summaryrefslogtreecommitdiff
path: root/backend/Kildall.v
blob: 0d414d28c0be9d3546fdf4e5844da696780fd56b (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
(* *********************************************************************)
(*                                                                     *)
(*              The Compcert verified compiler                         *)
(*                                                                     *)
(*          Xavier Leroy, INRIA Paris-Rocquencourt                     *)
(*                                                                     *)
(*  Copyright Institut National de Recherche en Informatique et en     *)
(*  Automatique.  All rights reserved.  This file is distributed       *)
(*  under the terms of the INRIA Non-Commercial License Agreement.     *)
(*                                                                     *)
(* *********************************************************************)

(** Solvers for dataflow inequations. *)

Require Import Coqlib.
Require Import Iteration.
Require Import Maps.
Require Import Lattice.

(* To avoid useless definitions of inductors in extracted code. *)
Local Unset Elimination Schemes.
Local Unset Case Analysis Schemes.

(** A forward dataflow problem is a set of inequations of the form
- [X(s) >= transf n X(n)] 
  if program point [s] is a successor of program point [n]
- [X(n) >= a]
  if [n] is an entry point and [a] its minimal approximation.

The unknowns are the [X(n)], indexed by program points (e.g. nodes in the
CFG graph of a RTL function).  They range over a given ordered set that 
represents static approximations of the program state at each point.
The [transf] function is the abstract transfer function: it computes an 
approximation [transf n X(n)] of the program state after executing instruction
at point [n], as a function of the approximation [X(n)] of the program state
before executing that instruction.

Symmetrically, a backward dataflow problem is a set of inequations of the form
- [X(n) >= transf s X(s)] 
  if program point [s] is a successor of program point [n]
- [X(n) >= a]
  if [n] is an entry point and [a] its minimal approximation.

The only difference with a forward dataflow problem is that the transfer
function [transf] now computes the approximation before a program point [s]
from the approximation [X(s)] after point [s].

This file defines three solvers for dataflow problems.  The first two
solve (optimally) forward and backward problems using Kildall's worklist
algorithm.  They assume that the unknowns range over a semi-lattice, that is,
an ordered type equipped with a least upper bound operation.

The last solver corresponds to propagation over extended basic blocks:
it returns approximate solutions of forward problems where the unknowns
range over any ordered type having a greatest element [top].  It simply
sets [X(n) = top] for all merge points [n], that is, program points having
several predecessors.  This solver is useful when least upper bounds of
approximations do not exist or are too expensive to compute. *)

(** * Solving forward dataflow problems using Kildall's algorithm *)

(** A forward dataflow solver has the following generic interface.
  Unknowns range over the type [L.t], which is equipped with
  semi-lattice operations (see file [Lattice]).  *)

Module Type DATAFLOW_SOLVER.

  Declare Module L: SEMILATTICE.

  (** [fixpoint successors transf ep ev] is the solver.
    It returns either an error or a mapping from program points to
    values of type [L.t] representing the solution.  [successors]
    is a finite map returning the list of successors of the given program
    point. [transf] is the transfer function, [ep] the entry point,
    and [ev] the minimal abstract value for [ep]. *)

  Variable fixpoint:
    forall {A: Type} (code: PTree.t A) (successors: A -> list positive)
           (transf: positive -> L.t -> L.t)
           (ep: positive) (ev: L.t),
    option (PMap.t L.t).

  (** The [fixpoint_solution] theorem shows that the returned solution,
    if any, satisfies the dataflow inequations. *)

  Hypothesis fixpoint_solution:
    forall A (code: PTree.t A) successors transf ep ev res n instr s,
    fixpoint code successors transf ep ev = Some res ->
    code!n = Some instr -> In s (successors instr) ->
    (forall n, L.eq (transf n L.bot) L.bot) ->
    L.ge res!!s (transf n res!!n).

  (** The [fixpoint_entry] theorem shows that the returned solution,
    if any, satisfies the additional constraint over the entry point. *)

  Hypothesis fixpoint_entry:
    forall A (code: PTree.t A) successors transf ep ev res,
    fixpoint code successors transf ep ev = Some res ->
    L.ge res!!ep ev.

  (** Finally, any property that is preserved by [L.lub] and [transf]
      and that holds for [L.bot] also holds for the results of
      the analysis. *)

  Hypothesis fixpoint_invariant:
    forall A (code: PTree.t A) successors transf ep ev
           (P: L.t -> Prop),
    P L.bot ->
    (forall x y, P x -> P y -> P (L.lub x y)) ->
    (forall pc instr x, code!pc = Some instr -> P x -> P (transf pc x)) ->
    P ev ->
    forall res pc,
    fixpoint code successors transf ep ev = Some res ->
    P res!!pc.

End DATAFLOW_SOLVER.

(** Kildall's algorithm manipulates worklists, which are sets of CFG nodes
  equipped with a ``pick next node to examine'' operation.
  The algorithm converges faster if the nodes are chosen in an order
  consistent with a reverse postorder traversal of the CFG.
  For now, we parameterize the dataflow solver over a module
  that implements sets of CFG nodes. *)

Module Type NODE_SET.

  Variable t: Type.
  Variable empty: t.
  Variable add: positive -> t -> t.
  Variable pick: t -> option (positive * t).
  Variable all_nodes: forall {A: Type}, PTree.t A -> t.

  Variable In: positive -> t -> Prop.
  Hypothesis empty_spec:
    forall n, ~In n empty.
  Hypothesis add_spec:
    forall n n' s, In n' (add n s) <-> n = n' \/ In n' s.
  Hypothesis pick_none:
    forall s n, pick s = None -> ~In n s.
  Hypothesis pick_some:
    forall s n s', pick s = Some(n, s') ->
    forall n', In n' s <-> n = n' \/ In n' s'.
  Hypothesis all_nodes_spec:
    forall A (code: PTree.t A) n instr,
    code!n = Some instr -> In n (all_nodes code).

End NODE_SET.

(** Reachability in a control-flow graph. *)

Section REACHABLE.

Context {A: Type} (code: PTree.t A) (successors: A -> list positive).

Inductive reachable: positive -> positive -> Prop :=
  | reachable_refl: forall n, reachable n n
  | reachable_left: forall n1 n2 n3 i,
      code!n1 = Some i -> In n2 (successors i) -> reachable n2 n3 -> 
      reachable n1 n3.

Scheme reachable_ind := Induction for reachable Sort Prop.

Lemma reachable_trans:
  forall n1 n2, reachable n1 n2 -> forall n3, reachable n2 n3 -> reachable n1 n3.
Proof.
  induction 1; intros. 
- auto.
- econstructor; eauto. 
Qed.

Lemma reachable_right:
  forall n1 n2 n3 i,
  reachable n1 n2 -> code!n2 = Some i -> In n3 (successors i) ->
  reachable n1 n3.
Proof.
  intros. apply reachable_trans with n2; auto. econstructor; eauto. constructor.
Qed.

End REACHABLE.

(** We now define a generic solver for forward dataflow inequations
  that works over any semi-lattice structure. *)

Module Dataflow_Solver (LAT: SEMILATTICE) (NS: NODE_SET) <:
                          DATAFLOW_SOLVER with Module L := LAT.

Module L := LAT.

Section Kildall.

Context {A: Type}.
Variable code: PTree.t A.
Variable successors: A -> list positive.
Variable transf: positive -> L.t -> L.t.

(** The state of the iteration has three components:
- [aval]: A mapping from program points to values of type [L.t] representing
  the candidate solution found so far.
- [worklist]: A worklist of program points that remain to be considered.
- [visited]: A set of program points that were visited already
  (i.e. put on the worklist at some point in the past).

Only the first two components are computationally relevant.  The third
is a ghost variable used only for stating and proving invariants.  
For this reason, [visited] is defined at sort [Prop] so that it is
erased during program extraction.
*)

Record state : Type :=
  mkstate { aval: PTree.t L.t; worklist: NS.t; visited: positive -> Prop }.

