1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
|
(* *********************************************************************)
(* *)
(* The Compcert verified compiler *)
(* *)
(* Xavier Leroy, INRIA Paris-Rocquencourt *)
(* *)
(* Copyright Institut National de Recherche en Informatique et en *)
(* Automatique. All rights reserved. This file is distributed *)
(* under the terms of the INRIA Non-Commercial License Agreement. *)
(* *)
(* *********************************************************************)
(** Solvers for dataflow inequations. *)
Require Import Coqlib.
Require Import Iteration.
Require Import Maps.
Require Import Lattice.
(** A forward dataflow problem is a set of inequations of the form
- [X(s) >= transf n X(n)]
if program point [s] is a successor of program point [n]
- [X(n) >= a]
if [(n, a)] belongs to a given list of (program points, approximations).
The unknowns are the [X(n)], indexed by program points (e.g. nodes in the
CFG graph of a RTL function). They range over a given ordered set that
represents static approximations of the program state at each point.
The [transf] function is the abstract transfer function: it computes an
approximation [transf n X(n)] of the program state after executing instruction
at point [n], as a function of the approximation [X(n)] of the program state
before executing that instruction.
Symmetrically, a backward dataflow problem is a set of inequations of the form
- [X(n) >= transf s X(s)]
if program point [s] is a successor of program point [n]
- [X(n) >= a]
if [(n, a)] belongs to a given list of (program points, approximations).
The only difference with a forward dataflow problem is that the transfer
function [transf] now computes the approximation before a program point [s]
from the approximation [X(s)] after point [s].
This file defines three solvers for dataflow problems. The first two
solve (optimally) forward and backward problems using Kildall's worklist
algorithm. They assume that the unknowns range over a semi-lattice, that is,
an ordered type equipped with a least upper bound operation.
The last solver corresponds to propagation over extended basic blocks:
it returns approximate solutions of forward problems where the unknowns
range over any ordered type having a greatest element [top]. It simply
sets [X(n) = top] for all merge points [n], that is, program points having
several predecessors. This solver is useful when least upper bounds of
approximations do not exist or are too expensive to compute. *)
(** * Solving forward dataflow problems using Kildall's algorithm *)
Definition successors_list (successors: PTree.t (list positive)) (pc: positive) : list positive :=
match successors!pc with None => nil | Some l => l end.
Notation "a !!! b" := (successors_list a b) (at level 1).
(** A forward dataflow solver has the following generic interface.
Unknowns range over the type [L.t], which is equipped with
semi-lattice operations (see file [Lattice]). *)
Module Type DATAFLOW_SOLVER.
Declare Module L: SEMILATTICE.
Variable fixpoint:
forall (successors: PTree.t (list positive))
(transf: positive -> L.t -> L.t)
(entrypoints: list (positive * L.t)),
option (PMap.t L.t).
(** [fixpoint successors transf entrypoints] is the solver.
It returns either an error or a mapping from program points to
values of type [L.t] representing the solution. [successors]
is a finite map returning the list of successors of the given program
point. [transf] is the transfer function, and [entrypoints] the additional
constraints imposed on the solution. *)
Hypothesis fixpoint_solution:
forall successors transf entrypoints res n s,
fixpoint successors transf entrypoints = Some res ->
In s successors!!!n ->
L.ge res!!s (transf n res!!n).
(** The [fixpoint_solution] theorem shows that the returned solution,
if any, satisfies the dataflow inequations. *)
Hypothesis fixpoint_entry:
forall successors transf entrypoints res n v,
fixpoint successors transf entrypoints = Some res ->
In (n, v) entrypoints ->
L.ge res!!n v.
(** The [fixpoint_entry] theorem shows that the returned solution,
if any, satisfies the additional constraints expressed
by [entrypoints]. *)
Hypothesis fixpoint_invariant:
forall successors transf entrypoints
(P: L.t -> Prop),
P L.bot ->
(forall x y, P x -> P y -> P (L.lub x y)) ->
(forall pc x, P x -> P (transf pc x)) ->
(forall n v, In (n, v) entrypoints -> P v) ->
forall res pc,
fixpoint successors transf entrypoints = Some res ->
P res!!pc.
(** Finally, any property that is preserved by [L.lub] and [transf]
and that holds for [L.bot] also holds for the results of
the analysis. *)
End DATAFLOW_SOLVER.
(** Kildall's algorithm manipulates worklists, which are sets of CFG nodes
equipped with a ``pick next node to examine'' operation.
The algorithm converges faster if the nodes are chosen in an order
consistent with a reverse postorder traversal of the CFG.
For now, we parameterize the dataflow solver over a module
that implements sets of CFG nodes. *)
Module Type NODE_SET.
Variable t: Type.
Variable add: positive -> t -> t.
Variable pick: t -> option (positive * t).
Variable initial: PTree.t (list positive) -> t.
Variable In: positive -> t -> Prop.
Hypothesis add_spec:
forall n n' s, In n' (add n s) <-> n = n' \/ In n' s.
Hypothesis pick_none:
forall s n, pick s = None -> ~In n s.
Hypothesis pick_some:
forall s n s', pick s = Some(n, s') ->
forall n', In n' s <-> n = n' \/ In n' s'.
Hypothesis initial_spec:
forall successors n s,
successors!n = Some s -> In n (initial successors).
End NODE_SET.
