1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
|
(* *********************************************************************)
(* *)
(* The Compcert verified compiler *)
(* *)
(* Xavier Leroy, INRIA Paris-Rocquencourt *)
(* *)
(* Copyright Institut National de Recherche en Informatique et en *)
(* Automatique. All rights reserved. This file is distributed *)
(* under the terms of the INRIA Non-Commercial License Agreement. *)
(* *)
(* *********************************************************************)
(** The Linear intermediate language: abstract syntax and semantcs *)
(** The Linear language is a variant of LTLin where arithmetic
instructions operate on machine registers (type [mreg]) instead
of arbitrary locations. Special instructions [Lgetstack] and
[Lsetstack] are provided to access stack slots. *)
Require Import Coqlib.
Require Import Maps.
Require Import AST.
Require Import Integers.
Require Import Values.
Require Import Memory.
Require Import Events.
Require Import Globalenvs.
Require Import Smallstep.
Require Import Op.
Require Import Locations.
Require Import LTL.
Require Import Conventions.
(** * Abstract syntax *)
Definition label := positive.
Inductive instruction: Type :=
| Lgetstack: slot -> mreg -> instruction
| Lsetstack: mreg -> slot -> instruction
| Lop: operation -> list mreg -> mreg -> instruction
| Lload: memory_chunk -> addressing -> list mreg -> mreg -> instruction
| Lstore: memory_chunk -> addressing -> list mreg -> mreg -> instruction
| Lcall: signature -> mreg + ident -> instruction
| Ltailcall: signature -> mreg + ident -> instruction
| Llabel: label -> instruction
| Lgoto: label -> instruction
| Lcond: condition -> list mreg -> label -> instruction
| Ljumptable: mreg -> list label -> instruction
| Lreturn: instruction.
Definition code: Type := list instruction.
Record function: Type := mkfunction {
fn_sig: signature;
fn_stacksize: Z;
fn_code: code
}.
Definition fundef := AST.fundef function.
Definition program := AST.program fundef unit.
Definition funsig (fd: fundef) :=
match fd with
| Internal f => f.(fn_sig)
| External ef => ef.(ef_sig)
end.
Definition genv := Genv.t fundef unit.
Definition locset := Locmap.t.
(** * Operational semantics *)
(** Looking up labels in the instruction list. *)
Definition is_label (lbl: label) (instr: instruction) : bool :=
match instr with
| Llabel lbl' => if peq lbl lbl' then true else false
| _ => false
end.
Lemma is_label_correct:
forall lbl instr,
if is_label lbl instr then instr = Llabel lbl else instr <> Llabel lbl.
Proof.
intros. destruct instr; simpl; try discriminate.
case (peq lbl l); intro; congruence.
Qed.
(** [find_label lbl c] returns a list of instruction, suffix of the
code [c], that immediately follows the [Llabel lbl] pseudo-instruction.
If the label [lbl] is multiply-defined, the first occurrence is
retained. If the label [lbl] is not defined, [None] is returned. *)
Fixpoint find_label (lbl: label) (c: code) {struct c} : option code :=
match c with
| nil => None
| i1 :: il => if is_label lbl i1 then Some il else find_label lbl il
end.
Section RELSEM.
Variable ge: genv.
Definition find_function (ros: mreg + ident) (rs: locset) : option fundef :=
match ros with
| inl r => Genv.find_funct ge (rs (R r))
| inr symb =>
match Genv.find_symbol ge symb with
| None => None
| Some b => Genv.find_funct_ptr ge b
end
end.
Definition reglist (rs: locset) (rl: list mreg) : list val :=
List.map (fun r => rs (R r)) rl.
(** Calling conventions are reflected at the level of location sets
(environments mapping locations to values) by the following two
functions.
[call_regs caller] returns the location set at function entry,
as a function of the location set [caller] of the calling function.
- Machine registers have the same values as in the caller.
- Incoming stack slots (used for parameter passing) have the same
values as the corresponding outgoing stack slots (used for argument
passing) in the caller.
- Local and outgoing stack slots are initialized to undefined values.
*)
Definition call_regs (caller: locset) : locset :=
fun (l: loc) =>
match l with
| R r => caller (R r)
| S (Local ofs ty) => Vundef
| S (Incoming ofs ty) => caller (S (Outgoing ofs ty))
| S (Outgoing ofs ty) => Vundef
end.