Definition abstr_value (n: positive) (s: state) : L.t :=
  match s.(aval)!n with
  | None => L.bot
  | Some v => v
  end.

(** Kildall's algorithm, in pseudo-code, is as follows:
<<
    while worklist is not empty, do
        extract a node n from worklist
        compute out = transf n aval[n]
        for each successor s of n:
            compute in = lub aval[s] out
            if in <> aval[s]:
                aval[s] := in
                worklist := worklist union {s}
                visited := visited union {s}
            end if
        end for
    end while
    return aval
>>
*)

(** [propagate_succ] corresponds, in the pseudocode,
  to the body of the [for] loop iterating over all successors. *)

Definition propagate_succ (s: state) (out: L.t) (n: positive) :=
  match s.(aval)!n with
  | None =>
      {| aval := PTree.set n out s.(aval);
         worklist := NS.add n s.(worklist);
         visited := fun p => p = n \/ s.(visited) p |}
  | Some oldl =>
      let newl := L.lub oldl out in
      if L.beq oldl newl
      then s
      else {| aval := PTree.set n newl s.(aval);
              worklist := NS.add n s.(worklist);
              visited := fun p => p = n \/ s.(visited) p |}
  end.

(** [propagate_succ_list] corresponds, in the pseudocode,
  to the [for] loop iterating over all successors. *)

Fixpoint propagate_succ_list (s: state) (out: L.t) (succs: list positive)
                             {struct succs} : state :=
  match succs with
  | nil => s
  | n :: rem => propagate_succ_list (propagate_succ s out n) out rem
  end.

(** [step] corresponds to the body of the outer [while] loop in the
  pseudocode. *)

Definition step (s: state) : PMap.t L.t + state :=
  match NS.pick s.(worklist) with
  | None => 
      inl _ (L.bot, s.(aval))
  | Some(n, rem) =>
      match code!n with
      | None =>
          inr _ {| aval := s.(aval); worklist := rem; visited := s.(visited) |}
      | Some instr =>
          inr _ (propagate_succ_list
                  {| aval := s.(aval); worklist := rem; visited := s.(visited) |}
                  (transf n (abstr_value n s))
                  (successors instr))
      end
  end.

(** The whole fixpoint computation is the iteration of [step] from
  an initial state. *)

Definition fixpoint_from (start: state) : option (PMap.t L.t) :=
  PrimIter.iterate _ _ step start.

(** There are several ways to build the initial state.  For forward
  dataflow analyses, the initial worklist is the function entry point,
  and the initial mapping sets the function entry point to the given
  abstract value, and leaves unset all other program points, which
  corresponds to [L.bot] initial abstract values. *)

Definition start_state (enode: positive) (eval: L.t) :=
  {| aval := PTree.set enode eval (PTree.empty L.t);
     worklist := NS.add enode NS.empty;
     visited := fun n => n = enode |}.

Definition fixpoint (enode: positive) (eval: L.t) :=
  fixpoint_from (start_state enode eval).

(** For backward analyses (viewed as forward analyses on the reversed CFG),
  the following two variants are more useful.  Both start with an
  empty initial mapping, where all program points start at [L.bot].
  The first initializes the worklist with a given set of entry points
  in the reversed CFG.  (See the backward dataflow solver below for
  how this list is computed.)  The second start state construction
  initializes the worklist with all program points of the given CFG. *)

Definition start_state_nodeset (enodes: NS.t) :=
  {| aval := PTree.empty L.t;
     worklist := enodes;
     visited := fun n => NS.In n enodes |}.

Definition fixpoint_nodeset (enodes: NS.t) :=
  fixpoint_from (start_state_nodeset enodes).

Definition start_state_allnodes :=
  {| aval := PTree.empty L.t;
     worklist := NS.all_nodes code;
     visited := fun n => exists instr, code!n = Some instr |}.

Definition fixpoint_allnodes :=
  fixpoint_from start_state_allnodes.

(** ** Characterization of the propagation functions *)

Inductive optge: option L.t -> option L.t -> Prop :=
  | optge_some: forall l l',
      L.ge l l' -> optge (Some l) (Some l')
  | optge_none: forall ol,
      optge ol None.

Remark optge_refl: forall ol, optge ol ol.
Proof. destruct ol; constructor. apply L.ge_refl; apply L.eq_refl. Qed.

Remark optge_trans: forall ol1 ol2 ol3, optge ol1 ol2 -> optge ol2 ol3 -> optge ol1 ol3.
Proof.
  intros. inv H0.
  inv H. constructor. eapply L.ge_trans; eauto.
  constructor.
Qed.

Remark optge_abstr_value:
  forall st st' n,
  optge st.(aval)!n st'.(aval)!n ->
  L.ge (abstr_value n st) (abstr_value n st').
Proof.
  intros. unfold abstr_value. inv H. auto. apply L.ge_bot. 
Qed.

Lemma propagate_succ_charact:
  forall st out n,
  let st' := propagate_succ st out n in
     optge st'.(aval)!n (Some out)
  /\ (forall s, n <> s -> st'.(aval)!s = st.(aval)!s)
  /\ (forall s, optge st'.(aval)!s st.(aval)!s)
  /\ (NS.In n st'.(worklist) \/ st'.(aval)!n = st.(aval)!n)
  /\ (forall n', NS.In n' st.(worklist) -> NS.In n' st'.(worklist))
  /\ (forall n', NS.In n' st'.(worklist) -> n' = n \/ NS.In n' st.(worklist))
  /\ (forall n', st.(visited) n' -> st'.(visited) n')
  /\ (forall n', st'.(visited) n' -> NS.In n' st'.(worklist) \/ st.(visited) n')
  /\ (forall n', st.(aval)!n' = None -> st'.(aval)!n' <> None -> st'.(visited) n').
Proof.
  unfold propagate_succ; intros; simpl.
  destruct st.(aval)!n as [v|] eqn:E;
  [predSpec L.beq L.beq_correct v (L.lub v out) | idtac].
- (* already there, unchanged *)
  repeat split; intros.
  + rewrite E. constructor. eapply L.ge_trans. apply L.ge_refl. apply H; auto. apply L.ge_lub_right.
  + apply optge_refl. 
  + right; auto.
  + auto.
  + auto.
  + auto.
  + auto.
  + congruence.
- (* already there, updated *)
  simpl; repeat split; intros.
  + rewrite PTree.gss. constructor. apply L.ge_lub_right. 
  + rewrite PTree.gso by auto. auto.
  + rewrite PTree.gsspec. destruct (peq s n). 
    subst s. rewrite E. constructor. apply L.ge_lub_left.
    apply optge_refl.
  + rewrite NS.add_spec. auto. 
  + rewrite NS.add_spec. auto.
  + rewrite NS.add_spec in H0. intuition.
  + auto.
  + destruct H0; auto. subst n'. rewrite NS.add_spec; auto. 
  + rewrite PTree.gsspec in H1. destruct (peq n' n). auto. congruence. 
- (* not previously there, updated *)
  simpl; repeat split; intros.
  + rewrite PTree.gss. apply optge_refl. 
  + rewrite PTree.gso by auto. auto.
  + rewrite PTree.gsspec. destruct (peq s n). 
    subst s. rewrite E. constructor.
    apply optge_refl.
  + rewrite NS.add_spec. auto. 
  + rewrite NS.add_spec. auto.
  + rewrite NS.add_spec in H. intuition.
  + auto.
  + destruct H; auto. subst n'. rewrite NS.add_spec. auto. 
  + rewrite PTree.gsspec in H0. destruct (peq n' n). auto. congruence.
Qed.