(** We now define a generic solver that works over
any semi-lattice structure. *)
Module Dataflow_Solver (LAT: SEMILATTICE) (NS: NODE_SET):
DATAFLOW_SOLVER with Module L := LAT.
Module L := LAT.
Section Kildall.
Variable successors: PTree.t (list positive).
Variable transf: positive -> L.t -> L.t.
Variable entrypoints: list (positive * L.t).
(** The state of the iteration has two components:
- A mapping from program points to values of type [L.t] representing
the candidate solution found so far.
- A worklist of program points that remain to be considered.
*)
Record state : Type :=
mkstate { st_in: PMap.t L.t; st_wrk: NS.t }.
(** Kildall's algorithm, in pseudo-code, is as follows:
<<
while st_wrk is not empty, do
extract a node n from st_wrk
compute out = transf n st_in[n]
for each successor s of n:
compute in = lub st_in[s] out
if in <> st_in[s]:
st_in[s] := in
st_wrk := st_wrk union {s}
end if
end for
end while
return st_in
>>
The initial state is built as follows:
- The initial mapping sets all program points to [L.bot], except
those mentioned in the [entrypoints] list, for which we take
the associated approximation as initial value. Since a program
point can be mentioned several times in [entrypoints], with different
approximations, we actually take the l.u.b. of these approximations.
- The initial worklist contains all the program points. *)
Fixpoint start_state_in (ep: list (positive * L.t)) : PMap.t L.t :=
match ep with
| nil =>
PMap.init L.bot
| (n, v) :: rem =>
let m := start_state_in rem in PMap.set n (L.lub m!!n v) m
end.
Definition start_state :=
mkstate (start_state_in entrypoints) (NS.initial successors).
(** [propagate_succ] corresponds, in the pseudocode,
to the body of the [for] loop iterating over all successors. *)
Definition propagate_succ (s: state) (out: L.t) (n: positive) :=
let oldl := s.(st_in)!!n in
let newl := L.lub oldl out in
if L.beq oldl newl
then s
else mkstate (PMap.set n newl s.(st_in)) (NS.add n s.(st_wrk)).
(** [propagate_succ_list] corresponds, in the pseudocode,
to the [for] loop iterating over all successors. *)
Fixpoint propagate_succ_list (s: state) (out: L.t) (succs: list positive)
{struct succs} : state :=
match succs with
| nil => s
| n :: rem => propagate_succ_list (propagate_succ s out n) out rem
end.
(** [step] corresponds to the body of the outer [while] loop in the
pseudocode. *)
Definition step (s: state) : PMap.t L.t + state :=
match NS.pick s.(st_wrk) with
| None =>
inl _ s.(st_in)
| Some(n, rem) =>
inr _ (propagate_succ_list
(mkstate s.(st_in) rem)
(transf n s.(st_in)!!n)
(successors!!!n))
end.
(** The whole fixpoint computation is the iteration of [step] from
the start state. *)
Definition fixpoint : option (PMap.t L.t) :=
PrimIter.iterate _ _ step start_state.
(** ** Monotonicity properties *)
(** We first show that the [st_in] part of the state evolves monotonically:
at each step, the values of the [st_in[n]] either remain the same or
increase with respect to the [L.ge] ordering. *)
Definition in_incr (in1 in2: PMap.t L.t) : Prop :=
forall n, L.ge in2!!n in1!!n.
Lemma in_incr_refl:
forall in1, in_incr in1 in1.
Proof.
unfold in_incr; intros. apply L.ge_refl. apply L.eq_refl.
Qed.
Lemma in_incr_trans:
forall in1 in2 in3, in_incr in1 in2 -> in_incr in2 in3 -> in_incr in1 in3.
Proof.
unfold in_incr; intros. apply L.ge_trans with in2!!n; auto.
Qed.
Lemma propagate_succ_incr:
forall st out n,
in_incr st.(st_in) (propagate_succ st out n).(st_in).
Proof.
unfold in_incr, propagate_succ; simpl; intros.
case (L.beq st.(st_in)!!n (L.lub st.(st_in)!!n out)).
apply L.ge_refl. apply L.eq_refl.
simpl. case (peq n n0); intro.
subst n0. rewrite PMap.gss. apply L.ge_lub_left.
rewrite PMap.gso; auto. apply L.ge_refl. apply L.eq_refl.
Qed.
Lemma propagate_succ_list_incr:
forall out scs st,
in_incr st.(st_in) (propagate_succ_list st out scs).(st_in).
Proof.
induction scs; simpl; intros.
apply in_incr_refl.
apply in_incr_trans with (propagate_succ st out a).(st_in).
apply propagate_succ_incr. auto.
Qed.
Lemma fixpoint_incr:
forall res,
fixpoint = Some res -> in_incr (start_state_in entrypoints) res.
Proof.
unfold fixpoint; intros.
change (start_state_in entrypoints) with start_state.(st_in).
eapply (PrimIter.iterate_prop _ _ step
(fun st => in_incr start_state.(st_in) st.(st_in))
(fun res => in_incr start_state.(st_in) res)).
intros st INCR. unfold step.
destruct (NS.pick st.(st_wrk)) as [ [n rem] | ].
apply in_incr_trans with st.(st_in). auto.
change st.(st_in) with (mkstate st.(st_in) rem).(st_in).
apply propagate_succ_list_incr.
auto.
eauto. apply in_incr_refl.
Qed.
