1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
|
(* *********************************************************************)
(* *)
(* The Compcert verified compiler *)
(* *)
(* Xavier Leroy, INRIA Paris-Rocquencourt *)
(* *)
(* Copyright Institut National de Recherche en Informatique et en *)
(* Automatique. All rights reserved. This file is distributed *)
(* under the terms of the INRIA Non-Commercial License Agreement. *)
(* *)
(* *********************************************************************)
(** The Linear intermediate language: abstract syntax and semantcs *)
(** The Linear language is a variant of LTL where control-flow is not
expressed as a graph of basic blocks, but as a linear list of
instructions with explicit labels and ``goto'' instructions. *)
Require Import Coqlib.
Require Import AST.
Require Import Integers.
Require Import Values.
Require Import Memory.
Require Import Events.
Require Import Globalenvs.
Require Import Smallstep.
Require Import Op.
Require Import Locations.
Require Import LTL.
Require Import Conventions.
(** * Abstract syntax *)
Definition label := positive.
Inductive instruction: Type :=
| Lgetstack: slot -> Z -> typ -> mreg -> instruction
| Lsetstack: mreg -> slot -> Z -> typ -> instruction
| Lop: operation -> list mreg -> mreg -> instruction
| Lload: memory_chunk -> addressing -> list mreg -> mreg -> instruction
| Lstore: memory_chunk -> addressing -> list mreg -> mreg -> instruction
| Lcall: signature -> mreg + ident -> instruction
| Ltailcall: signature -> mreg + ident -> instruction
| Lbuiltin: external_function -> list mreg -> list mreg -> instruction
| Lannot: external_function -> list loc -> instruction
| Llabel: label -> instruction
| Lgoto: label -> instruction
| Lcond: condition -> list mreg -> label -> instruction
| Ljumptable: mreg -> list label -> instruction
| Lreturn: instruction.
Definition code: Type := list instruction.
Record function: Type := mkfunction {
fn_sig: signature;
fn_stacksize: Z;
fn_code: code
}.
Definition fundef := AST.fundef function.
Definition program := AST.program fundef unit.
Definition funsig (fd: fundef) :=
match fd with
| Internal f => fn_sig f
| External ef => ef_sig ef
end.
Definition genv := Genv.t fundef unit.
Definition locset := Locmap.t.
(** * Operational semantics *)
(** Looking up labels in the instruction list. *)
Definition is_label (lbl: label) (instr: instruction) : bool :=
match instr with
| Llabel lbl' => if peq lbl lbl' then true else false
| _ => false
end.
Lemma is_label_correct:
forall lbl instr,
if is_label lbl instr then instr = Llabel lbl else instr <> Llabel lbl.
Proof.
intros. destruct instr; simpl; try discriminate.
case (peq lbl l); intro; congruence.
Qed.
(** [find_label lbl c] returns a list of instruction, suffix of the
code [c], that immediately follows the [Llabel lbl] pseudo-instruction.
If the label [lbl] is multiply-defined, the first occurrence is
retained. If the label [lbl] is not defined, [None] is returned. *)
Fixpoint find_label (lbl: label) (c: code) {struct c} : option code :=
match c with
| nil => None
| i1 :: il => if is_label lbl i1 then Some il else find_label lbl il
end.
Section RELSEM.
Variable ge: genv.
Definition find_function (ros: mreg + ident) (rs: locset) : option fundef :=
match ros with
| inl r => Genv.find_funct ge (rs (R r))
| inr symb =>
match Genv.find_symbol ge symb with
| None => None
| Some b => Genv.find_funct_ptr ge b
end
end.
(** Linear execution states. *)
Inductive stackframe: Type :=
| Stackframe:
forall (f: function) (**r calling function *)
(sp: val) (**r stack pointer in calling function *)
(rs: locset) (**r location state in calling function *)
(c: code), (**r program point in calling function *)
stackframe.
Inductive state: Type :=
| State:
forall (stack: list stackframe) (**r call stack *)
(f: function) (**r function currently executing *)
(sp: val) (**r stack pointer *)
(c: code) (**r current program point *)
(rs: locset) (**r location state *)
(m: mem), (**r memory state *)
state
| Callstate:
forall (stack: list stackframe) (**r call stack *)
(f: fundef) (**r function to call *)
(rs: locset) (**r location state at point of call *)
(m: mem), (**r memory state *)
state
| Returnstate:
forall (stack: list stackframe) (**r call stack *)
(rs: locset) (**r location state at point of return *)
(m: mem), (**r memory state *)
state.
(** [parent_locset cs] returns the mapping of values for locations
of the caller function. *)
Definition parent_locset (stack: list stackframe) : locset :=
match stack with
| nil => Locmap.init Vundef
| Stackframe f sp ls c :: stack' => ls
end.