Lemma propagate_succ_list_charact:
  forall out l st,
  let st' := propagate_succ_list st out l in
     (forall n, In n l -> optge st'.(aval)!n (Some out))
  /\ (forall n, ~In n l -> st'.(aval)!n = st.(aval)!n)
  /\ (forall n, optge st'.(aval)!n st.(aval)!n)
  /\ (forall n, NS.In n st'.(worklist) \/ st'.(aval)!n = st.(aval)!n)
  /\ (forall n', NS.In n' st.(worklist) -> NS.In n' st'.(worklist))
  /\ (forall n', NS.In n' st'.(worklist) -> In n' l \/ NS.In n' st.(worklist))
  /\ (forall n', st.(visited) n' -> st'.(visited) n')
  /\ (forall n', st'.(visited) n' -> NS.In n' st'.(worklist) \/ st.(visited) n')
  /\ (forall n', st.(aval)!n' = None -> st'.(aval)!n' <> None -> st'.(visited) n').
Proof.
  induction l; simpl; intros. 
- repeat split; intros. 
  + contradiction.
  + apply optge_refl. 
  + auto.
  + auto.
  + auto.
  + auto.
  + auto.
  + congruence.
- generalize (propagate_succ_charact st out a). 
  set (st1 := propagate_succ st out a).
  intros (A1 & A2 & A3 & A4 & A5 & A6 & A7 & A8 & A9).
  generalize (IHl st1). 
  set (st2 := propagate_succ_list st1 out l).
  intros (B1 & B2 & B3 & B4 & B5 & B6 & B7 & B8 & B9). clear IHl.
  repeat split; intros.
  + destruct H. 
    * subst n. eapply optge_trans; eauto. 
    * auto.
  + rewrite B2 by tauto. apply A2; tauto.
  + eapply optge_trans; eauto.
  + destruct (B4 n). auto.
    destruct (peq n a). 
    * subst n. destruct A4. left; auto. right; congruence.
    * right. rewrite H. auto. 
  + eauto.
  + exploit B6; eauto. intros [P|P]. auto. 
    exploit A6; eauto. intuition.
  + eauto.
  + specialize (B8 n'); specialize (A8 n'). intuition.
  + destruct st1.(aval)!n' eqn:ST1.
    apply B7. apply A9; auto. congruence.
    apply B9; auto.
Qed.

(** Characterization of [fixpoint_from]. *)

Inductive steps: state -> state -> Prop :=
  | steps_base: forall s, steps s s
  | steps_right: forall s1 s2 s3, steps s1 s2 -> step s2 = inr s3 -> steps s1 s3.

Scheme steps_ind := Induction for steps Sort Prop.

Lemma fixpoint_from_charact:
  forall start res,
  fixpoint_from start = Some res ->
  exists st, steps start st /\ NS.pick st.(worklist) = None /\ res = (L.bot, st.(aval)).
Proof.
  unfold fixpoint; intros.
  eapply (PrimIter.iterate_prop _ _ step
              (fun st => steps start st)
              (fun res => exists st, steps start st /\ NS.pick (worklist st) = None /\ res = (L.bot, aval st))); eauto.
  intros. destruct (step a) eqn:E. 
  exists a; split; auto. 
  unfold step in E. destruct (NS.pick (worklist a)) as [[n rem]|].
  destruct (code!n); discriminate.
  inv E. auto. 
  eapply steps_right; eauto. 
  constructor.
Qed.

(** ** Monotonicity properties *)

(** We first show that the [aval] and [visited] parts of the state
evolve monotonically:
- at each step, the values of the [aval[n]] either remain the same or
  increase with respect to the [optge] ordering;
- every node visited in the past remains visited in the future.
*)

Lemma step_incr:
  forall n s1 s2, step s1 = inr s2 ->
  optge s2.(aval)!n s1.(aval)!n /\ (s1.(visited) n -> s2.(visited) n).
Proof.
  unfold step; intros. 
  destruct (NS.pick (worklist s1)) as [[p rem] | ]; try discriminate.
  destruct (code!p) as [instr|]; inv H.
  + generalize (propagate_succ_list_charact 
                     (transf p (abstr_value p s1))
                     (successors instr)
                     {| aval := aval s1; worklist := rem; visited := visited s1 |}).
      simpl.
      set (s' := propagate_succ_list {| aval := aval s1; worklist := rem; visited := visited s1 |}
                    (transf p (abstr_value p s1)) (successors instr)).
      intros (A1 & A2 & A3 & A4 & A5 & A6 & A7 & A8 & A9).
      auto.
  + split. apply optge_refl. auto. 
Qed.

Lemma steps_incr:
  forall n s1 s2, steps s1 s2 ->
  optge s2.(aval)!n s1.(aval)!n /\ (s1.(visited) n -> s2.(visited) n).
Proof.
  induction 1.
- split. apply optge_refl. auto.
- destruct IHsteps. exploit (step_incr n); eauto. intros [P Q].
  split. eapply optge_trans; eauto. eauto. 
Qed.

(** ** Correctness invariant *)

(** The following invariant is preserved at each iteration of Kildall's
  algorithm: for all visited program point [n], either
  [n] is in the worklist, or the inequations associated with [n]
  ([aval[s] >= transf n aval[n]] for all successors [s] of [n])
  hold.  In other terms, the worklist contains all nodes that were
  visited but do not yet satisfy their inequations.

  The second part of the invariant shows that nodes that already have
  an abstract value associated with them have been visited. *)

Record good_state (st: state) : Prop := {
  gs_stable: forall n,
    st.(visited) n ->
    NS.In n st.(worklist) \/
    (forall i s,
     code!n = Some i -> In s (successors i) ->
     optge st.(aval)!s (Some (transf n (abstr_value n st))));
  gs_defined: forall n v,
    st.(aval)!n = Some v -> st.(visited) n
}.

(** We show that the [step] function preserves this invariant. *)

Lemma step_state_good:
  forall st pc rem instr,
  NS.pick st.(worklist) = Some (pc, rem) ->
  code!pc = Some instr ->
  good_state st ->
  good_state (propagate_succ_list (mkstate st.(aval) rem st.(visited))
                                  (transf pc (abstr_value pc st))
                                  (successors instr)).
Proof.
  intros until instr; intros PICK CODEAT [GOOD1 GOOD2].
  generalize (NS.pick_some _ _ _ PICK); intro PICK2.
  set (out := transf pc (abstr_value pc st)).
  generalize (propagate_succ_list_charact out (successors instr) {| aval := aval st; worklist := rem; visited := visited st |}).
  set (st' := propagate_succ_list {| aval := aval st; worklist := rem; visited := visited st |} out
                                  (successors instr)).
  simpl; intros (A1 & A2 & A3 & A4 & A5 & A6 & A7 & A8 & A9).
  constructor; intros.
- (* stable *)
  destruct (A8 n H); auto. destruct (A4 n); auto.
  replace (abstr_value n st') with (abstr_value n st)
  by (unfold abstr_value; rewrite H1; auto).
  exploit GOOD1; eauto. intros [P|P].
+ (* n was on the worklist *)
  rewrite PICK2 in P; destruct P.
  * (* node n is our node pc *)
    subst n. fold out. right; intros. 
    assert (i = instr) by congruence. subst i. 
    apply A1; auto. 
  * (* n was already on the worklist *)
    left. apply A5; auto.
+ (* n was stable before, still is *)
  right; intros. apply optge_trans with st.(aval)!s; eauto. 
- (* defined *)
  destruct st.(aval)!n as [v'|] eqn:ST. 
  + apply A7. eapply GOOD2; eauto. 
  + apply A9; auto. congruence.
Qed.