(** ** Correctness invariant *)
(** The following invariant is preserved at each iteration of Kildall's
algorithm: for all program points [n], either
[n] is in the worklist, or the inequations associated with [n]
([st_in[s] >= transf n st_in[n]] for all successors [s] of [n])
hold. In other terms, the worklist contains all nodes that do not
yet satisfy their inequations. *)
Definition good_state (st: state) : Prop :=
forall n,
NS.In n st.(st_wrk) \/
(forall s, In s (successors!!!n) ->
L.ge st.(st_in)!!s (transf n st.(st_in)!!n)).
(** We show that the start state satisfies the invariant, and that
the [step] function preserves it. *)
Lemma start_state_good:
good_state start_state.
Proof.
unfold good_state, start_state; intros.
case_eq (successors!n); intros.
left; simpl. eapply NS.initial_spec. eauto.
unfold successors_list. rewrite H. right; intros. contradiction.
Qed.
Lemma propagate_succ_charact:
forall st out n,
let st' := propagate_succ st out n in
L.ge st'.(st_in)!!n out /\
(forall s, n <> s -> st'.(st_in)!!s = st.(st_in)!!s).
Proof.
unfold propagate_succ; intros; simpl.
predSpec L.beq L.beq_correct
((st_in st) !! n) (L.lub (st_in st) !! n out).
split.
eapply L.ge_trans. apply L.ge_refl. apply H; auto.
apply L.ge_lub_right.
auto.
simpl. split.
rewrite PMap.gss.
apply L.ge_lub_right.
intros. rewrite PMap.gso; auto.
Qed.
Lemma propagate_succ_list_charact:
forall out scs st,
let st' := propagate_succ_list st out scs in
forall s,
(In s scs -> L.ge st'.(st_in)!!s out) /\
(~(In s scs) -> st'.(st_in)!!s = st.(st_in)!!s).
Proof.
induction scs; simpl; intros.
tauto.
generalize (IHscs (propagate_succ st out a) s). intros [A B].
generalize (propagate_succ_charact st out a). intros [C D].
split; intros.
elim H; intro.
subst s.
apply L.ge_trans with (propagate_succ st out a).(st_in)!!a.
apply propagate_succ_list_incr. assumption.
apply A. auto.
transitivity (propagate_succ st out a).(st_in)!!s.
apply B. tauto.
apply D. tauto.
Qed.
Lemma propagate_succ_incr_worklist:
forall st out n x,
NS.In x st.(st_wrk) -> NS.In x (propagate_succ st out n).(st_wrk).
Proof.
intros. unfold propagate_succ.
case (L.beq (st_in st) !! n (L.lub (st_in st) !! n out)).
auto.
simpl. rewrite NS.add_spec. auto.
Qed.
Lemma propagate_succ_list_incr_worklist:
forall out scs st x,
NS.In x st.(st_wrk) -> NS.In x (propagate_succ_list st out scs).(st_wrk).
Proof.
induction scs; simpl; intros.
auto.
apply IHscs. apply propagate_succ_incr_worklist. auto.
Qed.
Lemma propagate_succ_records_changes:
forall st out n s,
let st' := propagate_succ st out n in
NS.In s st'.(st_wrk) \/ st'.(st_in)!!s = st.(st_in)!!s.
Proof.
simpl. intros. unfold propagate_succ.
case (L.beq (st_in st) !! n (L.lub (st_in st) !! n out)).
right; auto.
case (peq s n); intro.
subst s. left. simpl. rewrite NS.add_spec. auto.
right. simpl. apply PMap.gso. auto.
Qed.
Lemma propagate_succ_list_records_changes:
forall out scs st s,
let st' := propagate_succ_list st out scs in
NS.In s st'.(st_wrk) \/ st'.(st_in)!!s = st.(st_in)!!s.
Proof.
induction scs; simpl; intros.
right; auto.
elim (propagate_succ_records_changes st out a s); intro.
left. apply propagate_succ_list_incr_worklist. auto.
rewrite <- H. auto.
Qed.
Lemma step_state_good:
forall st n rem,
NS.pick st.(st_wrk) = Some(n, rem) ->
good_state st ->
good_state (propagate_succ_list (mkstate st.(st_in) rem)
(transf n st.(st_in)!!n)
(successors!!!n)).
Proof.
unfold good_state. intros st n rem WKL GOOD x.
generalize (NS.pick_some _ _ _ WKL); intro PICK.
set (out := transf n st.(st_in)!!n).
elim (propagate_succ_list_records_changes
out (successors!!!n) (mkstate st.(st_in) rem) x).
intro; left; auto.
simpl; intros EQ. rewrite EQ.
(* Case 1: x = n *)
case (peq x n); intro.
subst x.
right; intros.
elim (propagate_succ_list_charact out (successors!!!n)
(mkstate st.(st_in) rem) s); intros.
auto.
(* Case 2: x <> n *)
elim (GOOD x); intro.
(* Case 2.1: x was already in worklist, still is *)
left. apply propagate_succ_list_incr_worklist.
simpl. rewrite PICK in H. elim H; intro. congruence. auto.
(* Case 2.2: x was not in worklist *)
right; intros.
case (In_dec peq s (successors!!!n)); intro.
(* Case 2.2.1: s is a successor of n, it may have increased *)
apply L.ge_trans with st.(st_in)!!s.
change st.(st_in)!!s with (mkstate st.(st_in) rem).(st_in)!!s.
apply propagate_succ_list_incr.
auto.