(** [return_regs caller callee] returns the location set after
a call instruction, as a function of the location set [caller]
of the caller before the call instruction and of the location
set [callee] of the callee at the return instruction.
- Callee-save machine registers have the same values as in the caller
before the call.
- Caller-save machine registers have the same values
as in the callee at the return point.
- Stack slots have the same values as in the caller before the call.
*)
Definition return_regs (caller callee: locset) : locset :=
fun (l: loc) =>
match l with
| R r =>
if In_dec Loc.eq (R r) Conventions.temporaries then
callee (R r)
else if In_dec Loc.eq (R r) Conventions.destroyed_at_call then
callee (R r)
else
caller (R r)
| S s => caller (S s)
end.
(** Linear execution states. *)
Inductive stackframe: Type :=
| Stackframe:
forall (f: function) (**r calling function *)
(sp: val) (**r stack pointer in calling function *)
(rs: locset) (**r location state in calling function *)
(c: code), (**r program point in calling function *)
stackframe.
Inductive state: Type :=
| State:
forall (stack: list stackframe) (**r call stack *)
(f: function) (**r function currently executing *)
(sp: val) (**r stack pointer *)
(c: code) (**r current program point *)
(rs: locset) (**r location state *)
(m: mem), (**r memory state *)
state
| Callstate:
forall (stack: list stackframe) (**r call stack *)
(f: fundef) (**r function to call *)
(rs: locset) (**r location state at point of call *)
(m: mem), (**r memory state *)
state
| Returnstate:
forall (stack: list stackframe) (**r call stack *)
(rs: locset) (**r location state at point of return *)
(m: mem), (**r memory state *)
state.
(** [parent_locset cs] returns the mapping of values for locations
of the caller function. *)
Definition parent_locset (stack: list stackframe) : locset :=
match stack with
| nil => Locmap.init Vundef
| Stackframe f sp ls c :: stack' => ls
end.
(** The main difference between the Linear transition relation
and the LTL transition relation is the handling of function calls.
In LTL, arguments and results to calls are transmitted via
[vargs] and [vres] components of [Callstate] and [Returnstate],
respectively. The semantics takes care of transferring these values
between the locations of the caller and of the callee.
In Linear and lower-level languages (Mach, PPC), arguments and
results are transmitted implicitly: the generated code for the
caller arranges for arguments to be left in conventional registers
and stack locations, as determined by the calling conventions, where
the function being called will find them. Similarly, conventional
registers will be used to pass the result value back to the caller.
This is reflected in the definition of [Callstate] and [Returnstate]
above, where a whole location state [rs] is passed instead of just
the values of arguments or returns as in LTL.
These location states passed across calls are treated in a way that
reflects the callee-save/caller-save convention:
- The [exec_Lcall] transition from [State] to [Callstate]
saves the current location state [ls] in the call stack,
and passes it to the callee.
- The [exec_function_internal] transition from [Callstate] to [State]
changes the view of stack slots ([Outgoing] slots slide to
[Incoming] slots as per [call_regs]).
- The [exec_Lreturn] transition from [State] to [Returnstate]
restores the values of callee-save locations from
the location state of the caller, using [return_regs].
This protocol makes it much easier to later prove the correctness of
the [Stacking] pass, which inserts actual code that performs the
saving and restoring of callee-save registers described above.
