauto.
    destruct H0. subst sl0. auto. 
    destruct H. subst sl.
    destruct H0. auto.
    destruct H. 
    right.  split. auto.
    intuition.
    right; split. congruence. eapply OrderedTyp.lt_trans; eauto. 
  Qed.
  Lemma lt_not_eq : forall x y : t, lt x y -> ~ eq x y.
  Proof.
    unfold lt, eq; intros; red; intros. subst y. 
    destruct x. 
    eelim Plt_strict; eauto.
    destruct H. eelim OrderedSlot.lt_not_eq; eauto. red; auto. 
    destruct H. destruct H0. omega. 
    destruct H0. eelim OrderedTyp.lt_not_eq; eauto. red; auto.
  Qed.
  Definition compare : forall x y : t, Compare lt eq x y.
  Proof.
    intros. destruct x; destruct y.
  - destruct (OrderedPositive.compare (IndexedMreg.index r) (IndexedMreg.index r0)).
    + apply LT. red. auto. 
    + apply EQ. red. f_equal. apply IndexedMreg.index_inj. auto. 
    + apply GT. red. auto.
  - apply LT. red; auto. 
  - apply GT. red; auto.
  - destruct (OrderedSlot.compare sl sl0).
    + apply LT. red; auto.
    + destruct (OrderedZ.compare pos pos0).
      * apply LT. red. auto. 
      * destruct (OrderedTyp.compare ty ty0).
        apply LT. red; auto.
        apply EQ. red; red in e; red in e0; red in e1. congruence. 
        apply GT. red; auto.
      * apply GT. red. auto. 
    + apply GT. red; auto.
  Defined.
  Definition eq_dec := Loc.eq.

(** Connection between the ordering defined here and the [Loc.diff] predicate. *)

  Definition diff_low_bound (l: loc) : loc :=
    match l with
    | R mr => l
    | S sl ofs ty => S sl (ofs - 1) Tany64
    end.

  Definition diff_high_bound (l: loc) : loc :=
    match l with
    | R mr => l
    | S sl ofs ty => S sl (ofs + typesize ty - 1) Tlong
    end.

  Lemma outside_interval_diff:
    forall l l', lt l' (diff_low_bound l) \/ lt (diff_high_bound l) l' -> Loc.diff l l'.
  Proof.
    intros. 
    destruct l as [mr | sl ofs ty]; destruct l' as [mr' | sl' ofs' ty']; simpl in *; auto.
    - assert (IndexedMreg.index mr <> IndexedMreg.index mr').
      { destruct H. apply sym_not_equal. apply Plt_ne; auto. apply Plt_ne; auto. }
      congruence.
    - assert (RANGE: forall ty, 1 <= typesize ty <= 2).
      { intros; unfold typesize. destruct ty0; omega.  }
      destruct H. 
      + destruct H. left. apply sym_not_equal. apply OrderedSlot.lt_not_eq; auto. 
        destruct H. right.
        destruct H0. right. generalize (RANGE ty'); omega. 
        destruct H0. 
        assert (ty' = Tint \/ ty' = Tsingle \/ ty' = Tany32). 
        { unfold OrderedTyp.lt in H1. destruct ty'; auto; compute in H1; congruence. }
        right. destruct H2 as [E|[E|E]]; subst ty'; simpl typesize; omega. 
      + destruct H. left. apply OrderedSlot.lt_not_eq; auto.
        destruct H. right.
        destruct H0. left; omega.
        destruct H0. exfalso. destruct ty'; compute in H1; congruence.
  Qed.

  Lemma diff_outside_interval:
    forall l l', Loc.diff l l' -> lt l' (diff_low_bound l) \/ lt (diff_high_bound l) l'.
  Proof.
    intros. 
    destruct l as [mr | sl ofs ty]; destruct l' as [mr' | sl' ofs' ty']; simpl in *; auto.
    - unfold Plt, Pos.lt. destruct (Pos.compare (IndexedMreg.index mr) (IndexedMreg.index mr')) eqn:C.
      elim H. apply IndexedMreg.index_inj. apply Pos.compare_eq_iff. auto.
      auto. 
      rewrite Pos.compare_antisym. rewrite C. auto. 
    - destruct (OrderedSlot.compare sl sl'); auto.
      destruct H. contradiction. 
      destruct H.
      right; right; split; auto. left; omega. 
      left; right; split; auto.
      assert (EITHER: typesize ty' = 1 /\ OrderedTyp.lt ty' Tany64 \/ typesize ty' = 2).
      { destruct ty'; compute; auto. }
      destruct (zlt ofs' (ofs - 1)). left; auto.
      destruct EITHER as [[P Q] | P].
      right; split; auto. omega.
      left; omega. 
  Qed.

End OrderedLoc.