(* Case 2.2.2: s is not a successor of n, it did not change *)
elim (propagate_succ_list_charact out (successors!!!n)
(mkstate st.(st_in) rem) s); intros.
rewrite H2. simpl. auto. auto.
Qed.
(** ** Correctness of the solution returned by [iterate]. *)
(** As a consequence of the [good_state] invariant, the result of
[fixpoint], if defined, is a solution of the dataflow inequations,
since [st_wrk] is empty when the iteration terminates. *)
Theorem fixpoint_solution:
forall res n s,
fixpoint = Some res ->
In s (successors!!!n) ->
L.ge res!!s (transf n res!!n).
Proof.
assert (forall res, fixpoint = Some res ->
forall n s,
In s successors!!!n ->
L.ge res!!s (transf n res!!n)).
unfold fixpoint. intros res PI. pattern res.
eapply (PrimIter.iterate_prop _ _ step good_state).
intros st GOOD. unfold step.
caseEq (NS.pick st.(st_wrk)).
intros [n rem] PICK. apply step_state_good; auto.
intros.
elim (GOOD n); intro.
elim (NS.pick_none _ n H). auto.
auto.
eauto. apply start_state_good. eauto.
Qed.
(** As a consequence of the monotonicity property, the result of
[fixpoint], if defined, is pointwise greater than or equal the
initial mapping. Therefore, it satisfies the additional constraints
stated in [entrypoints]. *)
Lemma start_state_in_entry:
forall ep n v,
In (n, v) ep ->
L.ge (start_state_in ep)!!n v.
Proof.
induction ep; simpl; intros.
elim H.
elim H; intros.
subst a. rewrite PMap.gss.
apply L.ge_lub_right.
destruct a. rewrite PMap.gsspec. case (peq n p); intro.
subst p. apply L.ge_trans with (start_state_in ep)!!n.
apply L.ge_lub_left. auto.
auto.
Qed.
Theorem fixpoint_entry:
forall res n v,
fixpoint = Some res ->
In (n, v) entrypoints ->
L.ge res!!n v.
Proof.
intros.
apply L.ge_trans with (start_state_in entrypoints)!!n.
apply fixpoint_incr. auto.
apply start_state_in_entry. auto.
Qed.
(** ** Preservation of a property over solutions *)
Variable P: L.t -> Prop.
Hypothesis P_bot: P L.bot.
Hypothesis P_lub: forall x y, P x -> P y -> P (L.lub x y).
Hypothesis P_transf: forall pc x, P x -> P (transf pc x).
Hypothesis P_entrypoints: forall n v, In (n, v) entrypoints -> P v.
Theorem fixpoint_invariant:
forall res pc,
fixpoint = Some res ->
P res!!pc.
Proof.
assert (forall ep,
(forall n v, In (n, v) ep -> P v) ->
forall pc, P (start_state_in ep)!!pc).
induction ep; intros; simpl.
rewrite PMap.gi. auto.
simpl in H.
assert (P (start_state_in ep)!!pc). apply IHep. eauto.
destruct a as [n v]. rewrite PMap.gsspec. destruct (peq pc n).
apply P_lub. subst. auto. eapply H. left; reflexivity. auto.
set (inv := fun st => forall pc, P (st.(st_in)!!pc)).
assert (forall st v n, inv st -> P v -> inv (propagate_succ st v n)).
unfold inv, propagate_succ. intros.
destruct (LAT.beq (st_in st)!!n (LAT.lub (st_in st)!!n v)).
auto. simpl. rewrite PMap.gsspec. destruct (peq pc n).
apply P_lub. subst n; auto. auto.
auto.
assert (forall l st v, inv st -> P v -> inv (propagate_succ_list st v l)).
induction l; intros; simpl. auto.
apply IHl; auto.
assert (forall res, fixpoint = Some res -> forall pc, P res!!pc).
unfold fixpoint. intros res0 RES0. pattern res0.
eapply (PrimIter.iterate_prop _ _ step inv).
intros. unfold step. destruct (NS.pick (st_wrk a)) as [[n rem] | ].
apply H1. auto. apply P_transf. apply H2.
assumption.
eauto.
unfold inv, start_state; simpl. auto.
intros. auto.
Qed.
End Kildall.
End Dataflow_Solver.
(** * Solving backward dataflow problems using Kildall's algorithm *)
(** A backward dataflow problem on a given flow graph is a forward
dataflow program on the reversed flow graph, where predecessors replace
successors. We exploit this observation to cheaply derive a backward
solver from the forward solver. *)
(** ** Construction of the predecessor relation *)
Section Predecessor.
Variable successors: PTree.t (list positive).
Fixpoint add_successors (pred: PTree.t (list positive))
(from: positive) (tolist: list positive)
{struct tolist} : PTree.t (list positive) :=
match tolist with
| nil => pred
| to :: rem => add_successors (PTree.set to (from :: pred!!!to) pred) from rem
end.
Lemma add_successors_correct:
forall tolist from pred n s,
In n pred!!!s \/ (n = from /\ In s tolist) ->
In n (add_successors pred from tolist)!!!s.
Proof.
induction tolist; simpl; intros.
tauto.
apply IHtolist.
unfold successors_list at 1. rewrite PTree.gsspec. destruct (peq s a).
subst a. destruct H. auto with coqlib.
destruct H. subst n. auto with coqlib.
fold (successors_list pred s). intuition congruence.