Lemma step_state_good_2:
  forall st pc rem,
  good_state st ->
  NS.pick (worklist st) = Some (pc, rem) ->
  code!pc = None ->
  good_state (mkstate st.(aval) rem st.(visited)).
Proof.
  intros until rem; intros [GOOD1 GOOD2] PICK CODE.
  generalize (NS.pick_some _ _ _ PICK); intro PICK2.
  constructor; simpl; intros.
- (* stable *)
  exploit GOOD1; eauto. intros [P | P]. 
  + rewrite PICK2 in P. destruct P; auto. 
    subst n. right; intros. congruence. 
  + right; exact P.
- (* defined *)
  eapply GOOD2; eauto.
Qed.

Lemma steps_state_good:
  forall st1 st2, steps st1 st2 -> good_state st1 -> good_state st2.
Proof.
  induction 1; intros.
- auto. 
- unfold step in e.
  destruct (NS.pick (worklist s2)) as [[n rem] | ] eqn:PICK; try discriminate.
  destruct (code!n) as [instr|] eqn:CODE; inv e.
  eapply step_state_good; eauto. 
  eapply step_state_good_2; eauto.
Qed.

(** We show that initial states satisfy the invariant. *)

Lemma start_state_good:
  forall enode eval, good_state (start_state enode eval).
Proof.
  intros. unfold start_state; constructor; simpl; intros. 
- subst n. rewrite NS.add_spec; auto. 
- rewrite PTree.gsspec in H. rewrite PTree.gempty in H.
  destruct (peq n enode). auto. discriminate.
Qed.

Lemma start_state_nodeset_good:
  forall enodes, good_state (start_state_nodeset enodes).
Proof.
  intros. unfold start_state_nodeset; constructor; simpl; intros.
- left. auto.
- rewrite PTree.gempty in H. congruence.
Qed.

Lemma start_state_allnodes_good:
  good_state start_state_allnodes.
Proof.
  unfold start_state_allnodes; constructor; simpl; intros.
- destruct H as [instr CODE]. left. eapply NS.all_nodes_spec; eauto. 
- rewrite PTree.gempty in H. congruence.
Qed.

(** Reachability in final states. *)

Lemma reachable_visited:
  forall st, good_state st -> NS.pick st.(worklist) = None ->
  forall p q, reachable code successors p q -> st.(visited) p -> st.(visited) q.
Proof.
  intros st [GOOD1 GOOD2] PICK. induction 1; intros.
- auto. 
- eapply IHreachable; eauto.
  exploit GOOD1; eauto. intros [P | P]. 
  eelim NS.pick_none; eauto.
  exploit P; eauto. intros OGE; inv OGE. eapply GOOD2; eauto.
Qed.

(** ** Correctness of the solution returned by [fixpoint]. *)

(** As a consequence of the [good_state] invariant, the result of
  [fixpoint], if defined, is a solution of the dataflow inequations.
  This assumes that the transfer function maps [L.bot] to [L.bot]. *)

Theorem fixpoint_solution:
  forall ep ev res n instr s,
  fixpoint ep ev = Some res ->
  code!n = Some instr ->
  In s (successors instr) ->
  (forall n, L.eq (transf n L.bot) L.bot) ->
  L.ge res!!s (transf n res!!n).
Proof.
  unfold fixpoint; intros. 
  exploit fixpoint_from_charact; eauto. intros (st & STEPS & PICK & RES).
  exploit steps_state_good; eauto. apply start_state_good. intros [GOOD1 GOOD2].
  rewrite RES; unfold PMap.get; simpl.
  destruct st.(aval)!n as [v|] eqn:STN. 
- destruct (GOOD1 n) as [P|P]; eauto.
  eelim NS.pick_none; eauto. 
  exploit P; eauto. unfold abstr_value; rewrite STN. intros OGE; inv OGE. auto.
- apply L.ge_trans with L.bot. apply L.ge_bot. apply L.ge_refl. apply L.eq_sym. eauto.
Qed.

(** Moreover, the result of [fixpoint], if defined, satisfies the additional
  constraint given on the entry point. *)

Theorem fixpoint_entry:
  forall ep ev res,
  fixpoint ep ev = Some res ->
  L.ge res!!ep ev.
Proof.
  unfold fixpoint; intros. 
  exploit fixpoint_from_charact; eauto. intros (st & STEPS & PICK & RES).
  exploit (steps_incr ep); eauto. simpl. rewrite PTree.gss. intros [P Q]. 
  rewrite RES; unfold PMap.get; simpl. inv P; auto. 
Qed.

(** For [fixpoint_allnodes], we show that the result is a solution
  without assuming [transf n L.bot = L.bot]. *)

Theorem fixpoint_allnodes_solution:
  forall res n instr s,
  fixpoint_allnodes = Some res ->
  code!n = Some instr ->
  In s (successors instr) ->
  L.ge res!!s (transf n res!!n).
Proof.
  unfold fixpoint_allnodes; intros. 
  exploit fixpoint_from_charact; eauto. intros (st & STEPS & PICK & RES).
  exploit steps_state_good; eauto. apply start_state_allnodes_good. intros [GOOD1 GOOD2].
  exploit (steps_incr n); eauto. simpl. intros [U V].
  exploit (GOOD1 n). apply V. exists instr; auto. intros [P|P].
  eelim NS.pick_none; eauto. 
  exploit P; eauto. intros OGE. rewrite RES; unfold PMap.get; simpl.
  inv OGE. assumption.
Qed.

(** For [fixpoint_nodeset], we show that the result is a solution
  at all program points that are reachable from the given entry points. *)

Theorem fixpoint_nodeset_solution:
  forall enodes res e n instr s,
  fixpoint_nodeset enodes = Some res ->
  NS.In e enodes ->
  reachable code successors e n ->
  code!n = Some instr ->
  In s (successors instr) ->
  L.ge res!!s (transf n res!!n).
Proof.
  unfold fixpoint_nodeset; intros. 
  exploit fixpoint_from_charact; eauto. intros (st & STEPS & PICK & RES).
  exploit steps_state_good; eauto. apply start_state_nodeset_good. intros GOOD.
  exploit (steps_incr e); eauto. simpl. intros [U V]. 
  assert (st.(visited) n). 
  { eapply reachable_visited; eauto. }
  destruct GOOD as [GOOD1 GOOD2].
  exploit (GOOD1 n); eauto. intros [P|P].
  eelim NS.pick_none; eauto. 
  exploit P; eauto. intros OGE. rewrite RES; unfold PMap.get; simpl.
  inv OGE. assumption.
Qed.

(** ** Preservation of a property over solutions *)

Theorem fixpoint_invariant:
  forall ep ev
    (P: L.t -> Prop)
    (P_bot: P L.bot)
    (P_lub: forall x y, P x -> P y -> P (L.lub x y))
    (P_transf: forall pc instr x, code!pc = Some instr -> P x -> P (transf pc x))
    (P_entrypoint: P ev)
    res pc,
  fixpoint ep ev = Some res ->
  P res!!pc.
Proof.
  intros.
  set (inv := fun st => forall x, P (abstr_value x st)).
  assert (inv (start_state ep ev)).
  {
    red; simpl; intros. unfold abstr_value, start_state; simpl.
    rewrite PTree.gsspec. rewrite PTree.gempty. 
    destruct (peq x ep). auto. auto. 
  }
  assert (forall st v n, inv st -> P v -> inv (propagate_succ st v n)).
  {
    unfold inv, propagate_succ. intros.
    destruct (aval st)!n as [oldl|] eqn:E.
    destruct (L.beq oldl (L.lub oldl v)).
    auto.
    unfold abstr_value. simpl. rewrite PTree.gsspec. destruct (peq x n). 
    apply P_lub; auto. replace oldl with (abstr_value n st). auto. 
    unfold abstr_value; rewrite E; auto. 
    apply H1. 
    unfold abstr_value. simpl. rewrite PTree.gsspec. destruct (peq x n). 
    auto.
    apply H1.
  }
  assert (forall l st v, inv st -> P v -> inv (propagate_succ_list st v l)).
  {
    induction l; intros; simpl. auto.
    apply IHl; auto.
  }
  assert (forall st1 st2, steps st1 st2 -> inv st1 -> inv st2).
  {
    induction 1; intros.
    auto.
    unfold step in e. destruct (NS.pick (worklist s2)) as [[n rem]|]; try discriminate.
    destruct (code!n) as [instr|] eqn:INSTR; inv e.
    apply H2. apply IHsteps; auto. eapply P_transf; eauto. apply IHsteps; auto. 
    apply IHsteps; auto.
  }
  unfold fixpoint in H. exploit fixpoint_from_charact; eauto. 
  intros (st & STEPS & PICK & RES). 
  replace (res!!pc) with (abstr_value pc st). eapply H3; eauto. 
  rewrite RES; auto. 
Qed.