*)
Inductive step: state -> trace -> state -> Prop :=
| exec_Lgetstack:
forall s f sp sl r b rs m,
step (State s f sp (Lgetstack sl r :: b) rs m)
E0 (State s f sp b (Locmap.set (R r) (rs (S sl)) rs) m)
| exec_Lsetstack:
forall s f sp r sl b rs m,
step (State s f sp (Lsetstack r sl :: b) rs m)
E0 (State s f sp b (Locmap.set (S sl) (rs (R r)) rs) m)
| exec_Lop:
forall s f sp op args res b rs m v,
eval_operation ge sp op (reglist rs args) = Some v ->
step (State s f sp (Lop op args res :: b) rs m)
E0 (State s f sp b (Locmap.set (R res) v rs) m)
| exec_Lload:
forall s f sp chunk addr args dst b rs m a v,
eval_addressing ge sp addr (reglist rs args) = Some a ->
Mem.loadv chunk m a = Some v ->
step (State s f sp (Lload chunk addr args dst :: b) rs m)
E0 (State s f sp b (Locmap.set (R dst) v rs) m)
| exec_Lstore:
forall s f sp chunk addr args src b rs m m' a,
eval_addressing ge sp addr (reglist rs args) = Some a ->
Mem.storev chunk m a (rs (R src)) = Some m' ->
step (State s f sp (Lstore chunk addr args src :: b) rs m)
E0 (State s f sp b rs m')
| exec_Lcall:
forall s f sp sig ros b rs m f',
find_function ros rs = Some f' ->
sig = funsig f' ->
step (State s f sp (Lcall sig ros :: b) rs m)
E0 (Callstate (Stackframe f sp rs b:: s) f' rs m)
| exec_Ltailcall:
forall s f stk sig ros b rs m f' m',
find_function ros rs = Some f' ->
sig = funsig f' ->
Mem.free m stk 0 f.(fn_stacksize) = Some m' ->
step (State s f (Vptr stk Int.zero) (Ltailcall sig ros :: b) rs m)
E0 (Callstate s f' (return_regs (parent_locset s) rs) m')
| exec_Llabel:
forall s f sp lbl b rs m,
step (State s f sp (Llabel lbl :: b) rs m)
E0 (State s f sp b rs m)
| exec_Lgoto:
forall s f sp lbl b rs m b',
find_label lbl f.(fn_code) = Some b' ->
step (State s f sp (Lgoto lbl :: b) rs m)
E0 (State s f sp b' rs m)
| exec_Lcond_true:
forall s f sp cond args lbl b rs m b',
eval_condition cond (reglist rs args) = Some true ->
find_label lbl f.(fn_code) = Some b' ->
step (State s f sp (Lcond cond args lbl :: b) rs m)
E0 (State s f sp b' rs m)
| exec_Lcond_false:
forall s f sp cond args lbl b rs m,
eval_condition cond (reglist rs args) = Some false ->
step (State s f sp (Lcond cond args lbl :: b) rs m)
E0 (State s f sp b rs m)
| exec_Ljumptable:
forall s f sp arg tbl b rs m n lbl b',
rs (R arg) = Vint n ->
list_nth_z tbl (Int.signed n) = Some lbl ->
find_label lbl f.(fn_code) = Some b' ->
step (State s f sp (Ljumptable arg tbl :: b) rs m)
E0 (State s f sp b' rs m)
| exec_Lreturn:
forall s f stk b rs m m',
Mem.free m stk 0 f.(fn_stacksize) = Some m' ->
step (State s f (Vptr stk Int.zero) (Lreturn :: b) rs m)
E0 (Returnstate s (return_regs (parent_locset s) rs) m')
| exec_function_internal:
forall s f rs m m' stk,
Mem.alloc m 0 f.(fn_stacksize) = (m', stk) ->
step (Callstate s (Internal f) rs m)
E0 (State s f (Vptr stk Int.zero) f.(fn_code) (call_regs rs) m')
| exec_function_external:
forall s ef args res rs1 rs2 m t m',
external_call ef args m t res m' ->
args = List.map rs1 (Conventions.loc_arguments ef.(ef_sig)) ->
rs2 = Locmap.set (R (Conventions.loc_result ef.(ef_sig))) res rs1 ->
step (Callstate s (External ef) rs1 m)
t (Returnstate s rs2 m')
| exec_return:
forall s f sp rs0 c rs m,
step (Returnstate (Stackframe f sp rs0 c :: s) rs m)
E0 (State s f sp c rs m).
End RELSEM.
Inductive initial_state (p: program): state -> Prop :=
| initial_state_intro: forall b f m0,
let ge := Genv.globalenv p in
Genv.init_mem p = Some m0 ->
Genv.find_symbol ge p.(prog_main) = Some b ->
Genv.find_funct_ptr ge b = Some f ->
funsig f = mksignature nil (Some Tint) ->
initial_state p (Callstate nil f (Locmap.init Vundef) m0).
Inductive final_state: state -> int -> Prop :=
| final_state_intro: forall rs m r,
rs (R (Conventions.loc_result (mksignature nil (Some Tint)))) = Vint r ->
final_state (Returnstate nil rs m) r.
Definition exec_program (p: program) (beh: program_behavior) : Prop :=
program_behaves step (initial_state p) final_state (Genv.globalenv p) beh.
|