Qed.
Definition make_predecessors : PTree.t (list positive) :=
PTree.fold add_successors successors (PTree.empty (list positive)).
Lemma make_predecessors_correct:
forall n s,
In s successors!!!n ->
In n make_predecessors!!!s.
Proof.
set (P := fun succ pred =>
forall n s, In s succ!!!n -> In n pred!!!s).
unfold make_predecessors.
apply PTree_Properties.fold_rec with (P := P).
(* extensionality *)
unfold P; unfold successors_list; intros.
rewrite <- H in H1. auto.
(* base case *)
red; unfold successors_list. intros n s. repeat rewrite PTree.gempty. auto.
(* inductive case *)
unfold P; intros. apply add_successors_correct.
unfold successors_list in H2. rewrite PTree.gsspec in H2.
destruct (peq n k).
subst k. auto.
fold (successors_list m n) in H2. auto.
Qed.
End Predecessor.
(** ** Solving backward dataflow problems *)
(** The interface to a backward dataflow solver is as follows. *)
Module Type BACKWARD_DATAFLOW_SOLVER.
Declare Module L: SEMILATTICE.
Variable fixpoint:
PTree.t (list positive) ->
(positive -> L.t -> L.t) ->
list (positive * L.t) ->
option (PMap.t L.t).
Hypothesis fixpoint_solution:
forall successors transf entrypoints res n s,
fixpoint successors transf entrypoints = Some res ->
In s (successors!!!n) ->
L.ge res!!n (transf s res!!s).
Hypothesis fixpoint_entry:
forall successors transf entrypoints res n v,
fixpoint successors transf entrypoints = Some res ->
In (n, v) entrypoints ->
L.ge res!!n v.
Hypothesis fixpoint_invariant:
forall successors transf entrypoints (P: L.t -> Prop),
P L.bot ->
(forall x y, P x -> P y -> P (L.lub x y)) ->
(forall pc x, P x -> P (transf pc x)) ->
(forall n v, In (n, v) entrypoints -> P v) ->
forall res pc,
fixpoint successors transf entrypoints = Some res ->
P res!!pc.
End BACKWARD_DATAFLOW_SOLVER.
(** We construct a generic backward dataflow solver, working over any
semi-lattice structure, by applying the forward dataflow solver
with the predecessor relation instead of the successor relation. *)
Module Backward_Dataflow_Solver (LAT: SEMILATTICE) (NS: NODE_SET):
BACKWARD_DATAFLOW_SOLVER with Module L := LAT.
Module L := LAT.
Module DS := Dataflow_Solver L NS.
Section Kildall.
Variable successors: PTree.t (list positive).
Variable transf: positive -> L.t -> L.t.
Variable entrypoints: list (positive * L.t).
Definition fixpoint :=
DS.fixpoint (make_predecessors successors) transf entrypoints.
Theorem fixpoint_solution:
forall res n s,
fixpoint = Some res ->
In s (successors!!!n) ->
L.ge res!!n (transf s res!!s).
Proof.
intros. apply DS.fixpoint_solution with
(make_predecessors successors) entrypoints.
exact H.
apply make_predecessors_correct; auto.
Qed.
Theorem fixpoint_entry:
forall res n v,
fixpoint = Some res ->
In (n, v) entrypoints ->
L.ge res!!n v.
Proof.
intros. apply DS.fixpoint_entry with
(make_predecessors successors) transf entrypoints.
exact H. auto.
Qed.
Theorem fixpoint_invariant:
forall (P: L.t -> Prop),
P L.bot ->
(forall x y, P x -> P y -> P (L.lub x y)) ->
(forall pc x, P x -> P (transf pc x)) ->
(forall n v, In (n, v) entrypoints -> P v) ->
forall res pc,
fixpoint = Some res ->
P res!!pc.
Proof.
intros. apply DS.fixpoint_invariant with
(make_predecessors successors) transf entrypoints; auto.
Qed.
End Kildall.
End Backward_Dataflow_Solver.
(** * Analysis on extended basic blocks *)
(** We now define an approximate solver for forward dataflow problems
that proceeds by forward propagation over extended basic blocks.
In other terms, program points with multiple predecessors are mapped
to [L.top] (the greatest, or coarsest, approximation) and the other
program points are mapped to [transf p X[p]] where [p] is their unique
predecessor.
This analysis applies to any type of approximations equipped with
an ordering and a greatest element. *)
Module Type ORDERED_TYPE_WITH_TOP.
Variable t: Type.
Variable ge: t -> t -> Prop.
Variable top: t.
Hypothesis top_ge: forall x, ge top x.
Hypothesis refl_ge: forall x, ge x x.
End ORDERED_TYPE_WITH_TOP.
(** The interface of the solver is similar to that of Kildall's forward
solver. We provide one additional theorem [fixpoint_invariant]
stating that any property preserved by the [transf] function
holds for the returned solution. *)
Module Type BBLOCK_SOLVER.
Declare Module L: ORDERED_TYPE_WITH_TOP.
Variable fixpoint:
PTree.t (list positive) ->
(positive -> L.t -> L.t) ->
positive ->
option (PMap.t L.t).
Hypothesis fixpoint_solution:
forall successors transf entrypoint res n s,
fixpoint successors transf entrypoint = Some res ->
In s (successors!!!n) ->
L.ge res!!s (transf n res!!n).