End Kildall.

End Dataflow_Solver.

(** * Solving backward dataflow problems using Kildall's algorithm *)

(** A backward dataflow problem on a given flow graph is a forward
  dataflow program on the reversed flow graph, where predecessors replace
  successors.  We exploit this observation to cheaply derive a backward
  solver from the forward solver. *)

(** ** Construction of the reversed flow graph (the predecessor relation) *)

Definition successors_list (successors: PTree.t (list positive)) (pc: positive) : list positive :=
  match successors!pc with None => nil | Some l => l end.

Notation "a !!! b" := (successors_list a b) (at level 1).

Section Predecessor.

Context {A: Type}.
Variable code: PTree.t A.
Variable successors: A -> list positive.

Fixpoint add_successors (pred: PTree.t (list positive))
                        (from: positive) (tolist: list positive)
                        {struct tolist} : PTree.t (list positive) :=
  match tolist with
  | nil => pred
  | to :: rem => add_successors (PTree.set to (from :: pred!!!to) pred) from rem
  end.

Lemma add_successors_correct:
  forall tolist from pred n s,
  In n pred!!!s \/ (n = from /\ In s tolist) -> 
  In n (add_successors pred from tolist)!!!s.
Proof.
  induction tolist; simpl; intros.
  tauto.
  apply IHtolist.
  unfold successors_list at 1. rewrite PTree.gsspec. destruct (peq s a).
  subst a. destruct H. auto with coqlib. 
  destruct H. subst n. auto with coqlib. 
  fold (successors_list pred s). intuition congruence.
Qed.

Definition make_predecessors : PTree.t (list positive) :=
  PTree.fold (fun pred pc instr => add_successors pred pc (successors instr))
             code (PTree.empty (list positive)).

Lemma make_predecessors_correct_1:
  forall n instr s,
  code!n = Some instr -> In s (successors instr) ->
  In n make_predecessors!!!s.
Proof.
  intros until s. 
  set (P := fun m p => m!n = Some instr -> In s (successors instr) ->
                       In n p!!!s).
  unfold make_predecessors.
  apply PTree_Properties.fold_rec with (P := P); unfold P; intros.
(* extensionality *)
  apply H0; auto. rewrite H; auto.
(* base case *)
  rewrite PTree.gempty in H; congruence.
(* inductive case *)
  apply add_successors_correct.
  rewrite PTree.gsspec in H2. destruct (peq n k). 
  inv H2. auto.
  auto.
Qed.

Lemma make_predecessors_correct_2:
  forall n instr s,
  code!n = Some instr -> In s (successors instr) ->
  exists l, make_predecessors!s = Some l /\ In n l.
Proof.
  intros. exploit make_predecessors_correct_1; eauto. 
  unfold successors_list. destruct (make_predecessors!s); simpl; intros.
  exists l; auto.
  contradiction.
Qed.

Lemma reachable_predecessors:
  forall p q,
  reachable code successors p q ->
  reachable make_predecessors (fun l => l) q p.
Proof.
  induction 1. 
- constructor.
- exploit make_predecessors_correct_2; eauto. intros [l [P Q]]. 
  eapply reachable_right; eauto. 
Qed.

End Predecessor.

(** ** Solving backward dataflow problems *)

(** The interface to a backward dataflow solver is as follows. *)

Module Type BACKWARD_DATAFLOW_SOLVER.

  Declare Module L: SEMILATTICE.

  (** [fixpoint successors transf] is the solver.
    It returns either an error or a mapping from program points to
    values of type [L.t] representing the solution.  [successors]
    is a finite map returning the list of successors of the given program
    point. [transf] is the transfer function. *)

  Variable fixpoint:
    forall {A: Type} (code: PTree.t A) (successors: A -> list positive)
           (transf: positive -> L.t -> L.t),
    option (PMap.t L.t).

  (** The [fixpoint_solution] theorem shows that the returned solution,
    if any, satisfies the backward dataflow inequations. *)

  Hypothesis fixpoint_solution:
    forall A (code: PTree.t A) successors transf res n instr s,
    fixpoint code successors transf = Some res ->
    code!n = Some instr -> In s (successors instr) ->
    (forall n a, code!n = None -> L.eq (transf n a) L.bot) ->
    L.ge res!!n (transf s res!!s).

  (** [fixpoint_allnodes] is a variant of [fixpoint], less algorithmically
    efficient, but correct without any hypothesis on the transfer function. *)

  Variable fixpoint_allnodes:
    forall {A: Type} (code: PTree.t A) (successors: A -> list positive)
           (transf: positive -> L.t -> L.t),
    option (PMap.t L.t).

  Hypothesis fixpoint_allnodes_solution:
    forall A (code: PTree.t A) successors transf res n instr s,
    fixpoint_allnodes code successors transf = Some res ->
    code!n = Some instr -> In s (successors instr) ->
    L.ge res!!n (transf s res!!s).

End BACKWARD_DATAFLOW_SOLVER.

(** We construct a generic backward dataflow solver, working over any
  semi-lattice structure, by applying the forward dataflow solver
  with the predecessor relation instead of the successor relation. *)

Module Backward_Dataflow_Solver (LAT: SEMILATTICE) (NS: NODE_SET):
                   BACKWARD_DATAFLOW_SOLVER with Module L := LAT.

Module L := LAT.

Module DS := Dataflow_Solver L NS.

Section Kildall.

Context {A: Type}.
Variable code: PTree.t A.
Variable successors: A -> list positive.
Variable transf: positive -> L.t -> L.t.

(** Finding entry points for the reverse control-flow graph. *)

Section Exit_points.

(** Assuming that the nodes of the CFG [code] are numbered in reverse 
  postorder (cf. pass [Renumber]), an edge from [n] to [s] is a
  normal edge if [s < n] and a back-edge otherwise.  
  [sequential_node] returns [true] if the given node has at least one
  normal outgoing edge.  It returns [false] if the given node is an exit
  node (no outgoing edges) or the final node of a loop body
  (all outgoing edges are back-edges).  As we prove later, the set
  of all non-sequential node is an appropriate set of entry points
  for exploring the reverse CFG. *)

Definition sequential_node (pc: positive) (instr: A): bool :=
  existsb (fun s => match code!s with None => false | Some _ => plt s pc end)
          (successors instr).

Definition exit_points : NS.t :=
  PTree.fold
    (fun ep pc instr => 
       if sequential_node pc instr
       then ep
       else NS.add pc ep)
    code NS.empty.

Lemma exit_points_charact:
  forall n, 
  NS.In n exit_points <-> exists i, code!n = Some i /\ sequential_node n i = false.
Proof.
  intros n. unfold exit_points. eapply PTree_Properties.fold_rec. 
- (* extensionality *)
  intros. rewrite <- H. auto. 
- (* base case *)
  simpl. split; intros. 
  eelim NS.empty_spec; eauto. 
  destruct H as [i [P Q]]. rewrite PTree.gempty in P. congruence. 
- (* inductive case *)
  intros. destruct (sequential_node k v) eqn:SN. 
  + rewrite H1. rewrite PTree.gsspec. destruct (peq n k). 
    subst. split; intros [i [P Q]]. congruence. inv P. congruence. 
    tauto.
  + rewrite NS.add_spec. rewrite H1. rewrite PTree.gsspec. destruct (peq n k). 
    subst. split. intros. exists v; auto. auto. 
    split. intros [P | [i [P Q]]]. congruence. exists i; auto. 
    intros [i [P Q]]. right; exists i; auto. 
Qed.