Inductive step: state -> trace -> state -> Prop :=
| exec_Lgetstack:
forall s f sp sl ofs ty dst b rs m rs',
rs' = Locmap.set (R dst) (rs (S sl ofs ty)) (undef_regs (destroyed_by_getstack sl) rs) ->
step (State s f sp (Lgetstack sl ofs ty dst :: b) rs m)
E0 (State s f sp b rs' m)
| exec_Lsetstack:
forall s f sp src sl ofs ty b rs m rs',
rs' = Locmap.set (S sl ofs ty) (rs (R src)) (undef_regs (destroyed_by_setstack ty) rs) ->
step (State s f sp (Lsetstack src sl ofs ty :: b) rs m)
E0 (State s f sp b rs' m)
| exec_Lop:
forall s f sp op args res b rs m v rs',
eval_operation ge sp op (reglist rs args) m = Some v ->
rs' = Locmap.set (R res) v (undef_regs (destroyed_by_op op) rs) ->
step (State s f sp (Lop op args res :: b) rs m)
E0 (State s f sp b rs' m)
| exec_Lload:
forall s f sp chunk addr args dst b rs m a v rs',
eval_addressing ge sp addr (reglist rs args) = Some a ->
Mem.loadv chunk m a = Some v ->
rs' = Locmap.set (R dst) v (undef_regs (destroyed_by_load chunk addr) rs) ->
step (State s f sp (Lload chunk addr args dst :: b) rs m)
E0 (State s f sp b rs' m)
| exec_Lstore:
forall s f sp chunk addr args src b rs m m' a rs',
eval_addressing ge sp addr (reglist rs args) = Some a ->
Mem.storev chunk m a (rs (R src)) = Some m' ->
rs' = undef_regs (destroyed_by_store chunk addr) rs ->
step (State s f sp (Lstore chunk addr args src :: b) rs m)
E0 (State s f sp b rs' m')
| exec_Lcall:
forall s f sp sig ros b rs m f',
find_function ros rs = Some f' ->
sig = funsig f' ->
step (State s f sp (Lcall sig ros :: b) rs m)
E0 (Callstate (Stackframe f sp rs b:: s) f' rs m)
| exec_Ltailcall:
forall s f stk sig ros b rs m rs' f' m',
rs' = return_regs (parent_locset s) rs ->
find_function ros rs' = Some f' ->
sig = funsig f' ->
Mem.free m stk 0 f.(fn_stacksize) = Some m' ->
step (State s f (Vptr stk Int.zero) (Ltailcall sig ros :: b) rs m)
E0 (Callstate s f' rs' m')
| exec_Lbuiltin:
forall s f sp rs m ef args res b t vl rs' m',
external_call' ef ge (reglist rs args) m t vl m' ->
rs' = Locmap.setlist (map R res) vl (undef_regs (destroyed_by_builtin ef) rs) ->
step (State s f sp (Lbuiltin ef args res :: b) rs m)
t (State s f sp b rs' m')
| exec_Lannot:
forall s f sp rs m ef args b t v m',
external_call' ef ge (map rs args) m t v m' ->
step (State s f sp (Lannot ef args :: b) rs m)
t (State s f sp b rs m')
| exec_Llabel:
forall s f sp lbl b rs m,
step (State s f sp (Llabel lbl :: b) rs m)
E0 (State s f sp b rs m)
| exec_Lgoto:
forall s f sp lbl b rs m b',
find_label lbl f.(fn_code) = Some b' ->
step (State s f sp (Lgoto lbl :: b) rs m)
E0 (State s f sp b' rs m)
| exec_Lcond_true:
forall s f sp cond args lbl b rs m rs' b',
eval_condition cond (reglist rs args) m = Some true ->
rs' = undef_regs (destroyed_by_cond cond) rs ->
find_label lbl f.(fn_code) = Some b' ->
step (State s f sp (Lcond cond args lbl :: b) rs m)
E0 (State s f sp b' rs' m)
| exec_Lcond_false:
forall s f sp cond args lbl b rs m rs',
eval_condition cond (reglist rs args) m = Some false ->
rs' = undef_regs (destroyed_by_cond cond) rs ->
step (State s f sp (Lcond cond args lbl :: b) rs m)
E0 (State s f sp b rs' m)
| exec_Ljumptable:
forall s f sp arg tbl b rs m n lbl b' rs',
rs (R arg) = Vint n ->
list_nth_z tbl (Int.unsigned n) = Some lbl ->
find_label lbl f.(fn_code) = Some b' ->
rs' = undef_regs (destroyed_by_jumptable) rs ->
step (State s f sp (Ljumptable arg tbl :: b) rs m)
E0 (State s f sp b' rs' m)
| exec_Lreturn:
forall s f stk b rs m m',
Mem.free m stk 0 f.(fn_stacksize) = Some m' ->
step (State s f (Vptr stk Int.zero) (Lreturn :: b) rs m)
E0 (Returnstate s (return_regs (parent_locset s) rs) m')
| exec_function_internal:
forall s f rs m rs' m' stk,
Mem.alloc m 0 f.(fn_stacksize) = (m', stk) ->
rs' = undef_regs destroyed_at_function_entry (call_regs rs) ->
step (Callstate s (Internal f) rs m)
E0 (State s f (Vptr stk Int.zero) f.(fn_code) rs' m')
| exec_function_external:
forall s ef args res rs1 rs2 m t m',
args = map rs1 (loc_arguments (ef_sig ef)) ->
external_call' ef ge args m t res m' ->
rs2 = Locmap.setlist (map R (loc_result (ef_sig ef))) res rs1 ->
step (Callstate s (External ef) rs1 m)
t (Returnstate s rs2 m')
| exec_return:
forall s f sp rs0 c rs m,
step (Returnstate (Stackframe f sp rs0 c :: s) rs m)
E0 (State s f sp c rs m).
End RELSEM.
Inductive initial_state (p: program): state -> Prop :=
| initial_state_intro: forall b f m0,
let ge := Genv.globalenv p in
Genv.init_mem p = Some m0 ->
Genv.find_symbol ge p.(prog_main) = Some b ->
Genv.find_funct_ptr ge b = Some f ->
funsig f = mksignature nil (Some Tint) ->
initial_state p (Callstate nil f (Locmap.init Vundef) m0).
Inductive final_state: state -> int -> Prop :=
| final_state_intro: forall rs m r retcode,
loc_result (mksignature nil (Some Tint)) = r :: nil ->
rs (R r) = Vint retcode ->
final_state (Returnstate nil rs m) retcode.
Definition semantics (p: program) :=
Semantics step (initial_state p) final_state (Genv.globalenv p).
|