Hypothesis fixpoint_entry:
forall successors transf entrypoint res,
fixpoint successors transf entrypoint = Some res ->
res!!entrypoint = L.top.
Hypothesis fixpoint_invariant:
forall successors transf entrypoint
(P: L.t -> Prop),
P L.top ->
(forall pc x, P x -> P (transf pc x)) ->
forall res pc,
fixpoint successors transf entrypoint = Some res ->
P res!!pc.
End BBLOCK_SOLVER.
(** The implementation of the ``extended basic block'' solver is a
functor parameterized by any ordered type with a top element. *)
Module BBlock_solver(LAT: ORDERED_TYPE_WITH_TOP):
BBLOCK_SOLVER with Module L := LAT.
Module L := LAT.
Section Solver.
Variable successors: PTree.t (list positive).
Variable transf: positive -> L.t -> L.t.
Variable entrypoint: positive.
Variable P: L.t -> Prop.
Hypothesis Ptop: P L.top.
Hypothesis Ptransf: forall pc x, P x -> P (transf pc x).
Definition bbmap := positive -> bool.
Definition result := PMap.t L.t.
(** As in Kildall's solver, the state of the iteration has two components:
- A mapping from program points to values of type [L.t] representing
the candidate solution found so far.
- A worklist of program points that remain to be considered.
*)
Record state : Type := mkstate
{ st_in: result; st_wrk: list positive }.
(** The ``extended basic block'' algorithm, in pseudo-code, is as follows:
<<
st_wrk := the set of all points n having multiple predecessors
st_in := the mapping n -> L.top
while st_wrk is not empty, do
extract a node n from st_wrk
compute out = transf n st_in[n]
for each successor s of n:
if s has only one predecessor (namely, n):
st_in[s] := out
st_wrk := st_wrk union {s}
end if
end for
end while
return st_in
>>
**)
Fixpoint propagate_successors
(bb: bbmap) (succs: list positive) (l: L.t) (st: state)
{struct succs} : state :=
match succs with
| nil => st
| s1 :: sl =>
if bb s1 then
propagate_successors bb sl l st
else
propagate_successors bb sl l
(mkstate (PMap.set s1 l st.(st_in))
(s1 :: st.(st_wrk)))
end.
Definition step (bb: bbmap) (st: state) : result + state :=
match st.(st_wrk) with
| nil => inl _ st.(st_in)
| pc :: rem =>
inr _ (propagate_successors
bb (successors!!!pc)
(transf pc st.(st_in)!!pc)
(mkstate st.(st_in) rem))
end.
(** Recognition of program points that have more than one predecessor. *)
Definition is_basic_block_head
(preds: PTree.t (list positive)) (pc: positive) : bool :=
if peq pc entrypoint then true else
match preds!!!pc with
| nil => false
| s :: nil => peq s pc
| _ :: _ :: _ => true
end.
Definition basic_block_map : bbmap :=
is_basic_block_head (make_predecessors successors).
Definition basic_block_list (bb: bbmap) : list positive :=
PTree.fold (fun l pc scs => if bb pc then pc :: l else l)
successors nil.
(** The computation of the approximate solution. *)
Definition fixpoint : option result :=
let bb := basic_block_map in
PrimIter.iterate _ _ (step bb) (mkstate (PMap.init L.top) (basic_block_list bb)).
(** ** Properties of predecessors and multiple-predecessors nodes *)
Definition predecessors := make_predecessors successors.
Lemma predecessors_correct:
forall n s,
In s successors!!!n -> In n predecessors!!!s.
Proof.
intros. unfold predecessors. eapply make_predecessors_correct; eauto.
Qed.
Lemma multiple_predecessors:
forall s n1 n2,
In s (successors!!!n1) ->
In s (successors!!!n2) ->
n1 <> n2 ->
basic_block_map s = true.
Proof.
intros.
assert (In n1 predecessors!!!s). apply predecessors_correct; auto.
assert (In n2 predecessors!!!s). apply predecessors_correct; auto.
unfold basic_block_map, is_basic_block_head.
destruct (peq s entrypoint). auto.
fold predecessors.
destruct (predecessors!!!s).
auto.
destruct l.
simpl in H2. simpl in H3. intuition congruence.
auto.
Qed.
Lemma no_self_loop:
forall n,
In n (successors!!!n) -> basic_block_map n = true.
Proof.
intros. unfold basic_block_map, is_basic_block_head.
destruct (peq n entrypoint). auto.
fold predecessors.
generalize (predecessors_correct n n H). intro.
destruct (predecessors!!!n). auto.
destruct l. replace n with p. apply peq_true. simpl in H0. tauto.
auto.
Qed.
(** ** Correctness invariant *)
(** The invariant over the state is as follows:
- Points with several predecessors are mapped to [L.top]
- Points not in the worklist satisfy their inequations
(as in Kildall's algorithm).
*)
Definition state_invariant (st: state) : Prop :=
(forall n, basic_block_map n = true -> st.(st_in)!!n = L.top)
/\
(forall n,
In n st.(st_wrk) \/
(forall s, In s (successors!!!n) ->
L.ge st.(st_in)!!s (transf n st.(st_in)!!n))).
Lemma propagate_successors_charact1:
forall bb succs l st,
incl st.(st_wrk)
(propagate_successors bb succs l st).(st_wrk).