Lemma reachable_exit_points:
  forall pc i,
  code!pc = Some i -> exists x, NS.In x exit_points /\ reachable code successors pc x.
Proof.
  intros pc0. pattern pc0. apply (well_founded_ind Plt_wf).
  intros pc HR i CODE. 
  destruct (sequential_node pc i) eqn:SN. 
- (* at least one successor that decreases the pc *)
  unfold sequential_node in SN. rewrite existsb_exists in SN. 
  destruct SN as [s [P Q]]. destruct (code!s) as [i'|] eqn:CS; try discriminate. InvBooleans.
  exploit (HR s); eauto. intros [x [U V]]. 
  exists x; split; auto. eapply reachable_left; eauto. 
- (* otherwise we are an exit point *)
  exists pc; split. 
  rewrite exit_points_charact. exists i; auto. constructor.
Qed.

(** The crucial property of exit points is that any nonempty node in the
  CFG is reverse-reachable from an exit point. *)

Lemma reachable_exit_points_predecessor:
  forall pc i,
  code!pc = Some i ->
  exists x, NS.In x exit_points /\ reachable (make_predecessors code successors) (fun l => l) x pc.
Proof.
  intros. exploit reachable_exit_points; eauto. intros [x [P Q]].
  exists x; split; auto. apply reachable_predecessors. auto. 
Qed.

End Exit_points.

(** The efficient backward solver.  *)

Definition fixpoint :=
  DS.fixpoint_nodeset
    (make_predecessors code successors) (fun l => l)
    transf exit_points.

Theorem fixpoint_solution:
  forall res n instr s,
  fixpoint = Some res ->
  code!n = Some instr -> In s (successors instr) ->
  (forall n a, code!n = None -> L.eq (transf n a) L.bot) ->
  L.ge res!!n (transf s res!!s).
Proof.
  intros.
  exploit (make_predecessors_correct_2 code); eauto. intros [l [P Q]].
  destruct code!s as [instr'|] eqn:CS.
- exploit reachable_exit_points_predecessor. eexact CS. intros (ep & U & V).
  unfold fixpoint in H. eapply DS.fixpoint_nodeset_solution; eauto.
- apply L.ge_trans with L.bot. apply L.ge_bot.
  apply L.ge_refl. apply L.eq_sym. auto.
Qed.

(** The alternate solver that starts with all nodes of the CFG instead
  of just the exit points. *)

Definition fixpoint_allnodes :=
  DS.fixpoint_allnodes
    (make_predecessors code successors) (fun l => l)
    transf.

Theorem fixpoint_allnodes_solution:
  forall res n instr s,
  fixpoint_allnodes = Some res ->
  code!n = Some instr -> In s (successors instr) ->
  L.ge res!!n (transf s res!!s).
Proof.
  intros.
  exploit (make_predecessors_correct_2 code); eauto. intros [l [P Q]].
  unfold fixpoint_allnodes in H. 
  eapply DS.fixpoint_allnodes_solution; eauto.
Qed.

End Kildall.

End Backward_Dataflow_Solver.

(** * Analysis on extended basic blocks *)

(** We now define an approximate solver for forward dataflow problems
  that proceeds by forward propagation over extended basic blocks.
  In other terms, program points with multiple predecessors are mapped
  to [L.top] (the greatest, or coarsest, approximation) and the other
  program points are mapped to [transf p X[p]] where [p] is their unique
  predecessor. 

  This analysis applies to any type of approximations equipped with
  an ordering and a greatest element. *)

Module Type ORDERED_TYPE_WITH_TOP.

  Variable t: Type.
  Variable ge: t -> t -> Prop.
  Variable top: t.
  Hypothesis top_ge: forall x, ge top x.
  Hypothesis refl_ge: forall x, ge x x.

End ORDERED_TYPE_WITH_TOP.

(** The interface of the solver is similar to that of Kildall's forward
  solver, with a slightly different statement of the invariant
  preservation property [fixpoint_invariant]. *)

Module Type BBLOCK_SOLVER.

  Declare Module L: ORDERED_TYPE_WITH_TOP.

  Variable fixpoint:
    forall {A: Type} (code: PTree.t A) (successors: A -> list positive)
           (transf: positive -> L.t -> L.t)
           (entrypoint: positive),
    option (PMap.t L.t).

  Hypothesis fixpoint_solution:
    forall A (code: PTree.t A) successors transf entrypoint res n instr s,
    fixpoint code successors transf entrypoint = Some res ->
    code!n = Some instr -> In s (successors instr) ->
    L.ge res!!s (transf n res!!n).

  Hypothesis fixpoint_entry:
    forall A (code: PTree.t A) successors transf entrypoint res,
    fixpoint code successors transf entrypoint = Some res ->
    res!!entrypoint = L.top.

  Hypothesis fixpoint_invariant:
    forall A (code: PTree.t A) successors transf entrypoint
           (P: L.t -> Prop),
    P L.top ->
    (forall pc instr x, code!pc = Some instr -> P x -> P (transf pc x)) ->
    forall res pc,
    fixpoint code successors transf entrypoint = Some res ->
    P res!!pc.

End BBLOCK_SOLVER.

(** The implementation of the ``extended basic block'' solver is a
  functor parameterized by any ordered type with a top element. *)

Module BBlock_solver(LAT: ORDERED_TYPE_WITH_TOP):
                        BBLOCK_SOLVER with Module L := LAT.

Module L := LAT.

Section Solver.

Context {A: Type}.
Variable code: PTree.t A.
Variable successors: A -> list positive.
Variable transf: positive -> L.t -> L.t.
Variable entrypoint: positive.
Variable P: L.t -> Prop.
Hypothesis Ptop: P L.top.
Hypothesis Ptransf: forall pc instr x, code!pc = Some instr -> P x -> P (transf pc x).

Definition bbmap := positive -> bool.
Definition result := PMap.t L.t.

(** As in Kildall's solver, the state of the iteration has two components:
- A mapping from program points to values of type [L.t] representing
  the candidate solution found so far.
- A worklist of program points that remain to be considered.
*)

Record state : Type := mkstate
  { aval: result; worklist: list positive }.

(** The ``extended basic block'' algorithm, in pseudo-code, is as follows:
<<
    worklist := the set of all points n having multiple predecessors
    aval  := the mapping n -> L.top

    while worklist is not empty, do
        extract a node n from worklist
        compute out = transf n aval[n]
        for each successor s of n:
            if s has only one predecessor (namely, n):
                aval[s] := out
                worklist := worklist union {s}
            end if
        end for
    end while
    return aval
>>
**)

Fixpoint propagate_successors
    (bb: bbmap) (succs: list positive) (l: L.t) (st: state)
    {struct succs} : state :=
  match succs with
  | nil => st
  | s1 :: sl =>
      if bb s1 then
        propagate_successors bb sl l st
      else
        propagate_successors bb sl l
          (mkstate (PMap.set s1 l st.(aval))
                   (s1 :: st.(worklist)))
  end.

Definition step (bb: bbmap) (st: state) : result + state :=
  match st.(worklist) with
  | nil => inl _ st.(aval)
  | pc :: rem =>
      match code!pc with
      | None =>
          inr _ (mkstate st.(aval) rem)
      | Some instr =>
          inr _ (propagate_successors 
                   bb (successors instr)
                   (transf pc st.(aval)!!pc)
                   (mkstate st.(aval) rem))
      end
  end.

