summaryrefslogtreecommitdiff
path: root/backend/Linearize.v
blob: 305473ba775f72a14c2cf4b5b7489925b7e9cd7c (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
(** Linearization of the control-flow graph: 
    translation from LTL to LTLin *)

Require Import Coqlib.
Require Import Maps.
Require Import AST.
Require Import Values.
Require Import Globalenvs.
Require Import Op.
Require Import Locations.
Require Import LTL.
Require Import LTLin.
Require Import Kildall.
Require Import Lattice.

(** To translate from LTL to LTLin, we must lay out the basic blocks
  of the LTL control-flow graph in some linear order, and insert
  explicit branches and conditional branches to make sure that
  each basic block jumps to its successors as prescribed by the
  LTL control-flow graph.  However, branches are not necessary
  if the fall-through behaviour of LTLin instructions already
  implements the desired flow of control.  For instance,
  consider the two LTL instructions
<<
    L1: Lop op args res L2
    L2: ...
>>
  If the instructions [L1] and [L2] are laid out consecutively in the LTLin
  code, we can generate the following LTLin code:
<<
    L1: Lop op args res
    L2: ...
>>
  However, if this is not possible, an explicit [Lgoto] is needed:
<<
    L1: Lop op args res
        Lgoto L2
        ...
    L2: ...
>>
  The main challenge in code linearization is therefore to pick a
  ``good'' order for the basic blocks that exploits well the
  fall-through behavior.  Many clever trace picking heuristics
  have been developed for this purpose.  

  In this file, we present linearization in a way that clearly
  separates the heuristic part (choosing an order for the basic blocks)
  from the actual code transformation parts.  We proceed in three passes:
- Choosing an order for the basic blocks.  This returns an enumeration
  of CFG nodes stating that the basic blocks must be laid out in
  the order shown in the list.
- Generate LTLin code where each basic block branches explicitly
  to its successors, except if one of these successors is the
  immediately following instruction.

  The beauty of this approach is that correct code is generated
  under surprisingly weak hypotheses on the enumeration of
  CFG nodes: it suffices that every reachable instruction occurs
  exactly once in the enumeration.  While the enumeration heuristic we use
  is quite trivial, it is easy to implement more sophisticated
  trace picking heuristics: as long as they satisfy the property above,
  we do not need to re-do the proof of semantic preservation.
  The enumeration could even be performed by external, untrusted
  Caml code, then verified (for the property above) by certified Coq code.
*)

(** * Determination of the order of basic blocks *)

(** We first compute a mapping from CFG nodes to booleans,
  indicating whether a CFG instruction is reachable or not.
  This computation is a trivial forward dataflow analysis
  where the transfer function is the identity: the successors
  of a reachable instruction are reachable, by the very
  definition of reachability. *)

Module DS := Dataflow_Solver(LBoolean)(NodeSetForward).

Definition reachable_aux (f: LTL.function) : option (PMap.t bool) :=
  DS.fixpoint
    (successors f)
    (f.(fn_nextpc))
    (fun pc r => r)
    ((f.(fn_entrypoint), true) :: nil).

Definition reachable (f: LTL.function) : PMap.t bool :=
  match reachable_aux f with  
  | None => PMap.init true
  | Some rs => rs
  end.

(** We then enumerate the nodes of reachable basic blocks.  The heuristic
  we take is trivial: nodes are enumerated in decreasing numerical
  order.  Remember that CFG nodes are positive integers, and that
  the [RTLgen] pass allocated fresh nodes 1, 2, 3, ..., but generated
  instructions in roughly reverse control-flow order: often,
  a basic block at label [n] has [n-1] as its only successor.
  Therefore, by enumerating reachable nodes in decreasing order,
  we recover a reasonable layout of basic blocks that globally respects
  the structure of the original Cminor code. *)

Definition enumerate (f: LTL.function) : list node :=
  let reach := reachable f in
  positive_rec (list node) nil
    (fun pc nodes => if reach!!pc then pc :: nodes else nodes)
    f.(fn_nextpc).

(** * Translation from LTL to LTLin *)

(** We now flatten the structure of the CFG graph, laying out
  LTL instructions consecutively in the order computed by [enumerate],
  and inserting branches to the labels of sucessors if necessary.
  Whether to insert a branch or not is determined by
  the [starts_with] function below.

  For LTL conditional branches [Lcond cond args s1 s2],
  we have two possible translations:
<<
      Lcond cond args s1;       or     Lcond (not cond) args s2;
      Lgoto s2                         Lgoto s1
>>
  We favour the first translation if [s2] is the label of the
  next instruction, and the second if [s1] is the label of the
  next instruction, thus avoiding the insertion of a redundant [Lgoto]
  instruction. *)

Fixpoint starts_with (lbl: label) (k: code) {struct k} : bool :=
  match k with
  | Llabel lbl' :: k' => if peq lbl lbl' then true else starts_with lbl k'
  | _ => false
  end.

Definition add_branch (s: label) (k: code) : code :=
  if starts_with s k then k else Lgoto s :: k.

Definition linearize_instr (b: LTL.instruction) (k: code) : code :=
  match b with
  | LTL.Lnop s =>
      add_branch s k
  | LTL.Lop op args res s =>
      Lop op args res :: add_branch s k
  | LTL.Lload chunk addr args dst s =>
      Lload chunk addr args dst :: add_branch s k
  | LTL.Lstore chunk addr args src s =>
      Lstore chunk addr args src :: add_branch s k
  | LTL.Lcall sig ros args res s =>
      Lcall sig ros args res :: add_branch s k
  | LTL.Ltailcall sig ros args =>
      Ltailcall sig ros args :: k
  | LTL.Lalloc arg res s =>
      Lalloc arg res :: add_branch s k
  | LTL.Lcond cond args s1 s2 =>
      if starts_with s1 k then
        Lcond (negate_condition cond) args s2 :: add_branch s1 k
      else
        Lcond cond args s1 :: add_branch s2 k
  | LTL.Lreturn or =>
      Lreturn or :: k
  end.

(** Linearize a function body according to an enumeration of its nodes.  *)

Fixpoint linearize_body (f: LTL.function) (enum: list node)
                        {struct enum} : code :=
  match enum with
  | nil => nil
  | pc :: rem =>
      match f.(LTL.fn_code)!pc with
      | None => linearize_body f rem
      | Some b => Llabel pc :: linearize_instr b (linearize_body f rem)
      end
  end.

(** * Entry points for code linearization *)

Definition transf_function (f: LTL.function) : LTLin.function :=
  mkfunction
    (LTL.fn_sig f)
    (LTL.fn_params f)
    (LTL.fn_stacksize f)
    (add_branch (LTL.fn_entrypoint f) (linearize_body f (enumerate f))).

Definition transf_fundef (f: LTL.fundef) : LTLin.fundef :=
  AST.transf_fundef transf_function f.

Definition transf_program (p: LTL.program) : LTLin.program :=
  transform_program transf_fundef p.