Proof.
induction succs; simpl; intros.
apply incl_refl.
case (bb a).
auto.
apply incl_tran with (a :: st_wrk st).
apply incl_tl. apply incl_refl.
set (st1 := (mkstate (PMap.set a l (st_in st)) (a :: st_wrk st))).
change (a :: st_wrk st) with (st_wrk st1).
auto.
Qed.
Lemma propagate_successors_charact2:
forall bb succs l st n,
let st' := propagate_successors bb succs l st in
(In n succs -> bb n = false -> In n st'.(st_wrk) /\ st'.(st_in)!!n = l)
/\ (~In n succs \/ bb n = true -> st'.(st_in)!!n = st.(st_in)!!n).
Proof.
induction succs; simpl; intros.
(* Base case *)
split. tauto. auto.
(* Inductive case *)
caseEq (bb a); intro.
elim (IHsuccs l st n); intros A B.
split; intros. apply A; auto.
elim H0; intro. subst a. congruence. auto.
apply B. tauto.
set (st1 := mkstate (PMap.set a l (st_in st)) (a :: st_wrk st)).
elim (IHsuccs l st1 n); intros A B.
split; intros.
elim H0; intros.
subst n. split.
apply propagate_successors_charact1. simpl. tauto.
case (In_dec peq a succs); intro.
elim (A i H1); auto.
rewrite B. unfold st1; simpl. apply PMap.gss. tauto.
apply A; auto.
rewrite B. unfold st1; simpl. apply PMap.gso.
red; intro; subst n. elim H0; intro. tauto. congruence.
tauto.
Qed.
Lemma propagate_successors_invariant:
forall pc res rem,
state_invariant (mkstate res (pc :: rem)) ->
state_invariant
(propagate_successors basic_block_map (successors!!!pc)
(transf pc res!!pc)
(mkstate res rem)).
Proof.
intros until rem. intros [INV1 INV2]. simpl in INV1. simpl in INV2.
set (l := transf pc res!!pc).
generalize (propagate_successors_charact1 basic_block_map
(successors!!! pc) l (mkstate res rem)).
generalize (propagate_successors_charact2 basic_block_map
(successors!!!pc) l (mkstate res rem)).
set (st1 := propagate_successors basic_block_map
(successors!!!pc) l (mkstate res rem)).
intros A B. simpl in A.
(* First part: BB entries remain at top *)
split; intros.
elim (A n); intros C D. rewrite D. simpl. apply INV1. auto. tauto.
(* Second part: monotonicity *)
(* Case 1: n = pc *)
case (peq pc n); intros.
subst n. right; intros.
elim (A s); intros C D.
replace (st1.(st_in)!!pc) with res!!pc. fold l.
caseEq (basic_block_map s); intro.
rewrite D. simpl. rewrite INV1. apply L.top_ge. auto. tauto.
elim (C H H0); intros. rewrite H2. apply L.refl_ge.
elim (A pc); intros E F. rewrite F. reflexivity.
case (In_dec peq pc (successors!!!pc)); intro.
right. apply no_self_loop; auto.
left; auto.
(* Case 2: n <> pc *)
elim (INV2 n); intro.
(* Case 2.1: n was already in worklist, still is *)
left. apply B. simpl. tauto.
(* Case 2.2: n was not in worklist *)
assert (INV3: forall s, In s (successors!!!n) -> st1.(st_in)!!s = res!!s).
(* Amazingly, successors of n do not change. The only way
they could change is if they were successors of pc as well,
but that gives them two different predecessors, so
they are basic block heads, and thus do not change! *)
intros. elim (A s); intros C D. rewrite D. reflexivity.
case (In_dec peq s (successors!!!pc)); intro.
right. apply multiple_predecessors with n pc; auto.
left; auto.
case (In_dec peq n (successors!!!pc)); intro.
(* Case 2.2.1: n is a successor of pc. Either it is in the
worklist or it did not change *)
caseEq (basic_block_map n); intro.
right; intros.
elim (A n); intros C D. rewrite D. rewrite INV3; auto.
tauto.
left. elim (A n); intros C D. elim (C i H0); intros. auto.
(* Case 2.2.2: n is not a successor of pc. It did not change. *)
right; intros.
elim (A n); intros C D. rewrite D.
rewrite INV3; auto.
tauto.
Qed.
Lemma initial_state_invariant:
state_invariant (mkstate (PMap.init L.top) (basic_block_list basic_block_map)).
Proof.
split; simpl; intros.
apply PMap.gi.
right. intros. repeat rewrite PMap.gi. apply L.top_ge.
Qed.
Lemma analyze_invariant:
forall res,
fixpoint = Some res ->
state_invariant (mkstate res nil).
Proof.
unfold fixpoint; intros. pattern res.
eapply (PrimIter.iterate_prop _ _ (step basic_block_map)
state_invariant).
intros st INV. destruct st as [stin stwrk].
unfold step. simpl. caseEq stwrk.
intro. congruence.
intros pc rem WRK.
apply propagate_successors_invariant; auto. congruence.
eauto. apply initial_state_invariant.
Qed.
(** ** Correctness of the returned solution *)
Theorem fixpoint_solution:
forall res n s,
fixpoint = Some res ->
In s (successors!!!n) ->
L.ge res!!s (transf n res!!n).
Proof.
intros.
assert (state_invariant (mkstate res nil)).
eapply analyze_invariant; eauto.
elim H1; simpl; intros.
elim (H3 n); intros.
contradiction.
auto.