(** Recognition of program points that have more than one predecessor. *)

Definition is_basic_block_head 
    (preds: PTree.t (list positive)) (pc: positive) : bool :=
  if peq pc entrypoint then true else
    match preds!!!pc with
    | nil => false
    | s :: nil => peq s pc
    | _ :: _ :: _ => true
    end.

Definition basic_block_map : bbmap :=
  is_basic_block_head (make_predecessors code successors).

Definition basic_block_list (bb: bbmap) : list positive :=
  PTree.fold (fun l pc instr => if bb pc then pc :: l else l)
             code nil.

(** The computation of the approximate solution. *)

Definition fixpoint : option result :=
  let bb := basic_block_map in
  PrimIter.iterate _ _ (step bb) (mkstate (PMap.init L.top) (basic_block_list bb)).

(** ** Properties of predecessors and multiple-predecessors nodes *)

Definition predecessors := make_predecessors code successors.

Lemma predecessors_correct:
  forall n instr s,
  code!n = Some instr -> In s (successors instr) -> In n predecessors!!!s.
Proof.
  intros. unfold predecessors. eapply make_predecessors_correct_1; eauto.
Qed.

Lemma multiple_predecessors:
  forall s n1 instr1 n2 instr2,
  code!n1 = Some instr1 -> In s (successors instr1) ->
  code!n2 = Some instr2 -> In s (successors instr2) ->
  n1 <> n2 ->
  basic_block_map s = true.
Proof.
  intros. 
  assert (In n1 predecessors!!!s). eapply predecessors_correct; eauto.
  assert (In n2 predecessors!!!s). eapply predecessors_correct; eauto.
  unfold basic_block_map, is_basic_block_head.
  destruct (peq s entrypoint). auto. 
  fold predecessors.
  destruct (predecessors!!!s). 
  auto.
  destruct l.
  apply proj_sumbool_is_true. simpl in *. intuition congruence. 
  auto.
Qed.

Lemma no_self_loop:
  forall n instr,
  code!n = Some instr -> In n (successors instr) -> basic_block_map n = true.
Proof.
  intros. unfold basic_block_map, is_basic_block_head.
  destruct (peq n entrypoint). auto. 
  fold predecessors.
  exploit predecessors_correct; eauto. intros. 
  destruct (predecessors!!!n).
  contradiction. 
  destruct l. apply proj_sumbool_is_true. simpl in H1. tauto. 
  auto.
Qed.

(** ** Correctness invariant *)

(** The invariant over the state is as follows:
- Points with several predecessors are mapped to [L.top]
- Points not in the worklist satisfy their inequations 
  (as in Kildall's algorithm).
*)

Definition state_invariant (st: state) : Prop :=
  (forall n, basic_block_map n = true -> st.(aval)!!n = L.top)
/\
  (forall n,
   In n st.(worklist) \/
   (forall instr s, code!n = Some instr -> In s (successors instr) -> 
               L.ge st.(aval)!!s (transf n st.(aval)!!n))).

Lemma propagate_successors_charact1:
  forall bb succs l st,
  incl st.(worklist)
       (propagate_successors bb succs l st).(worklist).
Proof.
  induction succs; simpl; intros.
  apply incl_refl.
  case (bb a).
  auto.
  apply incl_tran with (a :: worklist st).
  apply incl_tl. apply incl_refl.
  set (st1 := (mkstate (PMap.set a l (aval st)) (a :: worklist st))).
  change (a :: worklist st) with (worklist st1).
  auto.
Qed.

Lemma propagate_successors_charact2:
  forall bb succs l st n,
  let st' := propagate_successors bb succs l st in
  (In n succs -> bb n = false -> In n st'.(worklist) /\ st'.(aval)!!n = l)
/\ (~In n succs \/ bb n = true -> st'.(aval)!!n = st.(aval)!!n).
Proof.
  induction succs; simpl; intros.
  (* Base case *)
  split. tauto. auto.
  (* Inductive case *)
  caseEq (bb a); intro.
  elim (IHsuccs l st n); intros U V.
  split; intros. apply U; auto.
  elim H0; intro. subst a. congruence. auto. 
  apply V. tauto. 
  set (st1 := mkstate (PMap.set a l (aval st)) (a :: worklist st)).
  elim (IHsuccs l st1 n); intros U V.
  split; intros.
  elim H0; intros.
  subst n. split.
  apply propagate_successors_charact1. simpl. tauto.
  case (In_dec peq a succs); intro.
  elim (U i H1); auto.
  rewrite V. unfold st1; simpl. apply PMap.gss. tauto.
  apply U; auto.
  rewrite V. unfold st1; simpl. apply PMap.gso. 
  red; intro; subst n. elim H0; intro. tauto. congruence.
  tauto. 
Qed.

Lemma propagate_successors_invariant:
  forall pc instr res rem,
  code!pc = Some instr ->
  state_invariant (mkstate res (pc :: rem)) ->
  state_invariant 
    (propagate_successors basic_block_map (successors instr)
                          (transf pc res!!pc)
                          (mkstate res rem)).
Proof.
  intros until rem. intros CODE [INV1 INV2]. simpl in INV1. simpl in INV2.
  set (l := transf pc res!!pc).
  generalize (propagate_successors_charact1 basic_block_map
                (successors instr) l (mkstate res rem)).
  generalize (propagate_successors_charact2 basic_block_map
                (successors instr) l (mkstate res rem)).
  set (st1 := propagate_successors basic_block_map
                 (successors instr) l (mkstate res rem)).
  intros U V. simpl in U. 
  (* First part: BB entries remain at top *)
  split; intros.
  elim (U n); intros C D. rewrite D. simpl. apply INV1. auto. tauto. 
  (* Second part: monotonicity *)
  (* Case 1: n = pc *)
  destruct (peq pc n). subst n. 
  right; intros.
  assert (instr0 = instr) by congruence. subst instr0.
  elim (U s); intros C D.
  replace (st1.(aval)!!pc) with res!!pc. fold l.
  destruct (basic_block_map s) eqn:BB.
  rewrite D. simpl. rewrite INV1. apply L.top_ge. auto. tauto. 
  elim (C H0 (refl_equal _)). intros X Y. rewrite Y. apply L.refl_ge. 
  elim (U pc); intros E F. rewrite F. reflexivity. 
  destruct (In_dec peq pc (successors instr)).
  right. eapply no_self_loop; eauto. 
  left; auto.
  (* Case 2: n <> pc *)
  elim (INV2 n); intro.
  (* Case 2.1: n was already in worklist, still is *)
  left. apply V. simpl. tauto.
  (* Case 2.2: n was not in worklist *)
  assert (INV3: forall s instr', code!n = Some instr' -> In s (successors instr') -> st1.(aval)!!s = res!!s).
    (* Amazingly, successors of n do not change.  The only way
       they could change is if they were successors of pc as well,
       but that gives them two different predecessors, so
       they are basic block heads, and thus do not change! *)
    intros. elim (U s); intros C D. rewrite D. reflexivity. 
    destruct (In_dec peq s (successors instr)).
    right. eapply multiple_predecessors with (n1 := pc) (n2 := n); eauto.
    left; auto.
  destruct (In_dec peq n (successors instr)).
  (* Case 2.2.1: n is a successor of pc. Either it is in the
     worklist or it did not change *)
  destruct (basic_block_map n) eqn:BB.
  right; intros. 
  elim (U n); intros C D. rewrite D. erewrite INV3; eauto.
  tauto.
  left. elim (U n); intros C D. elim (C i BB); intros. auto.
  (* Case 2.2.2: n is not a successor of pc. It did not change. *)
  right; intros.
  elim (U n); intros C D. rewrite D. 
  erewrite INV3; eauto.
  tauto.
Qed.