Qed.
Theorem fixpoint_entry:
forall res,
fixpoint = Some res ->
res!!entrypoint = L.top.
Proof.
intros.
assert (state_invariant (mkstate res nil)).
eapply analyze_invariant; eauto.
elim H0; simpl; intros.
apply H1. unfold basic_block_map, is_basic_block_head.
fold predecessors. apply peq_true.
Qed.
(** ** Preservation of a property over solutions *)
Definition Pstate (st: state) : Prop :=
forall pc, P st.(st_in)!!pc.
Lemma propagate_successors_P:
forall bb l,
P l ->
forall succs st,
Pstate st ->
Pstate (propagate_successors bb succs l st).
Proof.
induction succs; simpl; intros.
auto.
case (bb a). auto.
apply IHsuccs. red; simpl; intros.
rewrite PMap.gsspec. case (peq pc a); intro.
auto. apply H0.
Qed.
Theorem fixpoint_invariant:
forall res pc, fixpoint = Some res -> P res!!pc.
Proof.
unfold fixpoint; intros. pattern res.
eapply (PrimIter.iterate_prop _ _ (step basic_block_map) Pstate).
intros st PS. unfold step. destruct (st.(st_wrk)).
apply PS.
assert (PS2: Pstate (mkstate st.(st_in) l)).
red; intro; simpl. apply PS.
apply propagate_successors_P. auto. auto. eauto.
red; intro; simpl. rewrite PMap.gi. apply Ptop.
Qed.
End Solver.
End BBlock_solver.
(** ** Node sets *)
(** We now define implementations of the [NODE_SET] interface
appropriate for forward and backward dataflow analysis.
As mentioned earlier, we aim for a traversal of the CFG nodes
in reverse postorder (for forward analysis) or postorder
(for backward analysis). We take advantage of the following
fact, valid for all CFG generated by translation from Cminor:
the enumeration [n-1], [n-2], ..., 3, 2, 1 where [n] is the
top CFG node is a reverse postorder traversal.
Therefore, for forward analysis, we will use an implementation
of [NODE_SET] where the [pick] operation selects the
greatest node in the working list. For backward analysis,
we will similarly pick the smallest node in the working list. *)
Require Import Heaps.
Module NodeSetForward <: NODE_SET.
Definition t := PHeap.t.
Definition add (n: positive) (s: t) : t := PHeap.insert n s.
Definition pick (s: t) :=
match PHeap.findMax s with
| Some n => Some(n, PHeap.deleteMax s)
| None => None
end.
Definition initial (successors: PTree.t (list positive)) :=
PTree.fold (fun s pc scs => PHeap.insert pc s) successors PHeap.empty.
Definition In := PHeap.In.
Lemma add_spec:
forall n n' s, In n' (add n s) <-> n = n' \/ In n' s.
Proof.
intros. rewrite PHeap.In_insert. unfold In. intuition.
Qed.
Lemma pick_none:
forall s n, pick s = None -> ~In n s.
Proof.
intros until n; unfold pick. caseEq (PHeap.findMax s); intros.
congruence.
apply PHeap.findMax_empty. auto.
Qed.
Lemma pick_some:
forall s n s', pick s = Some(n, s') ->
forall n', In n' s <-> n = n' \/ In n' s'.
Proof.
intros until s'; unfold pick. caseEq (PHeap.findMax s); intros.
inv H0.
generalize (PHeap.In_deleteMax s n n' H). unfold In. intuition.
congruence.
Qed.
Lemma initial_spec:
forall successors n s,
successors!n = Some s -> In n (initial successors).
Proof.
intros successors.
apply PTree_Properties.fold_rec with
(P := fun succ set =>
forall n s, succ!n = Some s -> In n set).
(* extensionality *)
intros. rewrite <- H in H1. eauto.
(* base case *)
intros. rewrite PTree.gempty in H. congruence.
(* inductive case *)
intros. rewrite PTree.gsspec in H2. rewrite add_spec.
destruct (peq n k). auto. eauto.
Qed.
End NodeSetForward.
Module NodeSetBackward <: NODE_SET.
Definition t := PHeap.t.
Definition add (n: positive) (s: t) : t := PHeap.insert n s.
Definition pick (s: t) :=
match PHeap.findMin s with
| Some n => Some(n, PHeap.deleteMin s)
| None => None
end.
Definition initial (successors: PTree.t (list positive)) :=
PTree.fold (fun s pc scs => PHeap.insert pc s) successors PHeap.empty.
Definition In := PHeap.In.
Lemma add_spec:
forall n n' s, In n' (add n s) <-> n = n' \/ In n' s.
Proof NodeSetForward.add_spec.
Lemma pick_none:
forall s n, pick s = None -> ~In n s.
Proof.
intros until n; unfold pick. caseEq (PHeap.findMin s); intros.
congruence.
apply PHeap.findMin_empty. auto.
Qed.
Lemma pick_some:
forall s n s', pick s = Some(n, s') ->
forall n', In n' s <-> n = n' \/ In n' s'.
Proof.
intros until s'; unfold pick. caseEq (PHeap.findMin s); intros.
inv H0.
generalize (PHeap.In_deleteMin s n n' H). unfold In. intuition.
congruence.
Qed.
Lemma initial_spec:
forall successors n s,
successors!n = Some s -> In n (initial successors).
Proof NodeSetForward.initial_spec.
End NodeSetBackward.
|