Lemma propagate_successors_invariant_2:
  forall pc res rem,
  code!pc = None ->
  state_invariant (mkstate res (pc :: rem)) ->
  state_invariant (mkstate res rem).
Proof.
  intros until rem. intros CODE [INV1 INV2]. simpl in INV1. simpl in INV2.
  split; simpl; intros.
  apply INV1; auto.
  destruct (INV2 n) as [[U | U] | U]. 
  subst n. right; intros; congruence.
  auto.
  auto.
Qed.

Lemma initial_state_invariant:
  state_invariant (mkstate (PMap.init L.top) (basic_block_list basic_block_map)).
Proof.
  split; simpl; intros.
  apply PMap.gi.
  right. intros. repeat rewrite PMap.gi. apply L.top_ge.
Qed.

Lemma analyze_invariant:
  forall res,
  fixpoint = Some res ->
  state_invariant (mkstate res nil).
Proof.
  unfold fixpoint; intros. pattern res.
  eapply (PrimIter.iterate_prop _ _ (step basic_block_map)
           state_invariant).

  intros st INV. destruct st as [stin stwrk]. 
  unfold step. simpl. destruct stwrk as [ | pc rem ] eqn:WRK. 
  auto.
  destruct (code!pc) as [instr|] eqn:CODE.
  eapply propagate_successors_invariant; eauto. 
  eapply propagate_successors_invariant_2; eauto. 

  eauto. apply initial_state_invariant.
Qed.

(** ** Correctness of the returned solution *)

Theorem fixpoint_solution:
  forall res n instr s,
  fixpoint = Some res ->
  code!n = Some instr -> In s (successors instr) ->
  L.ge res!!s (transf n res!!n).
Proof.
  intros. 
  assert (state_invariant (mkstate res nil)).
  eapply analyze_invariant; eauto.
  elim H2; simpl; intros. 
  elim (H4 n); intros. 
  contradiction.
  eauto.
Qed.

Theorem fixpoint_entry:
  forall res,
  fixpoint = Some res ->
  res!!entrypoint = L.top.
Proof.
  intros. 
  assert (state_invariant (mkstate res nil)).
  eapply analyze_invariant; eauto. 
  elim H0; simpl; intros. 
  apply H1. unfold basic_block_map, is_basic_block_head.
  fold predecessors. apply peq_true. 
Qed. 

(** ** Preservation of a property over solutions *)

Definition Pstate (st: state) : Prop :=
  forall pc, P st.(aval)!!pc.

Lemma propagate_successors_P:
  forall bb l,
  P l ->
  forall succs st,
  Pstate st ->
  Pstate (propagate_successors bb succs l st).
Proof.
  induction succs; simpl; intros.
  auto.
  case (bb a). auto. 
  apply IHsuccs. red; simpl; intros. 
  rewrite PMap.gsspec. case (peq pc a); intro.
  auto. apply H0.
Qed.

Theorem fixpoint_invariant:
  forall res pc, fixpoint = Some res -> P res!!pc.
Proof.
  unfold fixpoint; intros. pattern res. 
  eapply (PrimIter.iterate_prop _ _ (step basic_block_map) Pstate).

  intros st PS. unfold step. destruct (st.(worklist)).
  apply PS.
  assert (PS2: Pstate (mkstate st.(aval) l)).
    red; intro; simpl. apply PS.
  destruct (code!p) as [instr|] eqn:CODE.
  apply propagate_successors_P. eauto. auto. 
  auto.

  eauto. 
  red; intro; simpl. rewrite PMap.gi. apply Ptop.
Qed.

End Solver.

End BBlock_solver.

(** ** Node sets *)

(** We now define implementations of the [NODE_SET] interface
  appropriate for forward and backward dataflow analysis.
  As mentioned earlier, we aim for a traversal of the CFG nodes
  in reverse postorder (for forward analysis) or postorder
  (for backward analysis).  We take advantage of the following
  fact, valid for all CFG generated by translation from Cminor:
  the enumeration [n-1], [n-2], ..., 3, 2, 1 where [n] is the
  top CFG node is a reverse postorder traversal.
  Therefore, for forward analysis, we will use an implementation
  of [NODE_SET] where the [pick] operation selects the 
  greatest node in the working list.  For backward analysis,
  we will similarly pick the smallest node in the working list. *)

Require Import Heaps.

Module NodeSetForward <: NODE_SET.
  Definition t := PHeap.t.
  Definition empty := PHeap.empty.
  Definition add (n: positive) (s: t) : t := PHeap.insert n s.
  Definition pick (s: t) :=
    match PHeap.findMax s with
    | Some n => Some(n, PHeap.deleteMax s)
    | None => None
    end.
  Definition all_nodes {A: Type} (code: PTree.t A) :=
    PTree.fold (fun s pc instr => PHeap.insert pc s) code PHeap.empty.
  Definition In := PHeap.In.

  Lemma empty_spec:
    forall n, ~In n empty.
  Proof.
    intros. apply PHeap.In_empty.
  Qed.

  Lemma add_spec:
    forall n n' s, In n' (add n s) <-> n = n' \/ In n' s.
  Proof.
    intros. rewrite PHeap.In_insert. unfold In. intuition.
  Qed.
    
  Lemma pick_none:
    forall s n, pick s = None -> ~In n s.
  Proof.
    intros until n; unfold pick. caseEq (PHeap.findMax s); intros.
    congruence.
    apply PHeap.findMax_empty. auto.
  Qed.

  Lemma pick_some:
    forall s n s', pick s = Some(n, s') ->
    forall n', In n' s <-> n = n' \/ In n' s'.
  Proof.
    intros until s'; unfold pick. caseEq (PHeap.findMax s); intros.
    inv H0.
    generalize (PHeap.In_deleteMax s n n' H). unfold In. intuition.
    congruence.
  Qed.

  Lemma all_nodes_spec:
    forall A (code: PTree.t A) n instr, 
    code!n = Some instr -> In n (all_nodes code).
  Proof.
    intros A code n instr.
    apply PTree_Properties.fold_rec with
      (P := fun m set => m!n = Some instr -> In n set).
    (* extensionality *)
    intros. apply H0. rewrite H. auto. 
    (* base case *)
    rewrite PTree.gempty. congruence.
    (* inductive case *)
    intros. rewrite PTree.gsspec in H2. rewrite add_spec.
    destruct (peq n k). auto. eauto.
  Qed.
End NodeSetForward.

Module NodeSetBackward <: NODE_SET.
  Definition t := PHeap.t.
  Definition empty := PHeap.empty.
  Definition add (n: positive) (s: t) : t := PHeap.insert n s.
  Definition pick (s: t) :=
    match PHeap.findMin s with
    | Some n => Some(n, PHeap.deleteMin s)
    | None => None
    end.
  Definition all_nodes {A: Type} (code: PTree.t A) :=
    PTree.fold (fun s pc instr => PHeap.insert pc s) code PHeap.empty.
  Definition In := PHeap.In.

  Lemma empty_spec:
    forall n, ~In n empty.
  Proof NodeSetForward.empty_spec.

  Lemma add_spec:
    forall n n' s, In n' (add n s) <-> n = n' \/ In n' s.
  Proof NodeSetForward.add_spec.

  Lemma pick_none:
    forall s n, pick s = None -> ~In n s.
  Proof.
    intros until n; unfold pick. caseEq (PHeap.findMin s); intros.
    congruence.
    apply PHeap.findMin_empty. auto.
  Qed.

  Lemma pick_some:
    forall s n s', pick s = Some(n, s') ->
    forall n', In n' s <-> n = n' \/ In n' s'.
  Proof.
    intros until s'; unfold pick. caseEq (PHeap.findMin s); intros.
    inv H0.
    generalize (PHeap.In_deleteMin s n n' H). unfold In. intuition.
    congruence.
  Qed.

  Lemma all_nodes_spec:
    forall A (code: PTree.t A) n instr, 
    code!n = Some instr -> In n (all_nodes code).
  Proof NodeSetForward.all_nodes_spec.
End NodeSetBackward.